
A LUSIN TYPE RESULT

S. DELLADIO

Abstract. By using the property known as Federer-Fleming conjecture (cf. [7, 3.1.17]),
recently resolved by B. Bojarski, we prove the following Lusin type result:

Theorem. Let A ⊂ Rn be a measurable set and let k be a nonnegative integer. Assume
that to each x ∈ A corresponds a polynomial Px : Rn → R of degree less or equal to k+ 1
such that

ap lim
x→a

(DαPx)(x)− (DαPa)(x)

|x− a|
= 0

holds for all α ∈ Nn such that |α| ≤ k, at a.e. a ∈ A. Then, for each ε > 0, there exists
ϕ ∈ Ck+1(Rn) such that

Ln
(
A \

⋂
|α|≤k+1

{x ∈ A : Dαϕ(x) = (DαPx)(x)}
)
≤ ε.

We will use such a theorem to provide a simple new proof of a well-known property of
Sobolev functions.

1. introduction

Let Ln denote the Lebesgue outer measure on Rn. Then, throughout the paper, the
expressions “measurable with respect to Ln” and “almost everywhere with respect to Ln”
will be simply referred as “measurable” and “almost everywhere”, respectively.

The following result resolves the long-standing Federer-Whitney conjecture [7, 3.1.17]. It
has been recently proved by B. Bojarski, compare [1, 2].

Theorem 1.1. Let Ω be an open subset of Rn and A ⊂ Ω. Moreover let k be a nonnegative
integer and let ϕ ∈ Ck(Ω) be such that

ap lim sup
x→a

|Dαϕ(x)−Dαϕ(a)|
|x− a|

< +∞

for all a ∈ A and for all α ∈ Nn such that |α| = k. Then, for each ε > 0, there exists
ψ ∈ Ck+1(Rn) such that

Ln(A \ {ϕ = ψ}) ≤ ε.
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We will use Theorem 1.1 to prove the following Lusin-type property.

Theorem 1.2 (Main result). Let A ⊂ Rn be a measurable set and let k be a nonnegative
integer. Assume that to each x ∈ A corresponds a polynomial Px : Rn → R of degree less
or equal to k + 1 such that

ap lim
x→a

(DαPx)(x)− (DαPa)(x)

|x− a|
= 0(1.1)

holds for all α ∈ Nn such that |α| ≤ k, at a.e. a ∈ A. Then, for each ε > 0, there exists
ϕ ∈ Ck+1(Rn) such that

Ln
(
A \

⋂
|α|≤k+1

{x ∈ A : Dαϕ(x) = (DαPx)(x)}
)
≤ ε.(1.2)

Observe that assuming (1.1) is (obviously) equivalent to requiring that the function

fα : A→ R, x 7→ (DαPx)(x)

is approximately differentiable at a and apDfα(a) = D(DαPa)(a) holds. Thus Theorem
1.2 can be rephrased as follows:

Theorem 1.3 (Main result, second version). Let A ⊂ Rn be a measurable set and
let k be a nonnegative integer. Assume that to each x ∈ A corresponds a polynomial
Px : Rn → R of degree less or equal to k + 1 such that the following condition is verified:
For all α ∈ Nn such that |α| ≤ k and for a.e. a ∈ A, the function fα is approximately
differentiable at a and one has apDfα(a) = D(DαPa)(a). Then, for each ε > 0, there
exists ϕ ∈ Ck+1(Rn) satisying (1.2).

In Section 4 we will use Theorem 1.3 to provide a simple new proof of the following well-
known Lusin type result for Sobolev functions, which is a special case of Theorem 3.10.5
of [7] (for further developments see also [3]).

Theorem 1.4. Let Ω be an open subset of Rn, p ≥ 1 and let k be a nonnegative integer.
If u ∈ W k+1,p

loc (Ω), then for each ε > 0, there exists ϕ ∈ Ck+1(Rn) such that

Ln
(

Ω \
⋂

|α|≤k+1

{x ∈ Ω : Dαϕ(x) = Dαu(x)}
)
≤ ε.

