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Characterizing thermally activated transitions in high-dimensional rugged energy surfaces is a
very challenging task for classical computers. Here, we develop a quantum annealing scheme to
solve this problem. First, the task of finding the most probable transition paths in configuration
space is reduced to a shortest-path problem defined on a suitable weighted graph. Next, this
optimization problem is mapped into finding the ground state of a generalized Ising model, a task
that can be efficiently solved by a quantum annealing machine. This approach leverages on the
quantized nature of qubits to describe transitions between different system’s configurations. Since it
does not involve any lattice space discretization, it paves the way towards biophysical applications
of quantum computing based on realistic all-atom models.

Introduction. Thermally activated processes, and in
particular conformational transitions of macromolecules,
play a key role in many research fields at the interface
between physics, chemistry, biology. Molecular Dynam-
ics (MD) offers a theoretically sound framework to in-
vestigate these processes by sampling the corresponding
transition path ensembles at the atomic level of resolu-
tion. Unfortunately, MD is very computationally ineffi-
cient whenever the system’s energy landscape is rugged.

To overcome the limitations of MD, much effort has
been put over the last two decades toward devising en-
hanced sampling algorithms [1]. In particular, an expo-
nential speed-up of the computational efficiency can be
obtained by introducing specific biasing forces which pro-
mote the escape rate from metastable minima [2-4]. All
these methods typically require prior knowledge about
the reaction coordinate or the system’s slowest Collec-
tive Variables (CVs). Unfortunately, the identification
of these variables is in general a very challenging task,
and a sub-optimal choice can hamper the convergence or
introduce systematic errors.

During the last several years, quantum computing ma-
chines have grown exponentially both in size and per-
formance, to a point that it is now realistic to foresee
the onset of quantum supremacy in key computational
problems [5]. It is therefore both important and timely
to address the question whether quantum computation
can be employed to identify statistically relevant tran-
sition pathways in high-dimensional rugged energy sur-
faces, without having to rely on any choice of CVs.

In recent years, progress has been made on designing
quantum annealing algorithms for chemistry and biology
applications [6-11]. Yet, only a few applications of quan-
tum computation to classical molecular sampling prob-
lems have been reported to date [12, 13]. Arguably, the
key issue that is limiting the application of quantum com-
puters to molecular mechanics is the fact that quantum
machines are best suited to tackle discrete problems. For
this reason, to the best of our knowledge, all the quan-
tum computing algorithms for sampling and energy op-

timization of classical molecular structures rely on sim-
plified lattice models. While these models have provided
valuable insight into the general statistical mechanical
properties of biopolymers [14], the lack of structural and
chemical detail hampers their applicability to investigate
realistic biophysical systems.

In this work, we develop a rigorous approach to find-
ing the most statistically relevant transition paths in a
thermally activated reaction using a quantum comput-
ing machine. Our method does not require lattice dis-
cretization. Thus, it is in principle applicable to realistic
molecular models, e.g. based on all-atom force fields.

The basic idea is to first use molecular simulations
based on classical computing to generate large data sets
of conformations, mostly concentrated in the transition
region between the given reactant and product states.
The key point here is that this set of molecular configu-
rations is not required to sample any physically mean-
ingful distribution, therefore it can be generated in a
computationally very efficient way, possibly relying on
massively distributed schemes. For example, one could
merge into a single data set configurations obtained using
different algorithms, such as machine-learning schemes
for uncharted manifold learning [15] and plain MD per-
formed at very high temperature.

