Automated Compositional Importance Splitting

Carlos E. Buddg Pedro R. D’Argeni&®, Arnd Hartmann®

aUniversity of Twente, Enschede, Netherlands
buniversidad Nacional de Cérdoba, Cérdoba, Argentina
¢Saarland University, SaarbriickeGermany

Abstract

In the formal verification of stochastic systems, statistical model checking uses simulation to
overcome the state space explosion problem of probabilistic model checking. Yet its runtime
explodes when faced with rare events, unless a rare event simulation method like importance
splitting is used. Thefeectiveness of importance splitting hinges on nontrivial model-specific
inputs: an importance function with matching splitting thresholds. This prevents its use by non-
experts for general classes of models. In this paper, we present an automated method to derive
the importance function. It considers both the structure of the model and of the formula charac-
terising the rare event. It is memoryhieient by exploiting the compositional nature of formal
models. We experimentally evaluate it in various combinations with two approaches to threshold
selection as well as fierent splitting techniques for steady-state and transient properties. We find
that Restart splitting combined with thresholds determined via a new expected success method
most reliably succeeds and performs very well for transient properties. It remains competitive in
the steady-state case, which is however challenging to all combinations we consider. All methods
are implemented in themodes tool of the Mobest TooLser and in the ke rare event simulator.

Keywords: rare event simulation, importance splitting, importance function, statistical model
checking, transient analysis, steady-statalysis.

1. Introduction

Nuclear reactors, smart power grids, automated storm surge barriers, networked industrial auto-
mation systems: we increasingly rely on critical technical systems and infrastructures whose
failure or extended unavailability would have drastic consequences. It is imperative to perform
a quantitative evaluation in the design phase based on a formal stochastic model, e.g. on ex-
tensions of continuous-time Markov chains (CTMC), stochastic Petri nets (SPN), or fault trees.
Only after the probability of failure and the expected unavailability are shown toffieisntly

low can the system design be implemented. Calculating such values—which may be on the order
of 10715 or lower—is challenging. For finite-state Markov chains or probabilistic timed automata
(PTA [48]), probabilistic model checkingan numerically approximate the desired values, but the

U Manuscript accepted for publication 8tience of Computer ProgrammiriBhis manuscript is made available under
the CC-RY-NC-ND 4 0 licenseThe final publication is available at D@D TOTH Scico 2019 01006

http://creativecommons.org/licenses/by-nc-nd/4.0/

state space explosion problem limits this approach to small models. For other models, in par-
ticular those involving events governed by general continuous probability distributions, model
checking techniques only exist for specific subclasses with limited scalal&tijyor merely
compute probability bound&1].

Statistical model checkin@SMC [38, [74]), i.e. using Monte Carlo simulation with formal
models, has become a popular alternative for large models, and for formalisms not amenable to
(traditional) probabilistic model checking like stochastic (timed) autonftag]. SMC trades
memory for runtime: memory usage is constant, but the number of simulation runs which are
needed to converge to a result can easily explode with the desired precision. This is exacerbated
in the presence of rare events. For instance, when the true probability of an evenjsohe
may want that the error of an estimation is no larger than‘®.0Such tight requirements in
the precision of estimations may render traditional Monte Carlo simulation approaches infeas-
ible [24, B5].

Rare event simulatiomethods (RESH8]) have been developed to attack this problem. They
increase the number of simulation runs that reach the rare event and adjust the statistical evalu-
ation accordingly. Broadly speaking, the main RES methodsnapertance samplingndim-
portance splitting They complement each other in several application domBifjsThe former
modifies the probability distributions which dictate the stochastic behaviour of the model, with
the aim to make the event more likely to occur. The challenge lies in finding a “gdwtige
of measurego modify probabilities in an féective way. Importance splitting instead does not
modify the model, but rather refines the simulation mechanics to perform more (partial) simu-
lation runs, which may start from non-initial states and end early. Here, the challenge is to find
animportance functiorthat assigns to each state a value indicating how “close” it is to the rare
event. More (partial) runs will be started from states with higher importance.

Importance sampling requires an explicit formula for the distributions governing all state
transitions B7]. This is typically insuficient on its own to allow a provablyfiécient change
of measure, and further characterisations of the distributions are needed, like the memoryless
property 4] or a rarity parameterdZ]. Several specific models in the literature satisfy these
assumptions, which has allowed dfieetive use of importance sampling in the analysis of e.g.
network reliability, queueing theory, particle transport, and counting probleyis 10, 39, 56].

Importance splitting in principle poses no constraints on the distributidh&[l]. However,
splitting depends on an inherently layered state space where several transition steps govern the
rarity of the event studied. If instead the rarity depends on taking very few transitions with low
probabilities, then the splitting approach will not kiéeetive. This is e.g. the case when heavy-
tail distributions govern the individual steps of the rare behaviour of the model. Importance
splitting enjoys a rich scope of applications, most prominently in queueing theory but also in
e.g. dependability analysis, randomised algorithms, distributed systems, particle transport, and
hybrid systems¥, 15, 42, 51].

Thus, to tune a particular implementation, both methods require certain knowledge of the
specific setting where they are applied. Overall, importance splitting appears more amenable to
automatic approaches acrosffelient modelling formalisms usingftérent kinds of probabil-
ity distributions due to its black-box view of the model. We thus focus on the automation of
importance splitting in this paper. To achiev@@ent splitting in an automated way, the main
challenge lies in deriving a good importance function. Howevigiency also hinges on finding
good values for further nontrivial parameters: depending on the concrete splitting method used,
thresholdgqthe importance values at which to start new runs) and splittingfortéactors(how
many new runs to generate at each threshold) need to be chosen. The performance of import-

2

ance splitting for RES in a specific model can vary drastically with the choices made for these
parametersii, 51].

In general, the quality of a choice of parameters depends heavily on the structure of the model
at hand; making good choices requires an expert in the system domain, who should be experi-
enced with the modelling formalism as well as the selected RES mef&hdlp this work we
study ways to alleviate such a requirement, proposing combinations of techniques that enable
an dfective application of importance splitting on a general set of systems. We highlight that
to align RES with the spirit of (statistical) model checking as a “push-button” approach, it is
necessary to devise an automatic selection of parameters that perform well in most situations.
Furthermore, the methods automating such selection must not negate the memory usage advant-
ages of SMC with respect to traditional model checking. These constitute the main challenges
we address here.

Contributions. In this paper, we present and experimentally evaluate a set of ingredients that,
combined, allow applying robust fully automated importance splitting on general models, in-
cluding non-Markovian ones, for RES in SMC. The ingredients are (i) a compositional method
to automatically construct an importance function from the formal model and a temporal lo-
gic property query®ection B, (ii) three existing splitting techniques that determine the details
of how to manage the partial runs and calculate a correct estifSa@Egn ¥, and (iii) two
algorithms—one existing, one new—to derive thresholds and fadEasipny. We consider

both transient and steady-state properties. We use the splitting methodsiRSeciion 41),

fixed dfort [25] (Seciion 4D, and fixed succes®3B, b7] (Secfion 213 While Restart was pro-
posed for steady-state analysis and later extended to transient profi#ities] [the latter two

are geared for estimating probabilities of transient efenThe two algorithms for threshold
selection are a sequential Monte Carlo (SEQ) approachwith a single fixed splitting factor
specified by the user for all thresholdsaciion51) and a new “expected success” (EXP) tech-
nigue Seciion h EXP selects thresholdsdan individual splitting factor for each threshold,
removing the need for the user to manually select a global splitting factor. We implemented
all techniques in the 1k tool [T1] and themodes simulator [[5] of the Mobest Tootser [34].

The techniques can be freely combined, and work for all the formalisms supported by the two
tools—including CTMC, input-output stochastic automata (I0O€2]), and stochastic timed
automata (STAH]). We finally perform an extensive experimental evaluatiSadfionj of the
various combinations on several case studies, including three new and challenging examples for
steady-state measures.

Previous work. This is an extended version of our previous conference publicétiényhich

we combine with material fronill] and [II]. Compared toll3], we add (i) a detailed explana-

tion of the compositional importance function approach originally introducetin Seciion

(ii) the analysis of steady-state properties throughout the paper, (iii) an explanation of the SEQ
technique on the same level of detail as for EXESeTIion b (iv) two new challenging models
(databaseandpipeling in the experimental evaluation Beciion1f one of them non-Markovian,

and (v) a more detailed description of the simulation and RES capabilities ofdties and Fc

tools inSeciionb

Related work. In [68], Villén-Altamirano et al. compared the principles behingsfRrt with
those of the original splitting approac@4], arguing in favour of the generality of Hrarr.

1ForregenerativeMarkov chains, fixed fort can also be used for steady-state analy& [

3

Garvels and Kroesé?H] performed a thorough theoretical and empirical comparison féérdi

ent variants of Rstart. All these works rely on the user to provide the importance function,
thresholds, and splitting factors. We intend to derive this data from the model and property
query provided by the user. In that sense, work by Jégourel ef@l4f] is closer to ours:

they build an importance functiosgore functioh from the temporal logic property query, and
then choose the splitting points adaptively aslifi] Their method however relies on a layered
restatement of the property, resorting to approximate heuristics when this is not possible. Our
proposal also diers from 40, &1] in that we additionally consider the structure of the model to
measure a notion of distance from an arbitrary state to the rare eveidf] lnfjnethod similar to

the monolithic (i.e. non-compositional) approach described latdrijig introduced to build an
importance function on SPN used witlsRart. This is applicable only to a restricted variant of
SPN and throughput measur&€]. RES on SPN has also been approached through importance
sampling bf], selecting the change of measure automatically from the structure of the model in
a way that “could be adapted to importance splitting.” However that method requires restricting
the scope of applicability: only Markovian systems are considered and all transition intensities
(i.e. rates) need to be parameterised by a rarity pararadi&t]. The dificulties of automat-

ing and generalising importance sampling are also illustratedd fheir proposed automatic
change of measure guarantees a reduction in the variance of the estimator, but this only applies
to models whose stochastic behaviour is described by integrable products of random variables
following exponential and uniform distributions. We argue that such strong restrictions can be
dropped by automating importansplitting to address RES. We aim at general modelling form-
alisms, minimising the restrictions on the models, but still providing a significant performance
boost over standard Monte Carlo. We do not aim at provable improvements in specific settings,
but focus on general models and empirically study which methods work best in practice. We are
not aware of other practical methods for, or comparisons of, automated splitting approaches on
general stochastic models.