2. General notation and preliminaries

2.1. General notation. The standard orthonormal basis of Rn is denoted by e1, . . . , en.
The ball of radius r centered at x ∈ Rn will be indicated by Br(x). If α = (α1, . . . , αn) ∈
Nn and x = (x1, . . . , xn) ∈ Rn, then we let

|α| := α1 + . . .+ αn, α! := α1! · · ·αn!, xα := xα1
1 · · ·xαnn .
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If f ∈ W k,p
loc (Rn) and α ∈ Nn, with |α| ≤ k, then Dαf denotes the αth weak derivative

of f . In the special case when αi = 1 and αj = 0 for all j 6= i, we denote Dαf by Dif .
The weak gradient of f will simply be denoted by Df . If α, β ∈ Nn with β ≤ α (that is
βi ≤ αi for all i), then

Dβxα =
α!

(α− β)!
xα−β.(2.1)

2.2. Points of Lebesgue density. Recall that x ∈ Rn is said to be a point of Lebesgue
density of E ⊂ Rn if

Ln(Br(x) \ E) = o(rn) (as r → 0+).

The set of points of Lebesgue density of E is denoted by E(n). Observe that if E,F ⊂ Rn

then

E(n) ∩ F (n) = (E ∩ F )(n).(2.2)

The set E(n) is measurable even if E is not measurable (cf. [4, Proposition 3.1]). A
celebrated result by Lebesgue states that if E is measurable then Ln(E∆E(n)) = 0 (cf.
Corollary 1.5 in Chapter 3 of [9]), hence

(E(n))(n) = E(n).(2.3)

As one expects, the tangent cone (cf. [7, 3.1.21]) at a point of Lebesgue density coincides
with the whole space. This fact is stated in the following proposition (cf. [5, Proposition
3.4]).

Proposition 2.1. If E ⊂ Rn and x ∈ E(n), then{
u ∈ Rn : u = lim

i→∞

xi − x
|xi − x|

for some {xi}∞i=1 ⊂ E \ {x} with xi → x

}
= Sn−1.

Remark 2.1. Let ϕ ∈ Ck(Rn), with k ≥ 1. If α ∈ Nn and |α| ≤ k, denote the set
{x ∈ Rn : Dαϕ(x) = 0} simply by {Dαϕ = 0}. Consider x ∈ {ϕ = 0}(n) and observe that
ϕ(x) = 0. By Proposition 2.1, there exists {xi}∞i=1 ⊂ {ϕ = 0} \ {x} converging to x and
such that

lim
i→∞

xi − x
|xi − x|

= e1.

From

0 =
ϕ(xi)− ϕ(x)

|xi − x|
=
Dϕ(x) · (xi − x) + o(|xi − x|)

|xi − x|

= Dϕ(x) · (xi − x)

|xi − x|
+
o(|xi − x|)
|xi − x|

(as i→∞),

it follows that D1ϕ(x) = 0. The same argument shows that Dhϕ(x) = 0 for all h =
1, . . . , n, hence

{ϕ = 0}(n) ⊂
⋂
|α|=1

{Dαϕ = 0}.(2.4)
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If k ≥ 2 then, by (2.2), (2.3) and (2.4), we obtain

{ϕ = 0}(n) = ({ϕ = 0}(n))(n) ⊂
⋂
|α|=1

{Dαϕ = 0}(n) ⊂
⋂
|α|=1

⋂
|β|=1

{Dα+βϕ = 0}

that is

{ϕ = 0}(n) ⊂
⋂
|α|=2

{Dαϕ = 0}.

Replicating this argument, we finally obtain

{ϕ = 0}(n) ⊂
⋂
|α|=k
{Dαϕ = 0}.

2.3. Approximate limit, approximately continuous functions, approximately
differentiable functions. Recall from [7, 2.9.12] the definition of approximate upper
limit (cf. also [10, Definition 5.9.1] and [6, Section 1.7.2]).

Definition 2.1. Let g : A ⊂ Rn → R and x0 ∈ A(n). Then the approximate upper limit
of g at x0 is defined by

ap lim sup
x→x0

g(x) := inf{t ∈ R : x0 ∈ {g ≤ t}(n)}

where {g ≤ t} := {a ∈ A : g(a) ≤ t}.