The next step is to assign a posteriori a relative sta-
tistical weight to all the reactive trajectories that can
be drawn by connecting the configurations in this sparse
dataset. Indeed, using the so-called Dominant Reaction
Pathways (DRP) formalism [16] the most probable tran-
sition pathways connecting given initial and final config-
urations can be rigorously obtained from a least-action
principle. After restricting the molecular configuration
space to the previously generated ensemble of molecular
structures, the DRP variational problem becomes equiva-
lent to a shortest path problem formulated on a discrete
weighted graph, which can be tackled by quantum an-
nealing. The key difference to other proposed quantum
computing approaches for molecular sampling [12, 13]
is that the discretization required to run on a quantum



Figure 1. Minimum energy path calculated in the Miiller
Brown energy surface using the Dijkstra algorithm (left panel)
and in the double-well potential by simulated annealing of the
Ising Hamiltonian (right panel). In both panels, the heat-map
displays the potential energy in units of kgT', the points have
been sampled from a flat distribution, and the insets show the
associated weighted graphs.

computing machine is performed at the level of the sys-
tem’s configuration space and that the points in this con-
figuration space are defined in continuum space and are
generated using a classical computer.

Dominant Reaction Pathways. Let us begin by briefly
reviewing the DRP formalism. The starting assumption
is that the system’s structural dynamics can be modeled
by a set of over-damped Langevin equations:
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q; denotes the position of the ¢—th particle in the sys-
tem, and D is the diffusion coefficient (here chosen for
simplicity to be the same for all particles). U(Q) is
the molecular potential energy and @ = (qi,...qn)
is the 3N —dimensional coordinate in the system’s con-
figuration space, while 7;(t) is a delta-correlated white
noise obeying the fluctuation-dissipation relationship
(ni(£)n;(0)) = 2D3;;6(t). The over-damped limit is ap-
propriate to describe the dynamics of proteins, with a
time-resolution on the order of picoseconds or lower.

The probability of finding the system in a conformation
Q¢ at time ¢, conditioned to be at the conformation Qg
at the initial time ¢y can be expressed as a path integral,
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where Se[Q)] is called the effective action and reads
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The DRP approach focuses on the most probable re-
active trajectories and is based on the saddle-point ap-
proximation of the functional integral (2). The functional
minima of the effective action Se[Q)], are called domi-
nant paths and obey the Newton-type equations of mo-
tion 2Dq; = V;Vog(Q). This implies the conservation of
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the so-called effective energy Fog = % — Vet (Q) along
the dominant paths. Using this property, it is possible to
show that the saddle-points of the functional integral (2)
coincide with the minima of the Hamilton—Jacobi (HJ)
functional [16, 18]
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where dl = +/dQ? is an infinitesimal conformational
displacement along the dominant path. The effective
energy parameter Feog implicitly sets the time interval
t — to entering Eq. (2), through the equation ¢t — ¢ty =
fgof di{4D(Veg[Q(1)] + Ee)} /2. For this time-scale to
be on the order of the typical transition path time, the
effective energy must be chosen Feg ~ —Vog(Q;) [17, 19].

In molecular simulations, the HJ formulation of the
saddle-point condition leads to a dramatic computa-
tional advantage with respect to the standard (i.e. time-
dependent) formulation. This is because the typical root-
mean-square distance between kinetically distant molec-
ular configurations can be at most two orders of mag-
nitude larger than the atomic size. As a consequence,
only a few tens of configurations are usually sufficient for
an accurate representation of the line integral in the HJ
functional (4). In contrast, to accurately discretize the
time integral in the effective action (3) one would need
to use time steps dt on the order of fs, while the typical
transition path times for complex macromolecular tran-
sitions (such as e.g. protein folding) are about 9 orders of
magnitude larger. We emphasize again this point, since
it is a cornerstone of our approach: using the HJ formal-
ism it is possible to assign correct statistical weight to
the paths that are obtained connecting configurations in
the previously generated sparse dataset, even though the
typical time it would take the system to diffuse from one
of these configurations to a nearest neighbor may be as
long as several ns.

Shortest-path problem formulation. The HJ variational
condition can be rigorously mapped into a shortest-path
problem on a discrete graph. To this end, we assign a ver-
tex in the graph (labelled 4, j = 1...|V|) to each molecu-
lar configuration in the previously generated dataset and
identify the initial conformation QQy with the source s and
the final conformation @)y with the target t. Next, we de-
fine a set £ of directed edges (ij) that connect vertices 4
and j. Each directed edge is assigned a weight (or ‘cost’)

wiig) = Algij)
ij) —
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with L; = /Ver(Qi) + Eer and Al = /(Q: — Q;)%.

