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Abstract 

Pipe systems are commonly used in the process and power industries to transport fluid from one 

terminal to others. Propagation behaviour of lateral flexural waves in a pipe coupled with periodic 

rack structure is investigated. The pipe-rack system considered in this study is a practical case and 

is realized as a pipe on periodic elastic supports, while a pipe on simple and without supports 

represent the special cases when the rack stiffness leads to extreme values. The propagation 

constant relations in term of frequency are derived using Bloch-Floquet theorem which are 

successively verified with finite element models. A pipe over rack exhibits a locally resonant band 

gap around first natural mode of the rack. Conversely, a pipe on simple supports entails only Bragg 

type band gaps, while a pipe without supports carries no band gap. For tuning the band gap 

properties, a two-degree-of-freedom (2DoF) lateral localized resonator in series is attached to the 

center of each unit cell of the pipe. It is found that the targeted pass bands are effectively controlled. 

Further, the effect of various resonator parameters, i.e. mass ratio, stiffness and damping, on band 

gaps is examined. It is observed that the band gaps are vanished when damping is introduced in 

the system. The results show a promising way to flexural vibration control of a periodic piping 

system with various boundary conditions.  

Keywords 

wave propagation, periodic piping system, propagation constant, band gap, locally resonant 

 

Introduction 

Fluid-conveying pipes are widely used in petrochemical plants, liquefied natural gas (LNG) plants 

and various engineering applications. Long pipelines are very common in such plants. A large-

amplitude vibration in pipelines due to the opening/closing of a valve, flow pulsation and support 

excitation can cause fretting, loosening of joints and fatigue failure. Hence, it is important to study 

both lower and higher vibration modes in pipe systems1,2, based on which an efficient vibration 

control strategy can be developed.  

A structure with repetitive units is designated as the periodic structure. Propagation behaviour of 
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elastic waves in periodic structures has been investigated for decades1,3,4. Meanwhile, the idea of 

phononic crystals (PCs) introduced from solid-state physics unveils a new direction to investigate 

the motion of acoustic/elastic waves in periodic structures. Conversely to traditional periodic 

structures, PCs are the classy periodic composite materials which generally possess the boundary, 

geometry or material type periodic spatial variation. Due to existence of any such variation, PCs 

show distinctive characteristics of band gaps, which can forbid both sound and vibration. Two 

types of mechanisms are responsible for the formation of these band gaps: Bragg scattering 

mechanism3,5 and locally resonant (LR) mechanism6. As a result, few waves freely propagate in a 

specific frequency range and result in pass bands while remaining waves attenuate and create band 

gaps or stop bands. If the lattice constant 𝑙 and wavelength ꞵ are of the same order, the structure 

results in Bragg type band gaps. Frequencies of such band gaps are determined by Bragg condition 

𝑙 = 𝑛 (
ꞵ

2
) , where 𝑛 = 1, 2, 3, ….The earlier investigations relevant to propagation of elastic wave 

in periodic beam4,7, pipes1,2, plates3, skin-stringer/rib-skin structures8 were based on the Bragg 

scattering mechanism.  

 
 

Figure 1. The periodic rack structure with a pipe 𝑃. 

 

Conversely to conventional Bragg band gaps, Liu et al.6 proposed that the band gaps in PCs can 

be achieved at low frequency regime by means of LR mechanism if 𝑙 is of two order lower 

magnitude than the relevant wavelength ꞵ. Owing to negative effective properties, LR PCs are 

classified as acoustic/elastic metamaterials9, and has received considerable attention from the 

research community in the recent decade. 

Most of the previous studies relevant to LR periodic structures are focused on single-degree-of-

freedom (SDoF) resonator. Recently, vibration band gaps in metamaterial pipes10–12, beams13–15, 

shafts16,17 and rod18 were studied using SDoF resonator. Yu et al.10 investigated LR pipe with 

different lattice constant and obtained resonance and Bragg type stop bands, and concluded that 

LR pipe with a large lattice constant entails Bragg band gap at lower frequency range than LR 

band gap.  However, the study on propagation of elastic waves in beam19 and rod20 was conducted 

when a multiple-degrees-of-freedom (MDoF) resonator was used. Such structures with LR units 

evolve additional band gaps near the resonant frequency thereby wave filtering capability of the 

structure can be enhanced.  
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In this study, the propagation characteristic of lateral flexural wave in a pipe 𝑃 supported on a rack 

is investigated theoretically and numerically. In this regard, three models are considered: i) a pipe 

over flexible supports (i.e., a pipe coupled with rack) - Model #A-; ii) a pipe over simple supports 

- Model #B-; and iii) a pipe without any support – Model #C-. Pipe over elastic supports represents 

a realistic case, while other two models approximate the extreme scenarios. The equivalent models 

of Figure 1 are shown in Figure 2 for the cases when Model #A is without resonators and with 

2DoF resonators. In order to derive the dispersion relation for Model #A, Bloch-Floquet theorem 

of periodic structure is used. The analytical results are successively verified by FE models. 

