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Abstract: Non-exhaust emissions, generated by the wear of brake systems, tires, roads, clutches, and
road resuspension, are responsible for a large part of airborne pollutants in urban areas. Brake wear
accounts for 55% of non-exhaust emissions and significantly contributes to urban health diseases
related to air pollution. A major part of the studies reported in the scientific literature are focused on
experimental methods to sample and characterize brake wear particles in a reliable, representative,
and repeatable way. In this framework, simulation is an important tool, which makes it possible to
give interpretations of the experimental results, formulate new testing approaches, and predict the
emission produced by brakes. The present comprehensive literature review aims to introduce the
state of the art of the research on the different aspects of airborne wear debris resulting from brake
systems which can be used as inputs in future simulation models. In this review, previous studies
focusing on airborne emissions produced by brake systems are investigated in three main categories:
the subsystem level, system level, and environmental level. As well as all the information provided
in the literature, the simulation methodologies are also investigated at all levels. It can be concluded
from the present review study that various factors, such as the uncertainty and repeatability of the
brake wear experiments, distinguish the results of the subsystem and system levels. This gap should
be taken into account in the development of future experimental and simulation methods for the
investigation of airborne brake wear emissions.

Keywords: brake wear; non-exhaust emission; airborne particles; emission factor; simulation

1. Introduction

Transportation-related emissions, which are among the most influential phenomena
affecting people’s health in many large cities, can be categorized into various classes
according to their sources. Emission originating from the incomplete combustion of
fuel in a vehicle’s engine, and, accordingly, emitted from the vehicle’s tailpipe, is called
“exhaust emission” or “tailpipe emission”. On the other hand, “non-exhaust emission”
includes particles generated during the operation of a vehicle’s brake system and the
particles generated by the wear of the tire and road contact surfaces due to slip, road dust
resuspension, and dry clutches. The features of these four types of non-exhaust emissions
have been discussed in general overviews and comprehensively compared in previous
studies [1,2].

Many studies have emphasized the harmful effects of non-exhaust emissions on
human health [3–7]. Scholars have exerted a lot of effort to find a way to reduce the
diseases caused by coarse and fine particulate matter, ozone, and other toxic pollutants,
to which traffic contributes significantly [8,9]. Similar attempts have been undertaken
by governments (especially in developed countries) to improve the air quality of cities,
regardless of the emissions’ origins. Introducing new fuels with eco-friendly qualities,
setting standard restrictive rules, forcing automobile manufacturers to use prevention
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filters, and encouraging people to use the public transportation fleets instead of private
cars can be cited as some of these endeavors. Table 1 presents all abbreviations used in
this research.

Table 1. Abbreviations used in the research.

Abbreviations

AI Artificial intelligence EF Emission factor NAO Non-asbestos organic pads

ANN Artificial neural network ELPI+
Electrical

Low-Pressure
Impactor

OPS Optical particle sizer

APS Aerodynamic particle
sizer FAST Friction assessment

screening test PIV Particle image velocimetry

BLCF Brake linings’ coefficient
of friction FEA Finite element analysis PM Particulate matter

CA Cellular automaton FMPS Fast mobility particle
sizer PM10

Particulate matter 10 µm or
less in diameter

CFD Computational fluid
dynamics GDP Gross domestic

product PM2.5
Particulate matter 2.5 µm or

less in diameter

CMB Chemical mass balance HDV Heavy-duty vehicle R&D Research and development

CVS Constant-volume
sampling HEPA High efficiency

particulate air RDE Real driving emission

DMS Differential mobility
spectrometer LDV Light-duty vehicle SEM Scanning electron microscopy

DLPI Dekati Low Pressure
Impactor MCA Movable cellular

automata TEM Transmission electron
microscopy

Dyno Dynamometer ML Machine learning TRAKER Testing Re-entrained Aerosol
Kinetic Emissions from Roads

EDXS Energy dispersive X-ray
spectroscopy MLR Multiple linear

regression VAPI Vehicular Air Pollution
Inventory

EEA European Environment
Agency MOUDI Micro-orifice uniform

deposit impactor

Due to the inherent features of non-exhaust wear particles, they can be either airborne
or sedimentary depending on their aerodynamic diameter. Emitted wear particles that
become dispersed and suspended in the air are known as airborne particles, whereas
others may become deposited on various disposed areas, such as the ground, roads,
tunnels, and agricultural farms, or even become sedimented on the brake hardware [10].
It has been reported that approximately 30–50% of pads’ wear is dispersed as airborne
particles [11–13]. Also, in their study, Perricone et al. reported that 35–58.5% of the particles
resulting from wear emitted by the brake system, discs, and pads became airborne [14].
Furthermore, Sanders et al. reported that the wear particles generated by a vehicle’s brakes
are 50–70% airborne, whereas 15–25% of them remain on the wheel [15]. Table 2 presents
the minimum and maximum sizes of the particles found in the literature.

According to Table 2, the aerodynamic diameter of the coarse particles is limited to
10 µm. Furthermore, the frequency of the recurrence of 2.5 µm diameters is quite evident.
As a result, the concept of particulate matter (PM), one of the eminent traffic-related
emissions, was defined by academics with particular concerns about the health of urban
residents. Previous studies investigated PM in terms of its toxicity and negative effects on
the human body [31–35]. Some of the most toxic particulates are those with an aerodynamic
diameter of 10 µm or less, known as PM10, which mostly put the respiratory system of the
body into danger. Investigations have even shown that exposure to PM10 during pregnancy
can result in adverse birth outcomes with different critical periods [36–38]. Furthermore,
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the emissions’ adverse effects can be drastically increased when their size decreases. So-
called “PM2.5”, i.e., emission particles with an equivalent aerodynamic diameter of 2.5 µm
or less, has exhibited even more intense adverse effects on exposed people. Previous
studies showed that the mass size of PM10 particles follows a unimodal distribution, in
which the peak fluctuates between 1 µm and 5 µm [39–41].

Table 2. Minimum and maximum sizes of particles considered in previous studies.

Reference
Ultrafine Particles Fine Particles Coarse Particles

Min (µm) Max (µm) Min (µm) Max (µm) Min (µm) Max (µm)

Nosko et al. [16] 0.0056 0.1 0.1 2.5 2.5 -
Nosko et al. [17] 0.0056 0.1 0.1 0.56 0.56 10

[18–23] - 0.1 0.1 2.5 2.5 10
Kumar et al. [24] - 0.1 - 2.5 - 10

[25,26] - 0.15 0.15 2.5 2.5 10
Waheed et al. [27] 0.02 0.1 0.26 1 1 10

Niu et al. [28] 0.057 0.1 0.1 1 1 10
Chang et al. [29] 0.05 0.1 1 2.5 5 10

Valavanidis et al. [30] - 0.1 - 2.5 - -

Following air quality standards, PM emissions are represented with the units g·h−1 or
kg·y−1 (mass per time). In some cases, PM concentrations may be used for further study of
PM particles, represented as µg·m−3 (mass per air volume). PM emission factors, which
are utilized to investigate the particles in the emission models, are expressed with the units
g·km−1 or mass per traveled vehicle distance (activity) [42].

