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High-throughput DNA sequencing technology provides base-level and statis-
tically rich information about the genomic content of a sample. In the contexts
of cancer research and precision oncology, thousands of genomes from paired
tumor and matched normal samples are profiled and processed to determine
somatic copy-number changes and single-nucleotide variations. Higher-order
informative analyses, in the form of allele-specific copy-number assessments
or subclonality quantification, require reliable estimates of tumor DNA ploidy
and tumor cellularity. CLONETv2 provides a complete set of functions to pro-
cess matched normal and tumor pairs using patient-specific genotype data, is
independent of low-level tools (e.g., aligner, segmentation algorithm, mutation
caller) and offers high-level functions to compute allele-specific copy number
from segmented data and to identify subclonal population in the input sam-
ple. CLONETv2 is applicable to whole-genome, whole-exome and targeted
sequencing data generated either from tissue or from liquid biopsy samples. C©
2019 The Authors.
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INTRODUCTION

Massive sequencing efforts, such as those of The Cancer Genome Atlas (TCGA) and
the International Cancer Genome Consortium (ICGC), have generated a comprehensive
collection of sequenced genomes of cancer patients, opening a new era for genomics.
Advanced analyses of genomic sequencing data require accurate estimation of DNA cel-
lularity (purity, 1 – DNA admixture) and tumor ploidy to allow appropriate comparative
computation. DNA admixture refers to the amount of non-cancer cells in a tumor sam-
ple, whereas ploidy represents the average number of chromosome set in a cell. Human
healthy cells are diploid, whereas tumor cells often demonstrate a dramatically variable
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ploidy number, depending on the tumor type (Chunduri & Storchova, 2019; Danielsen,
Pradhan, & Novelli, 2016). The impact of ploidy changes on tumor evolution and prog-
nosis is as yet unclear, but recent pan-cancer studies have shed some light on this issue.
In a primary tumor pan-cancer cohort from the TCGA project, cell proliferation and
immune evasion, two hallmarks of cancer, were deregulated in high-aneuploidy samples
(Davoli, Uno, Wooten, & Elledge, 2017; Taylor et al., 2018). In a pan-cancer cohort
of 9,692 patients with advanced disease, aneuploidy was associated with poor survival
(Bielski et al., 2018).

A recent review (Aran, Sirota, & Butte, 2015) highlighted the importance of purity
estimation in analyzing sequencing data. For instance, phylogenetic reconstruction of
tumor evolution from multisample DNA sequencing data from a single patient stringently
relies on the quantification of the variant allelic fraction (VAF) of single-nucleotide
variants (SNV) (Gundem et al., 2015), which is affected by both the DNA admixture
(normal cells dilute SNV VAFs) and the ploidy (polyploidy increases the total number
of alleles) of each tumor sample. The same issues also affect the determination of the
absolute number of copies of a genomic segment in a tumor sample (Carter et al., 2012).
Many computational methods identify somatic copy-number aberrations from the relative
amounts of DNA in a tumor and its matched normal sample, but accurate estimation of
the integer number of copies of each allele requires purity and ploidy adjustments (Bao,
Pu, & Messer, 2014).

These considerations call for the development of computational tools to quantify tumor
purity and ploidy. In the pre-sequencing era, several tools were developed for high-
density single-nucleotide polymorphism (SNP) array data (e.g., Carter et al., 2012; Van
Loo et al., 2010); with these, typically the tumor-to-control-signal log ratio (hereafter
logR) and the abundance of allele-specific signal (B allele frequency, BAF) distributions
are jointly analyzed to infer DNA admixture and ploidy. However, array-based tools
are limited by the number of the genomic bases assayed (mainly in the range of 0.5
million to 2 million sites) and by the signal dynamic range. Next-generation sequencing
platforms overcome these limitations while preserving the same data features to exploit
(Aran et al., 2015): allelic fraction (AF) of inherited heterozygous SNP loci (hereafter
called informative SNPs) and sequencing coverage resemble the BAF and logR data
of SNP arrays, respectively. The statistically richer data offered by sequencing makes
it possible to perform more complex analyses such as allele-specific copy-number and
clonality estimates.