Remark 2.2. Consider g : A ⊂ Rn → R, x0 ∈ Rn and B ⊂ A such that x0 ∈ B(n) (hence
also x0 ∈ A(n)). For all t ∈ R, one has

{g|B ≤ t} = {g ≤ t} ∩B ⊂ {g ≤ t}
which implies

Br(x0) \ {g ≤ t} ⊂ Br(x0) \ {g|B ≤ t} ⊂ (Br(x0) \ {g ≤ t}) ∪ (Br(x0) \B).

Thus

Ln(Br(x0) \ {g ≤ t}) ≤ Ln(Br(x0) \ {g|B ≤ t}) ≤ Ln(Br(x0) \ {g ≤ t})
+ Ln(Br(x0) \B).

Hence

{t ∈ R : x0 ∈ {g ≤ t}(n)} = {t ∈ R : x0 ∈ {g|B ≤ t}(n)}.
We conclude that ap lim supx→x0 g(x) = ap lim supx→x0 g|B(x).

Remark 2.3. Similarly one can define the approximate lower limit of g : A ⊂ Rn → R at
x0 ∈ A(n):

ap lim inf
x→x0

g(x) := sup{t ∈ R : x0 ∈ {g ≥ t}(n)}.

If ap lim infx→x0 g(x) = ap lim supx→x0 g(x) = l ∈ R, then the number l is called the

approximate limit of g at x0 ∈ A(n) and it is denoted by ap limx→x0 g(x).

We can now define approximate continuity and approximate differentiability (cf. sections
2.9.12 and 3.1.2 in [7]).
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Definition 2.2. We say that g : A ⊂ Rn → R is approximately continuous at x0 ∈ A∩A(n)

if ap limx→x0 g(x) = g(x0).

Definition 2.3. We say that g : A ⊂ Rn → R is approximately differentiable at x0 ∈
A ∩ A(n) if there exists v ∈ Rn such that

ap lim
x→x0

g(x)− g(x0)− v · (x− x0)
|x− x0|

= 0.

In such a case the vector v is unique and is denoted by apDg(x0). It is called the appro-
ximate derivative of g at x0.

We will need also the following results (cf. [8, Theorem 7.51] and Theorem 4 in Section
6.1.3 of [6], respectively).

Theorem 2.1. A function g : A ⊂ Rn → R is approximately continuous at x ∈ A ∩ A(n)

if and only if there exists a measurable set E ⊂ A such that x ∈ E ∩ E(n) and g|E is
continuous at x.

Theorem 2.2. Let Ω be an open subset of Rn and p ≥ 1. Then each function in W 1,p
loc (Ω)

is approximately differentiable a.e. in Ω and its approximate derivative equals its weak
derivative a.e. in Ω.

3. Proof of Theorem 1.2 (main result)

First of all we state the following remark which will be useful below.

Remark 3.1. Under the assumptions of Theorem 1.2, consider α ∈ Nn with |α| ≤ k. Since

|(DαPx)(x)− (DαPa)(a)| ≤ |(D
αPx)(x)− (DαPa)(x)|

|x−a|
|x−a|+ |(DαPa)(x)− (DαPa)(a)|

for all x, a ∈ A, then the function x 7→ (DαPx)(x) is approximately continuous at a.e.
a ∈ A. Hence x 7→ (DαPx)(x) is also measurable, by Theorem 2.9.13 of [7].

Now we begin the proof of the main result by observing that (throwing away a null subset
of A, if necessary) we may assume without loss of generality that (1.1) holds for all a ∈ A
(and for all α ∈ Nn such that |α| ≤ k). The proof is by induction on k.