In Europe, scholars have shown that more than half of the mass of non-exhaust PM10
particles and 21 percent of the mass of traffic-related PM10 particles are caused by brake
wear [43–45]. The tribological formation mechanisms of PMs produced by brake system
have been discussed in [46]. Based on the report by the European Environment Agency
(EEA), almost 34% and 26.7% of the particles generated by brake and tire wear are PM10
and PM2.5, respectively [47]. Thus, restriction rules were set in Europe and by the United
States Environmental Protection Agency to limit the level of PM emissions [48,49].

Brake wear, one of the most essential sources of non-exhaust emissions, is counted
as a considerable part of traffic-related emissions, accounting for the 55% of total non-
exhaust emissions in urban areas [44,50,51]. It has been estimated that 30–50% of brake
wear is exposed as airborne particles [11,52,53]. However, Wahlström declared that this
percentage could be as high as 50–70% [54]. Brake wear, based on its size, can be generated
in four phases: gaseous, volatiles, semi-volatiles, and solid. The most important factor
which strongly designates the type of brake wear is temperature [55]. In previous studies,
various tests have been implemented on different type of discs and pads using distinct
testing machines to find a critical temperature that could be considered as a volatile wear
boundary. For instance, Perricone et al. reported that a significant amount of volatile
brake wear is produced at temperatures above 200 ◦C, which was identified as critical
temperature [56]. However, in other studies in the literature, this critical temperature was
identified as being in the range from 120 to 300 ◦C from test-determined features [57–60].
According to Perricone et al. [56], particles with sizes less than and greater than 200 nm can
be considered as semi-volatile and non-volatile, respectively. The gaseous part consists of
volatile materials and, depending on the particle size, may remain in the air or be altered to
solid particles. Solid emission produced by wear, which, in some cases, can be seen with the
naked eye, is affected by tribological, mechanical, thermal, chemical, and fluid-dynamics
phenomena, and its result is characterized by various indices, especially the number and
distribution of particles [61].

Several studies have shown that a vehicle’s braking system is one of the most relevant
sources of PM particles [62–66]. Furthermore, previous investigations showed that the
particles generated by the cast iron discs are an important fraction of PM particles, with
average sizes below 20 µm [11,67]. Also, there are some influential parameters that can
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increasingly affect the amount of PM brake wear debris. Friction materials [58], the quality
of brake system compositions [68], driving styles [69], and the severity of braking [70] are
some parameters that can be counted. The release rate of PM particles may also be different
in terms of the vehicle parameters. For instance, the weight of a vehicle is one of the critical
features that may influence the rate of brake wear, as was shown for electric vehicles [71].

Conducting investigations into the braking system using a lab environment or physical
experiments in fields may produce acceptable results. However, depending on the case, it
may be necessary to benefit from other tools. For instance, predictions of the temperature,
wear, and contact pressure of a braking system in various driving styles are common [72,73].

Simulation of a braking system is a fruitful tool that can help scholars compensate
for the conditions that cannot be incorporated in lab or field experiments. The goals of
these simulation-based methods are to analyze the phenomena that happen in the sliding
contact during braking, to propose an estimation of the brake wear and temperature during
brake operation, and to predict the effects of design changes in details. One of the main
challenges of brake disc simulation is the existence of various physical phenomena with
different size scales. As a result, choosing a simulation model to characterize the details of
pad-to-disc contact is challenging.

Previous studies focusing on emissions produced by the brake system can be divided
into three main categories: the subsystem level, system level, and environmental level.
Those dealing with the features of braking system components in a laboratory environment
were categorized in the subsystem level whereas the studies in which all the data collection
and the investigation of brake wear particles were implemented on-road or in the laboratory
environment by using real cars, chassis, or brake wear tracers were categorized in the
system level. Finally, those studies in which the sampling was directly performed in the
environment, such as in roads, rivers, agricultural farms, and runoffs, were categorized in
the third level, the environmental level. This categorization is remarkably beneficial not
only in the study of experimental tests, but also for the simulation-based methods used
in brake wear investigation. As is shown in Figure 1, hierarchically, the complexity of the
measurement, configuration, and investigation of brake wear increases as the levels rise
from subsystem to the environmental level.

Figure 1. Hierarchical levels of investigation.

This categorization is useful in understanding the levels of the various emission phe-
nomena involved. At the subsystem level, the braking system is under study and the
mechanisms of production of the pollutants are investigated. At the system level, the
dynamics of the vehicle and the particle local interaction with fluid are also examined,
and the behavior of the complete braking system (e.g., four brakes for a standard car) is
observed. At the environmental level, the final effect of all the sources is detected, as the
result of complex mechanisms involving resuspension, atmospheric phenomena, and so on.
The aim of the present literature review was to organize the main results of state-of-the-art
research according to the proposed categorization and outline some conclusions and possi-
ble developments for the simulation and experimental test approaches. Figure 2 shows an
overview of the proposed brake wear categories in the simulation and testing approaches.
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Figure 2. An overview scheme of the proposed brake wear categories.

2. Subsystem Level

The subsystem level is the fundamental category introduced as the first level of the
investigation; it deals with the smallest components of the existing system in a microscopic
analysis of the brake system. This level is based on the reproduction and deep study of some
key aspects of the braking action. A remarkable advantage of implementing the studies at
this level is the possibility of keeping the test under control and undertaking a deep study of
the basic physical phenomena. There are some limitations to this level. The vehicle dynamic
is reproduced by its equivalent inertia. Moreover, the operative conditions (intensity and
duration of the braking action) may only be relatively representative. Therefore, it is
necessary to consider effective strategies to overcome these restrictions. The main metrics
applied at this level are the coefficient of friction, the wear of pads and disc, the emission
rate in terms of mass/time and traveled distance, and the emission factor.

To provide and develop air quality management and a reasonable estimation of
the emissions generated by the vehicles, validated models and emission estimators are
needed. In some cases, these models may be restricted to the modeling of the parameters
that have direct impacts on the rate of brake wear generation; for instance, the models
established based on the brake linings’ coefficient of friction (BLCF) to monitor the brake
operation [74,75].

2.1. Subsystem Classification

Basically, brake systems inherently operate stochastically. The main problem with
measuring the airborne debris from brake wear in the field is that distinguishing the
original sources of the particles is overwhelming. Debris may have originated from the
braking pads or disc, resuspended road dust, tires, or other sources. Thus, a reliable
environment is needed to provide the different scenarios and circumstances for braking
operations in different driving conditions. In the subsystem level, the evaluation of the
characters of brake wear particles is implemented in the laboratory environment. There
are many studies investigating brake particle features by using well-known tribometer
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machines, such as the pin-on-disc and dynamometer. Speed, acceleration, deceleration, pad
wear, disc wear, continuously changing temperature due to the friction of pads and discs,
and noises are the most influential parameters for the interaction of brake pads and discs in
the subsystem level. Philippe et al. [76] suggested that the best option to examine the brake
wear is the use of pin-on-disc and dynamometer tests. The particles’ properties, like size
distribution, are similar between these two tests. However, the emission rates obtained
from these two tests are not compatible because of the different testing temperatures.