In addition, a 2DoF resonator is periodically attached with the pipe to tune the band gap properties 

as depicted in Figure 2(b). In order to perform these studies, a FE model is developed whose 

accuracy is confirmed with the analytical results. Moreover, the parametric study based on the 

resonator properties is conducted to know their influence on the position and width of band gaps. 

Finally, the main findings are concluded at last.  

 

 
Figure 2.  Simplified models of a pipe 𝑃 for Figure 1, i.e. 𝑃 over flexible supports: (a) P without 

resonators; and (b) a 2DoF resonator is attached at the mid of each unit span of 𝑃.  

 

Band gaps in a periodic piping system 

Analytical modelling of an infinite periodic piping system 

The simplified model of a coupled-pipe rack system depicted in Figure 2(a) is used to investigate 

the propagation behaviour of lateral flexural wave in pipe 𝑃. Two unit cells shown in Figure 3 (a) 
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are used to formulate the dispersion relation. The undamped pipe 𝑃 is modelled as Euler- Bernoulli 

beam whose governing equation of motion is expressed by, 

𝜕2

𝜕𝑥2
[𝐸𝐼

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑥2
] + 𝜌𝐴

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
= 0    (1) 

where 𝐸, 𝜌, 𝐴 and 𝐼 respectively denotes modulus of elasticity, mass density, area of cross-section 

and inertia moment. 𝑦 is the transverse displacement. The substitution of harmonic solution 

𝑦(𝑥, 𝑡) = 𝑌(𝑥)𝑒і𝜔𝑡 in equation (1) yields, 

𝐸𝐼𝑌𝑖𝑣(𝑥) − 𝜌𝐴𝜔2(𝑥) = 0 (2) 

where 𝜔 is the radian frequency and 𝑌(𝑥) is beam displacement amplitude. The solution of 

equation (2) yields the beam displacement as, 

𝑌(𝑥) = 𝐴 cos(𝜆𝑥) + 𝐵 sin(𝜆𝑥) + 𝐶 cosh(𝜆𝑥) + 𝐷 sinh(𝜆𝑥) (3) 

here  𝜆 = (
𝜌𝐴𝜔2

𝐸𝐼
)

1

4
 represents flexural wavenumber of the beam. 

 

Figure 3. Analytical modelling of 𝑃: (a) two unit cells of 𝑃 on elastic supports; (b) Bloch- Floquet 

theory imposed at the generic node 𝑗 for angular and transverse displacements; (c) single span of 

𝑃 illustrated as a beam with transverse displacement 𝑦0 and rotation 𝜓0 at free end and clamped 

at other end; and (d) equilibrium of forces and bending moments balance at node 𝑗.  

Applying Bloch- Floquet theorem21,22 to the generic nodes of each unit cell depicted in Figure 3(b), 

the transverse and angular displacements of  nodes 𝑗 − 1 and 𝑗 + 1 with node 𝑗 are associated as 

𝑦𝑗−1 = 𝑦𝑗𝑒−і𝑞𝑙 , 𝑦𝑗+1 = 𝑦𝑗𝑒і𝑞𝑙 and 𝜙𝑗−1 = 𝜙𝑗𝑒−і𝑞𝑙, 𝜙𝑗+1 = 𝜙𝑗𝑒і𝑞𝑙 (4) 

where 𝑞 denotes one dimensional Bloch parameter or the wave number, which is associated to  the 

wavelength ꞵ as ꞵ = 2𝜋 𝑞⁄ , 𝑙 is characteristics unit cell the length and і is √−1. The expression 
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і𝑞𝑙 in equation (4) is represented as propagation constant 𝜇. Similar relations are applied to shear 

forces and bending moments. 

The constants 𝐴, 𝐵, 𝐶 and 𝐷 in equation (3) are determined by using the beam boundary conditions 

depicted in Figure 3(c), which are subsequently used to find out the expression of shear forces 𝑆 

and bending moments 𝑀 on two sides of generic node 𝑗. The dynamic compliances23,24 at 𝑥 = 0 

and 𝑥 = 𝑙 for 𝜙0 = 0  and 𝑦0 = 1, are, 

  𝑆0
′ =

𝜆3𝐸𝐼[sin(𝜆𝑙) + sinh(𝜆𝑙)]

1 − cos(𝜆𝑙) cosh(𝜆𝑙)
 

(5) 

                                    𝑆𝑙
′ =

𝜆3𝐸𝐼[cosh(𝜆𝑙) sin(𝜆𝑙) + cos(𝜆𝑙) sinh(𝜆𝑙)]

1 − cos(𝜆𝑙) cosh(𝜆𝑙)
 

  𝑀0
′ =

𝜆2𝐸𝐼[cos(𝜆𝑙) − cosh(𝜆𝑙)]

1 − cos(𝜆𝑙) cosh(𝜆𝑙)
 

  𝑀𝑙
′ =

𝜆2𝐸𝐼[sinh(𝜆𝑙) sin(𝜆𝑙)]