2. Preliminaries

We write{| ... |} for multisets, in contrast to sets written{as. }. N is the set of natural numbers
{0,1,...} andN* = N\ {0}. We use symbob to denote the disjoint union of sets. In our
algorithms, operatiois.remove() returns and removes an element from the set or mutiset
The element may be picked following any policy, e.g. uniformly at random, in FIFO order, etc.

2.1. Simulation Models

Since we are interested in RES approaches that can work across several stochastic modelling
formalisms with discrete and continuous time and state, we use an abstract notion of models:

Definition 1. A (simulation) modeM is a discrete-time Markov process whose states §
consist of a discrete part and, optionally, a continuous part. The model has a (single) initial
state that can be obtained asinitial(). OperationM.step§) samples a path iit from state s,

and returns the next state of the path after one time step.

A CTMC M¢mcis a continuous-time stochastic process. We can cast it as a simulationggdel

by using the number of transitions taken as the (discrete) time index,pfThus, given a state

s of Mcime Msim-Step§) returns the first statg’ of Mqmc encountered after taking one transition

from son a sample path. Infiect, we follow the embedded discrete-time Markov chain. If the
4

Queue 1 Queue 2

= |[[E— [|fe—

— ——

q1 q2

Figure 1: Tandem queue

event of interest refers to time, then we also need to keep track of the global elapsed (continuous)
time as part of the states Mfjm,.

Example 1. Consider a tandem Jackson network consisting of two sequentially connected queues
as inElgure 1 Customers arrive at Queue 1 following a Poisson process with parametéer

being attended by a server at ratethey enter Queue 2, where they are attended by another
server at ratge,; after the second service customers leave the system.tadem queusys-

tem is a CTMC: time lapses between events are independent and exponentially distributed. The
tandem queue has received considerable attention in the RES litei®4,i?®,[27, 50, 62, 6Y].

2.2. Property Queries

A model ¥ is a stochastic proces$ = {X; | t € N}. A probability space®,#,P) and a
measurable spac&,Z) are assumed so that eaghis a random variable if taking values
on the state spac® of M. Our algorithms require models to be Markov processes: this can be
done without loss of generality, since for formalisms with memory, e.g. due to general continuous
probability distributions, we encode the memory in the state space. In particular this is performed
for values and expiration times of clocks in the case of IOSA and STA models.

An eventwill be a measurable subset 8f i.e. an element af. In what follows we refer to
A C S as therare eventof interest, that is a (measurable) set of statesMtwan enter with pos-
itive but very small probability. We call elementsAntarget statesin certain cases stop event
B C S denotes an end-of-simulation condition so tBait A = @ and lim_., P(X; € Aw B) = 1.
We call elements ifB avoid states

We are interested in the probabilities for transient and steady-state properties. The general
goal is to estimate the probability © vy <« 1 of observing the rare eveitin M. The manner
in which vy is defined determines whether the probability is “transient” or “steady-state.” For a
thorough mathematical description of these concepts in the context of RES over formal models
we refer the reader td]l, Sec. 2.5.1] and only summarise the fundamental notions here.

Definition 2. For Markov process X { X; | t € N} of modelV, let EC S be an event observed
with positive probability in X. Thentrance time intd is the random variable describing the
first time index where event E is observed:

Te £ inf{teN| X eE}
Thetransient probabilityf the rare event A given the stop event B is

Y= P(Ta < Tg)

where Ta and Tg are the entrance times into A and B, respectively. Jteady-state probability
of the rare event A (also denotézhg run probability is

¥s = lim P(X € A).

For models with a notion of time that isftérent from the process’ index (e.g. for CTMC as ex-
plained above), we take the above definition of the steady-state probability on the corresponding
induced (continuous-time) process with that notion of time instead. This works since our events
are defined over states only.

These concepts are common in the RES literature. In our setting, transient probabilities
measure the likelihood that a sample path drawn ffowaches a target stateApbefore visiting
an avoid state iB [24, b7]. Steady-state probabilities measure the proportion of (model) time
that a sample path spends in target states once the system reaches an equiyrkEn70)].
Concretely, we estimate these values via the evaluatipropierty queriegor simplypropertieg
on sample paths:

Definition 3. A transient property € S — {true, false undecided maps target states to true,
avoid states to false, and all other states to undecided.

Definition 4. A steady-state propery € S — R0 maps target states to their sojourn tifne
and all other states t0.

For transient analysis of a modg] standard SM@/onte Carlo simulation generates a large
numbern of sample paths and estimates the transient probability a8 “Ln“e where nyye IS

the number of paths that satisfy the transient propertyo determine whether a sample path
satisfiesp, evaluatep sequentially for every state on the path and return the first outcome that
is different fromundecided Notice that, since lim,., P(X; € Aw B) = 1, with probability 1

all sample paths will eventually reach a state wherneeturnstrue or false This procedure
corresponds to estimating the value of the until formeda(- avoidU targef) in a logic like
PCTL [37)], as used in e.g.isMm [4], for state formulaavoid andtargetidentifying the stop and

rare events i respectively. Time-bounded untik, is encoded by tracking the elapsed time
tgiobal N states and includingepa > b in avoid

Example 2. For a modeM of the tandem queue frollexamplelllet ¢; denote the number of
customers or packets in Queue 1 apdthe number in Queue 2. Leétinitial) = (1,0) =

(01, 02), i.e. the queue initially has one packet in Queue 1 and none in Queue 2. For a given
maximum capacityC of the second queue, the transient propety(q; > 0U g, > C) queries

the probability of observing an overflow in Queue 2 before the first queue becomes empty. The
resulting transient probability; is rare for certain service ratgs andu, and capacities of both
gueues.

For steady-state analysis it is possible to work with regenerative Markov proc&Zsé&s|f
Alternatively, thebatch-means methaalfers a practical and more general appro&t3) 48, 49].
In batch-means a single “long” sample path is generated and dividedattbed b; }! , of fixed

%In a sample path this is the sampled time of permanence in the state before performing a transition to the next
state—which may be the same state as before in case of a self-loop.

6

sizek eacli, which are then treated similarly to thesample paths of transient analy<ds[60].
This favours the observation of actual steady-state behaviour because only the first batches will
contain the transient phase of the model. However, models exhibiting multi-modal stochastic
behaviour cannot be studied in this way b4].

In the scope ofiefinifions1and@, batch-means involves drawing a sample path fibm
that visits states;, s, ..., Sy, (Where e.gmy = k for discrete models) constituting the first
batchb;. The next batch is generated as the continuation of this initial sample patt, z.
Smy+1> Sm+2 - - - » Smp» @Nd SO oNn. The resulting batchis }! , are used to estimate the steady-
state probabilityys £ 7. 3 y(by) for steady-state property, wherey(b) £ % u(s)) for
statess. from batchb;. Thusys is an estimate of the proportion of time spent on target states.
This procedure corresponds to estimating the value of the steady-state feur(tdage?d in a
logic like CSL [4] for state formulaarget

Example 3. In the setting fromExample P(and regardless of the initial state 1f the steady-
state propertys_- (0. = C) queries the proportion of time that Queue 2 is saturated in the long
run.

For both transient and steady-state analyses and given some confidence level selected by the user,
Monte Carlo simulation usually reports a confidence interval around the point estimate ~
particular, the division of the sample path in batches for the batch-means method in steady-state
analysis is performed specifically for this purpose: confidence intervals are computedsedm a

of measurements, thus the need to separate the (single) long sample path into several batches,
each of which produces one measurement.

2.3. The Importance Function

Importance splitting increases the simulatidfog for states “close” to the target set. Proximity
is represented by amportance function,fe S — N that maps each state to its importance in
{0,...,maxf| }. Ideally states close to the rare evérghould have higher importance than those
far from it, where the notion of distance is stochastic: a stdteclose to the rare event if the
probability of visiting some state iA after visiting s is high. To simplify our presentation we
assume thaf; (M.initial()) = 0, fi(Sarge) = Maxf, for all saget € A, and ifs' := M.next(), then
[fi(s) — fi(s)| < 1. These assumptions can easily be remottddq1].

All importance splitting methods provide unbiased estimators for the (transient or steady-
state) property under study. The quality of the importance function, i.e. how well it resembles
the proximity of the states to the rare event, determines the variance of the estimator. The goal is
to obtain an estimator with lower variance than with the use of standard Monte Carlo simulation.
This means that the performance, but not the correctness, of importance splitting hinges on the
quality of the importance functiofy.

Traditionally, f; is specified ad hoc for each model domain by a RES ex@éytd, 65.
Methods to automatically compute an importance function are usually specialised to a specific
formalism or a particular model structure, potentially providing guarantéedescy improve-
ments P6, 40, 41, [73]. We use an automatic method that is applicable to any stochastic com-
positional model with a partly discrete state space. As a heuristic, it does not provide mathemat-
ical guarantees of performance improvements, but is aimed at generality and providing “usually
good” results with minimal user input. We describe this method in det&Etfion 3

3For discrete-time models the batch size is the number of steps, i.e. the number of states visited in a sample path; for
continuous-time models it is the sum of sojourn times.

7

2.4. Levels, thresholds and factors
Given a model and importance functién importance splitting increases the simulatidiog of
sample paths that visit states with growing importance. This can be carried offeiredi ways,
as we detail irEecfion¥ All techniques save and restore states from sample paths. For instance,
in a typical Restart implementation, when simulation run(i.e. a path currently being sampled
in the model) visits a state with higher importance than those observed before, the state is saved
and new (independent) simulation runs are initiated from that state.

In principle importance splitting could spawn more simulation runs whenever the current
sample path moves from a state with importande one with importancg > i. However,
for certain importance functions and models, the probability of visiting a state with a higher
importance could be often close to 1 for many of theln such scenarios splitting on every
increment would lead to excessively many (partial) runs and high runtime.