The use of laboratory methods for estimating brake wear emissions enables implemen-
tation of determined testing programs [77]. One of the benefits of implementing such tests
in labs is to provide comparisons between brake emissions from the different types of brake
components and evaluate their value on the market. Furthermore, the results obtained
from different tests can allow scholars to distinguish the pads that generate an unacceptable
amount of wear, whether airborne or sedimented, from environment-friendly pads.

There are several instruments employed to assess the different brake wear parameters
in lab-based measurements. Scales are commonly used to measure the weights of the test
samples before and after testing. Techniques like scanning electron microscopy (SEM),
transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDXS)
are used to characterize the wear debris captured on filters after testing. Particle instruments
based on different measurement techniques are available, such as fast mobility particle
sizers (FMPSs), optical particle sizers (OPSs), differential mobility spectrometers (DMSs),
the Electrical Low-Pressure Impactor (ELPI+), micro-orifice uniform deposit impactors
(MOUDIs), electrical aerosol analyzers, aerodynamic particle sizers (APSs), the Dekati Low
Pressure Impactor (DLPI), and image analysis.

2.1.1. Material Level
Pin-On-Disc Test

The pin-on-disc tribometer test is one of the most popular tests which many scholars
have benefited from in studies focusing on brake pads and disc wear particles [61,78–86].
This test has been validated by previous investigations and named as an authentic experi-
mental method for inquiry into airborne particles from vehicles’ disc brakes contact [87,88].

In this test, all airborne wear particles generated by the friction at the sliding contact
between a dead weight- or a hydraulic system-loaded steel pin and a horizontal rotating
disc are collected. Due to the simplicity of the pin-on-disc tribometer test, it cannot totally
represent the real condition of the vehicle braking system. To determine the real condition,
further considerations are needed in addition to the steady interaction of pressure and
sliding velocity [89]. However, scholars introduced the pin-on-disc test as a reliable method
for evaluating brake pads’ wear and their friction behaviors when sliding against a cast iron
disc [43,64]. As claimed in [78] at least, the pin-on-disc test can be beneficial for research
and development (R&D) objectives, especially in the initial phase of the development of
new materials. Moreover, its lower costs and operation times, compared to other tests, may
be essential in projects dealing with many problems related to budgets [90].

For brake wear testing using the pin-on-disc tribometer, the ambient air is passed
through the high efficiency particulate air (HEPA) filter to control the cleanness of the
outlet air. The outlet air is led through an inlet pipe to a chamber. A closed climate chamber
should be used to provide the conditions for testing at different humidity and temperature
levels. To prevent errors (leakages) and increase the accuracy of results, all the connections
must be sealed. Otherwise, the airflow rate conveyed in the chamber varies and causes
a mismatch of the particle concentration measurements [91]. In 2020, this procedure was
performed by Gomes et al. [92] to investigate the particle size and mass of particles released
from a pin-on-disc machine. However, they reported a non-correlation of emissions and
the friction coefficient.

In 2015, Chandra Verma et al. [93] examined the different aspects of braking pads’
wear in terms of their behavior during sliding on a rotating iron disc by implementing lab
studies using a pin-on-disc machine.
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2.1.2. Component Level

The component level in investigations of airborne brake emissions comprises experi-
ments which involve sliding surfaces characterized by more representative dimensions. At
this level, the instrument developed for the experimental characterization of the braking
behavior of the components being tested is the dynamometer.

Dynamometer Test

Innumerable studies have investigated the emissions of brake wear with dynamometer
testing (dyno), which can simulate the real conditions (driving in urban or suburban areas)
of a braking system of a vehicle in a lab environment [56,63,94–99]. A brake dynamometer
provides a more representative and controlled environment for the disc and pad test. Like
the pin-on-disc machine, using a chamber is necessary to determine the airborne particles
during the braking process [100]. A dynamometer machine usually has a blower providing
a constant flow of air through the braking system that simulates the real conditions and
carries the particles to a tunnel, which is known as constant-volume sampling (CVS) [101].

One of the substantial differences between the pin-on-disc and dynamometer tests
is the provision of the appropriate power per unit area or mass of samples to realize the
correct temperature on the area of contact friction. Although the pin-on-disc tribometer
can provide sufficient power to the pin sample, it is common to load powers which can
simulate the common braking power in cities; this is why the maximum mass wear of the
dynamometer is two times more than the pin-on-disc tribometer results [102–104].

Scholars have classified dynamometers into two major types: the inertia dynamometer
and the CHASE dynamometer. The inertia dynamometer is used to investigate full-sized
brakes. Although it can be both time-consuming and expensive, it shows more accurate
results in comparison to the CHASE dynamometer. The CHASE dynamometer, despite
the low capital expenditure and shorter test time, can only be used for quality control or
similar non-essential subjects [105].

Inertia Dynamometer

Inertia dynamometers are dynos that incorporate a full- or reduced-sized brake. Com-
pared to other dynamometers, these dynos can reproduce the braking system operating
conditions in a reasonably reliable way [106]. Based on the literature, there are two types
of inertia dynamometers: full-scale and reduced-scale.

• Full-Scale Dynamometer

One of the tribological tools that can be used for the investigation of these new
achievements is the full-scale dynamometer [107]. The rotating body used for full-scale
dynamometers is relatively large, which simulates the vehicle’s total mass during the brake
operation.

In 2019, Hagen et al. studied brake wear particle emissions using a full-scale brake
dynamometer by presenting a novel measurement setup to reduce particle transport
losses [108]. In this research, the brake wear particles were calculated during either braking
or driving to obtain more realistic results.

Mamakos et al. designed a dilution tunnel aimed at providing more accurate and
reliable measurement of the brake wear in a brake dynamometer. This dilution tunnel
enabled the minimization of particle losses for sizes less than 10 µm [109].

In 2020, Matějka et al. investigated the amount of airborne wear particles generated
by the braking system by means of a full-scale dyno-bench [110]. By investigating the data
obtained by utilizing the PM10 and electric low-pressure impactors, they found that the
maximum disc temperature and brake duration had the most significant impacts on the
rate of brake wear generation.

• Reduced-Scale Dynamometer

Reduced dynamometers are known as tools that decrease the unnecessary expenses
and time associated with full-scale dynos. Previous studies introduced reduced-scale fric-
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tion testing for investigations into the quality of friction materials, assessing their properties
and linings. For instance, Sanders et al. used a reduced-scale inertia brake dynamometer
to determine the frictional characteristics of lining materials [111]. Anderson et al. also
investigated the brake lining materials in a brake disc in terms of friction stability [112]. In
this research, they claimed that their test, named the Friction Assessment Screening Test
(FAST), was reproducible and could highly correlate with vehicle performance. However,
Kermc et al. discussed the limitations of the FAST in presenting the quantitative values of
the coefficient of friction [113].