1 − cos(𝜆𝑙) cosh(𝜆𝑙)
      

and the compliances for 𝜓0 = 1  and 𝑦0 = 0  are read as 

         𝑆0
′′ =

−𝜆2𝐸𝐼[cosh(𝜆𝑙) − cos(𝜆𝑙)]

1 − cos(𝜆𝑙) cosh(𝜆𝑙)
 

(6) 

    𝑆𝑙
′′ =

−𝜆2𝐸𝐼[sinh(𝜆𝑙) sin(𝜆𝑙)]

1 − cos(𝜆𝑙) cosh(𝜆𝑙)
  

     𝑀0
′′ =

−𝜆𝐸𝐼[sin(𝜆𝑙) − sinh(𝜆𝑙)]

1 − cos(𝜆𝑙) cosh(𝜆𝑙)
 

                                      𝑀𝑙
′′ =

−𝜆𝐸𝐼[cosh(𝜆𝑙) sin(𝜆𝑙) − cos(𝜆𝑙) sinh(𝜆𝑙)]

1 − cos(𝜆𝑙) cosh(𝜆𝑙)
 

Based on Figure 3(b), the expression of 𝑆  and 𝑀 at two sides of generic node 𝑗 are determined as  

𝑆− = −𝑆0
′ 𝑦𝑗𝑒−і𝑞𝑙 + 𝑆𝑙

′𝑦𝑗 + 𝑆0
′′𝜙𝑗

+𝑒−і𝑞𝑙 + 𝑆𝑙
′′𝜙𝑗

− 

 (7) 

𝑆+ = 𝑆0
′ 𝑦𝑗𝑒і𝑞𝑙 − 𝑆𝑙

′𝑦𝑗 + 𝑆0
′′𝜙𝑗

−𝑒і𝑞𝑙 + 𝑆𝑙
′′𝜙𝑗

+          

𝑀− = 𝑀0
′ 𝑦𝑗𝑒−і𝑞𝑙 + 𝑀𝑙

′𝑦𝑗 − 𝑀0
′′𝜙𝑗

+𝑒−і𝑞𝑙 + 𝑀𝑙
′′𝜙𝑗

− 

𝑀+ = 𝑀0
′ 𝑦𝑗𝑒і𝑞𝑙 + 𝑀𝑙

′𝑦𝑗 + 𝑀0
′′𝜙𝑗

−𝑒і𝑞𝑙 − 𝑀𝑙
′′𝜙𝑗

+      

The kinematic compatibility condition at node 𝑗 entails, 

𝜙𝑗
+ = 𝜙𝑗

−   (8) 
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and the equilibrium condition at node 𝑗 (Figure 3(d)) yields the forces and bending moments 

equations as,  

 𝑀+ = 𝑀−          

(9) 
                       𝑆+ = 𝑆− + (𝐾𝑅−𝑀𝜔2)𝑦𝑗 

where, 𝑀 and 𝐾𝑅  respectively refers to the lumped mass and stiffness of the rack column.  

equations (7)-(9) provides a system of the linear homogeneous equations in term of 𝜙𝑗
−, 𝜙𝑗

+ and 

𝑦𝑗 as, 

𝜙𝑗
− − 𝜙𝑗

+ = 0 (10) 

(𝑀0
′′𝑒і𝑞𝑙 − 𝑀𝑙

′′)𝜙𝑗
− + (𝑀0

′′𝑒−і𝑞𝑙 − 𝑀𝑙
′′)𝜙𝑗

+ + [2і𝑀0
′ sin(𝑞𝑙)]𝑦𝑗 = 0 (11) 

(𝑆0
′′𝑒і𝑞𝑙 − 𝑆𝑙

′′)𝜙𝑗
− + (𝑆𝑙

′′ − 𝑆0
′′𝑒−і𝑞𝑙)𝜙𝑗

+ + [2𝑆0
′ cos(𝑞𝑙) − 2𝑆𝑙

′ − 𝐾𝑅 + 𝑀𝜔2]𝑦𝑗 = 0 (12) 

Equations (10)-(12) can be expressed as, 

   𝐷𝑢 = 0      (13) 

where, 𝑢 = (𝜙𝑗
−, 𝜙𝑗

+, 𝑦𝑗)𝑇 and 

𝐷 = [

1 −1 0
𝑀0

′′𝑒і𝑞𝑙 − 𝑀𝑙
′′ 𝑀0

′′𝑒−і𝑞𝑙 − 𝑀𝑙
′′ 2і𝑀0

′ sin(𝑞𝑙)

𝑆0
′′𝑒і𝑞𝑙 − 𝑆𝑙

′′ 𝑆𝑙
′′ − 𝑆0

′′𝑒−і𝑞𝑙 2𝑆0
′ cos(𝑞𝑙) − 2𝑆𝑙

′ − 𝐾𝑅 + 𝑀𝜔2
] 

For 𝑢 to have a non-trivial solution, the determinant of 𝐷 should be zero,    

|

1 −1 0
𝑀0

′′𝑒і𝑞𝑙 − 𝑀𝑙
′′ 𝑀0

′′𝑒−і𝑞𝑙 − 𝑀𝑙
′′ 2і𝑀0

′ sin(𝑞𝑙)