In general, available methods to estimate ploidy and DNA admixture adopt a global
approach, and the distributions of AFs and logR values are conjointly used to infer
DNA admixture and ploidy. Intuitively, it is evident that the AF of informative SNPs is
distributed around 0.5 in a 100% admixed tumor sample (up to the reference mapping
bias; Degner et al., 2009), and lower AFs imply lower DNA admixture. LogR data
are used as a covariate, as AF also depends on the number of available alleles. If no
tumor cell subpopulations are present (that is, if the copy-number profile of a tumor
sample is homogeneous, i.e., the ratio of subclonal deletions/amplifications is low),
global inference approaches capture the DNA admixture content well. However, in the
presence of complex genomic events, such as chromothripsis (Stephens et al., 2011) or
chromoplexy (Baca et al., 2013), or after multiple treatments that diversify the tumor cell
population, global approaches are suboptimal.

CLONET (CLONality Estimate in Tumor; Prandi et al., 2014) is a stand-alone
tool specifically designed with a local approach to clonality estimation to handle
heterogeneous tumor samples. Briefly, consider a tumor sample T with a hemizygous
deletion HeD and the set of informative SNPs S lying within HeD. The AF value of SNPsPrandi and
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in S is the convolution of the AF of the different cell populations composing T. If HeD is
subclonal (that is, not all tumor cells harbor this deletion), the tumor sample comprises
three main cell populations: (i) non-tumor cells contributing to DNA admixture, with
expected AFs of SNPs in S around 0.5; (ii) tumor cells not harboring HeD, such that the
AFs of SNPs in S cannot be distinguished from those of non-tumor cells; and (iii) tumor
cells harboring HeD, in which the AF could either be equal to 1 (if the deleted allele har-
bors the alternative base) or to 0 (if the deleted allele harbors the reference allele). Based
on the observation that apparent DNA admixture is higher in subclonal deletions than in
clonal deletions, CLONET estimates DNA admixture at each hemizygous deletion and
then identifies the most clonal deletions to finally designate the sample DNA admixture.
This results in a more accurate estimation of DNA admixture, which would otherwise be
overestimated, in tumors with a significant fraction of subclonal deletions.

Here, we present CLONET version 2 (CLONETv2), an R package (R Core Team, 2017)
available at The Comprehensive R Archive Network (https://cran.r-project.org/) that
includes significant improvements over the original CLONET implementation. This is the
result of its application to several clinical cohorts, including tissue and plasma samples,
and to a variety of sequencing platforms, such as whole-genome, whole-exome, and
targeted sequencing panels. In Carreira et al. (2014), CLONET was used to estimate DNA
admixture from a custom sequencing panel of �40 kb designed to analyze circulating
tumor DNA of plasma samples from metastatic patients, and the algorithm was modified
to improve sensitivity in samples with <10% tumor cells. In Beltran et al. (2016),
CLONET was extended to provide allele-specific copy-number data from whole-exome
sequencing experiments; for each genomic segment in each study cohort tumor, the study
reports the number of copies of each allele using ploidy, DNA admixture, logR, and the AF
of informative SNPs. In Faltas et al. (2016), the clonality analysis capability of CLONET
was improved to account for complex allele-specific combinations and SNVs. Since its
initial conception and application to whole-genome sequencing data (Baca et al., 2013;
Prandi et al., 2014), CLONET improvements have been used in several studies (including
Beltran et al., 2015; Boysen et al., 2015; Cancer Genome Atlas Research Network, 2015;
and Mu et al., 2017). Here, we present a documented version of CLONETv2 to uniformly
highlight the approach features and propose it as an R package to make the tool available
to a broader audience.