In the literature, the reduced-scale dyno is also known as a small-scale dynamometer.
While a reduced dynamometer benefits from the simple assembly of the pads and disc, it
has a reasonable and acceptable correlation with full-scale dynamometers. Recent studies
have demonstrated reliable approximation of the collected data obtained by evaluating the
temperature tests of the sliding surface for the reduced and full-scale brake discs [114]. Thus,
it can be a useful tool for screening brake linings and calculating friction coefficients [111].
The small scale of these kinds of machines helps scholars avoid the negative effects of the
brake pad geometry and implement a uniform distribution of pressure on the pads and
disc during the braking operation. This uniform distribution means that the brake system
performs acceptably even in severe conditions, like high temperatures [113]. Beyond all
these merits, reduced-scale dynos cannot provide 100% realistic performance for braking
systems due to the less realistic simulation of operating conditions [115].

Furthermore, it is necessary for full-scale dynamometers to respond dynamically to
the vast surrounding systems and because of this they may show less accuracy in their
results in comparison to reduced dynamometers due to the existence of caliper and bracket
deflection and pressure fluctuations [113]. On the other hand, there are some issues that
increase the complexity of designing reduced-scale dynos, such as the cooling rates of the
brake system configuration. Therefore, tuning of scaled parameters is mandatory when
using this type of dynamometer [114,116].

CHASE Dynamometer

Differently from the inertia dynamometer, which provides the full scale of friction
materials, the CHASE dynamometer simulates the braking system by implementing a small
number of friction materials rubbing against a drum. In 1980, Liu et al. measured the wear
rates of a drum lining and a disc pad [117]. However, in light of the significant changes in
pads and disc materials and the development of vehicle braking systems in recent years,
the recent results on braking wear using the previous approach are not completely reliable.

Inherently, due to its design, the CHASE dynamometer cannot simulate the realistic
state of the braking system in terms of the physical and chemical state of the friction
contact during system operation. Tsang, by comparing the results of both inertia and
CHASE dynos, proved that the CHASE dynamometer is not reliable for the prediction of
the performance of materials with the inertia dyno and for the screening of automotive
friction materials [105].

The running time of the sample evaluation using the CHASE dyno is much lower
than with the inertia dyno. An inertia dyno needs an appropriate number of full-size
braking systems, including pads, rotor, discs, and linings [118], together with proper
inertial capacity; therefore, the analysis of the results requires a time-consuming procedure
of disassembling the pads and evaluating the samples. Also, testing with the CHASE
dynamometer can be carried out by using small samples, while the inertia dyno needs an
appropriate number of linings and other segments [105].

2.2. Simulation Methodologies
2.2.1. Finite Element Analysis (FEA)

FEA is an effective tool used to simulate the different conditions of the braking system
in various situations. This tool can provide quite good details of the phenomena related to
the braking contact at the macro-scale [81,119].
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This simulation method is described as a popular approach in the literature. Not only
the brake wear but also the brake noises have been investigated using the FEA method [120].
To simulate the brake wear using an FEA simulation approach, the pressure distribution on
the contact surface together with Archard’s wear law [121] and Euler’s integration scheme
were used in previous studies [81,122,123]. Furthermore, AbuBakar et al. investigated the
contact pressure between the rotor and the braking pads [124].

Introducing thermo-mechanical models is another merit of the FEA approach, which
is now known as a useful and effective tool in the industry. Some previous studies used
the FEA simulation method to undertake a transient analysis of the thermoelastic contact
problem for brakes [125–130]. In 2012 and 2015, Yevtushenko et al. and Li et al. con-
ducted FEA simulation experiments for the evaluation of transient heat problems with
friction in the brake components [131,132]. Moreover, Sarkar et al., by performing static
thermal analysis and using an FEA model, evaluated the temperature distribution of
discs [133]. This thermal analysis of discs was recently improved by using ANSYS finite
element simulation software [134]. In addition, Bortoleto et al. simulated a pin-on-disc
machine by implementing an FEA model to analyze the stress and contact pressure field
distributions [135].

In 2009, Wahlström et al. used an FEA simulation model to determine the brake
wear amounts generated during the braking process [136]. First, they used a pin-on-disc
test to evaluate the wear rate and particle coefficient and then they implemented an FEA
simulation at the component level with the obtained wear rate and coefficient. They
also compared the number of distributions obtained from the simulation model with the
experimental measurement to validate the simulation results. The results of this research
show that using the FEA simulation method can be effective in predicting the number
and distribution of airborne particles, as do the similar results obtained in [137]. Using
the FEA approach, scholars have even shown that the amount of PM10 generated by a
braking system can be reduced to 65% by using NAO pad materials based on the European
Standards [138].

In 2018, Goo presented a numerical simulation approach based on an FE model of a
brake system and a coupled thermo-mechanical analysis to evaluate the correlation between
the brake wear and the non-uniform contact pressure [139]. Schmidt et al. indirectly
estimated the contact pressure between the brake disc and pads by using an FEA method
and infrared thermal images [140]. Riva et al. proposed a simulation-based method to
predict dry sliding wear by considering a three-dimensional transient non-linear FEA
model [81]. Shahid et al. presented a numerical simulation-based method that involved an
FEA approach to evaluate the wear behavior of the drum brake [141].

Riva et al. investigated the correlation between brake wear and airborne particles
using the sliding speed and local contact pressure from a full disc brake with an FEA
macroscopic simulation approach. In this research, the scholars implemented a pin-on-disc
experiment to determine the maps of emissions generated by the braking pads. To compare
the results obtained from the pin-on-disc data with another experimental test, an inertia
dynamometer tribometer was also used. The results of this research showed a 19% error
for the simulated wear [81].

In 2018, Hatam et al., by using an algorithm implementing Archard’s wear equa-
tion, simulated the brake wear in ABAQUS finite element software using the Python
language [142]. In addition, to calculate the coefficients of the friction under contact, they
implemented a pin-on-disc test and validated the proposed algorithm.

In 2019, Zhang et al. provided a direct calculation of the brake wear particles using
DEFORM, an FE simulation-based software [143]. This study showed a rapid increase in
wear in the early stages of brake operation. They also described how the amount of wear is
intensified under heavy braking loads and high initial braking speed.
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2.2.2. Cellular Automaton (CA)

Despite all the advantages of using the FEA approach at the macro-scale, at present,
it cannot be effectively used for the simulation of the plateau dynamics (particular flat
spots, existing in normal pads, affecting a pad’s wear) and tribofilm creation (a cover
consisting of the mix of wear particles that form on the contact surface). This is due to the
sizes of the scales of time and length involved, i.e., milliseconds and millimeters. Thus, to
simulate the friction behavior and the particle flow at the nano-scale level, the scholars
introduced the movable cellular automata (MCA) approach [144,145]. In this research, it
was demonstrated that the MCA approach can numerically evaluate friction behavior at
the nanometer scale.