𝑆0
′′𝑒і𝑞𝑙 − 𝑆𝑙

′′ 𝑆𝑙
′′ − 𝑆0

′′𝑒−і𝑞𝑙 2𝑆0
′ cos(𝑞𝑙) − 2𝑆𝑙

′ − 𝐾𝑅 + 𝑀𝜔2
| = 0     (14) 

A further solution of equation (14) yields the dispersion relation for the infinite periodic piping 

system as, 

[4𝑀0
′  𝑆0

′′sin2(𝑞𝑙)] + [2𝑆0
′ cos(𝑞𝑙) − 2𝑆𝑙

′ − 𝐾𝑅 + 𝑀𝜔2][2𝑀0
′′ cos(𝑞𝑙) − 2𝑀𝑙

′′] = 0 (15) 

By inserting compliance coefficients relations in equation (15), the dispersion relation in term of 

frequency 𝜔 (i.e., part of 𝜆) and the propagation constant 𝜇 is obtained  as, 
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[{cosh(𝜆𝑙) − cos(𝜆𝑙)}]2 − {sinh2(𝜆𝑙) − sin2(𝜆𝑙)}]cosh2𝜇

+ [{sinh(𝜆𝑙) − sin(𝜆𝑙)}{cosh(𝜆𝑙) sin(𝜆𝑙) + cos(𝜆𝑙) sinh(𝜆𝑙)}

− {cosh(𝜆𝑙) sin(𝜆𝑙) − cos(𝜆𝑙) sinh(𝜆𝑙)}{sin(𝜆𝑙) + sinh(𝜆𝑙)}

+
{sinh(𝜆𝑙) − sin(𝜆𝑙)}{1 − cos(𝜆𝑙) cosh(𝜆𝑙)}{𝐾 − 𝑀𝜔2}

2𝐸𝐼𝜆3
] cosh𝜇

+ [{sin2(𝜆𝑙)cosh2(𝜆𝑙) − cos2(𝜆𝑙)sinh2(𝜆𝑙)} − {cosh(𝜆𝑙) − cos(𝜆𝑙)}2

+
{cosh(𝜆𝑙) sin(𝜆𝑙) − cos(𝜆𝑙) sinh(𝜆𝑙)}{1 − cos(𝜆𝑙) cosh(𝜆𝑙)}{𝐾 − 𝑀𝜔2}

2𝐸𝐼𝜆3
] = 0 

 

(16) 

The solution of  equation (16) yields two distinct pairs of 𝜇: ±𝜇1 and ±𝜇2 for each frequency 𝜔. 

Two signs of each pair of 𝜇 represent the same characteristic waves travelling in opposite direction. 

Based on the characteristics of  𝜇, waves are defined in three ways. For purely real 𝜇, the amplitude 

of wave decayed in the adjacent unit cells, such a wave is described as an evanescent wave. 

Conversely, if 𝜇 is purely imaginary, a wave travels freely in the structure without attenuation. For 

a complex 𝜇, some waves get attenuated and remaining pass freely through the structure, thus 

resulting in both stop and pass bands in a band structure. 

 

FE modelling of finite periodic piping system  

To validate the analytical dispersion relations, the finite element (FE) models of pipe 𝑃 with 

different type of support conditions are developed using an Euler-Bernoulli beam (BEAM4) 

available in ANSYS APDL 19.0. The linear spring and lumped mass are modelled using 

COMBIN14 and MASS21 elements, respectively. To study the transmission behaviour of waves 

in 𝑃, a unit amplitude rotation in the form 𝜙𝑖/𝑝𝑒і2𝜋𝑓𝑡 (𝑓 = 𝜔 2𝜋⁄ ) is imposed on the leftmost end 

of the pipe and the output response 𝜙𝑜/𝑝(𝑓) is computed at the rightmost end. In pipe 𝑃, the 

vibration transmission behaviour in decibel form is expressed by FRF (𝑑𝐵), and is defined as, 

𝐹𝑅𝐹 = 20 𝑙𝑜𝑔10 |
𝜙𝑜/𝑝(𝑓) 

𝜙𝑖/𝑝(𝑓)
|    (17) 

A finite structure can approximate the realistic scenario of an infinite structure, such that band gaps 

in both can occur within the same frequency regime if sufficiently large number of unit cells are 

considered. The attenuation behaviour of waves in band gaps highly depends upon the number of 

unit cells available in the structure. Since, the modelling of an infinite periodic structure is not 

straightforward, therefore, 40 unit cells are used.  

Results and discussion 

In this section, wave propagation in an infinite and finite periodic piping system is carried out and 

discussed. Firstly, wave propagation behaviour in Model #A, Model #B and Model #C without 

resonator is investigated analytically and numerically. Further, propagation of wave in all the three 
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models when coupled with a 2DoF resonator is computed numerically. The influence of resonator 

properties on band gaps is studied at last.  