STEP 1. Assume k = 0. Define

f : A→ R, f(x) := Px(x)

and observe that (for all a, x ∈ A)

|f(x)−f(a)|
|x− a|

=
|Px(x)−Pa(a)|
|x− a|

≤ |Px(x)−Pa(x)|
|x− a|

+
|Pa(x)−Pa(a)|
|x− a|

.(3.1)

Moreover
Pa(x) = Pa(a) + (DPa)(a) · (x− a) + o(|x− a|) (as x→ a)
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hence

|Pa(x)− Pa(a)| ≤ |(DPa)(a)||x− a|+ o(|x− a|) (as x→ a).(3.2)

By (3.1), (3.2) and assumption (1.1), we obtain

ap lim sup
x→a

|f(x)− f(a)|
|x− a|

< +∞

for all a ∈ A. From Theorem 3.1.16 of [7] it follows that, for all ε > 0, there exists
ϕ1 ∈ C1(Rn) such that

Ln(A \ A1) ≤ ε(3.3)

with

A1 := {x ∈ A : ϕ1(x) = Px(x)}.
Observe that A1 is measurable, by Remark 3.1. If a ∈ A1 ∩ A(n)

1 , then, by (1.1) and
Theorem 2.1 (also taking into account of Remark 3.1), there exists a measurable subset

E1 of A such that a ∈ E1 ∩ E(n)
1 and

lim
x→a
x∈E1

Px(x)− Pa(x)

|x− a|
= 0.(3.4)

By (2.2), one has a ∈ A(n)
1 ∩ E

(n)
1 = (A1 ∩ E1)

(n). Hence and by Proposition 2.1, given
i ∈ {1, . . . , n}, we can find a sequence {aj}∞j=1 ⊂ (A1 ∩ E1) \ {a} such that

aj → a,
aj − a
|aj − a|

→ ei (as j →∞).

Since

ϕ1(aj) = ϕ1(a) +Dϕ1(a) · (aj − a) + o(|aj − a|) (as j →∞)

we get
ϕ1(aj)− ϕ1(a)

|aj − a|
= Dϕ1(a) · aj − a

|aj − a|
+
o(|aj − a|)
|aj − a|

(as j →∞)

so that

lim
j→∞

ϕ1(aj)− ϕ1(a)

|aj − a|
= Diϕ1(a).(3.5)

The same argument shows also that

lim
j→∞

Pa(aj)− Pa(a)

|aj − a|
= (DiPa)(a).(3.6)

On the other hand, one has

ϕ1(aj)− ϕ1(a)

|aj − a|
=
Paj(aj)− Pa(a)

|aj − a|
=
Paj(aj)− Pa(aj)
|aj − a|

+
Pa(aj)− Pa(a)

|aj − a|
.

Hence, by recalling (3.4), (3.5) and (3.6), we obtain

Diϕ1(a) = (DiPa)(a)(3.7)
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for all a ∈ A1 ∩ A(n)
1 and i = 1, . . . , n. From (3.3) and (3.7) it follows at once that

Ln
(
A \

⋂
|α|≤1
{x ∈ A : Dαϕ1(x) = (DαPx)(x)}

)
≤ ε

which concludes the proof for k = 0, with ϕ := ϕ1.

STEP 2. Now let k ≥ 1 and suppose that:

(i) The assumption (1.1) holds;
(ii) Theorem 1.2 holds for k − 1.

Then, for all ε > 0, there exists ϕk ∈ Ck(Rn) such that

Ln(A \ Ak) ≤
ε

3
(3.8)

with

Ak :=
⋂
|α|≤k
{x ∈ A : Dαϕk(x) = (DαPx)(x)}

Observe that Ak is measurable, by Remark 3.1. If

a ∈ A∗k := Ak ∩ A(n)
k , x ∈ Ak

and α ∈ Nn with |α| = k, then one has

|Dαϕk(x)−Dαϕk(a)|
|x− a|

=
|(DαPx)(x)− (DαPa)(a)|

|x− a|

≤ |(D
αPx)(x)− (DαPa)(x)|

|x− a|
+
|(DαPa)(x)− (DαPa)(a)|

|x− a|

=
|(DαPx)(x)− (DαPa)(x)|

|x− a|

+
|D(DαPa)(a) · (x− a) + o(|x− a|)|

|x− a|

≤ |(D
αPx)(x)− (DαPa)(x)|

|x− a|

+ |D(DαPa)(a)|+ o(|x− a|)|
|x− a|

(as x→ a).



