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REPRESENTATION TYPE OF SURFACES IN P3

EDOARDO BALLICO AND SUKMOON HUH

ABSTRACT. The goal of this article is to prove that every surface with a regular point in the three-dimensional
projective space of degree at least four, is of wild representation type under the condition that either X is in-
tegral or Pic(X ) ∼= 〈OX (1)〉; we construct families of arbitrarily large dimension of indecomposable pairwise
non-isomorphic aCM vector bundles. On the other hand, we prove that every non-integral aCM scheme
of arbitrary dimension at least two, is also very wild in a sense that there exist arbitrarily large dimensional
families of pairwise non-isomorphic aCM non-locally free sheaves of rank one.

1. INTRODUCTION

An arithmetically Cohen-Macaulay (for short, aCM) sheaf on a projective scheme X is a coherent sheaf
supporting X , which has trivial intermediate cohomology and the stalk at each point whose depth equals
the dimension of X . ACM vector bundles correspond to maximal Cohen-Macaulay modules over the
associated graded ring and they reflect the properties of the graded ring. It is believed that the category
generated by aCM sheaves on X measures the complexity of X . Indeed, a classification of aCM varieties
was proposed as finite, tame or wild representation type according to the complexity of this category in
[7] and there are several contributions to this trichotomy such as [8, 3, 6, 10]. It is only recent when such
a representation type is determined for each aCM variety that is not a cone; see [11].

In this article, we pay our attention to the representation type of surfaces in three-dimensional pro-
jective space. Since the aCM vector bundles on smooth surfaces of degree at most two are completely
classified due to the work by Horrocks and [14, 15], we may focus on surfaces of degree at least three. The
case of cubic surfaces is dealt in [4, 9] and the case of quartic surfaces is from [16]. Our main result is the
following, which implies that the surfaces in Theorem 1.1 are of wild representation type.

Theorem 1.1. Let X ⊂ P3 be a surface of degree at least four with Xreg 6= ; and assume either Pic(X ) =
Z〈OX (1)〉 or that X is integral. For every even and positive integer r , there exists a family {Eλ}λ∈Λ of inde-

composable aCM vector bundles of rank r such that Λ is an integral quasi-projective variety with dimΛ= r

and Eλ≇ Eλ′ for all λ 6=λ′ in Λ.

It has to be noticed that although the result in [11] is more general than the implication of Theorem 1.1
regarding the wildness of the representation type, Theorem 1.1 provides a concrete way of constructing
families of indecomposable aCM ‘vector bundles’ with prescribed rank, even on singular surfaces.

On the other hand, every non-integral aCM projective schemes of arbitrary dimension at least two
is of ‘very wild’ representation type, in a sense that there exist arbitrarily large dimensional families of
pairwise non-isomorphic aCM non-locally free sheaves of rank one; see Proposition 5.3.

Here we summarize the structure of this article. In Section 2 we collect several definitions and basic
results that are used throughout the article. In Section 3 we state the main result in Theorem 3.9, which
would automatically imply Theorem 1.1. We also give a proof of Theorem 3.9 in special case and suggest
a number of its variation to construct aCM vector bundles. Then we spend the whole Section 4 for the
proof of Theorem 3.9; basically we use induction on rank and the main ingredient for the proof is Lemma
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2 EDOARDO BALLICO AND SUKMOON HUH

4.5 and the use of monodromy argument. Then we show in Section 5 the wildness of any aCM projective
scheme of dimension at least two by investigating non-locally free ideal sheaves.

2. PRELIMINARY

Throughout the article our base field k is algebraically closed of characteristic 0. We always assume
that our projective schemes X ⊂PN are arithmetically Cohen-Macaulay, namely, h1(IX ,PN (t )) = 0 for all
t ∈ Z and hi (OX (t )) = 0 for all t ∈ Z and all i = 1, . . . ,dim X − 1, of pure dimension at least two. Then
by [17, Théorème 1 in page 268] all local rings OX ,x are Cohen-Macaulay of dimension dim X . From
h1(IX ,PN ) = 0 we see that Xred is connected. Since in all our results we have N = dim X +1 = 3, the reader
may just assume that X is a surface in P3. For a vector bundle E of rank r ∈Z on X , we say that E splits if
all its indecomposable factors are OX (t ) for some t ∈Z; E ∼=⊕r

i=1OX (ti ) for some ti ∈Z with i = 1, . . . ,r .
We always fix the embedding X ⊂ PN and the associated polarization OX (1). For a coherent sheaf

E on a closed subscheme X of a fixed projective space, we denote E ⊗OX (t ) by E (t ) for t ∈ Z. For an-
other coherent sheaf G , we denote by homX (F ,G ) the dimension of HomX (F ,G ), and by exti

X
(F ,G )

the dimension of Exti
X (F ,G ). Finally we denote the canonical sheaf of X by ωX .

Definition 2.1. A coherent sheaf E on X is called arithmetically Cohen-Macaulay (for short, aCM) if the
following hold:

(i) E is locally Cohen-Macaulay, that is, the stalk Ex has depth equal to dimOX ,x for any point x on
X , and

(ii) H i (E (t )) = 0 for all t ∈Z and i = 1, . . . ,dim(X )−1.

Remark 2.2. In the condition (i) of Definition 2.1, we may only require that the stalk Ex has positive
depth for any point x ∈ X ; see [2, Remark 2.2] and [17, Théorème 1 in page 268].

If E is a coherent sheaf on a closed subscheme X of a fixed projective space, then we may consider its
Hilbert polynomial PE (t )∈Q[t ] with the leading coefficient µ(E )/d !, where d is the dimension of Supp(E )
and µ = µ(E ) is called the multiplicity of E . The normalized Hilbert polynomial pE (t ) of E is defined to
be the Hilbert polynomial of E divided by µ(E ).

Definition 2.3. If dimSupp(E )= dim(X ), then the rank of E is defined to be

rank(E )=
µ(E )

µ(OX )
.

Otherwise it is defined to be zero.

For an integral scheme X , the rank of E is the dimension of the stalk Ex at the generic point x ∈ X . But
in general rank(E ) needs not be integer.

Lemma 2.4. Let (X ,OX (1)) be an aCM projective scheme of dimension n ≥ 2. For a fixed coherent sheaf G

with pure depth n on X , assume the existence of t0 ∈Z such that s := h1(G (t0)) > 0. Then the vector space

W := H 1(G (t0)) induces the following unique extension up to isomorphisms

(1) 0 −→G −→ E −→OX (−t0)⊗W ∨
−→ 0

and the sheaf E in the middle satisfies the following:

(i) h1(E (t )) = h1(G (t )) for all t 6= t0, and h1(E (t0)) = 0;

(ii) hi (E (t ))= hi (G (t )) for all t ∈Z and all i with 2 ≤ i ≤ n −1.

If G is locally free, then E is locally free.

Proof. All statements, except the one concerning h1(E (t0)), are true for any sheaf E fitting into (1). The
vanishing of H 1(E (t0)) is equivalent to the bijectivity of the coboundary mapδ : H 0(OX )⊗W ∨ → H 1(G (t0))
associated to the twist by OX (t0) of (1). The bijectivity of δ is a standard result on the extension func-
tor. �
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Theorem 2.5. Let X ⊂PN be a projective Gorenstein scheme with pure dimension two and pure depth two,

satisfying that

• h1(OX (t ))= 0 for all t ∈Z and h1(IX ,PN ) = 0;

• Xreg 6= ; and deg(ωX )+deg(X )≥ 0.

Then there exists a two-dimensional family of pairwise non-isomorphic aCM vector bundles of rank two

on X whose very general member is indecomposable; here “very general" means outside countably many

proper subvarieties.