It is thus common to partition the importance values into a set of intervals dellet§ so
that the saving and re-initiating of simulation runs is performed when a state in a higher level
(rather than with higher importance) is visited. This results ieveel function f € S - N
where, again, the initial state is on level 0 and all target states are on the highest levfgl kivax
refer to the boundary between the highest importance of levdl and the lowest importande
of levell as thethreshold T, identified byi. Some splitting methods are further parameterised
by the “amount of splitting” at each threshold or théftet” at each level; we usgplitting factor
andeffort functionsfs resp.fe in N — N* for this purpose.

3. Compositional Importance Functions

One of our main motivations is to develop methods that are versatile, e.g. whose scope of applic-
ability includes models as general as possible. In particular we intend to scale in terms of model
size, for which we resort to compositional descriptions of models. A compositional model is a
parallel composition of componerils= 1, || ... || M. Each component can be seen as a model
on its own, but these may interact, which they usually do via a synchronigsimfshaking
mechanism. For instance, compositional CTMC modelsrinsMPor the Mobest TooLser use

full synchronisation. This means that if the lalzels shared among componemis ..., M,

i.e. it decorates some transition in each of them, then a transition lalzelleeny component

can only take place iéach othercomponent can also take some transition labedlethstead,

IOSA models in the & tool use broadcast communication channels where all components are
input-enabled. This means that if a component “outputs” lalwehen taking a transition, other
components may not react to it (i.e. if their current local state does not enable transitions labelled
with a) even whera is part of their alphabet.

The fundamental notion behind our compositional importance function derivation method
for a specific (single) model is that, regardless of its stochastic nature, the importance of a state
s should reflect its (stochastic) proximity to any target state. For mibaensider a directed
graph representation where the nodes are the stateamd the edges represent the transitions
describing its behaviour, i.e. edge— < indicates stata’ can be reached frormwith positive
probability via some transition iM. Then the rare evei is a set of nodes in the graph, and the
distance toA of any state, measured as the minimum number of edges beteeshanys’ € A,
is a rough approximation of its importance.

A breadth-first search (BFS) that starts frémand uses the reverted edges of the graph can
compute these importance values. The idea can be refined e.g. to consider the (potentially) prob-
abilistic nature of the transitions: add weights to the edges of the graph, to reflect quantitatively

8

the likelihood of taking the transitions they represent, and employ Dijkstra or A* instead of
BFS. However, even in its most simple form, the method can perform well on general models
because it is embedded in a framework for importance splitting implementation—the quality of
the importance function is a cornerstone, but other mechanisms like an adaptive thef&rold
selection can alleviate some poor importance approximations. Furthermore, the reason why this
method is particularly amenable to the analysis of general systems models is its compositionality,
on which we elaborate next.

To derive a compositional importance function one must first decompoggotba! state of
M into its constituent parts. For states described by valuations of (discrete) variables in a model,
sis projected onto the local variables lgfto reflect itslocal state {;I corresponding te. For
instance, consider a compositional description of the tandem queue where Queue 1 and Queue 2
are described by modety andMy, respectively. If the state of the tandem qu#iue M; || Mz is
s = (1. 02) = (1.0), then forM; we have the local sta®, = (01, G2)|, = (qu) = 1 and fori, the

local state iss, = 0.

Thetargetformula that characterises the rare everif tan also be projected: fwoject the
formulaonto a componeri; we could remove frontargetall logical expressions that refer to
variables which do not belong 1. The resulting formuldarget can then be evaluated in the
statess|i of ¥; independently from the other components to determinddbal rare event A
of componenty;. Notice that this approach does not tolerate general formulee that e.g. directly
compare variables belonging to twoffédrent components. For example, projecting tdrget
formula 5; < ¢ in the tandem queue case would produce an empty logical expression for both
components, making it infeasible to compute rare evAntand A, local to component¥; and
M,. Therefore our algorithms require that all literals in the formula, viz. all Boolean variables or
arithmetic comparisons between numeric variables, refer to variables of a single component.

A further technical dficulty is how to evaluate a glob#rget formula in each component
such that the resulting local rare eveiisare in line with the global rare eveAt To illustrate
this consider théargetformulag; < 5 = g, < C, where the projection would produtarget; =
0: < 5 for M; andtarget, = ¢, < C for M,. Notice that, in the global model of the tandem queue,
all states wherg; > 5 are indeed target statesAn However, this would not be locally identified
in M; if we usetarget; to constructA;. The general issue here is whether to take positively or
negatively the occurrence of a variable in theget formula: the expression may have nested
logical operations, whose removal during the projection of the formula obliterates the semantics
of target A solution is to employ a normal form of the logical formula to produce the desired
projections. We use negation normal form (NNF), where all logical nesting is resolved but for
the resulting (disjunctive or conjunctive) clauses, which can be considered as the fundamental
building blocks of the formula. In particular using NNF does not restrict the typerget
formulae that can be considered, and all negations must occur at the level of the literals of the
formula.

We can now describe the construction of a compositional importance function, given the
compositional modell = M; || Mz || ... || M, and a globatargetformula characterising the rare
event:

1. Converttargetto NNF and associate each litetarget with the component(target) e

{M; }, whose local state variables it refers to.

> Literals must not refer to multiple components.

2. Explore thediscrete partof the state space of each compon#nt For eachtarget’ with

M; = M(target), use reverse BFS to compute the local minimum distance of eacks|§ta1e

9

Input: modelM, level functionf, splitting factorsfs, transient property

1 S = {|(M.initial(),0) |}, p:=0 // start with initial state from level O
2 while S # @ do // perform main and child runsRestart loop)

3 (s, 1) := S.remove() // get next state from which to start a run
4 lcreate := | // store creation level of current run
5 while ¢(s) = undecidedlo // run until decided (simulatiotoop)

6 S := M.stepf) // simulate up to next change in discrete state
7 if fL(S) < lgreatethen break // moved below creation level: kill
8 else if f_(s) > | then / moved one level upsplit

9 [:=fL(9)

10 L S:=SU{(sl),...(fs(l) — L times).., (s) |}

11 if p(s)thenp:=p+1/ H:=1 fs(i) // update result on rarevent
12 return p

Algorithm 1: The Ristart method for transient analysis

any state satisfyingarget .
> The resulting function‘i‘: S — N, bound to component; and literaltarget, maps each
se Sto its distance (i) to the closest state in that component that satisdieget .
> The local importance function fthus encodes the distance shf to A, defined as the
subset of the local rare eveftthat corresponds to litergdrget. _
3. Inthe NNF reformulation ofarget, replace every occurrence of the litetaiget by fiJ with i

such thatt; = M(target'), and every Boolean operataror v by +. Use the resulting formula

as theglobal importance function; f S — N.

Further implementation details can be foundid][In particular, in the composition of the local
importance functionéiJ to construct the global importance functidn other operators can be

used in place of, e.g. max or multiplication. Furthermore, the distributive properties between
andv in the NNF reformulation ofargetcan be exploited to choose a combination of operators
(rather than a single one). Some studies on the use of semirings for this purpose can also be
found in [I1].

In any case the most relevant characteristic of the compositional method described is that,
aside from the choice of operator (for whighas default has worked well for most models
studied), the procedure requires no user input to compute the global importance fufjction
Moreover, it takes into account both the structure oftirget formula and the structure of the
state space of each model component. Memory usage is determined by the number of discrete
local states (required to be finite) over all components. Typically, component state spaces are
small even when the composed state space explodes.

4. Importance Splitting Methods

We now describe, from a practical perspective, the thréierént approaches to importance
splitting that we implemented and evaluated.

10

4.1. RESTART

Originally discovered in 19703] and popularised by J. and M. Villén-AltamirangH], the

RestarT importance splitting method was designed for steady-state measures and later exten-
ded to transient propertieBH]. It works by performing one main simulation run from the initial
state. As soon as any run crosses a threshold from below, new child runs are started from the first
state in the new level(the run issplit). The number of child runs to start is given by splitting

factor, fs(l) — 1, resulting infs(l) runs that
continue after splitting. Each run is tagged
with the level on which it is created. When rare >

a run crosses a threshold from above into a T
level below its creation level, it ends (the run

is killed). A run also ends when it reaches 72 ~10
an avoid or target state. We state iRrarr

formally to perform importance splitting for
transient analysis d&lgonithm-1. Eigure 2il- T 5
lustrates its behaviour. The horizontal axis is™ '
the model's time steps while the vertical dir-
ection shows the current state’s importance.
target states are markedland avoid states

are markedll We have three levels with
thresholds at importance values 3 to 4 and 9
t010.fsis{1— 3,2 2}.

The result of a Rstart run—consisting of a main and several child runs—is the weighted
number of runs that readarget Each run’s weight is 1 divided by the product of the splitting
factors of all levels. The result is thus a positive rational number. Note that this is in contrast to
standard Monte Carlo simulation, where each run is a Bernoulli trial with outcome 0 or 1. This
affects the statistical analysis on which the confidence interval over multiple runs is built.

Restart, as presented iBlgonthm1 for transient analysis, is carefully designed such that
the mean of the results of many®art runs is an unbiased estimator for the true probability
of the transient property6[7]. In particular, over many Rtart runs, underestimation caused by
runs that die when going down is compensated by overestimation from the one that survives and
is later split again.

The application of Rstarr to steady-state analysis is a special case of the batch-means
method B5]. For a single Rstart run performed fronM.initial() for T (simulation) time units,
saymruns visited the rare event. LE]ftbe the total time that th@th such run spent on a target
state. Then

e il

Ys= 7 < .~
T [, fs(i)
is an unbiased estimator of the steady-state probability of the rare event.