Dispersion characteristics of an infinite periodic piping system 

To study the flexural waves propagation behaviour in 𝑃, a simplified model illustrated in Figure 

2(a) is considered. In this regard, a pipe-rack structure made by the concrete of a class C50/40 as 

shown in Figure 1, is used. The distance between two columns along the length of the pipe is 6 m. 

There are two storeys in each frame. The height of lower and upper storey from the ground is 5.3 

m and 7.3 m, respectively. The cross-sectional area of each column is 600 mm2.The rack contains 

forty frames whose first ten frames are depicted in Figure 1. A FE model of rack and it’s an 

equivalent model with lumped mass 𝑀 and linear spring 𝐾𝑅 corresponding to Figure 2(a) are 

developed in such a way that they carry same dynamic characteristics for the first lateral mode. 

The first mode entails at a frequency of 4.42 𝐻𝑧,  based on that the values of  𝐾𝑅 and  𝑀 is 

computed to be 18 𝐸6 𝑁/𝑚 and 23 𝐸3 𝑘𝑔, respectively. 

In the calculation, the following geometric and material properties of 𝑃 are used:  

Outer radius 𝑅0 = 203.20 𝑚𝑚, thickness 𝑡 = 7.92 𝑚𝑚, length 𝑙 = 6 𝑚 , density 𝜌 =

7800 𝑘𝑔/𝑚3 and Young’s modulus 𝐸 = 200 𝐺𝑃𝑎.  

 

Based on equation (16), the variation of imaginary and real parts of 𝜇 with frequency 𝑓 is 

calculated and are represented in Figures 4(a) and 4(b), respectively. The frequency ranges of three 

band gaps are [0 − 4.42] 𝐻𝑧, [5.45 − 31.25] 𝐻𝑧 and [71.25 − 123.25] 𝐻𝑧, respectively, and are 

highlighted by shaded areas. The FRF (from equation (20)) shown in Figure 4(c) represents the FE 

model results. The Re(𝜇) and FRF report the attenuation characteristics of the wave and are 

indicating good agreement with each other, while Im(𝜇) represents the propagation characteristics 

of waves. The first order band gap is due to the local resonance of rack, while remaining two are 

by spatial periodicity. Thus, two types of band gaps appear in the dispersion curves. 

 

Figure 4. Dispersion curves and vibration transmission behaviour of Model #A: (a) Imaginary part 

of (𝜇); (b) Real part of (𝜇); and (c) FRF (dB). 

Substitution of 𝑀 = 0 and 𝐾𝑅 → ∞ in equation (16) approaches to an extreme case of 𝑃 with 

simple supports (i.e., Model #B), and the resulting expression becomes, 

cosh(𝜇) =
cosh(𝛿𝑙) sin(𝛿𝑙) − cos(𝛿𝑙) sinh(𝛿𝑙)

sin(𝛿𝑙) − sinh(𝛿𝑙)
 (18) 

The above expression can also be found in the literature3. 
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Figure 5.  Dispersion curves and vibration transmission behaviour of Model #B: (a) Imaginary 

part of (𝜇); (b) Real part of (𝜇); and (c) FRF (dB). 

The imaginary and real part of 𝜇 calculated based on equation (18) are respectively shown in 

Figures 5(a) and 5(b), while Figure 5(c) reports to FRF of 𝑃.  The same frequency range is 

considered here as of Model #A, two band gaps are obtained with the frequency range of [0 −

31.25] 𝐻𝑧 and [71.25 − 123.25] 𝐻𝑧 which are shown by shaded areas in Figure 5. However, the 

remaining frequencies belong to the pass bands. Both analytical and numerical results show good 

accordance with each other. In this case, only Bragg band gaps are obtained. 

When 𝐾𝑅 → 0, the dispersion relation derived in equation (16) entails a particular case of 

homogeneous 𝑃 without support (i.e., Model #C), and the dispersion relation changes to, 

cosh2𝜇 − [cos(𝛿𝑙) + cosh(𝛿𝑙)]cos𝜇 + cos(𝛿𝑙) cosh(𝛿𝑙) = 0 (19) 

Equation (19) can also be found in25, and is used to calculate the dispersion curves for Model #C, 

which are depicted in Figures 6(a) and 6(b), respectively, and are verified with FRF given in Figure 

6(c). It is observed that no band gap is obtained for this case, and thus the waves of all frequencies 

can freely travel in 𝑃. 

 

Figure 6.  Dispersion curves and vibration transmission behaviour of Model #C: (a) Imaginary 

part of (𝜇); (b) Real part of (𝜇); and (c) FRF (dB). 

Vibration transmission in 𝑃 attached with 2DoF resonator 

The flexural vibration characteristics in 𝑃 without a resonator have been investigated in the 

previous section for the three models. It is apparent from the results of Model #A, the first pass 

band is extremely narrow, but the other two are wide pass bands. In case of Model #B, both pass 

bands are large, while Model #C shows only pass band. Hence, waves within these pass bands can 

travel freely through the pipe without any attenuation, thus, it is essential to control these pass 

bands to protect the piping system from higher frequency vibrations. As, in case of Model #A and 
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Model #B, it is not possible to control two pass bands with a SDoF resonator, therefore, a 2DoF 

resonator is used. Further, same resonator is utilized with Model #C.   