Proposition 2.6. Let X ⊂PN be as in Theorem 2.5. Assume Xreg 6= ; and fix p ∈ Xreg. Then there exists an

aCM vector bundle Ep of rank two on X fitting into the exact sequence

(2) 0 −→ωX (1) −→ Ep −→Ip,X −→ 0.

Moreover, if deg(ωX )+deg(X ) ≥ 0 and p, q ∈ Xreg with p 6= q, then we have Ep ≇ Eq .

Proof. Since X is Gorenstein, ωX (1) is a line bundle and we get

Ext1
X (Ip,X ,ωX (1)) ∼= H 1(Ip,X (−1))∨ ∼= k.

So up to isomorphism there exists a unique sheaf Ep fitting into an extension (2) with a nonzero extension
class. Since h0(OX (−1)) = 0 and p ∈ Xreg, the Cayley-Bacharach condition is satisfied for (2) and so Ep is
locally free; see [5]. Note that the restriction map

H 0(OX (t ))−→ H 0(OX (t )|{p})

is surjective for any t ≥ 0. This implies that h1(Ip,X (t )) = 0 for any t ≥ 0, because we have h1(OX (t )) = 0.
Then we see from (2) that h1(Ep (t )) = 0 for any t ≥ 0. On the other hand, from det(Ep ) ∼= ωX (1), we get
that h1(Ep (t )) = h1(E ∨

p ⊗ωX (−t )) = h1(Ep (−t −1)) = 0 for t < 0 by Serre’s duality. Thus Ep is aCM.

For the second assertion, assume Ep
∼= Eq . From the assumption deg(ωX (1)) ≥ 0, we get h0(ω∨

X (−1)) ≤
1 with equality if and only if ωX

∼= OX (−1). In particular, we have h0(Ip,X ⊗ω∨
X (−1)) = 0. Then from

the assumption h1(OX ) = 0 and (2), we get h0(Ep ⊗ω∨
X (−1)) = 1 and that p is the only zero of a nonzero

section of H 0(Ep ⊗ω∨
X (−1)). Thus we get p = q . �

Proof of Theorem 2.5: By assumption Xreg is a two-dimensional quasi-projective smooth variety. By Propo-
sition 2.6 there is a flat family of aCM vector bundles {Ep }p∈Xreg of rank two such that if p, q ∈ Xreg and
p 6= q , then Ep ≇ Eq . Now assume that Ep is decomposable for some p ∈ Xreg, say Ep

∼=A1⊕A2 with each
Ai a line bundle on X . Since det(Ep ) ∼=ωX (1), we have A2

∼=A
∨

1 ⊗ωX (1). Now from the assumption that
h1(OX ) = 0, we see that Pic(X ) is discrete and countable. This implies that there can exist only count-
ably many decomposable vector bundles in the family. Since the base field k is algebraically closed and
so uncountable, there exists some indecomposable vector bundle in the family {Ep }p∈Xreg and for a very
general point o on any connected component of Xreg the vector bundle Eo is indecomposable. �

Throughout the article, as in Proposition 2.6, our construction of aCM sheaf of rank two on X is in
terms of the following extension

(3) 0 −→ωX −→ E −→IZ ,X (a) −→ 0

with Z a locally complete intersection of codimension two in X and a ∈Z. Such extensions are parametrized
by Ext1

X (IZ ,X (a),ωX ). In case when X is a surface, the coboundary map associated to (3) is

δ1 : H 1(IZ ,X (a)) −→ H 2(ωX ) ∼= k

and by Serre’s duality in [13, Theorem 3.12] its dual is

k ∼= HomX (ωX ,ωX ) −→ Ext1
X (IZ ,X (a),ωX ),

which is obtained by applying the functor HomX (−,ωX ) to (3). Thus the coboundary map δ1 is surjective
if and only if (3) is a non-trivial extension. Since we assume h1(OX )= h1(ωX ) = 0, this implies that h1(E ) =
h1(IZ ,X (a))−1.
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3. ACM VECTOR BUNDLE ON SURFACES IN P3

We always assume that X ⊂ P3 is a surface of degree m, not necessarily smooth. In particular, its
dualizing sheaf is ωX

∼=OX (m −4) and we get h2(OX ) =
(m−1

3

)
. We also have h0(OX ) = 1 and h1(OX ) = 0.

Lemma 3.1. Each line bundle OX (t ) with t ∈Z, is stable as an OP3 -sheaf with pure depth 2.

Proof. It is enough to deal with the case t = 0. Assume the contrary and take a subsheaf A ( OX such
that B := OX /A has depth 2 and normalized Hilbert polynomial at least the one of OX . Since B is a
quotient of OX with depth 2 and X has no embedded component, we get B ∼=OT for T a union of some
of the irreducible components of Xred with at most the multiplicities appearing in X . This implies that
T ∈ |OP3 (d )| for some integer d with 1 ≤ d < m. Now the Hilbert polynomial of OX is

POX
(t )=

(
t +3

3

)
−

(
t −m +3

3

)

=

(m

2

)
t 2

+

(
2m −

m2

2

)
t +

(
m3

6
−m2

+
11m

6

)
.

Similarly, we get the Hilbert polynomial POT
(t ) of OT by replacing m in POX

(t ) by d . Then we see that
pOX

(t )< pOT
(t ) for t ≫ 0, a contradiction. �

Remark 3.2. If either Pic(X ) ∼=Z〈OX (1)〉 or X is integral, then every line bundle is stable. Note also that
the proof of Lemma 3.1 shows that the ideal sheaf IZ ,X for any zero-dimensional subscheme Z ⊂ X , is
also stable. If X is integral, then any sheaf of rank 1 with positive depth is stable. Thus these sheaves are
indecomposable.

Proposition 3.3. Let X ⊂ P3 be a surface of degree m ≥ 2 with Xreg 6= ;. Fix p ∈ Xreg, and let Ep be the

unique non-trivial extension

(4) 0 −→OX (m −3) −→ Ep −→Ip,X −→ 0.

Then Ep is an aCM vector bundle of rank two on X and E ≇ OX (a)⊕OX (b) for any a,b ∈ Z. If one of the

following holds, then E is indecomposable.

(i) Pic(X ) ∼=Z〈OX (1)〉,
(ii) OX (t ) for t ∈Z are the only aCM line bundles on X , or

(iii) m ≥ 4 and X is integral.

Proof. By Proposition 2.6 it remains to deal with indecomposability of Ep . First show that there are no
integers a,b such that Ep

∼=OX (a)⊕OX (b). Assume that such a,b exist, say a ≥ b. Since h0(Ep (3−m)) = 1
and h0(Ep (2−m)) = 0, we get (a,b) = (m −3,0) and m ≥ 3. Then we get h0(Ep ) =

(m
3

)
+1, while (4) gives

h0(Ep ) =
(m

3

)
.

Now assume that Ep is decomposable. Since Ep is locally free and it has rank 2, we have Ep
∼=A1 ⊕A2

with each Ai ∈ Pic(X ). Since Ep is aCM, each Ai is aCM. In cases (i) and (ii) the assertion holds by above.
Thus we assume the case (iii). By Lemma 3.1 and Remark 3.2, (4) is the HN filtration of Ep . Applying the
functor HomX (Ep ,−) to (4), we get

0 −→ HomX (Ep ,OX (m −3)) −→ HomX (Ep ,Ep )−→ HomX (Ep ,Ip,X ) −→ Ext1
X (Ep ,OX (m −3)).

Note that homX (Ep ,OX (m −3)) = h2(Ep (−1)) = h0(Ep ) =
(m

3

)
by Serre’s duality. By applying the functor

HomX (−,Ip,X ) to (4), we get

homX (Ep ,Ip,X ) =homX (Ip,X ,Ip,X ) = 1.