2

o
y

- >
time

Figure 2: RsTART

4.2. Fixed Hort

In contrast to RstarT, each run of théixed gfort method P4, 5] performs a fixed numbeig (1)

of partial runs on each levél Each of these ends when it either crosses a threshold from below
into levell + 1, encounters #arget state, or encounters avoid state. We count the first two
cases as'up. In the first case, the new state is stored in a set of initial states forlleviel When

11

Input: modelwM, level functionf,, effort function fg, transient property

1 L:={0-[S:={Minitial() },n:=0,up:= 0]} // set up data for level O
2 for | from 0to maxf_ do / iterate over all levels from initial to targt

3 for i from 1to fg(l) do // perform sub-runs on level (fixegert loop)

4 s:e L().S,L().n:=L(0).n+1 // pick from the level's initial states
5 while ¢(s) = undecideddo //run until decided (simulatiotoop)

6 S := M.stepf) // simulate up to next change in discrete state
7 if fL(s) > Ithen / moved one level up: erglib-run

8 L(N.up:=L({).up+1 // count level-up run for current level
9 L(fL(9).S := L(f.(9).SuU {s} / initial state for next level
10 break

11 | if ¢(s) then L(l).up:= L(I).up+1 J/ rare event (highest leveinly)

12 | if L(l).up=0thenreturn O // cannot reach the target any neor
13 return TT™3" L(i).up/L(i).n / multiply cond. level-up prob. estimates

Algorithm 2: The fixed &ort method for transient analysis

all partial runs for level have ended, the algorithm moves to lelel1, starting the next round
of partial runs from the previously collected initial states of the new level. This behaviour is
illustrated inElgure—B(with fg(l) = 5 for all
levels) and formally stated &&Igarithm 2.
The initial state of each partial run can be
chosen randomly, or in a round-robin fashion
among the available initial state24). When
a fixed dfort run ends, the fraction of par- 12 ~10
tial runs started in levdlthat moved up is an
approximation of the conditional probability
of reaching level + 1 given that level was 5
reached. Sinceargetstates exist only on the
highest level, the overall result is thus simply
the product of the fractionn'up/ fe(l) for all 0
levelsl, i.e. a rational number in the interval
[0,1]. The average of the result of many fixed
effort runs is again an unbiased estimator for
the probability of the transient propert¥4].

The advantage of fixedflert is its predictability: each run involves at mogf‘axfL fe()
partial runs, each of which will end with probability 1. The method is specifically designed for
transient properties; it does not map naturally to steady-state analysis where there is no end-of-
simulation condition. Like Bstart needs splitting levels via functiofy, fixed efort needs the
effort function fg that determines the number of partial runs for each level.

Figure 3: Fixed &ort

4.3. Fixed Success

Fixed dfort intuitively controls the simulationfiort by adjusting the estimator’s imprecision.
The fixed success methofl, [53] turns this around: its parameters control the imprecision, but

12

the dfort then varies. Instead of launching a fixed number of partial runs per level, fixed success
keeps launching such runs unfi(l) of them have reached the next level (otasget state in

case of the highest level). lllustrated Eag?

ore—4 (with fg(l) = 4 for all levels), the al-
gorithmic steps are as AIgonfhm 2 except

for two changes: first, théor loop in lineB

is replaced by awhile loop with condition

L(1).up < fe(l), i.e. we perform sub-runs on 12 ~10-
the current level untilfg(l) sub-runs moved

up to the next level (or hit the target in cdse

is the highest level). Second, the final return., 5
statement in lin€3 uses a dferent estimator: |

instead of []"" L2, we have to return

[t I'L(R).un‘:l- This is due to the underly-
ing negative binomial distribution; se#][for
details. The method thus requirés(l) > 2 Figure 4: Fixed success

for all levelsl.

Like fixed effort, fixed success is designed to study transient properties. From the automation
perspective, the advantage of fixed success is that it self-adapts to the (a priori unknown) probab-
ility of levelling up: if that probability is low for some level, more partial runs will be generated
on it, and vice-versa. However, the desired number of successes still needs to be specified. 20 is
suggested as a starting point iij,[but for a specific setting already.

A disadvantage of fixed success is that it is not guaranteed to terminate: if the model, im-
portance function, and thresholds are such that, with positive probability, it may happen that all
initial states found for some level lie in a bottom strongly connected component witirget
states, then the (modified) loop of liBeof the algorithm diverges. We have not encountered this
situation in our experiments, though.

5. Thresholds and Splitting Factors

To determine the splitting levgthresholds, we implement and compare two approaches: the
sequential Monte Carlo (SEQ) method frofil] and a new technique that tries to ensure a
certain expected number of runs that level up.

5.1. Sequential Monte Carlo

Our first approach is inspired by the sequential Monte Carlo splitting technigfieAs shown

in Blgarnthm3, it works in two alternating phases: firstsimulation runs determine the import-
ance values that can be reached from the current level, keeping track of the state of maximum
importance for each run. We sort these states by ascending importance and pick the import-
ance of the one at positiom— k, i.e. the 6 — k)-th n-quantile of importances, as the start of

the next level. This means that as paramk&tgrows, the width of the levels decreases and the
probability of moving from one level to the next increases. In the second phase, the algorithm
randomly selectk new initial states that lie just above the newfound threshold via more simula-
tion runs. This extra phase is needed to obtain reaghablestates because we cangeinerate

them directly as in the setting off]. We then proceed to the next round to compute the next
threshold from the new initial states. Detailed pseudocode is sho&imgasihm 3 and also as

13

Input: modell, importance functiorf,, transient property, n, k e N*, k < n

1 for i from 1to n+ kdo S(i) := M.initial() // set up state vector

2 T.push(0) // stack of selected threshold importances
3 while T.top() < maxf, do // find upper threshold for eveiiynportance

4 for i from 1to ndo J/ first set of runs: find importance distrdkion

5 s:= S(i)

6 while ¢(s) = undecideddo

7 S := M.step§)

8 L if fi(s)> fi(S(i)) thenS(i) :=s // keep most importargtate

9 sortS(i) fori € {1,...,n} according tof; J/ sort first n states

10 if T.top() > f,(S(n - k)) then break / no more important state
11 T.pushff, (S(n - k))) // new threshold at%‘ importance quantile

12 for i from 1tondo // second set of runs: initial states for nesund

13 j := sample uniformly from{n+1,...,n+ k}, S(i) := S(j)

14 while ¢(S(i)) = undecided f,(S(i)) < T.top()do

15 | S(i) := m.stepB(i))

16 if f,(S(i)) < T.top()then goto3 4/ did not reach new tlashold

17 for jfromn+1ton+kdo /randomly select k initiastates

18 L i := sample uniformly from(1,...,n}, S(j) := S(i)

19 for | from T.top()to maxf; do T.push() /fill in missing thresholds
20 return T // set of threshold importances characterising the levels

Algorithm 3: The sequential Monte Carlo method for threshold selection

Algorithm 5 in [T1]. The result is a sequence of thresholds—a subset of importance values from
{0,..., maxf, }—characterising a level functiofy .

This SEQ algorithm only determines the splitting levels. It does not decide splitting factors,
which the user must select if they wish to ruasiRrr. Fic andmodes request a fixed splitting
factorg and then run SEQ witk = n/g. When used with fixedféort and fixed success, we set
k = n/2 and use a user-specifiefiiart valuee for all levels. A value fom must also be specified,;
by defaultn = 1000. The degree of automatioffered by SEQ is clearly not satisfactory. Fur-
thermore, we found in previous experiments with that the levels computed byfterent SEQ
runs difered significantly, leading to large variations imsiRrr performanced1]. Our stud-
ies suggest this could be attributed to SEQ being originally designed for continuous importance
functions [I6, 4], for which thresholds can be set infinitely close to each oth#rT3].

For the code presented Bigorithm 3 for transient analysis, SEQ may get stuck in the same
way as fixed success. We encountered this withidan case study dEeciion 711 Our tool thus
restarts SEQ after a 30 s timeout; on thlan model, it then always succeeded with at most two
retries. An alternative is that, in lines 6 and 14, a predefined max simulation run length is used
(instead of the transient properdy to determine the end of a simulation. This is also precisely
what is done to perform steady-state analysis using SEQ, where the property query does not
specify an end-of-simulation condition.

14

Input: modelV, importance functiorf;, n € N*

1 fL=f, fe={l>n|le{0,..., maxf }}
2m:=0,e:=0,pp:={l—0|l€{0,...,maxf }}

3 while pyp(maxf;) = 0do // roughly estimate the level-upgivabilities
4 m:=m+ 1, L := level data computed in one fixettert run (Alg.Q)

5 for | from 0to maxf, do

6 || Pupl) = pupll) + Z(LA)-Up/L().N = pupll))

7 for | from Oto maxf, do // calculate splitting factors from pbabilities
8 L split := 1/pyp(l) + & F(1) := |split+ 0.5], e := split — F(1)

9 return F JifF(1) > 1, then | is a threshold and (F) the splitting factor

Algorithm 4: The expected success method for threshold and factor selection

5.2. Expected Success

To replace SEQ, we propose a new approach based on the rule-of-thumb that one would like
the expected number of runs that move up on each level to be 1. This rule is called “balanced
growth” by Garvels?4]. The resulting procedure, shownBEarithm 4, is conceptually much
simpler than SEQ: we first perform fixeétert runs, using constanffert n and each importance

as a level, until the rare event is encountered. We extract the approximations of the conditional
probabilities of a sample path moving up by one level (ieel-up probabilitiey computed

inside the fixed ffort runs, averaging the values if we need multiple runs @inéifter that, we

set the factor for each importance to one divided by the (very rough) estimate of the respective
conditional probability computed in the first phase. Since splitting factors are natural numbers,
we round each factor, but carry the rounding error to the next importance. In this way, even if the
exact splitting factors would all be close to 1, we get a rounded splitting factor of 2 for some of
the importances.

The result is a mapping from importances to splitting factors, characterising both the level
function f_—every importance with a factorftierent from 1 starts a new level—and the splitting
function fs. We call this procedure thexpected succe¢ES) method. Aside from the choice
of n (we use a default ofi = 256, which has worked well in all experiments), it provides full
automation with Rstart. To use it with fixed &ort, we need a user-specified bagior value
e, and then sefg to {I — e- fs(I) | | € {0,...,maxf_}} resulting in aweighted fixed gort
approach. Note that our default o= 256 is much lower than the default o= 1000 for SEQ.

This is because SEQ performs simple simulation runs where ES performs figgtd@ns, each
of which provides more information about the behaviour of the model.

We also experimented with expected numbers of runs that move up of 2 and 4, which implies
that the number of partial runs grows—by those factors on average—as simulations reach higher
values off,_. In practice this always led to dismal performance or timeouts, most often due to too
many splits in our experiments. This indicates a simulation overhead, an “unbalanced growth”
to put it in Garvel's terms, and thus we only consider the original single (1) expected successful
run for ES in the sequel. We further note that the property is not an ingigiithm 2; the
algorithm can thus be employed for both transient and steady-state analysis as-is.