8 S. DELLADIO

Since a ∈ A(n)
k and recalling Remark 2.2, it follows that

ap lim sup
x→a

|Dαϕk(x)−Dαϕk(a)|
|x− a|

= ap lim sup
x→a

(
|Dαϕk(x)−Dαϕk(a)|

|x− a|

)∣∣∣∣∣
x∈Ak

≤ ap lim sup
x→a

(
|(DαPx)(x)− (DαPa)(x)|

|x− a|

)∣∣∣∣∣
x∈Ak

+ |D(DαPa)(a)|

= ap lim sup
x→a

|(DαPx)(x)− (DαPa)(x)|
|x− a|

+ |D(DαPa)(a)|.

Now, by the assumption (1.1), we obtain

ap lim sup
x→a

|Dαϕk(x)−Dαϕk(a)|
|x− a|

< +∞

for all a ∈ A∗k and for all α ∈ Nn with |α| = k. Then, by Theorem 1.1, there exists
ϕk+1 ∈ Ck+1(Rn) such that

Ln(Ak \ {ϕk = ϕk+1}) = Ln(A∗k \ {ϕk = ϕk+1}) ≤
ε

3
.(3.9)

From (3.8) and (3.9), we get

Ln(A \ {ϕk = ϕk+1}) ≤ Ln(A \ Ak) + Ln(Ak \ {ϕk = ϕk+1})

≤ 2ε

3
.

(3.10)

One has

{ϕk = ϕk+1}(n) ⊂
⋂
|α|≤k
{Dαϕk = Dαϕk+1}(3.11)

by Remark 2.1. Define the set

Bk :=
⋂
|α|≤k
{x ∈ A : Dαϕk+1(x) = (DαPx)(x)}

which is measurable, by Remark 3.1. Observe that, by definition of Ak and (3.11), one
has

Bk ⊃ Ak ∩
( ⋂
|α|≤k
{Dαϕk = Dαϕk+1}

)
⊃ Ak ∩ {ϕk = ϕk+1}(n).(3.12)

Consider a ∈ Bk ∩ B(n)
k and let β ∈ Nn be such that |β| = k. Then, proceeding similarly

as in STEP 1, we can find a measurable set Ek ⊂ A such that

a ∈ Ek ∩ E(n)
k , lim

x→a
x∈Ek

(DβPx)(x)− (DβPa)(x)

|x− a|
= 0(3.13)
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by assumption (1.1), Remark 3.1 and Theorem 2.1. By (2.2), one has a ∈ B(n)
k ∩ E

(n)
k =

(Bk ∩Ek)(n). Hence and by Proposition 2.1, given i ∈ {1, . . . , n}, we can find a sequence
{aj}∞j=1 ⊂ (Bk ∩ Ek) \ {a} such that

aj → a,
aj − a
|aj − a|

→ ei (as j →∞).

Since

Dβϕk+1(aj) = Dβϕk+1(a) +D(Dβϕk+1)(a) · (aj − a) + o(|aj − a|) (as j →∞)

we get

lim
j→∞

Dβϕk+1(aj)−Dβϕk+1(a)

|aj − a|
= Di(D

βϕk+1)(a).

The same argument shows also that

lim
j→∞

(DβPa)(aj)− (DβPa)(a)

|aj − a|
= Di(D

βPa)(a).

On the other hand, one has

Dβϕk+1(aj)−Dβϕk+1(a)

|aj − a|
=

(DβPaj)(aj)− (DβPa)(a)

|aj − a|

=
(DβPaj)(aj)− (DβPa)(aj)

|aj − a|
+

(DβPa)(aj)− (DβPa)(a)

|aj − a|
.

Hence and by (3.13), we obtain

Di(D
βϕk+1)(a) = Di(D

βPa)(a)

for all a ∈ Bk ∩B(n)
k , i ∈ {1, . . . , n} and β ∈ Nn with |β| = k. This proves that the set

Ak+1 :=
⋂

|α|≤k+1

{x ∈ A : Dαϕk+1(x) = (DαPx)(x)},

which is obviously a (measurable, by Remark 3.1) subset of Bk, is actually Ln-equivalent
to Bk. Recalling also (3.12), (3.8) and (3.10), it follows that

Ln(A \ Ak+1) = Ln(A \Bk) ≤ Ln(A \ Ak) + Ln(A \ {ϕk = ϕk+1}) ≤ ε.