Thus we have (
m

3

)
≤ homX (Ep ,Ep ) ≤ 1+

(
m

3

)
.
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Since h0(OX ) = 1, we have homX (Ai ,Ai ) = 1 for each i . So we get

homX (Ep ,Ep ) = 2+homX (A1,A2)+homX (A2,A1).

Since X is integral, each Ai is stable and we get either A1
∼= A2 or homX (Ai ,A3−i ) = 0 for each i . In the

latter case we have homX (Ep ,Ep ) = 2 <
(m

3

)
, a contradiction. In the former case, we have homX (Ep ,Ep ) =

4 and the only possibility is m = 4. But this is also impossible, since we would get A
⊗2

1
∼= det(Ep ) ∼=

OX (1). �

Proposition 3.4. Let X ⊂ P3 be a surface of degree m ≥ 2 and let Z ⊂ X be a zero-dimensional subscheme

of degree 3, which is not collinear. Assume that Z is a locally complete intersection inside X , i.e. for each

p ∈ Zred the ideal sheaf of Z at OX ,p is generated by two elements of OX ,p . Then there is a vector bundle G

of rank two fitting into an exact sequence

(5) 0 −→OX (m −4) −→G −→IZ ,X −→ 0

with h1(G (t ))= 0 for all t 6= 0 and h1(G )= 1. There is also an exact sequence

(6) 0 −→G −→ E
u
−→OX −→ 0,

where E is an aCM vector bundle of rank three such that E ≇OX (a1)⊕OX (a2)⊕OX (a3) for any (a1, a2, a3)∈
Z⊕3. Moreover, if Pic(X ) ∼=Z〈OX (1)〉, then E is indecomposable.

Proof. Since ωX
∼=OX (m −4), we have h0(OX (4−m)⊗ωX ) = 1 and OX (4−m)⊗ωX is globally generated.

Since OX (4−m)⊗ωX is globally generated, we have h0(Ip,X ⊗OX (4−m)⊗ωX ) = 0 for all p ∈ Zred. Since Z

is a locally complete intersection, the Cayley-Bacharach condition is satisfied and so there is a locally free
G fitting into (5); see [5]. From (5) we immediately get h1(G (t ))= 0 for all t > 0, because Z is not collinear.
Note that det(G )∼=OX (m−4) and G is a vector bundle of rank two. This implies G

∨ ∼=G (4−m). For t < 0,
we have h1(G (t )) = h1(G∨(−t )⊗ωX ) = h1(G (−t )) = 0 by Serre’s duality. Now consider the coboudnary
map δ1 : H 1(IZ ,X ) → H 2(OX (m −4)) ∼= k with ker(δ1) = H 1(G ). The dual of δ1 is the map

HomX (OX (m −4),OX (m −4)) −→ Ext1
X (IZ ,X ,OX (m −4))

sending the identity map to the element corresponding to G . This implies that δ1 is surjective and
h1(G )= 1.

Now we apply Lemma 2.4 to G to obtain an aCM vector bundle E of rank three fitting into (6). Since
h1(G ) = 1 and h1(E ) = 0, (5) and (6) give h0(E ) = h0(G ) =

(m−1
3

)
. Assume the existence of integers a1 ≥

a2 ≥ a3 such that E ∼=⊕3
i=1OX (ai ). Since det(E )∼=OX (m−4), we have a1+a2+a3 =m−4. If 2 ≤m ≤ 3, then

we have a1 ≥ 0 from a1+a2+a3 =m−4. This implies that h0(OX (a1)) > 0 =
(m−1

3

)
= h0(E ), a contradiction.

If m = 4, then we have h0(E ) = 1. Since a1 + a2 + a3 = 0, we have
∑3

i=1 h0(OX (ai )) > 1, a contradiction.
Finally assume m > 4. From (5) and (6) we see that OX (m − 2) is the first non-trivial sheaf in the HN
filtration of E . Thus a1 = m −4 and h0(OX (a1)) =

(m−1
3

)
. Since a2 +a3 = 0, we have h0(OX (a2)) > 0 and so

h0(E ) >
(m−1

3

)
, a contradiction. Hence we get E ≇⊕3

i=1OX (ai ) for any triple of integers (a1, a2, a3).
It remains to show the last assertion. Assume Pic(X ) ∼= Z〈OX (1)〉 and that E is decomposable; by the

previous assertion we have E ∼= A1 ⊕A2 with rank(Ai ) = i for each i and A2 indecomposable. Set A1
∼=

OX (a) for a ∈ Z. Since h0(E ) =
(m−1

3

)
, we have a ≤ m − 4. From (5) and (6) we get the existence of a

subsheaf F ⊂ E such that F ∼=OX (m−4) and E /F is an extension H of OX by IZ ,X . Note that H is not
locally free, because IZ ,X has not depth 2. In particular, H is not isomorphic to A2 and we get A1 ≇F .
So we have a < m −4. Now consider a restriction map

u|{0}⊕A2 : {0}⊕A2 −→OX .

If this restriction map is surjective, then its kernel is a line bundle, say OX (b). Since X is aCM, we get
A2

∼=OX ⊕OX (b), a contradiction. Thus the restriction map is not surjecitve and so the other restriction
map u|A1⊕{0} is not zero. In particular, we get a ≤ 0. If a = 0, then we have A1

∼=OX and the map u|A1⊕{0}

is an isomorphism. Thus (6) splits and we get h1(E ) ≥ h1(G ) > 0, a contradiction. Hence we get a < 0.
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Since there is no nonzero map F →A1 from a < m −4, F is isomorphic to a subsheaf F1 of A2 and we
get H ∼=OX (a)⊕A2/F1. From a < 0 we see that there is no nonzero map IZ ,X → OX (a). Since H is an
extension of OX by IZ ,X , we get that IZ ,X

∼=A2/F1 and so OX (a)∼=OX , a contradiction. �

Remark 3.5. In case m = 1, i.e. X = P2, we fail in obtaining an indecomposable aCM vector bundle of
rank three, using the method in Proposition 3.4. Indeed, we get G ∼=Ω1

P2 and the corresponding vector

bundle of rank three is E ∼=OP2 (−1)⊕3.

Corollary 3.6. Let X ⊂P3 be union of multiple planes in which at least one plane occurs with multiplicity

1. Then there is an indecomposable aCM vector bundle of rank three on X . If m > 4, we have a family of

such aCM vector bundles of dimension 6.

Proof. Assume that X has one component H with multiplicity 1. In this case we take as Z a set of 3
general points in H . Then the first assertion follows from Proposition 3.4. Note that the set of all such Z

has dimension 6. Now assume that X has a component H with multiplicity 3. Fix a general point p ∈ H

and take a general line L ⊂P3 with p ∈ L. Then set Z to be the connected component of the scheme X ∩L

with p as its reduction. Then we may get the assertion from Proposition 3.4 and that Pic(X ) ∼= Z〈OX (1)〉
by [2, Lemma 2.5]. �

Proposition 3.7. Let X ⊂ P3 be a surface of degree m ≥ 4 with an irreducible component Y appearing

with multiplicity 2 in X . Fix p ∈ Yreg so that T is the only irreducible component of X containing p. For a

general line L ⊂ P3 containing p, let Z ⊂ X be the connected component of L ∩ X with p as its reduction.

We have deg(Z )= 2 and there is an aCM vector bundle EZ of rank two fitting into an exact sequence

(7) 0 −→OX (m −4) −→ EZ −→IZ ,X −→ 0.

The set of all isomorphism classes of EZ is uniquely parametrized by a 4-dimensional irreducible quasi-

projective variety ∆ satisfying the following.

(i) For any EZ ∈∆, there are no integers a,b with EZ
∼=OX (a)⊕OX (b).

(ii) A very general EZ ∈∆ is indecomposable.

(iii) If Pic(X ) ∼=Z〈OX (1)〉, then each EZ ∈∆ is indecomposable.