15

6. Tools, Languages and Models

We implemented the compositional importance function generatid®eafion 3 the splitting
methods described Beciion¥ and the threshold calculation method&aciionBn themodes
simulator [I5] of the Mopest Toorser [31] and the kc tool [T1] for input-output stochastic auto-
mata.

6.1. Themodes Tool

modes is the statistical model checker of theobkst Toorser. It implements all of the methods

described irBecfionsi3o B, however for transient properties only. It uses the toolset’s infrastruc-

ture to transform various input languages into an internal metamodel corresponding to a network
of stochastic hybrid automata (SHA(]]) with discrete variables. The following input languages

are currently supported:

— Mopest [B0], a process algebra-based modelling language for stochastic timed systems fea-
turing high-level constructs such as recursive process calls, loops, and exception handling;

— XSADF [34], an extension of scenario-aware dataflow with continuous probability distribu-
tions and nondeterminism, a formalism particularly suited to the study of embedded streaming
applications; and

— A1 [T4], a model exchange format designed to improve the interoperation of quantitative
verification tools. Other tools provide converters terfrom various Petri net formats or the
Prism languaged]. Jani closely corresponds to theddest Toorser’s internal metamodel.

Due to the mapping to a single internal representatimoges naturally provides RES capabil-

ities for all of these input languages. The complexity of generating simulation traces—for RES

or Monte Carlo simulation—however inherently depends on the underlying mathematical mod-

elling formalism. An input language may support multiple such formalismsdes contains
simulation algorithms specifically optimised for the following cases:[

— ForDTMC (discrete-time Markov chains), simulation is simple afiitent: obtain the cur-
rent state’s probability distribution over successors, randomly select one of them (using the
distribution’s probabilities), and continue from that state.

— ForCTMC, the situation is similar: obtain the set of enabled outgoing transitions, randomly
select a delay from the exponential distribution parameterised by the sum of their rates, then
make a random selection of one transition weighted by the transitions’ rates.

— PTA extend Markov decision processes with clocks, transition guards, and location invariants
as in timed automata. PTA explicitly keep a memory of elapsed times in the clocks. They
admit finite-state abstractions that preserve reachability probabilities and allow them to essen-
tially be simulated as DTMGnodes implements region graph- and zone-based simulation of
PTA as DTMC P1, 36]. With fewer restrictions, they can also be treated as STA.

— STA extend PTA with general continuous probability distributions. The STA simulator needs
to keep track of the values of all clocks. For each transition, it has to compute the set of time
points at which the transition is enabled. These sets can be unions of several disjoint intervals.
Overall, STA simulation thus requires relatively higher computatioffate

6.2. The ks Tool

The compositional importance function generation was first developed for and implemented in
the Re simulator [[1]. Fic implements the splitting and threshold selection methods described
in BecfionsSYand B for transient properties. Additionally, it supports steady-state properties
using RestarT in combination with all of the other techniquesichvas developed specifically

16

for inputoutput stochastic automata (IOSE7), originally designed in an extension of the

Prism language &7] to consider arbitrary (continuous) probability distributions as in stochastic

automataT)]. It recently added support for the fragment afiJcorresponding to a standard

encoding of IOSA. k supports two variants of the IOSA formalism and modelling language:

— I0SA [24] allows the description of stochastic automata, where clocks variables control and
observe the passage of time. #] a list of constraints ensures that models written in IOSA
cannot exhibit nondeterministic behaviour. Infoutput communication semantics are used,
where all modules are input enabled and each output action can only be produced by a single
module.

— IOSA-U or IOSA with urgencyT9] is an extension of the original language where actions
can beurgent An enabled transition decorated with an urgent (output) action must be taken
immediately, viz. without the passage of time. Urgent inputs can only communicate with
urgent outputs. As in IOSA, a series of rules in IOSA-U ensures that models cannot show
nondeterminism.

Similar tomodes’ STA simulation engine, i6 needs to keep track of the values and expiration

times of individual clocks. For each transition, it needs to compute the (single) pointin time when

it becomes enabled. While slightly moréieient than STA simulation, usingi¢for CTMC

(which are IOSA that only use the exponential distribution) will incur an overhead compared to

a dedicated CTMC simulator asmodes.

7. Experimental Evaluation

The goal of our work was to find a RES approach that provides consistently good performance at
a maximal degree of automation. Aside from the compositional importance function generation,
we have three splitting methods and two approaches to threshold selection, all implemented in
two different tools, at our disposal now. To find out whether there is a combination of all of these
that consistently works well, and that could thus be used as a fully-automated default setting in
modes and kg, we perform an experimental evaluation of all method combinations on a number
of benchmarks and case studies from the literature. For transient properties, wmedesein

order to cover a wide variety of modelling formalisms from CTMC to STA and exploit its more
efficient specialised simulation engines. For steady-state properties, walmelioth CTMC
encoded as IOSA and true IOSA models that make use of non-Markovian continuous probability
distributions.

7.1. Transient Properties

For transient properties, we us®des to evaluate the performance of all relevant combinations
of the implemented RES methods on CTMC queueing models, network protocols modelled as
PTA, and a more complex file server setting modelled as STA.

7.1.1. Case Studies
We considered the following models, which are classic RES benchmarks as well as existing case
studies that had previously been analysed with model checkers:

17

tandem: tandem queueing networks are standard benchmarks in probabilistic model checking
and RES P4, 76, P17, b0, 6Z]. We consider the case frorii] with all exponentially distributed
interarrival times, i.e. a CTMC. The arrival rate into the first ququénitially empty) is 3 and

its service rate is 2. After that, packets move into the second quefisitially containing one
packet), to be processed at rate 6. The model has one par@néer capacity of each queue.

We estimate the value of the transient prop@dy(d, > 0U g, = C), i.e. the probability of the
second queue becoming full without having been empty before.

openclosed: our second CTMC has twparallel queues #8], both initially empty: anopen
gueue g, receiving packets at rate 1 from an external source, athosad queue that receives
internal packets. One server processes packets from both queues: packejsdrermprocessed
at rate 4 whileqg. is empty; otherwise, packets frogg are served at rate 2. The latter packets
are put back into another internal queue, which are independently moved chcbttoate%.

We study the system as ifi’f] with a single packet in internal circulation, i.e. aryM/1 queue
with server breakdowns, and the capacitgohs parameter. We estimate; (- resetU lost): the
probability thatg, overflows before a packet is processed frgytor g such that the respective
gueue becomes empty again.

breakdown: the final queueing system that we consid& as a CTMC consists of ten sources

of two types, five of each, that produce packets at rate= 3 (type 1) ord, = 6 (type 2),
periodically break down with ratg; = 2 resp,3, = 4, and get repaired with rate, = 3 resp.

az = 1. The produced packets are collected in a single queue, attended to by a server with service
rateu = 100, breakdown rate = 3, and repair raté = 4. Again, and as ini[Z], we parameterise

the model by the queue’s capacity, here denétednd estimat®-, (- resetu buf = K): starting

from a single packet in the queue, what is the probability for the queue to overflow before it
becomes empty?

brp: we also study two PTA examples frofj. The first is the bounded retransmission pro-
tocol, another classic benchmark in formal verification. We use pararivketerdetermine the

actual parameter (the number of chunks to transmifjJAX (the retransmission bound), and

TD (the transmission delay) by way @fl, MAX, TD) = (16-2M,4- M, 4- 2M). We thus consider

the large instance82, 4, 8), (64, 8, 16), and(128 12 32). To avoid hondeterminisni,D is both

lower and upper bound for the delay. We estinatdtrue U Syox A 1 > %), i.e. the probability

that the sender eventually reports unsuccessful transmission after more than half of the chunks
have been sent successfully.

wlan: our second PTA model is of IEEE 802.11 wireless LAN with two stations. In contrast

to [33] and the original Rism case study, we use the timing parameters from the standard (leading
to a model too large for standard probabilistic model checkers) and a stochastic semantics of the
PTA (scheduling events as soon as possible and resolving all other nondeterminism uniformly).
The parameter iK, the maximum back®counter value. We estimate, (trueU bc; = bc, = K),

the probability that both stations’ badk@ounters reacK.

fileserver: our last case study combines exponentially and uniformly distributed delays. It is
an STA model of a file server where some files are archived and require significantly more time
to retrieve. Introduced ind1], we change the archive access time from nondeterministic to
continuously uniform over the same interval. Model param@étes the server’'s queue size. We
estimate the time-bounded probability of queue overflBw(true U¢io00 queue= C).

We consider several queueing systems since these are frequently used benchmarks #ar RES [
18

628, 45, b0, 67]. The CTMC could easily be modified to use general distributions and our
techniques and tools would still work the same.

7.1.2. Experimental Setup
The experiments for theandemand wlan models were performed on a four-core Intel Core
i5-6600T (2.73.5 GHz) system running 64-bit Windows 10 v1607 x64 using three simulation
threads. All other experiments ran on a six-core Intel Xeon E5-2620v&8(2.&Hz, 12 logical
processors) system with Mono 5.2 on 64-bit Debian v4.9.25 using five simulation threads each
for two separate experiments running concurrently. We used a timeout of 600 s fantieam
openclosedandbrp models and 1200 s for the others. Simulations were run until the half-width
of the 95 % normal confidence interval was at most 10 % of the currently estimated Bgan
this use of a relative width, precision automatically adapted to the rareness of the event. We also
performed SM¢Monte Carlo simulation as a comparison baseline (labelled “SMC” in results),
wheremodes uses the Agresti-Coull approximation of the binomial confidence interval. For
each case study and parameterisation, we evaluated the following combinations of methods:
— Restart with thresholds selected via SEQ and a fixed splitting fagter{ 2, 4, 8, 16} (labelled
“Restart g”), usingn = 512 andk = n/g for SEQ;
— Restart with thresholds and splitting factors determined by the ES method (labellsdai&
ES") and the defaulh = 256 for ES;
— fixed dfort with SEQ 6 = 512,k = n/2) and éfort e € { 16, 64, 256};
— weighted fixed ffort with ES (labelled “-weighted”) as describedS®clion 512using base
effort e € {8, 16, 128} since all weights arg 2;
— fixed success with SEQ as before£ 512,k = n/2) and the required humber of successes
for each level being either 8, 32 or 128.
We did not consider ES in cases where the splitting factors it computes would not be used (such
as with “unweighted” fixed #ort or fixed success). The default of using addition to replace
and Vv in the compositional importance function (8ecfion worked well except fowlan,
where we used max instead.