The flexural wave propagation study of 𝑃 with a 2DoF resonator is carried out and the 

corresponding model is depicted in Figure 2(b). The resonator comprises of the two masses: 𝑚1 

and 𝑚2, two springs with stiffnesses: 𝑘1 and 𝑘2 and two viscous dampers with damping 

coefficients 𝑐1 and 𝑐2. The properties of the 2DoF resonator are adopted such that the second and 

third pass band of Model #A and the first and second pass band of Model #B can be controlled. If 

the mass of each unit span of 𝑃 is 𝑀𝑃, and 𝜂 is a mass ratio, then the parameters of a resonator are 

considered as, 

𝑚1 =  𝑚2 =  𝜂𝑀𝑃, 𝜂 = 0.16, 𝑀𝑃 = 𝜌𝐴𝑙,  𝑘2 𝑘1⁄ = 0.1 , 𝑘1 = 5.2𝐸7 𝑁 𝑚⁄  ,  𝑐2 𝑐1⁄ = 0.67, 𝑐1 =

1.5𝐸4. 

When 𝑐1 = 𝑐2 = 0, and the pipe is considered to be undamped, then two additional band gaps are 

emerged in the FRF. These two new band gaps are due to the local resonances of resonator and 

open around its natural frequencies. For Model #A, the frequency range of five band gaps are 

obtained as [0 − 4.4] 𝐻𝑧, [5.5 − 22.75] 𝐻𝑧, [36.25 − 47.75] 𝐻𝑧, [66.25 − 123.25] 𝐻𝑧 and 

[150.75 − 162.5] 𝐻𝑧, respectively. In FRF, Ist, IIIrd and Vth band gaps are due to local resonances, 

Ist because of the rack while IIIrd and Vth are due to the 2DoF resonator. However, IInd and IVth  are 

Bragg band gaps. For Model #B, the four respective band gap frequency ranges are [0 −

22.75] 𝐻𝑧, [36 − 48] 𝐻𝑧, [66.50 − 123.50] 𝐻𝑧 and [151 − 162.75] 𝐻𝑧, respectively. Similarly 

for Model #C, four band gaps  are   [23 − 31] 𝐻𝑧, [42.5 − 49] 𝐻𝑧, [104.25 − 124] 𝐻𝑧 and 

[149 − 177.25] 𝐻𝑧, respectively. In FRF of Model #B and Model #C, the Ist and IIIrd band gaps 

are the Bragg band gaps while remaining two (i.e., IInd and IVth) are LR band gaps. The obtained 

band gaps for the three models are represented by shaded areas in Figures 7(a), 7(b) and 7(c), 

respectively.  

 

Figure 7. FRF (𝑑𝐵) of different models: (a) Model #A ; (b) Model #B; and (c) Model #C. 

Parametric study of resonator properties on band gaps 

The influence of various parameters of a 2DoF resonator on band gaps is investigated in depth, 

including mass ratio 𝜂, spring stiffnesses 𝑘1, 𝑘2 and the damping coefficients 𝑐1, 𝑐2. The analysis 

for various resonator parameters is compared against the results presented in Figure 7 for the 

original values given in the previous section. In this regard, only a particular parameter is changed 

while others remain constant. For a comparative study, two values are assumed, one lower and the 

other higher than the original value of the resonator.     

Firstly, the effect of 𝜂 on band gaps is presented in Figure (8) for the two selected values of 12% 

and 20%. It is observed that the starting and terminal frequencies of LR band gaps are affected 
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with the increase of 𝜂, and shift to the low-frequency regime. Consequently, the position of both 

LR band gaps moves to the low-frequency range, and their widths also increases with 𝜂. The Vth 

band gap of Model #A and IVth (refer Figure 7 for the order of band gaps) band gap of Model #B 

and Model #C realize significant influence of 𝜂 as compared to the other LR band gap of the 

resonator. However, the starting frequency of the Bragg band gap, which falls between two LR 

band gaps of the resonator, slightly shifts to the left while the terminal frequency remains same. 

Consequently, the Bragg band gap gets wider. Although, the other Bragg band gap remains same 

in all the three models, which can be observed in the FRF as shown in Figure 8.    

 

Figure 8. Influence of mass ratio (𝜂) on band gaps: (a) FRF of Model #A ; (b) FRF of Model #B; 

and (c) FRF of Model #C. 

Figure 9 shows the effect of 𝑘1 and 𝑘2 on band gaps for Model #A, while Figure 10 and 11 

correspond to the results for Model #B and Model #C, respectively.  Two values of 𝑘1 are selected 

as, 3.7𝐸7 𝑁 𝑚⁄  and 6.7𝐸7 𝑁 𝑚⁄ , and values of  𝑘2 are assumed to be 2.2𝐸6 𝑁 𝑚⁄  and 8.2𝐸6 𝑁 𝑚⁄ , 

respectively. It can be noticed in Figure 9(a) that an increase in 𝑘1 leads to a higher starting and 

terminal frequencies of the Vth band gap and an increase in its width. However, all other band gaps 

do not change.  