(iv) If Z〈OX (1)〉 are the only aCM line bundles on X , then each EZ ∈∆ is indecomposable.

Proof. Since no other component of X than Y contains p and p is a smooth point of X , we have deg(Z )=
2; it is sufficient to take as L any line through p not contained in the tangent plane Tp Y of Y at p .

Since ωX
∼=OX (m−4), we have h0(OX (4−m)⊗ωX ) = 1 and OX (4−m)⊗ωX is globally generated. Thus

we have h0(Ip,X ⊗OX (4−m)⊗ωX )= 0. Since Z is a locally complete intersection, the Cayley-Bacharach
condition is satisfied for (7) and so there is a locally free EZ fitting into (7); see [5].

Since OX (1) is very ample and deg(Z ) = 2, we get h1(EZ (t )) = 0 for all t > 0 by (5). Note that det(EZ ) ∼=
OX (m − 4) and EZ is a vector bundle of rank two. This implies E

∨
Z
∼= EZ (4 −m). For t < 0, we have

h1(EZ (t )) = h1(E ∨
Z (m − t − 4)) = h1(EZ (−t )) = 0 by Serre’s duality. Now consider the coboudary map

δ1 : H 1(IZ ,X ) → H 2(OX (m −4)) ∼= k with ker(δ1) = H 1(EZ ). The dual of δ1 is the map

HomX (OX (m −4),OX (m −4)) −→ Ext1
X (IZ ,X ,OX (m −4))

sending the identity map to the element corresponding to EZ . This implies that δ1 is non-zero and hence
and h1(EZ ) = 0. Thus EZ is aCM.

The set of all p ∈ Yreg such that Y is the only irreducible component of X containing p is an irreducible
2-dimensional variety ∆′. For each p ∈ P3 the set of all lines through p is a P2. Define a variety ∆ as
follows:

∆ := {(p,L) | p ∈∆′ and L a line in P3 with p ∈ L and L * Tp Y }.

Since m ≥ 4, we have h0(IZ ,X (4−m)) = 0. Thus (7) gives h0(EZ (4−m)) = 1. Thus the isomorphism classes
of EZ uniquely determines Z , i.e. if EZ ≇ EZ ′ , then we get Z 6= Z ′. For two elements (p1,L1), (p2,L2) ∈∆,
let Zi be the subscheme of degree 2 determined by (pi ,Li ) for each i = 1,2. Since each pi is the reduction
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of Zi and Li is the line spanned by Zi , the variety ∆ uniquely parametrizes the isomorphism classes of
the aCM vector bundles EZ .

Assume EZ
∼= OX (a)⊕OX (b) for some integers a,b with a ≥ b. Since det(EZ ) ∼= OX (m − 4), we have

b = m−4−a. But since h0(EZ (4−m)) = 1, the only possibility is that a = 4−m and b < 0, a contradiction.
Thus we get (i). We may get (ii) as in the proof of Theorem 2.5. Now assume that EZ is decomposable,
say EZ

∼= A1 ⊕A2 with each Ai a line bundle. Since EZ is aCM, each Ai is also aCM. Thus (iii) and (iv)
follow from (i). �

Remark 3.8. In case m = 2, i.e. X = 2H the double plane with a hyperplane H ⊂ P3, the vector bundle
EZ described in Proposition 3.7 is the vector bundle OX (−1)⊕2.

Theorem 3.9. Let X ⊂ P3 be a surface of degree m ≥ 4 with Xreg 6= ;, i.e. X has an irreducible component

Y appearing with multiplicity 1. We further assume that either Pic(X ) = Z〈OX (1)〉 or X is integral. For a

fixed integer s > 0 and a set S ⊂ Xreg ∩Y with ♯(S)= s, a general sheaf ES fitting into an exact sequence

(8) 0 −→OX (m −3)⊕s
v
−→ ES −→⊕p∈SIp,X −→ 0,

is a locally free, indecomposable and aCM sheaf of rank 2s. Moreover, if S ′ ⊂ Xreg ∩Y is another set with

♯(S ′) = s and S ′ 6= S, then we have ES ′ ≇ ES .

We have ext1
X (Ip,X ,OX (m−3)) = h1(Ip,X (−1)) = 1 for each p ∈ Xreg by Serre’s duality. So the extension

ES corresponds to an element in a finite dimensional vector space

E(S) := Ext1
X (⊕p∈SIp,X ,OX (m −3)⊕s ) ∼= ks2

.

If s = 1, say S = {p}, the dimension of E is one. Thus there exists a unique non-trivial extension. Denote
this non-trivial extension simply by Ep .

In Theorem 3.9, a “general” choice of ES means that there exists a non-empty Zariski open subset
U⊂ E(S) such that the middle term of any extension in U is aCM, locally free and indecomposable.

Proof of Theorem 1.1: The family Σ of all S ⊂ Xreg with ♯(S) = s clearly has dimension 2s. By Theorem
3.9, if S and S ′ are two distinct sets in Σ, then we get ES ≇ ES ′ . Now there is a universal family on any
Ext1-group of families of sheaves with Σ× X as its base. Thus, we get a family of aCM locally free and
indecomposable vector bundles with as a parameter space a rank s2 vector bundle over Σ; the fibre of
this vector bundle over S ∈ Σ is E(S), corresponding to S. Taking a non-empty open subset V of Σ on
which this vector bundle is trivial we get a family of pairwise non-isomorphic sheaves, at least if we
restrict V , so that all sheaves in the family are locally free, aCM and indecomposable. �

Remark 3.10. For a surface X as in Theorem 3.9 and Theorem 1.1, the algebraic group Aut(X ) has finite
dimension; it is often zero-dimensional. Hence there exists an integer t0 such that for every even integer
r , X has a family of dimension at least r − t0, consisting of indecomposable aCM vector bundles of rank
r on X , such that for any two distinct elements E , E

′ in the family there is no f ∈ Aut(X ) with f ∗(E ) ∼= E
′.

4. PROOF OF THEOREM 3.9

Set E′(S) to be the set of all elements in E(S) whose corresponding middle term is locally free and aCM.

Lemma 4.1. E′(S) is a non-empty open subset of E(S).

Proof. Since being locally free and aCM are both open properties in a flat family, E′(S) is an open subset
of E(S). Thus it is sufficient to prove that E′(S) 6= ;. Proposition 3.3 gives the case s = 1. For s > 1, we
may find a direct sum of aCM vector bundles of rank two fitting into (8), i.e. take ⊕p∈SEp . This implies
E′(S) 6= ;. �

Remark 4.2. In the set-up of (8) set A := v(OX (m −3)⊕s ). By Lemma 3.1 and Remark 3.2 together with
the assumption m ≥ 3, we see that A is the first term of the HN filtration of ES . Thus we get f (A ) ⊆ A

for any f ∈ End(ES).



8 EDOARDO BALLICO AND SUKMOON HUH

Lemma 4.3. If E is the middle term of an extension ε∈ E′(S), then E has no line bundle as a factor.

Proof. Assume that L is a line bundle that is a factor of E , i.e. E =L ⊕G for some aCM vector bundle G

of rank 2s −1. Since m ≥ 3, we have

h0(L (3−m))+h0(G (3−m)) = h0(E (3−m)) = s.

First assume h0(L (3−m)) = 0 and h0(G (3−m)) = s. Then we have v(OX (m −3)⊕s ) ⊂ {0}⊕G in (8) and
so L ∼=Ip,X for some p ∈ S, a contradiction. Thus we have h0(L (3−m)) > 0 and so h0(G (3−m)) < s. In
particular, there is a nonzero map u : OX (m −3) → L . Assume for the moment that Pic(X ) ∼= Z〈OX (1)〉
and write L ∼= OX (a) for some a ∈Z. The map u gives a ≥ m −3. Since m ≥ 3, (8) is the HN-filtration of
E and we get a = m −3. Thus G fits into an exact sequence

0 −→OX (m −3)⊕(s−1)
−→G −→⊕p∈SIp,X −→ 0.