BASIC
PROTOCOL 1

COMPUTING BETA TABLE

All reads of a human DNA next-generation sequencing experiment that map within a
genomic segment derive from either one of the parental chromosomes of origin. Reads
can be split into two sets: a copy-number-neutral set that contains equal numbers of
reads from the maternal and paternal chromosomes, and an active reads set that includes
sequences from only one parent. Generally speaking, given two random reads, it is
impossible to determine whether or not they represent the same allele; however, if the
two reads span an informative SNP, the allele of origin can be identified. For reads over
informative SNPs, the number of reads (local coverage) supporting the reference or the
alternative SNP represents the number of copies and the origin of the alleles present in
the tumor sample. Each informative SNP can be characterized by its allelic fraction (AF),
which depends on the genomic context. For instance, let us consider the two informative
SNPs within a monoallelic deletion of the genomic segment denoted A in Figure 1A.
At position p1, only the alternative allele is present and AF = 1, whereas at position
pn, the alternative allele is deleted and AF = 0. In contrast, in the wild-type genomic
segment B, the AF values of informative SNPs at positions pn+1 and pm are distributed
around 0.5, as both alleles contribute equally to the local coverage. Now, the percentage
of neutral reads (known as beta, β) at p1 and pn is equal to 0, regardless of which allele is
deleted, whereas at wild-type genomic positions, pn+1 and pm each approximate 1, as no
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Figure 1 Cartoon of the computation of beta and allelic fraction of informative SNPs. (A) Exam-
ple of the allelic fraction (AF) and beta (β) values computed for five genomic positions (p1 to pm)
corresponding to five informative SNPs. Positions p1 to pn are within a hemizygously deleted ge-
nomic segment, A, whereas genomic positions pn+1 to pm lie within a wild-type genomic segment,
B. (B to D) Examples of a normal cell and two different tumor cells. Tumor cells 1 and 2 differ in the
status of genomic segment B. Histograms below the cell cartoons report the expected distribution
of the AF of SNPs in genomic segments A and B together with the associated beta values. (E and
F) Examples of two different tumor samples. Tumor sample 1 includes one normal cell and nine
tumor cells with deleted genomic segment A and wild-type genomic segment B. Tumor sample
2 differs from tumor sample 1 in the presence of six tumor cells with a hemizygous deletion of
genomic segment B. Expected distribution of the AF of informative SNPs together with estimated
beta are depicted below each tumor sample cartoon.
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active reads are present. Overall, SNPs within somatically aberrant segments are easier to
characterize using the beta values as compared to the AFs, as the former is independent
from the deleted allele. In a heterogeneous tumor sample, the distributions of AFs and
betas result from the convolution of the distribution observed in basic wild-type and
monoallelic deleted segments. As an example, Figure 1B depicts the distribution of the
AF and the associated beta of the informative SNPs in genomic segments A and B in the
case of a normal cell, whereas Figures 1C and 1D show how the distributions change
in tumor cells with monoallelic deletion of only genomic segment A, or of both A and
B, respectively. Figure 1E represents the case of a tumor sample with one normal cell
(Fig. 1B) and nine tumor cells 1 (Fig. 1C). The DNA admixture is 1/10, and the AF
could assume values around 1/11 or 10/11, whereas beta is 2/11. Genomic segment B
is not deleted, and therefore the AF and the beta are as in the normal cell. Figure 1F
represents a more complex situation involving one normal cell (Fig. 1B), three “tumor
cells 1” (Fig. 1C), and six “tumor cells 2” (Fig. 1D). The AF and beta of informative
SNPs in genomic segment A are as in Figure 1E, but only the six tumor cells 2 carry
the monoallelic deletion of genomic segment B. In this case, the AF distribution modes
are centered on 4/14 and 10/14, depending on the depleted base, whereas beta is 8/14.
The full characterization of beta is described by Prandi et al. (2014), and in Beltran et al.
(2016) we defined CLONET master equations that describe allele-specific copy number
of maternal and paternal alleles, cnM and cnP, as a function of the percentage of neutral
reads beta, the log2 ratio values adjusted by ploidy logRp, and the DNA admixture G,
as: ⎧⎪⎪⎨

⎪⎪⎩

cnM = (2 − beta)(beta2logRp − G) + 2G(1 − beta)

(1 − G) beta

cnP = beta 2logRp − G

1 − G
Equation 1

where maternal and paternal allele are arbitrarily assigned. Figure 2 sketches the trans-
formation of the log2 ratio space implied by Equation 1. Figure 2A reports the histogram
of the log2 ratio signal in a tumor sample: peaks in the distribution correspond to different
copy-number states, whereas deviations from the position of the expected peaks (below)
depend on ploidy and DNA admixture values. It is difficult to identify the peak that
corresponds to wild-type segments using only log2 ratio signal. When we expand the
monodimensional logR space with beta (Fig. 2B), segments that contribute to the same
peak along the logR dimension form different clusters in the beta-vs.-logR space. Of
note, the beta-vs.-logR plot still reflects ploidy and DNA admixture, whereas the cnM
and cnP space (see Equation 1) allows straightforward interpretation of the copy number
and clonality status of each genomic segment.