The conclusion follows by taking ϕ := ϕk+1.

4. Application to Sobolev functions, proof of Theorem 1.4

Let Ω be an open subset of Rn, p ≥ 1 and let k ≥ 0 be an integer. Then, given u ∈
W k+1,p

loc (Ω), define the (k+ 1)-th degree Taylor polynomial of u at x ∈ Ω in the usual way
as

T (k+1)
u,x (y) :=

∑
|α|≤k+1

uα(x)

α!
(y − x)α, y ∈ Rn
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where α varies in Nn and uα denotes the precise representative of Dαu ∈ Lploc(Ω) (cf.
Section 1.7.1 of [6]). Observe that, for all β ∈ Nn such that |β| ≤ k + 1, one has

(DβT (k+1)
u,x )(y) =

∑
|β|≤|α|≤k+1

uα(x)

(α− β)!
(y − x)α−β =

∑
|α|≤k+1−|β|

uα+β(x)

α!
(y − x)α

for all x ∈ Ω and y ∈ Rn, by (2.1). Since Dβu ∈ W k+1−|β|,p
loc (Ω) and uα+β is the precise

representative of Dα+βu = Dα(Dβu), this identity shows that

DβT (k+1)
u,x = T

(k+1−|β|)
Dβu,x(4.1)

for all x ∈ Ω. Now, in order to apply Theorem 1.3, define

Px := T (k+1)
u,x , x ∈ Ω

so that

fα(x) = (DαPx)(x) = (DαT (k+1)
u,x )(x) = uα(x)

for all x ∈ Ω, for all α ∈ Nn with |α| ≤ k+ 1, by (4.1). Then, for all α ∈ Nn with |α| ≤ k,
the function fα has to be approximately differentiable a.e. in Ω and one has

ei · apDfα = uα+ei , a.e. in Ω (i = 1, . . . , n)(4.2)

by Theorem 2.2. On the other hand, always assuming |α| ≤ k and 0 ≤ i ≤ n, one has
also

Di(D
αPx) = Di(D

αT (k+1)
u,x ) = Dα+eiT (k+1)

u,x = T
(k−|α|)
Dα+eiu,x

by (4.1), hence

Di(D
αPx)(x) = uα+ei(x)(4.3)

for all x ∈ Ω. From (4.2) and (4.3) we get

apDfα(x) = D(DαPx)(x)

for a.e. x ∈ Ω. The conclusion follows from Theorem 1.3.

References

[1] B. Bojarski: Differentiation of measurable functions and Whitney-Luzin type structure theorems.
Helsinki University of Technology Institute of Mathematics Research Reports A572, 2009 (available
at http://math.tkk.fi/reports/a572.pdf).

[2] B. Bojarski: Sobolev spaces and averaging I. Proc. A. Razmadze Math. Inst. 164 (2014), 19-44.
[3] B. Bojarski, P. Hajlasz, P. Strzelecki: Improved Ck,λ approximation of higher order Sobolev functions

in norm and capacity. Indiana Univ. Math. J. 51 (2002), n. 3, 507-540.
[4] S. Delladio: A note on some topological properties of sets with finite perimeter. Glasg. Math. J., 58

(2016), no. 3, 637-647.
[5] S. Delladio: The tangency of a C1 smooth submanifold with respect to a non-involutive C1 distribution

has no superdensity points. To appear on Indiana Univ. Math. J.
[6] L.C. Evans, R.F. Gariepy: Lecture Notes on Measure Theory and Fine Properties of Functions.

(Studies in Advanced Math.) CRC Press 1992.
[7] H. Federer: Geometric Measure Theory. Springer-Verlag 1969.
[8] R.F. Gariepy, W.P. Ziemer: Modern real analysis. PWS Publishing Company (1995).



A LUSIN TYPE RESULT 11

[9] R. Shakarchi and E.M. Stein: Real analysis (measure theory, integration and Hilbert spaces). Prince-
ton University Press, Princeton and Oxford, 2005.

[10] W.P. Ziemer: Weakly differentiable functions. GTM 120, Springer-Verlag 1989.