Then we get h1(G (−1)) ≥ 1 from h1(Ip,X (−1)) = 1 and h2(OX (m −4)) = 1. Thus G is not aCM, a contra-
diction. If X is integral, then every line bundle is stable and so (8) is the HN-filtration of E , we get either
L ∼=OX (m −3); we get a contradiction as above, or L is a factor of ⊕p∈SIp,X , which is not locally free, a
contradiction. �

Let F(S) (resp. F′(S)) be the set of isomorphism classes of middle terms of extensions in E(S) (resp.
E′(S)). Let us denote by E = E (ε) the middle term of the extension corresponding to ε∈ E′(S).

Lemma 4.4. For two non-empty finite sets S1,S2 ⊂ Xreg with ♯(Si ) = si , take Ei ∈ F′(Si ) and call Ai the

subsheaf of Ei isomorphic to OX (m−3)⊕si for each i = 1,2. If there exists a map f : E1 → E2 with f (E1) ⊂A2,

then we have S1 ∩S2 6= ;.

Proof. Since HomX (OX (m − 3),Ip,X ) = 0 for all p ∈ X , we have f (A1) ⊆ A2. In particular, f induces a
nonzero map f̃ : ⊕p∈S1 Ip,X →⊕q∈S2 Iq,X . This implies that S1 ∩S2 6= ;. �

Lemma 4.5. Assume that E ∈ F′(S) is decomposable; E ∼= E1 ⊕·· ·⊕Eh with each Ei indecomposable. Then

there is a partition S =⊔h
i=1Si with Ei ∈ F′(Si ) for each i . If there is another decomposition E ∼= E

′
1⊕·· ·⊕E

′
k

with each E
′
j

indecomposable, then we get k = h and there is a permutation σ : {1, . . . ,h} → {1, . . . ,h} such

that E
′
σ(i )

∼= Ei for all i and E
′
σ(i ) ∈ F(Sσ(i )).

Proof. We use induction on s. The case s = 1 is true, because each Ep for p ∈ Xreg is indecomposable by
Proposition 3.3. Since E is aCM by the definition of F(S), each Ei is also aCM. We consider the subsheaf
A ∼=OX (m−3)⊕s ⊂ E as in Remark 4.2 and set Gi :=A ∩Ei . Since the HN filtration of E is obtained from
the ones of each factors, we have

A ∼=⊕
h
i=1Gi and ⊕p∈S Ip,X

∼=⊕
h
i=1Ei /Gi .

By Lemma 4.3 we have Gi ( Ei for all i . By Remark 3.2 we may write S =⊔h
i=1Si with Ei /Gi

∼=⊕p∈Si
Ip,X .

Since Ei /Gi 6= 0, we have Si 6= ; for all i . Thus the set {S1, . . . ,Sh} gives a partition of S. To prove the first
part of the lemma it is sufficient to prove that ♯(Si ) = rank(Gi )/2 for all i . If this is not true, then there is
i ∈ {1, . . . ,h} with ♯(Si ) > rank(Gi )/2, i.e. rank(Gi ∩A ) > ♯(Si ). The exact sequence

0 −→A ∩Gi −→Gi −→⊕p∈S j
Ip,X −→ 0

gives h1(Gi ) ≥ ♯(Si )− rank(Gi ∩A ) > 0. In particular, Gi is not aCM, a contradiction.
Now we check the last assertion of the lemma. Take two partitions

S = S1 ⊔·· ·⊔Sh = S ′
1 ⊔·· ·⊔S ′

k

such that there is a decomposition

E ∼= E1 ⊕·· ·⊕Eh
∼= E

′
1 ⊕·· ·⊕E

′
k
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with Ei ∈ F′(Si ) and E
′
j
∈ F′(S ′

j
) indecomposable. By the Krull-Schmidt theorem in [1], we get h = k and

there is a permutation σ : {1, . . . ,h} → {1, . . . ,h} such that Bσ(i )
∼= Ei for all i . By renaming {E ′

1, . . . ,E ′
h

}, we
may assume that E

′
i
∼= Ei for all i . This implies

♯(Si ) = rank(Ei )/2 = rank(E ′
i )/2 = ♯(S ′

i ).

Now fix an isomorphism fi : Ei → E
′
i

for each i . Since (8) gives the HN filtrations of Ei and E
′
i
, the map f

induces an isomorphism f̃i : ⊕p∈Si
Ip,X →⊕p∈S ′

i
Ip,X . Since p is the unique point of X at which Ip,X is

not locally free, we get Si = S ′
i
. For each i , let Ai be the unique subsheaf of Ei isomorphic to OX (m−3)♯(Si ).

Then for any embedding u : Ei → E1 ⊕·· ·⊕Eh , the composition v j ◦π j ◦u

Ei

u
−→ E1 ⊕·· ·⊕Eh

π j

−→ E j

v j

−→⊕p∈S j
Ip,X

is zero for any j 6= i by Lemma 4.4, where π j : E → E j is the projection and v j : E j → ⊕p∈S j
Ip,X is the

surjection in (8) for S j . Since u is an embedding, we see that vi ◦πi ◦u is surjective. Thus G := πi (u(Ei ))
is a subsheaf with vi (G )=⊕p∈Si

Ip,X . �

Lemma 4.6. With the setting as in Theorem 3.9, we have ext1
X (Ep ,Eq ) ≥ 2 for two points p, q ∈ Xreg, possi-

bly p = q.

Proof. Set Fo := Eo(3 − m) for o ∈ {p, q}. Since Exti
X (Ep ,Eq ) ∼= Exti

X (Fp ,Fq ), we have χ(Ep ⊗ E
∨
q ) =

χ(Fp ⊗F
∨
q ). Since Euler’s characteristic is constant in a flat family of vector bundles and p, q ∈ Xreg,

it is sufficient to compute χ(Fp ⊗F
∨
q ) when X is smooth. Since a smooth surface in P3 is connected, the

same observation applied to a family of vector bundles on X shows χ(Fp ⊗F
∨
q ) = χ(Fp ⊗F

∨
p ).

We have an exact sequence

(9) 0 −→OX

v
−→Fp

w
−→Ip,X (3−m) −→ 0

with det(Fp ) ∼= OX (3−m) and c2(Fp ) = 1. Since X ⊂ P3 is a surface of degree m, we have c1(Fp )2 =

m(m −3)2. By Riemann-Roch for E nd (Fp), we have

χ(E nd (Fp )) = c1(Fp )2
−4c2(Fp )+4χ(OX )= m(m −3)2

−4+4

(
m −1

3

)
+4

=
1

6

(
10m3

−60m2
+98m −24

)
.

In particular, we have χ ∼
5
3 m3 for m ≫ 0. Note that by Serre’s duality we have h2(Fp ⊗F

∨
p ) = h0(Fp ⊗

F
∨
p (m −4)).

Claim 1: We have homX (Fp ,Fp ) = 1+
(m

3

)
.

Proof of Claim 1: We have homX (Ip,X (3−m),OX ) = h0(OX (m − 3)) =
(m

3

)
and any nonzero map

Ip,X (3−m) →OX induces an element in HomX (Fp ,Fp ) with rank one as the following composition:

Fp

w
−→Ip,X (3−m) −→OX

v
−→Fp .