CA is an approach introduced by scholars to simulate the wear and friction of the
disc braking system in three-dimensions [146,147]. In addition, the mesoscopic scale
(10 to 1000 nm) of the plateau dynamics has been investigated by Mueller et al. and
Müller et al. [148,149]. In this research, the size changes of contact plateaus (interaction of
pads and discs) were also evaluated at the mesoscopic scale.

Furthermore, in 2011, the CA approach was implemented as a reliable method to
estimate the number of wear particles dispersing during the braking operation [147]. As a
result, several further studies used this approach to simulate the brake system at the scale
of seconds (time) and centimeters (length) [54,81,97,150,151].

2.2.3. Computational Fluid Dynamics (CFD)

CFD is a simulation-based tool for analyzing particles’ behavior and their dispersion
and depositions by investigating the complex flow systems. Basically, thanks to its versatile
capabilities, the CFD approach is known as a dependable tool for various scientific issues.
Historically, the CFD model has been widely used for analyzing and optimizing disc brake
cooling [152–157], transfer of flow and heat through the brake system [158–160], brake disc
contamination [161], and brake dust particles [162,163].

In 2011, Augsburg et al. developed a numerical CFD approach to improve the accuracy
of results for brake wear obtained during brake operations [162]. By using ANSYS software,
they evaluated the character of brake particles and the particle flow paths. In addition,
they validated the results of the simulation by implementing particle image velocimetry
(PIV) together with a CFD model providing a better and more reliable estimation of brake
wear and flow behavior.

In 2019, Hesse et al. introduced the constant-volume sampling (CVS) method to collect
samples of brake emissions under real driving emission (RDE) conditions [163]. They used
a CFD-based method to investigate and analyze the behavior of the particles and their de-
position using the ANSYS fluent simulation tool, which provides high-quality estimations.

3. System Level

Hierarchically, the next level is the level that deals with the full vehicle, named the
system level. When the amount of emissions generated by the brake system of the whole
car is considered, it can be defined as the emissions at the system level. This means
that a single car, as a confined environment, is considered as an ensemble of devices
that interact, and it therefore constitutes an “emitting system”. These emissions can be
evaluated by assessing cars either in laboratories or on-road environments. Studies at
this level address the emissions in real driving conditions; therefore, the vehicle dynamics
(including the drivetrain), the driving style, road geometry, and slope are incorporated.
The inherent feature of this level is that the emissions that are continuously emitted by
the system, even when deceleration and speed reduction are carried out by engine, can be
estimated. One limitation of the system level is that it does not allow deep study at the
microscopic level since the brake is installed on the vehicle and only a limited number of
instruments can be installed. The main metrics applied in this level are the emission rate in
terms of mass/traveled distance, the emission factor, and the loss of performance when
over-heated [164].
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Despite the advantages of the subsystem level tools, like dynamometers or pin-on-
disc tests, for scrutinizing brake-related emissions, they cannot present a more realistic
perspective of the parameters influencing the amount of generated brake wear. To increase
the realism of the results, in addition to the speed, temperature, acceleration, and the other
parameters of the subsystem level, some other key factors can be included. The vehicle
dynamics, the geometry of the road, the effects of the weather, and driving styles can be
cited as some well-known instances relating to this issue.

At the system level, there are two ways to study brake wear particles. First, it can
be done under real-world conditions on the road, which is called an on-road driving
test, and second, it can be implemented in the laboratory through relatively controlled
ambient conditions. One of the approaches involving such a controlled environment is the
use of a single car on a chassis dynamometer in the lab (as an agent). Although both of
these methods can provide reliable results, they can also be used simultaneously to make
comparisons. For instance, in 2020, Beji et al. compared the non-exhaust emissions obtained
from the testing of similarly instrumented vehicles and collected samples in three distinct
environments, including a fully controlled laboratory (chassis dyno), a semi-controlled test
track, and on-road urban areas [165]. In addition to brake wear particles, they calculated
the tire–road contact and resuspension particles and specified their features. Thanks to the
achievements of this research, it was found that over 70% of brake wear particles originated
from brake pads. Furthermore, it was found that the speed variations influenced the
amount of wear generated by brakes and tires. Thus, Beji et al. suggested that, regardless
of the driving conditions, the rate of wear can be remarkably reduced at various speeds
and braking force frequencies.

3.1. Emission Factor

Emission factors (EFs) are representative values chiefly implemented to quantify the
emissions generated by vehicles, i.e., they relate the vehicle’s activity to the amount of
pollution emitted in the air [166,167]. There are many such factors, including vehicle char-
acteristics, fuel consumption, fuel type, and the quality of the fuel, and driving conditions
directly affect the EFs [44]. As a result, the levels of emissions in numerous regions with
varying traffic conditions can be easily predicted by EFs. EFs can be calculated directly by
performing laboratory tests, on-road measurements, or receptor modeling [168]. Tables 3
and 4 show the emission factors of brake wear and vehicles presented in the literature for
light-duty vehicles (LDVs) and passenger cars, respectively.

Table 3. Emission factors of brake wear reported in the literature for LDVs and passenger cars (mgkm−1 brake−1).

Reference Measurement Emission Type Emission Factor

zum Hagen et al. [69] On-road measurement PM
Conventional brake material: 1.8–2.1
Novel material composition: 1.4–1.7

Mamakos et al. [109] Brake dyno and dilution tunnel PM 4.8

Hagen et al. [108] Brake dynamometer PM10 4.6

Timmers et al. [169] Review
PM10 9.3
PM2.5 2.2

Perricone et al. [14] Brake dynamometer PM
Low steel pads: 13.7–46.4

NAO pads: 8.5–9.2

Bukowiecki et al. [170] Sampling PM10 1.6 ± 1.1

Hesse et al. [171] Bedding process PM10 1.2–12.4
PM2.5 0.8–6
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Table 4. Emission factors of vehicles reported in the literature for LDVs and passenger cars
(mgkm−1 vehicle−1).

Reference Measurement Emission Type Emission Factor

Lawrence et al. [172] Sampling PM10 3.8–4.4

Hulskotte et al. [173] Sampling Brake wear 8.0–15

Grigoratos et al. [168] Review PM10 6.7

Iijima et al. [174] Brake dynamometer PM10 5.8
PM2.5 3.9

Garg et al. [52] Brake dynamometer PM10 2.9–7.5

Piscitello et al. [175] Review Brake wear 1–18.5

3.2. Laboratory (Chassis Dynamometer)

The chassis dynamometer method can be undertaken using a full vehicle, which
leads to ground-truth data and provides a reproduction of the real braking conditions.
Although there is a lot of previous work on subsystem level-related laboratory tests, studies
focused on the system level are scarce. This may be related to the high costs and extensive
methodology that scholars must necessarily deal with.