7.1.3. Results
We provide an overview of the performance results for all model instandesbiz1 We re-
port the averages of three runs of each experiment to account for fluctuations due to the inherent
randomisation in the simulation and especially in the threshold selection algorithms. Column
p lists the average of all (up to 45) individual estimates for each instance. All estimates were
consistent, including SMC in the few cases where it did not time out. To verify that the compos-
itional importance function construction does not lead to high memory usage, we list the total
number of states that it needs to store in columnThese numbers are consistently low; even
on the two PTA cases, they are far below the total number of states of the composed state spaces.
The remaining columns report the total time, in seconds, that each approach took to compute
the importance function, perform threshold selection, and use the respective splitting method to
estimate the probability of the transient rare event. Dashes mark timeouts.

We show some interesting cases graphically with added det&lgume® [Imarks timeouts.
Each bar’s darker part is the time needed to compute the importance function and thresholds. The

“We rely on the standard CLT assumption for large enough sample sizes; to this end, we do not stop before we obtain
at least one sample 0 and at least 50 samples.

19

tandenfl2 tandenfil6
600 600
550 —| 550 —
500 500
450 —| 450 —
400 400
350 350 —
300 300
250 | 250 —
200 200 I
150 — 150 —
100 100
50 — 50
0 - 0 X
2 4 8 16 ES 16 64 256 8 16 128 8 32 128 2 4 8 16 ES 16 64 256 8 16 128 8 32 128
RESTART fixed effort -weighted fixed success RESTART fixed effort -weighted fixed success
openclose0 opencloseb0
600 600
550 —| 550 —
500 500
450 450 —
400 400
350 350 —
300 300
250 250 —
200 200
150 — 150 —
100 100
50 50
0 - X 0 -
2 4 8 16 ES 16 64 256 8 16 128 8 32 128 2 4 8 16 ES 16 64 256 8 16 128 8 32 128
RESTART fixed effort -weighted fixed success RESTART fixed effort -weighted fixed success
breakdowyB0 breakdowyl120
700 700
650 —| 650 —
600 600
550 550 —
500
450 —
400
350 —
300
250 —
200
150 —
100
50
2 4 8 16 ES 16 64 256 8 16 128 8 32 128 0= 2 4 8 16 ES 16 64 256 8 16 128 8 32 128
RESTART fixed effort -weighted fixed success RESTART fixed effort -weighted fixed success
brp/1 brp/2
600 600
550 —| 550 —
500 500
450 450 —
400 400
350 350 —
300 300
250 250 —
200 200
150 150 —
100 100
50 50
0 - x 0
2 4 8 16 ES 16 64 256 8 16 128 8 32 128 2 4 8 16 ES 16 64 256 8 16 128 8 32 128
RESTART fixed effort -weighted fixed success RESTART fixed effort -weighted fixed success

Figure 5: Selected performance results compared (runtimes in seconds)

20

Table 1: Model data and performance results for transient properties

g RESTART fixed dfort | -weighted | fixed success

modefparam p n |92 4 8 16 ES| 16 64256 8 16128 8 32128

tandem 8 56ge-6 2270 3 1 1 11 1 1 1 1 1 1 1 1 1 1
12 19:-8 30— |45 1 1019 1 5 4 3 3 2 1 6 2 2
16 71e-11 38| —| — 3177588 2/ 18 8 6/ 11 6 4/ 18 7 5
20 30e-13 46|—| — 5 — — 4/124 23 14] 84 21 12| 59 17 12
open- 20 39e-8 155|—| 2142 3 2 1l 5 3 2/ 6 4 2/ 5 3 3
closed 30 88e-12235|—| 5 — 21 7 1/ 19 9 9/ 46 19 6/ 24 8 8
40 20e-15315|—| 19 — 89 15 3|105 24 17|360 72 14/{133 19 20
50 46e-19395| —| 74 — — 85 4/404 45 33 — 167 38/284 47 34
break- 40 46g-4 193| 46/ 7 7 8 11 4| 10 10 16 15 13 7, 11 9 15

down 80 37e-7 353 —| 33 24 29 4023 73 51 61194 112 44| 87 52 54
120 30e-10513| —| 80 59 67 97104 397 149173 687 283139 312 182 136

160 24g-13673| — |316109 121 17583 794 377290 — —335/999 421313

brp 1 35e-7 2| —| — —413 86 21110 36 33/856 435226/ 27 21 50
2 58g-13 6k|—| — — — — 81 —423184 — — —|208 141 235

3 90e-19 16| —| — — — —21 — — —| — — —| —420569

wlan 4 22g-5 14|37 — — — — — 57 38 31/120 131221 44 36 39
5 16e-7 23%k|—| — — — — — 457 177121 784 855809 139 153164

file- 50 39e-11156| — [125 88 61 5727|572 137 75| — 435 79| — — 140
server 100 48g-23306| —| — — —229319 — —765 — —851 — — —

lighter part is the time for the actual RES. The former, which is almost entirely spent in threshold
selection, is much lower for ES than for SEQ. For instance inbifeakdowncase study, the
darker region is practically unnoticeable for thefflen capacityK = 80 for Restart with ES and
weighted-fixed &ort, and only marginally distinguishable fé& = 120. The error bars show

the standard deviation between the convergence times of the three runs that we performed for
each experiment. A larger sample size would be needed for a thorough evaluation of this aspect,
though.

Our experiments first confirm previous observations made with the first versions: ghé
performance of Bstart depends not only on the importance function, but also very much on
the thresholds and splitting factor. Out@E { 2, 4, 8,16}, there was no single optimal splitting
factor that worked well for all models.Hrart with ES usually performed best, being drastically
faster than any other method in many cases. This is a very encouraging resultisinge Rith
ES is also the one approach that requires no more user-selected parameters. We thus selected
it as the default fomodes. Thewlan case is the only one where this default, and in fact none
of the Restart-based methods, terminated within our 1200s time bound. All of the splitting
methods specifically designed for transient properties, however, workedldor with fixed
success performing best. They also work reasonably well on the other cases, but we see that

21

their performance depends on the chos@oreparameter. In contrast to the splitting factors for
RestarT, though, we can make a clear recommendation for this choice: ldifgeralues rather
consistently result in better performance.

7.2. Steady-State Properties

For steady-state properties, we usetl evaluate the performance of the presented methods. Of
the splitting methods, onlyiRrarr is designed for steady-state properties. We thus only consider
the combinations of Rtart with the automatic compositional importance function generation
and the two threshold and factor selection methods

7.2.1. Case Studies

We run Fa to estimate steady-state properties on two queueing models and two reliability eval-
uation examples. One of each is a CTMC. In the non-Markovian queueing model, arrival and
service times follow Erlang distributions; of the non-Markovian reliability model, we consider
two variants with diferent kinds of distributions for failures and repairs. In all, we consider the
following case studies:

tandem: this is the same tandem queueing network as considered for transient properties in
Secfion 711 We estimate the steady-state probability of a saturation in the second queue, that is
S=7 (2 = C).

3-tandem: following the same concept as the tandem queue with an additional third queue in
succession to the second one, in the triple tandem queue studi&g) thg service times for all
gueues follow an Erlang distribution. The shape parametef 2, 3} is the same for all servers.

The load at the third queue is alway/s meaning that its scale parameteuis= 1/, /s when

a = 2,3, respectively. The scale parametgis u, of the first and second queues, as well as
the capacityC in all queues, are chosen so that the steady-state probability of a saturation in
the third queue is of the same order of magnitude for all variants of the model. Here we study
cases, ..., F defined by &, 1, u2, C) = (2,%/3,Y/2,12), (3 2/, Y6, 9), (2 Ys, /4, 13), (3 Y/s, /6, 10),
(2,%10,1/5,15), and (3%/15, Y12, 13). We estimates_. (gs = C), the steady-state probability of a
saturation in the third queue, which is aroun@lés-10 for all cases.

database: our first (Markovian) reliability evaluation example models a database computer fa-
cility consisting of disks arranged in clusters, disk controllers, and processors. Originally studied
in [29] and later using Btarr in [B1], for redundancyr the system is composed of two types of
processors and two types of controllers, each ®ittopies of each type, and six disk clusters,
with R+2 disks each. The lifetime of these units is exponentially distributed with failureggtes

uc, andup for disks, controllers, and processors, respectively. A unit can fail, with equal probab-
ility, in mode 1 or 2: repair rates are 1 and 0.5 per time unit for failure modes 1 and 2 respectively.
The system is operational as long as fewer tRgmrocessors of each typR,controllers of each

type, andR disks on each cluster, have failed. The number of components in the database system
grows rapidly askR increases: in spite of its Markovian nature, analyses with standard model
checking techniques become infeasible for redundacy values as IRw=akdue to state space
explosion [7]. We study system unavailability (i.e. the proportion of time the system is not oper-
ational in the long run) foR € { 2,...,5} and failure ratesup, uc, up) = (%7, 1/2s, 1/2s). The cor-
responding steady-state property e.g.Rof 2 is S, ((d% AV (3 Ad) V-V (PZA pg)).

22

pipeline: the final and most challenging case studies we consideraargecutive-k-out-of-n: F
systemsconsisting of a sequence hodes ordered sequentially, where the whole system fails
if k or more consecutive nodes fail. This resembles a pipeline where fluid is pushed through
via homogeneously distributed pumps: redundancy is built-in so that if lesktbamsecutive
pumps fail, the fluid can still be pushed by the ones remaining. We study the non-Markovian
and repairable systems analysed in ef, [/1], with a single repairman whose repair times
follow a log-normal distribution with parametesis= 1.21 ando- = 0.8. Forn = 12 nodes and
ke{2,...,5}we analyse two variantgipeline (exphas exponentially distributed failures with
rateu = 0.001, andpipeline (ray)has Rayleigh failures (i.e. Weibull with shape paramkter2)

with parameted = 0.00000157. Notably, the single-repairman setup required the use of the
IOSA-U model syntax. We study system unavailability, which e.gkfer2 corresponds to the
steady-state proper, (Ng A ng) V -+ V (N11 A N12)).