In this notation, the target function to minimize on the
network is Spj = szcw:l Wiy igy,)> Withip = sand iy = t.
To ensure that the HJ functional is correctly represented
by discrete paths on the network, we take only edges into
account with a cost below a given cutoff W.. We note



that this condition can drastically reduce the complexity
of our optimization problem, as for a judicious choice of
W, the number of edges will become proportional to the
number of vertices |V| rather than [V|%.

To summarize, so far we have mapped the problem
of finding the dominant transition pathways in a high-
dimensional continuous energy landscape into a shortest
path problem in the weighted graph (V, £). It is impor-
tant to emphasize that, in its original continuous-space
formulation, the DRP least-action principle corresponds
to an NP-hard global optimization problem [16, 18]. This
computational limitation hampered the straightforward
application of this approach to investigate large macro-
molecular transitions. However, after mapping the DRP
least-action principle into a shortest path problem on the
graph, it is possible to rely on very efficient discrete opti-
mization algorithms such as the Dijkstra algorithm [24].

It is convenient to illustrate how this path finding al-
gorithm works in a prototypical toy model for rare acti-
vated transition. Namely, we consider the diffusion of a
point-particle in the Miiller-Brown two-dimensional en-
ergy surface, displayed in Fig. 1 —the functional form
used is reported in the Appendix—. Our goal is to find
the dominant reaction path connecting the local energy
minimum Qr = —(0.56,1.44) to the energy minimum
at Qp = (0.62,0.03). To facilitate the visual assess-
ment of the results, we focus on the low-temperature
regime, in which the SH functional reduces to Spjy =
(kpT/2)~" [$7 dI[VUIQ(D)]]. Thus, in this limit, the
dominant pathway reduces to the minimum-energy path
[18]. As a first step, we generated an ensemble of 2000
configurations by randomly sampling points in the re-
gion ¢1 € [—1.5,0.65], g2 € [0.65,1.6]. In applications to
macromolecular systems, this random ensemble of points
would be replaced by molecular conformations generated
on a classical machine. We emphasize that the flat dis-
tribution of points on the plain does not correspond to
any physically meaningful ensemble. Next, we built the
sparse network connecting each point to its 10 nearest
neighbors and assigned a weight to each edge propor-
tional to the corresponding contribution w;; to the HJ
action ( inset in the left panel of Fig. 1). Finally, to
compute the shortest path on this graph we resorted
to the Dijkstra algorithm. The result is the red line,
which clearly provides a very accurate representation of
the minimum-energy path in this landscape.

Finding the Shortest-Path by Quantum Computing.
Let us now tackle the problem of formulating the short-
est path problem in a way amenable to global optimiza-
tion through a quantum annealing machine. To this end,
we consider the linear programming formulation of the
shortest path problem: We introduce the binary vari-
ables z(;;y = 0,1, located at edges (ij). z(;;) = 1 means
the edge (ij) is part of the shortest path, while z(;;) = 0
means it is not. We emphasize that in our directed graph,
we distinguish between (ij) and (ji). The task of find-
ing the shortest path is then translated into minimizing

the target function Z(ij)ee W(35)T(i5) Subject to the con-

straints
1, if i =s;
Jjev JjEV 0, otherwise.