 

Figure 9. Influence of resonator stiffness on band gaps for Model #A: (a) effect of 𝑘1; and (b) 

effect of 𝑘2. 

However, with the increase of 𝑘2, both LR band gaps get influenced: their positions shift to a 

higher frequency range and bandwidth increases. The IInd band gap (Bragg type) has a negligible 

effect on the band edge frequencies but starting frequency of the IVth band gap (Bragg type) shifts 

much to a higher frequency while terminal frequency does not change. Consequently, the width of 

IVth band gap decreases significantly. Similar effects of 𝑘1 and 𝑘2 are observed on both types of 

band gaps for Model #B and can be seen in Figure 10.  
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Figure 10. Influence of resonator stiffness on band gaps for Model #B: (a) effect of 𝑘1; and (b) 

effect of 𝑘2. 

Figure 11 reveals the influence of the variation of 𝑘1 and 𝑘2 on band gaps for Model #C. It 

demonstrates that the increase in 𝑘1 highly influences both starting and terminal frequencies of 

IVth band gap and shifts the position towards right and also increases the bandwidth. However, 

starting frequency of the IIIrd band gap moves to right and the terminal frequency remains same. 

As a result, the width of this band gap decreases. The frequency range of Ist and IInd band gaps 

does not change with 𝑘1. When 𝑘2 is increased,  the location of Ist and IInd band gaps is highly 

influenced , while effect on IIIrd and IVth band gaps is insignificant,  which can be observed in 

Figure 11(b). For 𝑘2 = 2.2𝐸6 𝑁 𝑚⁄ , the LR band gap emerges before the Bragg band gap, while 

for   𝑘2 = 5.2𝐸6 𝑁 𝑚⁄  and 8.2𝐸6 𝑁 𝑚⁄ , the LR and Bragg band gap interchange their positions, 

and can be easily noticed in Figure 11(c). 

 

Figure 11. Influence of resonator stiffness on band gaps for Model #C: (a) effect of 𝑘1; and (b) 

effect of 𝑘2. 

Figure 12 shows the influence of various damping values on band gaps when a  2DoF resonator is 

coupled with 𝑃, three scenarios with different damping values are investigated in all the three 

models; (i) 𝑃 and resonator both are undamped, (ii) 𝑃 is damped (𝜉 = 0.02) and the resonator is 

undamped (𝑘1 = 5.20𝐸7, 𝑐1 = 0 and 𝑘2 = 5.2𝐸6, 𝑐2 = 0); and (iii) 𝑃 (𝜉 = 0.02) and resonator 

both are damped (𝑘1 = 5.2𝐸7, 𝑐1 = 1.5𝐸4 and 𝑘2 = 5.2𝐸6, 𝑐2 = 1.0𝐸4). The FRF of different 

models corresponding to the above three cases are reported in Figure 12.  
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Figure 12. FRF of 𝑃 attached with 2DoF LLR for different damping values: (a) Model #A ; (b) 

Model #B; and (c) Model #C. 

In case (i), the band gaps and transmission peaks are apparent, while in case (ii), the edges of band 

gaps slightly deform and the transmission peaks lower in the respective pass bands. However, case 

(iii) shows that high damping vanishes the band gaps and leads to a significant reduction in the 

response which can be observed in Figure 12. 

 

Conclusions 

The propagation characteristics of lateral flexural waves in a periodic piping system without and 

with resonators was investigated analytically and numerically. Periodic structure theory was 

employed to obtain the analytical dispersion relation of periodic piping system which was 

subsequently verified by the FE model. Additionally, the dispersion relations for two different 

cases were also evaluated. 

The results of Model #A revealed that the flexibility of rack introduces a narrow LR band gap 

starting from 0 𝐻𝑧, and thus both types of band gaps coexist in the dispersion curves. Conversely, 

in case of Model #B, only Bragg band gaps are emerged. Although, no band gap is found in case 

of Model #C. 

Further, wave propagation in 𝑃 with 2DoF resonators was investigated. FRF of 𝑃 with 2DoF 

resonator displays two new LR band gaps which open around its natural frequencies. Thus, waves 

in two targeted pass bands of Model #A and Model #B can be controlled effectively. However, the 

wave filtering capability of Model #C is highly increased, as without resonators no band gap is 

obtained in this case.   

Moreover, the influence of resonator parameters, the mass ratio 𝜂, resonator stiffnesses 𝑘1, 𝑘2 and 

the damping coefficients 𝑐1, 𝑐2 on band gap characteristics was investigated for the three models. 

The FRF of different models convey the information about change in the starting and terminal 

frequencies and also the position, width and disappearance of both types of band gaps when any 

particular parameter is changed.  