The vector space HomX (Fp ,Fp ) also contains the nonzero multiples of the identity map Fp → Fp

and these maps have rank two. Thus we get h0(Fp ⊗F
∨
p ) ≥ 1+

(m
3

)
. On the other hand, for any f ∈

HomX (Fp ,Fp ) we get w ◦ f ◦ (v(OX )) ⊆ v(OX ) from h0(Ip,X (3−m)) = 0. Thus w ◦ f ◦ v induces a map
f1 : OX → OX , which is induced by the multiplication by c ∈ k. Hence f − c ·IdFp

is induced by a unique
g ∈ HomX (Ip,X (3−m),Fp ). Since Fp is locally free and X is smooth at p , we have HomX (Ip,X (3−

m),Fp ) = H 0(Fp (m −3)). By (9) we have h0(Fp (m −3)) =
(m

3

)
and so homX (Fp ,Fp ) ≤ 1+

(m
3

)
. �

Claim 2: We have homX (Fp ,Fp (m −4)) ≥
(2m−4

3

)
+2

(m−1
3

)
−

(m−4
3

)
−1.

Proof of Claim 2: For any f ∈ HomX (Fp ,Fp (4−m)), set f1 := f|v(OX ). Since h0(OX (−1)) = 0, we have
w ◦ f1 = 0 and so f1(v(OX )) ⊂ v(OX (m −4))). Take f with f1 ≡ 0. Such a map f is uniquely determined
by an element in HomX (Ip,X (3−m),Fp (m −4)) and the converse also holds. Since Fp (m −4) is locally
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free and X is smooth at p , we have HomX (Ip,X (3−m),Fp (m − 4)) = HomX (OX (3−m),Fp (m − 4)) =
H 0(Fp (2m −7)). Since h1(OX (t ))= 0 for any t ∈Z, (9) gives

h0(Fp (2m −7)) =h0(OX (2m −7))+h0(OX (m −4))−1 =

(
2m −4

3

)
−

(
m −4

3

)
+

(
m −1

3

)
−1.

Note that a map f obtained by a composition

Fp

w
−→Ip,X (3−m) −→OX (m −4)

v
−→Fp (m −4)

has f1 ≡ 0. Now for any linear subspace W ⊂ HomX (Fp ,Fp (m −4)) such that f1 6≡ 0 for any f ∈ W \ {0},
we would get

homX (Fp ,Fp (m −4)) ≥

(
2m −4

3

)
−

(
m −4

3

)
+

(
m −1

3

)
−1+dimW.

We may choose W to consist of the compositions of the identity map Fp → Fp with the multiplication

by an element of H 0(OX (m −4)). Then we have dimW =
(m−1

3

)
. �

Combining Claims 1 and 2, we get

h0(Fp ⊗F
∨
p )+h2(Fp ⊗F

∨
p ) ≥

(
2m −4

3

)
+

(
m

3

)
+2

(
m −1

3

)
−

(
m −4

3

)

=
1

6

(
10m3

−60m2
+98m −12

)
.

Thus we have

h1(Fp ⊗F
∨
p ) = h0(Fp ⊗F

∨
p )+h2(Fp ⊗F

∨
p )−χ(E nd (Fp )) ≥ 2

and so we get the assertion. �

Proof of Theorem 3.9: By Remark 4.2 (8) is the HN filtration of ES . Proposition 3.3 gives the case s = 1. For
s > 1, we may find a direct sum of s vector bundles of rank 2 from the case s = 1, fitting into (8): just take
⊕p∈SEp . So a general extension in E(S) has a locally free and aCM middle term, because being local free
and aCM are both open conditions.

Note that h0(ES(3−m)) = s from (8). In particular there is a unique subsheaf A ⊂ ES isomorphic to
OX (m −3)⊕s and for each f ∈ Hom(OX (m −3),ES ) we have f (OX (m −3)) ⊆ A . Now by Lemma 3.1 and
Remark 3.2, the extension (8) is the HN filtration of ES . By uniqueness of the HN filtration, we get ES ≇ ES ′

for S 6= S ′.
Now it remains to show the indecomposability of ES . By Lemma 4.3, there is no rank one factor of ES .

Claim 1: For two distinct points p, q in Xreg, we have

HomX (Ip,X ,Iq,X ) = 0,HomX (Ep ,Iq,X ) = 0 and Ext1
X (Ip,X ,Iq,X ) = 0.

Proof of Claim 1: By an extension theorem for locally free sheaves in [12, Exercise I.3.20], we have
HomX (Ip,X ,Iq,X ) = HomX (OX ,Iq,X ) = 0. The second vanishing is obtained from the first vanishing and
HomX (OX (m −3),Iq,X ) = 0. For the last vanishing, we apply the functor HomX (Ip,X ,−) to the standard
exact sequence for Iq,X ⊂OX and obtain an exact sequence

0 −→ HomX (Ip,X ,OX ) −→ HomX (Ip,X ,Oq )−→ Ext1
X (Ip,X ,Iq,X ) −→ Ext1

X (Ip,X ,OX )

by the first vanishing in the Claim. Here we have

HomX (Ip,X ,OX ) ∼= HomX (Ip,X ,Oq ) ∼= k

and Ext1
X (Ip,X ,OX ) ∼= H 1(Ip,X (m−4))∨ by Serre’s duality. Then we get the assertion from the assumption

that m ≥ 4. �

(a) First assume s = 2 and take two distinct points p, q in Xreg.
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Claim 2: If there exists a sheaf G ≇ Ep ⊕Eq fitting into the exact sequence

(10) 0 −→ Ep

u
−→G

v
−→ Eq −→ 0,

then the case s = 2 is true.
Proof of Claim 2: Such a sheaf G would be locally free and aCM with rank 4. Since h1(OX ) = 0 and (8)

gives the HN filtrations of Ep and Eq by Lemmas 3.1 and Remark 3.2, G has a subsheaf F ∼=OX (m −3)⊕2

such that G /F is an extension of Iq,X (1) by Ip,X (1). Claim 1 gives G /F ∼= Ip,X ⊕Iq,X and so we get
G ∼= ES with S = {p, q}. �

Claim 3: If G ∼= Ep ⊕Eq for all G in (10), then we have Ext1
X (Eq ,Ep ) = 0.

Proof of Claim 3: Let G ∼= Ep ⊕Eq fitting into (10) correspond to ε ∈ Ext1
X (Eq ,Ep ). Then it is sufficient

to prove that ε = 0, or ker(v) ∼= Ep ⊕ {0}. But since ker(v) ∼= Ep , it is sufficient to prove that either Ep ⊕

{0} ⊇ ker(v) or Ep ⊕ {0} ⊆ ker(v). Assume v(Ep ⊕ {0}) 6= 0. Since HomX (Ep ,Iq,X ) = 0 by Claim 1, we have
v(Ep ⊕ {0}) ⊆ OX (m − 3). This implies that the restriction of the surjection Eq → Iq,X to v({0}⊕Eq ) is
surjective. Since h0(OX ) = 1 and HomX (OX (m −3),Iq,X ) = 0, we get either v({0}⊕OX (m −3)) = 0 or v

induces an isomorphism {0}⊕OX (m −3) → OX (m −3). Assume for the moment v({0}⊕OX (m −3)) = 0.
Since v(Ep ⊕{0}) maps to 0 in Iq,X , we get that v({0}⊕Eq ) is a subsheaf of Eq which maps isomorphically
onto Iq,X . So we get Eq

∼=OX (m−3)⊕Iq,X , a contradiction. Now assume v({0}⊕OX (m−3)) =OX (m−3).
Since v({0}⊕Eq ) maps surjectively onto Iq,X , the surjection v induces an isomorphism {0}⊕Eq → Eq .
Hence we get Ep ⊕ {0} ⊆ ker(v). �

Since Ext1
X (Eq ,Ep ) 6= 0 by Lemma 4.6, Claim 3 concludes the proof of the case s = 2.