These constraints represent a conservation of flux: since
we are searching for a connected path, at each vertex
the number of incoming edges must equal the number
of outgoing edges. Exceptions are s, where the number
of outgoing edges is larger by one than the number of
incoming edges, and t, where the converse is true.
These can be cast into the form of a quadratic function

2

> (v —xge) — 1| +

JEV

Hy=A

2

2
Do (man —zgo) H1| + D D (@ay — 2o

VIS4 icv | jEV
i#s,t

(7)

Note that in the above terms, the summation over j is
restricted to the vertices connected to s, t, and 4, respec-
tively. Defining in addition the cost function to the HJ
functional

Hp =B Y wijy, (8)
(ij)e&

the shortest path problem can be reformulated as: Find
the set of binary variables z(;;) that minimize the classi-
cal cost function H = H 4 + Hpg. Note that, in order for
H 4 to be a hard constraint, we require the ratio between
coupling constants A/B to be sufficiently large. A rigor-
ous condition is A/B > |&| W, where |€| is the number
of edges, but in practice smaller values often suffice.

In order to solve the problem with a quantum process-
ing device, we re-interpret the classical cost function H as
a quantum mechanical Hamiltonian described by z-Pauli-
components of spins 1/2; defined by oGy = 2Ty — 1.
These spins 1/2 are to be encoded in the qubits of
the quantum annealer. The resulting generalized Ising
Hamiltonian is explicitly reported in the Appendix.

In quantum annealing, the problem of finding the mini-
mum energy configuration of H is solved in the following
way [20-22]. The qubits are initialized in the ground
state of an easily solvable Hamiltonian that does not
commute with H, say H;, = —h Z(ij) TGy Then, the
qubit system is subjected to a time-dependent Hamil-
tonian a(t)Hi, + b(t)H, with scheduling functions a(t)
and b(t). These are chosen such that initially a(0) = 1
and b(0) = 0, while at the end of the protocol at tsweep
one has a(tsweep) = 0 and b(tsweep) = 1. In this way,
the Hamiltonian is transformed from the simple Hj, to
the complex problem Hamiltonian H. If the sweep is
performed sufficiently slowly, by the adiabatic theorem



the system remains in its instantaneous ground state all
the way through the sweep. That is, the final state at
the end of the protocol is the ground-state of H, i.e. the
solution to the shortest-path problem. Note that in cur-
rent practical devices there is considerable coupling to
the environment, such that the sweep is not fully coher-
ent and higher levels can be populated. This deteriorates
the success probability and makes it difficult to derive
rigorous proofs about any quantum advantage. Despite
these limitations, quantum annealing has been used suc-
cessfully for a large number of problems, including many
NP-complete as well as applications ranging from search-
engine ranking over machine learning to quantum chem-
istry, and various ways forward to improve the perfor-
mance of quantum annealing devices have been identi-
fied; see Refs. [20-22] for recent reviews.

In principle, since our problem requires only an undi-
rected solution of the shortest path, one could e.g. adapt
the algorithm developed in Ref. [23]. There, the qubits
encode the vertices rather than the links. The final state
of the quantum computer then returns the vertices that
lie on the optimal path, but not their order, which thus
requires additional postprocessing. If there is a unique
shortest path, the number of qubits required for the algo-
rithm of Ref. [23] scales as |V|. In the presence of several
shortest paths, the number of links in the shortest path
A needs to be known and the scaling grows to |V|A. In
contrast, the qubit requirement of our algorithm scales
slower than 2|V|c, where ¢ denotes the number of edges
at the site with the largest connectivity, and no a priory
knowledge of properties of the shortest path is necessary.

Let us now illustrate how the dominant path is ob-
tained from the ground-state of our generalized Ising
Hamiltonian. While we have designed this algorithm
to be implemented on a quantum annealing machine,
here we have resorted to classical simulated annealing.
It should be kept in mind that a spin-glass formulation
of the shortest path problem is inefficient when imple-
mented on a classical computer. To keep the compu-
tational effort tractable, we chose to consider a smooth
two-dimensional double well potential (shown in the right
panel of Fig. 1 and defined in Appendix), for which only
20 random configurations on the plane were sufficient to
achieve a coarse-grained representation of configuration
space. We implemented the Ising system associated to
a graph in which the nearest neighbors of each configu-
ration were selected according to cut-off distance of 0.6,
leading to 78 spins. The right panel of Fig.1 shows the
minimum energy path obtained after 80000 steps of sim-
ulated annealing of the Ising Hamiltonian with A = 100
and B = 50, with an inverse thermal energy ranging
from 8 =5 x 1073 to B = 6 x 1072, This result provides
the optimal approximation of the minimum energy path,
given the very coarse-grained discrete representation of
configuration space and the cut-off distance.