A chassis dynamometer can evaluate various parameters related to brake wear in
laboratory environments. Humidity and its effects on the rate of pad or disc wear is one
example of such a parameter, which has been comprehensively studied in [176,177].

In 2018, Chasapidis et al. estimated the brake wear particles generated by running
a minivan with a chassis dynamometer under various initial speeds, deceleration rates,
and ambient temperatures [178]. In this study, the authors declared that dealing with a
system that includes different sources of particles, like brakes and tires, under custom
configurations is challenging. They also showed that the ambient temperature had trivial
effects on the generation of brake wear particles.

In 2019, Mathissen et al. used an instrumented passenger vehicle together with a novel
approach to study brake wear particles in a laboratory environment [179]. This chassis
dynamometer included a large vacuum hose, a cone-shaped capturer, and the sampling
modules in the vehicle’s trunk. Although the brake cooling was one of the limitations of
this study (brake emissions are temperature-dependent), the authors found a remarkable
amount of total brake PM10 emissions (up to 30%) generated by the particles emitted from
the braking system while the brakes were being not applied.

To summarize, thanks to a variety of influential advantages, it seems that the measure-
ments obtained using a chassis dynamometer are reliable for the investigation of brake
wear particles. In addition to its capacity to prevent the intervention of environment
parameters, chassis dynamometers can be assessed as reasonable tools to evaluate the
impact levels of phenomena like particle loss. However, this approach has some restrictions
and disadvantages. The main problem with using a chassis dynamometer is the limited
representativeness of the ventilation rate, which produces a low level of cooling for the
brake system. As demonstrated in [179], despite the remarkable advantages of chassis
dynos, such as the evaluation of changes in a vehicle’s chassis, this problem results in the
accumulation of particles in the chamber, leading to the use of artificial brake ventilators.

3.3. On-Road Driving Test

In comparison to laboratory tests, on-road driving tests are more expensive and
complicated. Due to this, there are few studies related to on-road driving tests in the
literature. In 1983, Cha et al. measured the asbestos emissions of a vehicle’s braking
system through field studies [180]. By performing a computer-based emission test, they
investigated the brake wear debris emitted from a front-wheel disc brake in a passenger
car driving downtown in the city and simulated the brake wear dynamics.
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Sanders et al. investigated on-road emissions by using sampling tubes installed in the
vehicle’s wheels to minimize sampling losses [11]. They calculated the on-road emissions
both in traffic and using a high-speed test track and reported the correlations between
them, and they also used dynamometer tests in a wind dilution tunnel. The results of this
study showed that half of the wear debris obtained by vehicle tests became airborne. In
addition, similar elements, such as Fe, Cu, and Ba, were observed in both the dynamometer
and on-road samples. In 2013, Kwak et al. calculated the physical and chemical properties
(like the mass distribution) of non-exhaust sources such as brakes, tires, and road dust
on-road and in the laboratory by using a mobile instrumented sampling vehicle and an
isokinetic sampling design under different driving conditions [70]. In this research, the
authors installed sampling inlets in front of the vehicle, close to the tire and brake pads,
to collect the on-road data and compare them with the data obtained from the laboratory
tests. A similar approach was carried out by Kwak et al. to investigate the physical and
chemical characteristics of ultrafine particles generated from non-exhaust origins when
driving an equipped vehicle on-road [181].

Utilizing a novel approach, Mathissen et al. successfully investigated the non-exhaust
PM emissions generated by a brake system and resuspension of road dust, which were ob-
tained with an instrumented mobile trailer attached to a lightweight passenger vehicle [182],
similarly to the procedure introduced by Fitz et al. in 2002 [183]. They implemented their
survey studies by driving more than 800 km on unpaved roads and dust-loaded paved
agricultural roads. These scholars also investigated the dispersion of particles in the wake
of the vehicle by implementing a tracer gas test. Emission factors calculated in this research
showed lower results on motorways.

In 2015, Wahlström et al. presented field study measurements of brake wear by
collecting data in the outer areas of Stockholm, Sweden [184]. They mounted two sampling
tubes close to brake pads and also installed two tubes in front of an instrumented car. By
mounting pressure and speed sensors in the sampling vehicle, simultaneous measurements
of the vehicle’s speed and brake pressure were provided. The results of this study showed
a reliable correlation between brake operations and increased particle concentrations.

Despite the remarkable results of sensor installation in the braking system, such
sensors can only partially sample the brake dust. Farwick zum Hagen et al. introduced an
innovative sampling approach using the dynamometer test [69]. In this study, the authors
collected entire sets of brake wear emissions using a semi-closed vehicle setup. This setup
helped them collect the entire set of brake aerosols. They compared the obtained results for
conventional and novel materials for the pads with different coatings. They concluded that
the novel composition presented almost 18% lower PM10 particles.

In 2020, Perricone et al. conducted a field road test by using an LDV equipped with
temperature and pressure sensors on the brake system [185]. By calculating the emission
factors, they showed that the brake system temperature during urban driving varied in the
range of 100–170 ◦C. In addition, they compared the brake number and mass emissions
factors and the Euro 6 and 4 regulations. As shown in this study, having a cycle that can
act as a representative of the real world is crucial to obtain accurate results.

3.4. Wheel Sampling

Puisney et al., by sampling the brake system of a passenger car under different driving
conditions, investigated the characterization of nanoparticles and their toxic effects in
the environment and on human body cells [186]. They also obtained samples from a
dynamometer bench to compare the results. They concluded that brake wear debris has
adverse effects on the human lungs due to the notable amount of metallic nanoparticles,
which accounted for 26% of the total brake wear particle mass. Varrica et al. investigated
the airborne Sb particles generated by brake systems by sampling from the wear residues
on vehicles’ wheels and brake linings along with road dust and atmospheric particles [187].
By specifying the different types of Sb particles existing in various samples, they introduced
Sb as a good tracer of emission classification.
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3.5. Simulation Methodologies

Nowadays, artificial intelligence (AI) is known as a tool that has revolutionized
industry and helps scholars maximize the chances of carrying out studies successfully.
AI functions through learning. There are many AI models that have been introduced
to the world, such as linear/logistic regression, decision trees, naive Bayes classifiers,
and so on. One of the most popular approaches related to the subject of wear is the
artificial neural network (ANN), which mimics the human biological brain [188]. It is a
well-known model thanks to its capacity to accurately predict the nonlinear behavior of
wear parameters [189,190]. ANN models were widely used in studies in the literature to
investigate the wear particles emitted from brake systems [191–195].