(b) Assume s > 2 and that Theorem 3.9 holds for smaller numbers. On E(S) there is a universal family
of extensions, i.e. a coherent sheaf V over E(S)×X such that for each ε ∈ E(S) the sheaf V|{ε}×X is the middle
term E (ε) of the extension corresponding to ε; in general, if we take P(E(S)) as a parameter space, then
no such a universal sheaf exists. We call V

′ the restriction of of V to E′(S)×X ; we thus consider the family
of aCM vector bundles induced from the extensions in E′(S).

Define a set Γ(S) as follows:

Γ(S) :=
{
(ε,ϕ) | ε ∈ E′(S) and ϕ ∈ End(E (ε)) with ϕ2

=ϕ
}

.

Note that ϕ is a projection of E (ε) onto a factor of E (ε), with the exception when ϕ = IdE (ε) or ϕ ≡ 0; if
E (ε) is indecomposable, only (ε, IdE (ε)) and (ε,0) are contained in Γ(S). Indeed, for any vector bundle G ,
there exists a one-to-one correspondence:

{ϕ ∈ End(G ) | ϕ2
=ϕ} ↔ {factors of G }

via ϕ 7→ Im(ϕ) = ker(IdG −ϕ), with G being associated to IdG and 0 associated to the zero map. Thus G is
decomposable if and only if End(G ) has a non-trivial idempotent. Note that Γ(S) is a closed in the total
space of the vector bundle H om(V ′,V ′) over E′(S)× X . By Lemma 4.5, for each E (ε) there is a unique
partition of S associated to any decomposition of E (ε) with only finitely many indecomposable factors by
the Krull-Schmidt theorem in [1]. By Lemma 4.5 for each E ∈ F′(S) each isomorphism class of factors of E

corresponds to a unique subset of S; E and 0 correspond to S and ;, respectively. For each (ε,ϕ) ∈ Γ(S),
let S(ϕ) be the subset of S associated to Im(ϕ) by Lemma 4.5. Set

Γ0(S) :=
{

(ε,ϕ) ∈Γ(S) | ϕ 6= 0 and ϕ 6= Id|E (ε)
}

.

The goal is to show that Γ0(S) is not dominant over F(S) for a general S.
Note that up to now we did not use that S is contained in the same connected component Y ∩ Xreg

of Xreg. In particular the case s = 2 holds even if X has more than one irreducible components with
multiplicity one and the two points of S belong to different connected components of Xreg.

Now we use a monodromy argument, which requires that S is contained in a connected component
of T := Xreg ∩Y and that S is general in Y . Set S = {p1, . . . , ps } and fix an ordering of the points in S, along
which we get an ordering of the indecomposable factors of the sheaf ⊕p∈SIp,X . Together with the usual
ordering on the factors of OX (m −3)⊕s , we may see any ε ∈ E(S) as an (s × s)-square matrix, say ε= (εi j )
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with 1 ≤ i , j ≤ s, where εi j is an element of the 1-dimensional vector space Ext1
X (Ip j ,X ,OX (m −3)). Note

that for a fixed integer j , each εi j with i = 1, . . . , s, is an element of the same 1-dimensional vector space.
We write OX (m −3)⊕s =Cs ⊗OX (m −3).

Claim 4: E = E (ε) has two indecomposable factors, one of them being Im(ϕ) and the other one
being ker(ϕ).

Proof of Claim 4: Since ϕ2 = ϕ, we have E ∼= F1 ⊕F2 with F1 := Im(ϕ) and F2 = ker(ϕ). By the
definition of A, we get an exact sequence

(11) 0 −→OX (m −3)⊕k
−→F1 −→⊕p∈AIp,X −→ 0,

with k := ♯(A). Since neither ϕ ≡ 0 nor ϕ = IdE , we have 0 < k < s. Then by Lemma 4.5 we get an exact
sequence

(12) 0 −→OX (m −3)⊕(s−k)
−→F2 −→⊕p∈S\AIp,X −→ 0.

Now we need to prove that each Fi is indecomposable. By the inductive assumption it is sufficient to
prove that F1 and F2 are the middle terms of general extensions (11) and (12), respectively. Since (8)
gives the HN filtration of each Fi , there are linear subspaces V1,V2 ⊂ Cs such that dimV1 = k , dimV2 =

s −k and

v(Cs
⊗OX (m −3))∩Fi =Vi ⊗OX (m −3)

for each i . From E ∼= F1 ⊕F2 we see that Cs = V1 ⊕V2. Now we reorder the points in S so that all points
of A are smaller than any points of S \ A. Then ε can be understood as an (s × s)-square matrix in a block
form:

ε=

[
B11 B12

B21 B22

]

Here the (k ×k)-matrix B11 in the upper left corner, is associated to the extension (11) and similarly the
((s −k)× (s −k))-matrix B22 in the lower right corner, is associated to the extension (12). The matrix of ε
also has a (k×(s−k))-submatrix B12 and an ((s−k)×k)-submatrix B21. Since ε is general, all the entries in
each Bi j are also general. In particular, B11 and B22 are general and this implies that each Fi is general.
The inductive assumption gives that each Fi is indecomposable. �

Assume that a general E = E (ε) has two indecomposable factor, i.e. the set Γ0(S) is dominant over
F(S). Let Γ′(S) be an irreducible component of Γ0(S) dominant over F(S) and set A := S(ϕ), where (ε,ϕ)
is any element of Γ′(S). Now assume that (ε,ϕ) is general in Γ′(S) and set E := E (ε). Note that the subset
A ⊂ S is invariant as (ε,ϕ) varies in Γ0(S), due to the irreducibility of Γ0(S). Below we find a contradiction
under the assumptions that E is decomposable and that S is general in Syms (T ).

Let Γ̃ be the set of all triples (S,E ,ϕ) with S ∈ Syms (T ) and (E ,ϕ) ∈Γ0(S). Then Γ̃ is an algebraic subset
whose fibre over S ∈ Syms (T ) is Γ0(S), with a projection map u : Γ̃→ Syms (T ). If u is not dominant, then it
would imply that there exists a 2s-dimensional family of pairwise not isomorphic indecomposable aCM
vector bundles of rank 2s on X . Thus we may assume that u is dominant. We fix a general S ∈ Syms (T )
and fix an irreducible component Γ′(S) of Γ(S) to which we apply the previous construction with the
partition A⊔(S \ A) of S attached to Γ′(S). Let Γ̃′ be any irreducible component of Γ̃ containing Γ′(S) such
that u|Γ̃′ is dominant.

Let V denote a non-empty Zariski open subset of Syms (T ) containing S such that for every T ∈ V

a general ET ∈ E(T ) has exactly two indecomposable factors, one associated to a subset F of T with
|F | = |A| = k and the other one associated to T \ E . Now we fix p ∈ A and q ∈ S \ A. Since Yreg is a
connected manifold and p, q ∈ Yreg, there exists a connected smooth affine curve U ⊂A1(k) with a map
ϕ : U → Yreg such that ϕ(t0) = p and ϕ(t1) = q for some t0, t1 ∈U , and ϕ(U ) passes no other points of S.
Similarly we may consider a map ϕ′ : U → Yreg with ϕ′(t1) = p and ϕ′(t0) = q such that ϕ(t ) 6= ϕ′(t ) for
any t ∈U . For each t ∈U , set

At := (A \ {p})∪ {ϕ(t )} , St := (S \ {p, q})∪ {ϕ(t ),ϕ′(t )},
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e.g. (At0 ,St0 ) = (At1 ,St1 ) = (A,S). Restricting U to an open neighborhood of {t0, t1}, we may assume
that St ∈ V for all t ∈ U . Then for each t ∈ U we have a partition St = At ⊔ (St \ At ) such that a general
ESt

∈ Γ′(St ) has exactly two indecomposable factors, one associated to At and the other associated to
St \ At , due to the choice of Γ̃′.