The study carried out in this paper is promising in flexural vibration control of the periodic piping 

system with different boundary conditions and may be helpful in the design of resonator. 

Introduction of a nonlinear mechanism in the modelling of support and resonator can be the area 

of further research. 

Declaration of conflicting interests 

The author(s) declared no potential conflicts of interest with respect to the research, authorship, 

and/or publication of this article. 

Page 13 of 15

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14 
 

 

Funding 

This work was supported from Science and Engineering Research Board, Govt. of India, core 

research grant CRG/2018/002539 (SER-1332-MID) for the first and second author. This work 

received support from the Italian Ministry of Education, University and Research (MIUR) in the 

frame of the ‘Departments of Excellence’ (grant L 232/2016) for the last author. 

 

References 

1. Singh K and Mallik AK. Wave propagation and vibration response of a periodically 

supported pipe conveying fluid. J Sound Vib 1977; 54: 55–66. 

2. Koo GH and Park YS. Vibration reduction by using periodic supports in a piping system. J 

Sound Vib 1998; 210: 53–68. 

3. Gupta GS. Natural flexural waves and the normal modes of periodically supported beams 

and plates. J Sound Vib 1970; 13: 89–101. 

4. Mead DJ. Free wave propagation in periodically supported, infinite beams. J. Sound Vib  

1970; 11: 181–197. 

5. Liu L and Hussein MI. Wave motion in periodic flexural beams and characterization of the 

transition between bragg scattering and local resonance. J Appl Mech Trans ASME 2012; 79: 

1–17. 

6. Liu ZY, Zhang XX, Mao YW,  et al. Locally resonant sonic materials. Science 2000; 289: 

1734–1736. 

7. Sonti VR and Narayana TSS. Propagation constants from the response of a finite periodic 

beam. Noise Control Eng J 2006; 54: 194–200. 

8. Gupta GS. Natural frequencies of periodic skin-stringer structures using a wave approach. J 

Sound Vib 1971; 16: 567–580. 

9. Huang GL and Sun CT. Band Gaps in a multiresonator acoustic metamaterial. J Vib Acoust 

2010; 132: 1–6. 

10. Yu D, Wen J, Zhao H, et al. Vibration reduction by using the idea of phononic crystals in a 

pipe-conveying fluid. J Sound Vib 2008; 318: 193–205. 

11. Yu D, Wen J, Shen H, et al. Propagation of steady-state vibration in periodic pipes 

conveying fluid on elastic foundations with external moving loads. Phys Lett Sec A Gen At 

Solid State Phys 2012; 376: 3417–3422 . 

12. Hu B, Zhu F, Yu D, et al. Impact vibration properties of locally resonant fluid-conveying 

pipes. Chinese Phys B 2020; 29: 0–9. 

13. Liu Y, Yu D, Zhao H, et al. Design guidelines for flexural wave attenuation of slender 

beams with local resonators. Phys Lett Sect A Gen At Solid State Phys 2007; 362: 344–347. 

14. Xiao Y, Wen J, Yu D. et al. Flexural wave propagation in beams with periodically attached 

vibration absorbers: Band-gap behavior and band formation mechanisms. J Sound Vib 2013; 

332: 867–893. 

15. Zhou X, Wang J, Wang, R. et al. Band gaps in grid structure with periodic local resonator 

subsystems. Mod Phys Lett B 2017; 31: 1–10. 

16. Yu D, Liu Y, Wang G, et al. Low frequency torsional vibration gaps in the shaft with locally 

resonant structures. Phys Lett Sect A Gen At Solid State Phys 2006; 348: 410–415. 

17. Song Y, Wen J, Yu D, et al Analysis and enhancement of torsional vibration stopbands in a 

periodic shaft system. J Phys D. Appl Phys 2013; 46: 145306. 

18. Nobrega ED, Gautier F, Pelat A, et al. Vibration band gaps for elastic metamaterial rods 

Page 14 of 15

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15 
 

using wave finite element method. Mech Syst Signal Process 2016; 79: 192–202. 

19. Wang Z, Zhang P and Zhang Y. Locally resonant band gaps in flexural vibrations of a 

Timoshenko beam with periodically attached multioscillators. Math Probl Eng 2013; 

2013:146975. 

20. Xiao Y, Wen J and Wen X. Longitudinal wave band gaps in metamaterial-based elastic rods 

containing multi-degree-of-freedom resonators. New J Phys 2012; 14:033042. 

21. Floquet G. On the Linear Differential Equations With Periodic Coefficients. Ann Sci l’École 

Norm Supérieure 1883; 12: 47–88. 

22. Bloch F. Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Phys 

1928; 52: 555–600. 

23. Clough RW and Penzien J. Dynamics of Structure. McGraw-Hill, 1975. 

24. Brun M, Movchan AB and Slepyan LI. Transition wave in a supported heavy beam. J Mech 

Phy. Solids 2013; 61, 2067–2085. 

25. Cremer L. and Heckl M. Structure-Borne Sound. Springer-Verlag Berlin Heidelberg GmbH, 

1988. 

Page 15 of 15

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