Predicting the friction coefficient of brake materials is one of the most popular topics
studied by scholars using the ANN model [196–198]. Additionally, a simple model of
linear regression (single-variable) was deployed by Gailis et al., who used the mileage of
the vehicle as the only variable in the model to predict the brake wear out [199]. In 2006,
Durmuş et al. investigated the rate of wear loss and surface roughness of an aluminum
alloy by using a model based on the artificial neural network [200], and similar studies have
been undertaken in [201–203]. A neural model of brake wear prediction was developed by
Aleksendrić based on the complete formulation of the friction materials [204].

An ANN-based intelligent forecasting model, established on the basis of experimental
data, was introduced by Yin et al. to provide online monitoring of the semimetal brake
lining of vehicles [205]. In this study, the scholars equipped a disc braking system with
a self-made braking tester to assess the brake wear function. Due to their effective ANN
model, they concluded that the wear rate has a direct relationship with the braking speed
and pressure. The authors of two studies [206,207] also predicted the standard deviation
and friction coefficient of the brake linings using ANN models.

In 2016, Hassan et al., by implementing a two-layered ANN model using the MATLAB
program, introduced a new model for brake wear and temperature prediction under
various conditions of rotational speed and friction period in their examination of steel and
aluminum brake discs [195]. The proposed model was successfully used with data and
presented sensible results which were the same as those in [208]. These studies showed
that by increasing the sliding speed, load, and contact time, the rate of wear is increased.

To validate an ANN model, it is necessary to compare its results with those obtained
from experimental tests on brake wear, as was carried out in [209]. For the experimental
part of this study, the authors used a pin-on-disc test for the calculation of wear and the
friction coefficient factor. This research showed that using the ANN model is a reliable
approach to predicting parameters in the wear process.

In 2018, Ikpambese et al. compared the results of two wear prediction models [210],:
multiple linear regression (MLR) and the ANN, for data obtained from the analysis of
novel brake pads produced from palm kernel shells. In this study, the predicted wear rates
and the coefficient of friction of the contact spots were analyzed and compared along with
statistical parameters.

Harlapur et al. conducted multivariate linear regression analysis using a machine
learning (ML) model to determine the relationship between the brake pad wear and the
stopping distance of a vehicle [211]. By recording the various pad thicknesses associated
with different vehicle stopping distances, assuming some parameters to be constant, and
fitting an appropriate ML model, they presented an ML-based model of prediction.

4. Environmental Level

Naturally, the environment collects emissions and produces further modifications in
their distribution. The environmental level is the level where all the emissions are finally
collected. It does not constitute just a passive level, as many complex phenomena occur
and produce further re-distribution of the emissions, with relevant implications for local
pollution and the related risk for health. In order to implement experiments on the wear
generated by brake systems, it is necessary to collect samples from the surfaces and areas
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that are supposed to be subjected to the emissions. These emission-prone areas include
road surfaces, vehicle surfaces, plant leaves, oceans, rivers, agricultural farms, soils, and
runoffs. Since the origins of particles are unknown, as they can be generated from various
sources, it is necessary to use experimental methods to distinguish them. Research at this
level cannot address the details of the emission sources but rather focuses on the external
phenomena, like resuspension, weather, wind, and the morphology of the environment
(valleys, mountains, etc.). Large-scale statistical models are also developed at this level.

It is indisputable that the automobile industry develops new materials each year
as the environmental restriction rules are updated by legislators. Since 1978, more than
100 formulations related to the friction materials used in the brake system have been
introduced, and nowadays, according to [212], it is difficult to count the number of existing
materials in brake components. This makes it much more difficult to evaluate the chemical
compositions of the samples.

4.1. Sampling Place

Non-exhaust particles, including those from tire and brake wear, are a substantial
source of road dust contamination. Tunnels in particular can be cited as important places
where particles, dust, and brake wear debris are carried and accumulated by wind or
runoffs originating in precipitations. As mentioned by Wang et al. [213], tunnels are one of
best places to obtain real-world emissions. However, data collection and sampling from
tunnels should be done regularly to update emission models [213]. The size distributions
of particles can be also measured by the samples collected from tunnels. Abu-Allaban et al.
showed that the contributions of HDVs dominated the particles generated by LDVs in
the ultrafine particle distribution [214]. However, the impressive contributions of these
emissions to PM concentrations should not be neglected [172].

As has been shown in previous studies, the dominant sources of PM particles are
non-exhaust emissions generated by transportation fleets [13,215,216], especially in the
countries located in the north of Europe [217]. The main source of the road dust is the wear
generated by studded tires [218], especially in countries where using these kinds of tires is
common [219].

Many studies can be found in the literature that have investigated the existence of tire
wear debris in road dust samples [220–222]. The brake system is another source of road
dust. These kinds of wear are generated by the occurrence of friction between the brake
pads and disc while the temperature during the braking operation goes up. In urban areas,
places such as intersections and traffic lights are prone to showing an excessive amount of
sedimented debris from wear due to repeated braking.

As has been shown in several previous studies, emissions of road dust can be eval-
uated by the Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER)
system [223–225]. In 2009, Pirjola et al. presented an innovative road dust measurement
system using a mobile SNIFFER laboratory to determine the levels of emissions on various
streets [226]. Adamiec et al. investigated the dust from brake linings and tires on motor-
ways and urban and mountain roads [212]. In cities, additional contamination from wear
dust exists due to the resuspension of the pre-sedimented particles on surfaces. Therefore,
greater amounts of emissions are likely to be reported in cities compared to mountainous
areas. Based on the results of this study, the diameters of non-exhaust particles should
not be greater than 250 µm, as was also stated in [227]. The authors also concluded that
the finest fraction of the Pd element was much lower in mountain roads in comparison to
urban areas.

In 2016, Gonzalez et al. studied atmospheric PM particles by sampling from two
major European cities at the street level [228]. They implemented their field studies at sites
with variable traffic densities. They found that Zn and Cu isotopes are most commonly
generated by non-exhaust emissions.
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4.2. Non-Exhaust Emission Models

Over the years, non-exhaust emission models, which are used to estimate emissions
across various applications by presenting observed data on a distinct spatial and temporal
scale, have been improved from the initial model introduced by the US-EPA in 1984 to the
more developed models used in emission measuring approaches; the size of data used
to validate these models has also increased [229–233]. The authors of [42] used emission
factors to compare the emission models available in various European countries.

In 2003, Abu-Allaban et al. used two techniques, chemical mass balance (CMB)
receptor modeling and SEM, to estimate the emission factors of various vehicle modal
splits—the contributions of different types of vehicles to the total number of transportation
fleets—by implementing on-road survey studies and obtaining samples directly [234]. The
detection of a large amount of brake wear debris at freeway exit sites in comparison to
other locations was one of the results of their research.

The different variables that scholars have implemented in their non-exhaust emission
models are controversial. Kukkonen et al. presented a semi-empirical model to estimate
the PM10 concentration based on a linear regression approach to emissions [235]. Besides
the road dust, road surface moisture is also essential to consider in emission models,
as it can influence the dispersion of particles resuspended from the road surface. In
order to investigate this variable, researchers introduced a non-exhaust emission model
that can predict the main features of particles by considering both surface moisture and
dust variables [217,231]. They used ground-truth data to calibrate their model with real
conditions. This local measurement dependency of their model was reduced in the model
presented by Berger et al. [236].