7.2.2. Experimental Setup
All experiments were performed on dual-processor 16-core Intel Xeon E5-2683-y3L(023Hz)
systems running 64-bit Ubuntu with Linux kernel v4.4.0-116: i currently a single-threaded
tool, and we ran one instance oisFper CPU core to perform multiple experiments in parallel.
For this reason, and since steady-state simulations usirgjrirore generic IOSA engine take
more time than transient propertiesiodes, we used a timeout of 30 minutes for ttamdenmand
3-tandemmodels and 60 minutes for the reliability evaluation models. To achieve a meaningful
comparison that is more robust to timeouts, we adopffardint approach than the 10 % relative
confidence interval as used for transient properties: for our steady-state runs, we instead let all
experiments run up to the timeout and report the relative half-width of the confidence interval
attained at that point in percent. Thus again, lower numbers indicate better performance. For
each case study and parameterisation, we evaluated the following combinations of methods:
— Restart with thresholds selected via SEQ and a fixed splitting fagter 2, 4, 8, 16} (labelled
“REestart g");
— Restart with thresholds and splitting factors determined by the ES method (labellsdai&
ES").
As we did for transient properties, here we also performed Monte Carlo simulation (SMC) as
a comparison baseline;id-uses Agresti-Coull binomial confidence intervals with Student's-t
guantiles. In all cases, we used addition to replacand Vv in the compositional importance

function (cf.Seciion®.

7.2.3. Results

We provide an overview of the performance results for all model instand&shig 2 For the
databaseandpipelinemodels, we report the averages of three runs of each experiment again.
Column g lists the average of all (up to 18) individual estimates for each instance, which were
again consistent. Columyotrecalls the timeout used for the respective models. The remaining
columns report the half-width of the confidence interval, in percept obfained at the timeout.
Dashes mark cases where the rare event was not encountered even once.

Our experiments show that steady-state properties on the considered models are truly challen-
ging for automated importance splitting. In most cases, one of the method combinations is still
noticeably better than plain SMC. However, unlike for transient properties, there is no combina-
tion that performs consistently best. Notwithstanding, the combinatiorahik with expected
success was always competitive, and it remains reasonable to keep it as a safe—if not always

23

Table 2: Model data and performance results for steady-state properties

g RESTART
modeJparam pp to| | 2 4 8 16 ES
tandem 8 6.2e-5 1 1 1 1 1 1

12 84g-7 30 8/ 3 3 2 2 2

16 17e-8 106 10 12 12 3 6

20 19e-10 — | 23 36 6 8 39

3- A 25g-10 — 5 62 49 56 78

tandem B 3.4g-10 — | 38 44 79 51 39
C 5.1e-10 30| — 22 54 52 56 66

D 9.9e-10 — | 46 36 57 39 71

E 95e-10 66| 26 78 43 32 56

F 15e-9 — | 64 49 37 45 54

data- 2 38g-2 0 0 0 0 0 0
base 3 59&-4 60 1 1 1 2 1 1
4 668-6 8| 10 12 14 12 8

5 61e-8 104| 65 101 128 96107

pipe- 2 4854 o o o 0 0 O
line 3 746 60 3] 3 3 3 3 3

(exp) 4 21e-7 22| 19 21 24 25 25
5 11e-8 189| 169 88 43 188 61

pipe- 2 48g-4 0 O 0O O o0 o
line 3 746 60 3] 3 3 3 3 3

(ray) 4 21e-7 23| 23 20 30 21 20
5 12&-8 48| 91 220 119 67 96

optimal—default. It is in any case preferable as the only method combination that préwigies
automated RES.

8. Conclusion

We investigated ways to automate and improve the performance of importance splitting to per-
form rare event simulation for general classes of stochastic models. For this purpose, we provided
a memory-fficient method to automatically derive an importance function from a compositional
formal model 7). The method takes into account the structure of the model’s state space as
well as the structure of the logical formula that identifies the rare event. Any method to derive
importance functions is necessarily a heuristic, but this one appears to work well for diverse case
studies. We further studied and implemented three existing splitting methods and two threshold
selection algorithms, one of them new. Timedes tool, which contains our implementation
of all methods for transient properties, is publicly available as part of theed Toorser at

24

www_modestchecker netl. The Ke simulator provides complementary support for steady-state
properties. Using both tools, we performed extensive experiments, resulting in theractigal
comparison of Rstart and other methods that we are aware of.

Our results show that we have founfudly automated rare event simulation approach based
on importance splitting that performs very well for transient properties: automatic composi-
tional importance functions together wittefart and the expected success method. It pushes
automated importance splitting for general models into the realm of very rare events with prob-
abilities down to the order of I8°. For steady-state properties, however, the picture is not so
clear: diferent methods and method parameterisations work bestfferatit model instances.

Still, the fully automated combination ofeRrart with expected success shows competitive per-
formance and thus appears as a reasonable default. Further research will be necessary to find out
what the key dterences are in the behaviour of transient and steady-state analysis to cause such
distinct results.

As future work, we would also like to more deeply investigate models with few points of ran-
domisation such as the PTA examples that proved to be the most challenging for our methods.
We note that our methods have already successfully been combined with the lightweight sched-
uler sampling techniques d?), 21, B8] to properly handle models that include nondeterminism,
as reported indH].

Acknowledgements.We are grateful to José Villén-Altamirano for very helpful discussions
that led to our eventual design of the expected success method. This work was supported by
the 3TU.BSR project, ERC grant 6956 PQWVER), the NWO SEQUOIA project, NWO VENI

grant no. 639.021.754, and SeCyT-UNC project883.2 and 08497.

References

[1] Michael Amrein and Hans R. Kiinsch. A variant of importance splitting for rare event estimation: Fixed number of
successesACM Transactions on Modeling and Computer Simulati(2):13:1-13:20, 2011.

[2] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate symbolic model checking of continuous-
time Markov chains. IICONCUR volume 1664 of_ecture Notes in Computer Scienpages 146-161. Springer,
1999.

[3] Anthony J. Bayes. Statistical techniques for simulation modeistralian Computer Journa®(4):180-184, 1970.

[4] Anthony J. Bayes. A minimum variance sampling technique for simulation modelsnal of the ACM19(4):
734-741,1972.

[5] Denis Benasciutti and Roberto Tovo. On fatigue damage assessment in bimodal random prédessatonal
Journal of Fatigug29(2):232—244, 2007.

[6] José Blanchet and Michel MandjeRare Event Simulation for Queyeshapter 5, pages 87-124. In Rubino and
Tuffin [67], 2009.

[7] José Blanchet and Daniel RudolRare Event Simulation and Counting Problerosapter 8, pages 171-192. In
Rubino and Téin [54], 2009.

[8] Henk A. P. Blom, G. J. (Bert) Bakker, and Jaroslav Krystiare Event Estimation for a Large-Scale Stochastic
Hybrid System with Air Trgic Application chapter 9, pages 193-214. In Rubino andifyb7], 2009.

[9] Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and Joost-Pieter Katoen. MoDeST: A composi-
tional modeling formalism for hard and softly timed systehiEE Transactions on Software Engineeri8g(10):
812-830, 2006.

[10] Thomas BoothParticle Transport Applicationschapter 10, pages 215-242. In Rubino anfliliyb], 2009.

[11] Carlos E. BuddeAutomation of Importance Splitting Techniques for Rare Event Simulatbd thesis, Univer-
sidad Nacional de Cérdoba, Cérdoba, Argentina, 2017.

[12] Carlos E. Budde, Pedro R. D’Argenio, and Raul E. Monti. Compositional construction of importance functions in
fully automated importance splitting. MALUETOOLSACM, 2016.

[13] Carlos E. Budde, Pedro R. D’Argenio, and Arnd Hartmanns. Better automated importance splitting for transient
rare events. ISETTA volume 10606 of.ecture Notes in Computer Scienpages 42-58. Springer, 2017.

25

http://www.modestchecker.net/

[14]

(15]

(16]
(17]
(18]
[19]
[20]

[21]

[22]
(23]
[24]
[25]
(26]
(27]
(28]

[29]

[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian Junges, and Andrea Turrini.
JANI: Quantitative model and tool interaction. TACAS volume 10206 of ecture Notes in Computer Science
pages 151-168. Springer, 2017.

Carlos E. Budde, Pedro R. D’Argenio, Arnd Hartmanns, and Sean Sedwards. A statistical model checker for
nondeterminism and rare events.TIACAS volume 10806 of ecture Notes in Computer Scienpages 340-358.
Springer, 2018.

Frédéric Cérou and Arnaud Guyader. Adaptive multilevel splitting for rare event anadgsizhastic Analysis and
Applications 25(2):417-443, 2007.

Frédéric Cérou, Pierre Del Moral, Teddy Furon, and Arnaud Guyader. Sequential Monte Carlo for rare event
estimation.Statistics and Computin@2(3):795-808, 2012.

Pedro R. D’Argenio and Joost-Pieter Katoen. A theory of stochastic systems part I: stochastic autdforata-

tion and Computation203(1):1-38, 2005.

Pedro R. D’Argenio and Raul E. Monti. Ingoutput stochastic automata with urgency: Confluence and weak
determinism. INCTAC, volume 11187 of.ecture Notes in Computer Scienpages 132—-152. Springer, 2018.

Pedro R. D’Argenio, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Smart sampling for lightweight
verification of Markov decision processeoftware Tools for Technology Transféi7(4):469-484, 2015.

Pedro R. D'Argenio, Arnd Hartmanns, Axel Legay, and Sean Sedwards. Statistical approximation of optimal
schedulers for probabilistic timed automata.ifiv, volume 9681 ofLecture Notes in Computer Sciengages
99-114. Springer, 2016.

Pedro R. D'Argenio, Matias David Lee, and Radl E. Monti. Inputput stochastic automata — compositionality

and determinism. IFORMATSvolume 9884 of ecture Notes in Computer Scienpages 53-68. Springer, 2016.
George S. Fishman and L. Stephen Yarberry. An implementation of the batch means nidfFO&MS Journal

on Computing9(3):296-310, 1997.