How many qubits are expected to be necessary for a

realistic application to a macromolecular transition? As
reference for the minimal number of conformations re-

quired to represent the transition region of a complex
reaction, we take the number of micro-states used in
Markov State stochastic models to represent the folding
process of very small globular proteins, which is of the
order 10% [25]. Assuming an average connectivity of ~ 10
edges per vertex we arrive at a minimal number of qubits
on the order of 10°.

To date, the largest quantum annealing machines have
0(103) qubits and are not yet in a position to outperform
classical computers in shortest path calculation. How-
ever, if the current exponential growth in quantum pro-
cessors continues, the proposed method has the potential
to play a game changing role in the field of molecular sim-
ulations, enabling the investigation of increasingly com-
plex and rare transitions.

Our approach represents a new paradigm for tackling
biophysical problems using quantum optimization: In-
stead of discretizing real space onto a lattice —which
would hamper the application to realistic systems of bi-
ological interest— it makes efficient use of the quantized
nature of the qubit register to represent a discrete set of
system’s configurations, each of which can be arbitrarily
complex. In addition, it can capitalize on recently devel-
oped powerful machine learning techniques to perform an
uncharted exploration of complex energy landscapes.

We thank R. Covino and A. Laio for important dis-
cussions. P.H. acknowledges support by Provincia Au-
tonoma di Trento and the ERC Starting Grant StrEn-
QTh (Project-ID 804305).

Appendix A: Energy Surfaces

The potential energy of the Miiller-Brown energy sur-
face [26] used in the illustrative example in the main text
is

4
U(_%y) — ZAieai(m—xé)z’-i—bi(fc—xé)(y—yé)+ci(y—yé)%A1)
=1

where the parameters are reported in the Table.

Table I. Parameters of the Miiller-Brown potential

A1=-200,| A2=-100,| A3=-170,| A,=15
zo=1, | x3=0, | x3=-05, | zi¢=1
%0=0, | ¥6=0.5, | y3=-1.5, | yo=1
a1=1, as=-1, |a3=-6.5,|as=0.7
b1 =0, bo=0, | by=-11, |b4=0.6,
012-10, 62:-10, 03:*6.5, 0420.7.

The energy surface of the two-dimensional double-well
is given by
1
Ule,g) = uofa® a3+ Jhoy®  (A2)

We set ug = kT =1, and ky = 2 and g = 1 in appro-
priate units.



Appendix B: Generalized Ising Hamiltonian

The generalized Ising Spin formulation of the shortest-
path problem on the discrete graph is straightforwardly
obtained from the quadratic function (7) of the main text

by means of the substitution ;) = (of;;) +1)/2. The

result is
Ha = Hs) + Heyy + Hig (B1)
A z z z z z z
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while, dropping an irrelevant constant in Hp, we get
B z
HB = 5 Z w(ij)a(ij) . (B5)
(if)e€

The task is now to find the ground state of the qubit
(Ising-spin) Hamiltonian H = Hs + Hp.

In practice, the shortest path will avoid loops, and the
constraints in Eq. (6) of the main text then amount to

(1,0), ifi=s;

Vi [ Y wap, Yz | =4 (0,1), if i = t;
JeV jev (0,0) or (1,1), else.

(B6)

One may implement this observation with an additional
set of quadratic terms such as Zi;fsvt(zjev z(y — 1)

etc., which one can add to Eq. (B1). In addition, the
edges leading into s and out of t can be eliminated. We
find the more flexible formulation in Eq. (6) of the main
text that allows for loops to be sufficient for our purposes.
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