Denby et al. presented a comprehensive model of non-exhaust emissions entitled
“NORTRIP” that took into account the road surface moisture, road wear, surface dust,
sand, salt loading, and their suspension, together with the wear from the road, tires, and
brakes [218]. The model was applied to seven years of data collected from two locations
exposed to moisture. However, the authors declared that the uncertainty of their model
was approximately ±40% for long-term perspectives. A similar model was used for the
modeling of road dust emission abatement in [237], and it was shown that the NORTRIP
model could be used as a reliable model for air quality planning.

In 2015, Mawdsley et al. introduced a novel method to calculate non-exhaust emissions
based on the SIMAIR model, an internet-based, coupled model system that was devised in
Sweden to calculate air quality [238]. This model can provide comprehensive data related
to the parameters influencing the amount of annual reported non-exhaust emissions, like
the use of studded tires. A database of the emission factors related to the road and vehicle
and a model for calculating the non-exhaust emissions are the main parts of the SIMAIR
model, which covers all the transportation networks of Sweden. The SIMAIR model was
successfully validated by Gidhagen et al. [239]. Furthermore, Mawdsley et al. utilized
the NORTRIP non-exhaust model to compare the results of the two approaches [238].
Investigation of the resuspension results for the SIMAIR and NORTRIP models was another
strategy of their project. Regarding the operational production condition of the SIMAIR
model in Sweden, they concluded that this model could present more regular calculations
of emissions in comparison to the NORTRIP model.

Nagpure et al. estimated exhaust and non-exhaust emissions simultaneously by
deploying the Vehicular Air Pollution Inventory (VAPI) model in Delhi [240]. The VAPI
model can estimate the emissions generated by vehicles in terms of their age and technology
using the econometric Gompertz equation tool [241]. The emission analysis consisted of an
investigation of emissions in the period from 1991 to 2020 through the implementation of a
gross domestic product (GDP) and per capita-based econometric model. The results of this
study showed a drastic increase in the PM10 emissions produced by non-exhaust sources.
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5. Concluding Remarks

Airborne particles are known as one of the most critical aspects of non-exhaust emis-
sions, accounting for 50–70% of the wear debris emitted by brake systems [15]. The review
of the literature concerning this topic highlighted that the brake system is a key contribu-
tor to the overall levels of emissions produced by a vehicle, attracting wide and intense
research activity.

The state of the art of the research on this topic indicates that the braking system
is a source of emissions that produces airborne particles through complex events which
involve phenomena at different levels. For instance, the amount of wear may be different
depending on the material of the brake system components, such as the brake pads and
disc, and the driving conditions, like the pressure on the pads and the rotational speed of
the disc. However, the pressure on the pads depends on the intensity of the braking action
commanded by the driver, which is affected by the vehicle mass, road characteristics and,
last but not least, the driving style.

As a consequence, the present study investigated the airborne brake wear debris by
dividing the relevant research into three categories. Studies on the subsystem level focus
on the emissions generated by all of the brake system components, whereas in those on
the system level, the vehicle dynamics together with driving behaviors (aggressive or
non-aggressive) and driving conditions (road geometry, weather, etc.) are investigated. At
the third level, the emissions are observed as they finally affect the environment, which con-
stitutes an active collector where they may be deposited, resuspended, mix, and undergo
further transformations.

The results obtained for the controlled configuration and environment at the subsys-
tem level were more accurate with lower uncertainty. In fact, due to the scale of this level,
these kinds of experiments benefit from better repeatability and the boundary conditions
are accurately defined. At the system level, the ability to characterize the emissions of
vehicles in real driving conditions has some limits, such as lower repeatability and cer-
tainty [179]. This results in a limited capacity to predict the levels of emissions produced,
for instance, by the same tested vehicle in different driving conditions or when driven by a
different driver.

One possibility for improving the prediction of vehicle brake emissions may lie in
multi-level approaches. Full-focus testing on dynamometers by implementing different
test cycles results in various kinds of emission factor maps, which can take speed and
load into account as a function. The results may be useful for the prediction and/or
evaluation of the emissions produced by a vehicle, in a given driving scenario and subject
to a defined driving behavior, if a simulation model is built embedding all the relevant
contributors (brakes, vehicles, roads, drivers). According to this approach, the subsystem
level results can act as useful data to increase the certainty of the system level results.
Once the prediction capabilities for emissions produced by vehicles are improved, this may
constitute a key component of a traffic-based model that combines data on different vehicles
subject to different driving styles and environmental conditions, providing the possibility
of better understanding the relevant sources involved at the environmental level.
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nano/micro-sized wear particles released from low-metallic automotive brakes. Environ. Pollut. 2011, 159, 998–1006. [CrossRef]

59. Nosko, O.; Vanhanen, J.; Olofsson, U. Emission of 1.3–10 nm airborne particles from brake materials. Aerosol Sci. Technol. 2016, 51,
91–96. [CrossRef]

60. Alemani, M.; Wahlström, J.; Olofsson, U. On the influence of car brake system parameters on particulate matter emissions. Wear
2018, 396–397, 67–74. [CrossRef]

61. Ma, J.; Olofsson, U.; Lyu, Y.; Wahlström, J.; Åström, A.H.; Tu, M. A Comparison of Airborne Particles Generated from Disk Brake
Contacts: Induction Versus Frictional Heating. Tribol. Lett. 2020, 68, 38. [CrossRef]

62. Paulus, A. Investigation of Brake Emissions of Different Brake Pad Materials with Regard to Particle Mass (PM) and Particle
Number (PN). In XXXVIII Internationales µ-Symposium 2019 Bremsen-Fachtagung; Springer: Berlin/Heidelberg, Germany, 2019; pp.
81–94.

63. Liati, A.; Schreiber, D.; Lugovyy, D.; Gramstat, S.; Eggenschwiler, P.D. Airborne particulate matter emissions from vehicle brakes
in micro- and nano-scales: Morphology and chemistry by electron microscopy. Atmos. Environ. 2019, 212, 281–289. [CrossRef]

64. Wahlström, J. A Study of Airborne Wear Particles from Automotive Disc Brakes. Ph.D. Thesis, KTH Royal Institute of Technology,
Stockholm, Sweden, 2011.

65. Wahlström, J. Towards a Simulation Methodology for Prediction of Airborne Wear Particles from Disc Brakes. Ph.D. Thesis, KTH,
Stockholm, Sweden, 2009.

66. Lawrence, S.; Sokhi, R.; Ravindra, K.; Mao, H.; Prain, H.D.; Bull, I. Source apportionment of traffic emissions of particulate matter
using tunnel measurements. Atmos. Environ. 2013, 77, 548–557. [CrossRef]
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