Marnix J. J. GarvelsThe splitting method in rare event simulatioRhD thesis, University of Twente, Enschede,

The Netherlands, 2000.

Marnix J. J. Garvels and Dirk P. Kroese. A comparison of RESTART implementation§Viriter Simulation
Conferencegpages 601-608, 1998.

Marnix J. J. Garvels, Jan-Kees C. W. van Ommeren, and Dirk P. Kroese. On the importance function in splitting
simulation.European Transactions on Telecommunicatjdrg{4):363-371, 2002.

Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin, and Tim Zajic. A large deviations perspective on the
efficiency of multilevel splitting|EEE Transactions on Automatic Contrdi3(12):1666—1679, 1998.

Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin, and Tim Zajic. Multilevel splitting for estimating rare
event probabilitiesOperations Researcd7(4):585-600, 1999.

Ambuj Goyal, Perwez Shahabuddin, Philip Heidelberger, Victor F. Nicola, and Peter W. Glynn. A unified frame-
work for simulating Markovian models of highly dependable systelBEE Transactions on Computed1(1):

36-51, 1992.

Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen. A compositional modelling and
analysis framework for stochastic hybrid systefisrmal Methods in System Desjgt8(2):191-232, 2013.

Ernst Moritz Hahn, Arnd Hartmanns, and Holger Hermanns. Reachability and reward checking for stochastic timed
automataElectronic Communications of the EASST, 2014.

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and relidoitityal Aspects of Computing
6(5):512-535, 1994.

Arnd Hartmanns and Holger Hermanns. A Modest approach to checking probabilistic timed auton@ESTn

pages 187-196. IEEE Computer Society, 2009.

Arnd Hartmanns and Holger Hermanns. The Modest Toolset: An integrated environment for quantitative modelling
and verification. INTACAS volume 8413 otecture Notes in Computer Scienpages 593-598. Springer, 2014.

Arnd Hartmanns, Holger Hermanns, and Michael Bungert. Flexible support for time and costs in scenario-aware
dataflow. INEMSOFT pages 3:1-3:10. ACM, 2016.

Arnd Hartmanns, Sean Sedwards, and Pedro R. D’Argerfiiciént simulation-based verification of probabilistic
timed automata. IiWinter Simulation Conferencpages 1419-1430, 2017.

Philip Heidelberger. Fast simulation of rare events in queueing and reliability mod&l$4 Transactions on
Modeling and Computer Simulatipf(1):43—-85, 1995.

Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet. Approximate probabilistic model
checking. InVMCA|, volume 2937 ot ecture Notes in Computer Scienpages 73-84. Springer, 2004.

Kin-Ping Hui, Nigel Bean, Miro Kraetzl, and Dirk P. Kroese. The cross-entropy method for network reliability
estimation.Annals of Operations Researct34(1):101-118, 2005.

Cyrille Jégourel, Axel Legay, and Sean Sedwards. Importance splitting for statistical model checking rare proper-
ties. INCAV, volume 8044 of_ecture Notes in Computer Scienpages 576-591. Springer, 2013.

Cyrille Jégourel, Axel Legay, and Sean Sedwards. Aeative heuristic for adaptive importance splitting in

26

[42]

(43]

[44]
[45]
[46]
[47]

(48]
[49]

[50]
[51]
[52]
(53]
[54]
[55]

[56]

[57]
(58]
[59]
(60]
(61]
(62]
(63]
(64]
[65]
[66]
[67]
[68]

(69]

statistical model checking. IISoLA volume 8803 of_ecture Notes in Computer Scienpages 143-159. Springer,
2014.

Cyrille Jégourel, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Distributed verification of rare proper-
ties using importance splitting observeBectronic Communications of the EASSZ?, 2015.

Cyrille Jégourel, Kim G. Larsen, Axel Legay, Marius Mikucionis, Danny Bggsted Poulsen, and Sean Sedwards.
Importance sampling for stochastic timed automat&HT TA volume 9984 of ecture Notes in Computer Science
pages 163-178. Springer, 2016.

Herman Kahn and Ted E. Harris. Estimation of particle transmission by random sampiaiigpnal Bureau of
Standards applied mathematics seyi#8:27-30, 1951.

Dirk P. Kroese and Victor F. Nicola. fEcient estimation of overflow probabilities in queues with breakdowns.
Performance Evaluatiqr86:471-484, 1999.

Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Automatic verification of real-time
systems with discrete probability distributioriEheoretical Computer Scienc282(1):101-150, 2002.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of probabilistic real-time
systems. IrCAV, volume 6806 ot ecture Notes in Computer Scienpages 585-591. Springer, 2011.

Averill M. Law. Simulation modeling and analysiscGraw-Hill Education, 2014.

Averill M. Law and John S. Carson. A sequential procedure for determining the length of a steady-state simulation.
Operations Resear¢l27(5):1011-1025, 1979.

Pierre L'Ecuyer, Valérie Demers, and Brunoffin. Rare events, splitting, and quasi-Monte CaAG@M Transac-

tions on Modeling and Computer Simulatjdry(2), 2007.

Pierre L'Ecuyer, Francgois Le Gland, Pascal Lezaud, and BrufnT8plitting Techniqueshapter 3, pages 39-61.

In Rubino and Téin [54], 2009.

Pierre L'Ecuyer, Michel Mandjes, and Bruno ffin. Importance Sampling in Rare Event Simulatichapter 2,

pages 17-38. In Rubino and ffim [54], 2009.

Francois LeGland and Nadia Oudjane. A sequential particle algorithm that keeps the particle system alive. In
EUSIPCQ pages 1-4. IEEE, 2005.

Loren D. Lutes and Curtis E. Larsen. Improved spectral method for variable amplitude fatigue predmtioral

of Structural Engineering (United State4)16(4):1149-1164, 1990.

Marco Paolieri, Andras Horvath, and Enrico Vicario. Probabilistic model checking of regenerative concurrent
systemslEEE Transactions on Software Engineerid@(2):153-169, 2016.

Daniél Reijsbergen, Pieter-Tjerk de Boer, Werner R. W. Scheinhardt, and Boudewijn R. Haverkort. Automated
rare event simulation for stochastic Petri netsQEST volume 8054 ot ecture Notes in Computer Scienpages
372-388. Springer, 2013.

Gerardo Rubino and Bruno Tiin, editors. Rare Event Simulation Using Monte Carlo Methodimhn Wiley &

Sons, Ltd, 2009.

Gerardo Rubino and Bruno Tin. Introduction to Rare Event Simulatipnhapter 1, pages 1-13. In Rubino and
Tuffin [67], 2009.

Walter L. Smith. Regenerative stochastic procesBesceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Scien¢c@82(1188):6-31, 1955.

Natalie M. Steiger and James R. Wilson. Convergence properties of the batch means method for simulation output
analysis.INFORMS Journal on Computing3(4):277—-293, 2001.

José Villén-Altamirano. RESTART method for the case where rare events can occur in retrials from any threshold.
International Journal of Electronics and Communicatip52:183-189, 1998.

José Villén-Altamirano. Rare event RESTART simulation of two-stage netwBrtk®pean Journal of Operational
Research179(1):148-159, 2007.

José Villén-Altamirano. RESTART simulation of networks of queues with Erlang service tim@g¢intar Simula-

tion Conferencepages 1146—-1154, 2009.

José Villén-Altamirano. RESTART simulation of non-Markov consecutive-k-out-of-n: F repairable syfteins.

ability Engineeringé System Safet®5(3):247-254, 2010.

Manuel Villén-Altamirano and José Villén-Altamirano. RESTART: a method for accelerating rare event simula-
tions. InQueueing, Performance and Control in ATM (ITC-133ges 71-76. Elsevier, 1991.

Manuel Villén-Altamirano and José Villén-Altamirano. RESTART: a straightforward method for fast simulation
of rare events. IWinter Simulation Conferencpages 282-289, 1994.

Manuel Villén-Altamirano and José Villén-Altamirano. Analysis of restart simulation: Theoretical basis and sens-
itivity study. European Transactions on Telecommunicatjdrg4):373-385, 2002.

Manuel Villén-Altamirano and José Villén-Altamirano. On theé@ency of RESTART for multidimensional state
systems ACM Transactions on Modeling and Computer Simulatits(3):251-279, 2006.

Manuel Villén-Altamirano and José Villén-Altamirano. The rare event simulation method RESTARIercy
analysis and guidelines for its application.Network Performance Engineeringolume 5233 of_ecture Notes in

27

[70]

[71]
[72]
(73]

[74]

Computer Scieng@ages 509-547. Springer, 2011.

Manuel Villén-Altamirano, A. Martinez-Marrén, J. Gamo, and F. Fernandez-Cuesta. Enhancement of the accel-
erated simulation method RESTART by considering multiple threshold®rdn. 14th Int. Teletrfic Congress

pages 797-810, 1994.

Gang Xiao, Zhizhong Li, and Ting Li. Dependability estimation for non-Markov consecutive-k-out-of-n: F repair-
able systems by fast simulatioReliability Engineering> System Safet2(3):293 — 299, 2007.

Hakan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete event systems using acceptance
sampling. INCAV, volume 2404 ot ecture Notes in Computer Scienpages 223-235. Springer, 2002.

Armin Zimmermann and Paulo Maciel. Importance function derivation for RESTART simulations of Petri nets. In
RESIM pages 8-15, 2012.

Armin Zimmermann, Daniél Reijsbergen, Alexander Wichmann, and Andres Canabal Lavista. Numerical results
for the automated rare event simulation of stochastic Petri neREBIM pages 1-10, 2016.

28

	Introduction
	Preliminaries
	Simulation Models
	Property Queries
	The Importance Function
	Levels, thresholds and factors

	Compositional Importance Functions
	Importance Splitting Methods
	Restart
	Fixed Effort
	Fixed Success

	Thresholds and Splitting Factors
	Sequential Monte Carlo
	Expected Success

	Tools, Languages and Models
	The modes Tool
	The FIG Tool

	Experimental Evaluation
	Transient Properties
	Case Studies
	Experimental Setup
	Results

	Steady-State Properties
	Case Studies
	Experimental Setup
	Results

	Conclusion