We start from t = t0 and vary t in U to arrive at t = t1, where we have St1 = S = Aq ⊔ (S \ Aq ) with
Aq = (A \{p})∪ {q}. Since s > 2, we have {A,S \ A} 6= {Aq ,S \ Aq }, contradicting the assumption that ES has
exactly two indecomposable factors. �

5. NON-LOCALLY FREE ACM SHEAF

In this section, we let X ⊂PN be a closed subscheme with pure dimension n at least two. Assume that
each local ring OX ,x with x ∈ X , has depth n and that X is aCM with respect to OX (1), i.e. hi (IX ,PN (t )) = 0
for all t ∈Z and all 1≤ i ≤ n −1. The exact sequence

0 −→IX ,PN (t )−→OPN (t ) −→OX (t )−→ 0

shows that hi (IX ,PN (t )) = hi−1(OX (t )) for all i ≥ 2. Hence we may restate our assumption as h1(IX ,PN (t ))=
0 and hi (OX (t )) = 0 for all t ∈Z and i = 1, . . . ,n−2. By a theorem of Serre, the condition that hi (OX (−x)) =
0 for x ≫ 0 and i = 1, . . . ,n −2, plus having positive depth at each x ∈ X , is equivalent to all OX ,x having
depth n. Since h1(IX ,PN ) = 0, we have h0(OX ) = 1 and in particular X is connected. Since h1(IX ,PN (1)) =
0, X is linearly normal in the linear subspace of PN spanned by X . Since n ≥ 2 we have h1(OX ) = 0 an so
Pic(X ) is a finitely generated abelian group.

Fix an irreducible component Y of Xred. If X is a hypersurface in PN , then the multiplicity µ≥ 1 is well-
defined. In the general case we do not need the notion of the multiplicity µ of Y in X at a general point
of Y . In this section we need knowledge only on whether µ = 1 or µ > 1. We say that Y has multiplicity
µ= 1 if X is reduced at a general x ∈ Y , i.e. there is a non-empty open subset U ⊆ Y such that OX ,x =OY ,x

for all x ∈ U . Otherwise we say that Y has multiplicity µ > 1. We are interested only in the case X not
integral; if Y has multiplicity 1, then we have other irreducible components of Xred.

Lemma 5.1. Let C ⊂ X be a reduced aCM subvariety of pure dimension n −1. Then its ideal sheaf IC ,X is

an aCM OX -sheaf such that

• it is locally free outside C and

• for any closed subscheme Y ( X , it is not an OY -sheaf.

Proof. Since C is aCM as a closed subscheme ofPN and C has pure dimension n−1, we have h1(IC ,PN (t ))=
0 for all t ∈ Z. Thus the restriction map ρt : H 0(OPN (t )) → H 0(OC (t )) is surjective for any t ∈Z. Since ρt

factors through the restriction map ηt : H 0(OX (t )) → H 0(OC (t )), ηt is surjective. Since ηt is surjective and
h1(OX (t )) = 0, we have h1(IC ,X (t )) = 0. This implies that IC ,X is aCM. From IC ,X \C

∼=OX \C , we see that
IC ,X is locally free and of rank 1 outside C . Since C is not an irreducible component of Xred and IC ,X is
locally free of positive rank outside C , there is no closed subscheme Y ( X with IC ,X an OY -sheaf. �

Proposition 5.2. Fix an irreducible component Y of Xred. For a fixed integer e > 0 and any integral divisor

C ∈ |OY (e)|, define

ΣC :=
{

p ∈ Y | IC ,X is not locally free at p
}

.

(i) If Y has multiplicity µ> 1 in X , then we have ΣC =C , i.e. for all p ∈C the sheaf IC ,X is not locally

free at p. For any two integral curves C1,C2 ∈ |OY (e)|, we have IC1,X
∼=IC2,X if and only if C1 =C2.

(ii) Assume that Y has multiplicityµ= 1 and that X is not integral. Let F ∈ |OY (m−1)| be the complete

intersection of Y with the other components of X , counting multiplicities. If F 6= ;, then F has pure

dimension n −1 and F ∩C 6= ; with ΣC = (F ∩C )red.

(iii) For any two integral divisors C1,C2 ∈ |OY (e)| such that IC1,X
∼= IC2,X , we have ΣC1 = ΣC2 ; in case

(i) we have the converse.
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Proof. By Lemma 5.1 the sheaf IC ,X is aCM and locally free with rank 1 at all p ∈ X \ C . Fix p ∈ C and
assume that IC ,X is locally free at p . Then there is w ∈ (IC ,X )p such that w is not a zero-divisor of OX ,p

and (IC ,X )p
∼= wOX ,p as a module over the local ring OX ,p . We get that in a neighborhood of p the divisor

C is a Cartier divisor of X . Let I ⊂OX ,p be the ideal of Y and J ⊂OX ,p the ideal of C . We have I ⊂ J . First
assume that X is not reduced at a general point of X . Since the support of the nilradical η ⊂ OX of the
structural sheaf OY is a closed subset of Xred, X is not reduced at any point of Y and in particular it is not
reduced at p . Thus there is a nonzero h ∈ I such that hm = 0 for some m > 0. Since I ⊂ J , we have h ∈ J

and so h is divided by w . Thus we get w m = 0 and so w is a zero-divisor, a contradiction.
Now assume that X is reduced at a general point of Y . Since X is not integral and it has pure depth

n, Xred has at least one another irreducible component. Since h0(OX ) = 1, X is connected and so F 6=

;. Fix any x ∈ F . Since OX ,x has depth n ≥ 2, it is connected in dimension ≤ n − 1, i.e. for any open
neighborhood W of x in X and any closed subscheme V of W , there is a neighborhhod U of x in W such
that U \ (U ∩V ) is connected. Thus F has pure dimension n −1. Since C ∈ |OY (e)|, C is a Cartier divisor
of Y . Thus C is a Cartier divisor of X at all points of C \ (C ∩F ). Since e > 0, C is an ample divisor of Y . In
particular, we get F ∩C 6= ;. Fix p ∈ F ∩C . Any local equation w of C at p vanishes on each irreducible
component of Xred containing p , because w is assumed to be a non-zero divisor of OX ,p . There is at least
one another irreducible component of Xred containing p , because p ∈ F .

Part (iii) is obvious. �

As a corollary of Proposition 5.2 we get the following result, which shows that X is of wild representa-
tion type in a very strong form.

Proposition 5.3. Take X as above. For a fixed integer w > 0, there is an integral quasi-projective variety

∆ and a flat family {Fa }a∈∆ of aCM sheaf on X with each Fa locally free outside a one-codimensional

subscheme Ca and for each a ∈ ∆ the set of all b ∈ ∆ such that Fb
∼= Fa is contained in an algebraic

subscheme ∆a ⊂∆ with dim∆−dim∆a ≥ w.

Proof. First assume that X has at least one irreducible component Y with multiplicity at least 2. Fix a
positive integer e such that dim |OY (e)| ≥ w and take as ∆ the family of all integral C ∈ |OY (e)|. Then we
may apply (i) of Proposition 5.2. In this case we may find ∆ with the additional condition that for all
a,b ∈∆ we have Fa

∼=Fb if and only if a = b.
Now assume that each irreducible component of X has multiplicity 1 and fix one of them, say Y . Write

F ⊂ Y as in (ii) of Proposition 5.2. Fix an integer e > 0 such that h0(OX (e))−h0(OX (e)(−F )) > w and let ∆
be the set of all integral divisors C ∈ |OX (e)| not contained in F and such that the scheme F ∩C is reduced.
Since F has pure dimension n−1 and C is an ample divisor, the set (F ∩C )red has pure dimension 2. Note
that if C ,D ∈∆ and (C ∩F )red = (D ∩F )red, then any equation of C in H 0(OX (e)) differs from an equation
of D by an element of H 0(OX (e)(−F )). Then we may apply (ii) of Proposition 5.2. �
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