The function compute_beta_table estimates the beta of a genomic segment as
described in Carreira et al. (Carreira et al., 2014). The functioncompute_beta_table
includes the following input:

� seg_tb: a table resulting from DNA segmentation; for each genomic segment, the
table reports chromosome, start/end position and the log2 ratio of the tumor over
the normal coverage, as defined in the Circular Binary Segmentation algorithm
(Olshen, Venkatraman, Lucito, & Wigler, 2004);

� pileup_normal, pileup_tumor: two tables reporting allelic fraction and
coverage of SNPs in normal and matched tumor samples, respectively; for each
SNP, each table reports genomic coordinates (chromosome and position), allelic
fraction, and coverage;
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Figure 2 Sketch of CLONETv2 copy-number-space transformations. (A) Example of histogram
and density plots of the distribution of logR signal in a tumor sample. Expected positions of
integer copy numbers in a diploid 100% pure tumor sample are listed below. (B) Expansion of
the monodimensional logR signal of panel A in the two-dimensional beta-vs.-logR space. Each
dot represents a genomic segment, and vertical dashed lines correspond to integer copy number
as in panel A. Color code clusters genomic segments with homogenous copy number. (C) Allele-
specific copy-number projection of the beta vs. logR data of panel B. Each dot represents a
genomic segment with maternal copy-number allele cnM and paternal copy-number allele cnP.
Maternal and paternal alleles are assigned arbitrarily. The color code is consistent with that in
panel B.

� min_af_het_snps, max_af_het_snps: for each SNP in the pileup_
normal table, set minimum and maximum allelic fraction to consider the SNP as
informative;

� min_required_snps: the minimum number of informative SNPs in a genomic
segment from seg_tb to retain the segment;

� min_coverage: the minimum mean coverage of informative SNPs to retain a
segment.

As output, the function compute_beta_table extends the input table seg_tb. For
each segment in seg_tb, the function compute_beta_table returns the following
values:

� beta: estimated value for the input segment;
� nsnps: number of informative SNPs in the input segment;
� cov: mean coverage of informative SNPs in the input segment;
� n_beta: estimated value for the input segment considering the matched normal

sample. This value is expected to be 1, except in the case of germline copy-number
variation or sequencing-related errors.

The interpretation of the function compute_beta_table output is not an easy task
due to the identifiability problem — i.e., the fact that more than one combination of ploidy
and DNA admixture fit the observed data (Li & Xie, 2014). However, upon definition of
ploidy and DNA admixture, Equation 1 completely defines the absolute copy numbers of
both alleles. We will exploit this capability in Support Protocol 2, where Equation 1 is used
to plot the expected beta and logR ratio against estimated values. The optional parameter
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plot_stats of thecompute_beta_table function plots useful summary statistics
for a "sanity check" of the output. In particular, whenplot_stats isTRUE, the function
returns:

� number of processed segments: the number of segments in the input seg_tb table;
� number of segments with a valid beta estimate: the number input segments for

which beta value is computed; this value is affected by the number of informative
SNPs and their mean coverage;

� quantiles of input segment lengths: the quantiles of the distribution of the length of
the input segments; the expected distribution depends on the segmentation algorithm
used to produce theseg_tb table, but in general small values result in a low number
of informative SNPs, whereas large segments may indicate undersegmentation that
in turn affects beta estimates;

� quantiles of informative SNPs input segment coverage: the quantiles of the distri-
bution of the mean coverage of the input segments; expected coverage depends on
the sequencing experiment, but a low value may indicate problems with the input
sample;

� quantiles of number of informative SNPs per input segment: the quantiles of the
distribution of the number of informative SNPs in the input segments; expected
number of informative SNPs per kb is �0.33 (based on common SNPs), and
therefore, this value combined with input segment lengths gives information about
the quality of the pileup data.

Necessary Resources

Hardware

64-bit computer running Linux with �8 GB RAM

Software

The library has been tested with R version 3.5.2 and the R libraries parallel 3.5.2,
ggplot2 3.1.0, sets 1.0-18, arules 1.6-3, and ggrepel 0.8.0

1. Prepare tumor and normal pileups as described in Support Protocol 1 or with other
computational tools. The output of this step comprises two files, tumor.pileup
and normal.pileup.

2. Prepare tumor segmented data in the file tumor_segments.txt with columns
compatible with the parameter seg_tb described above.

3. Run R from the command line:

$ R

4. Install CLONETv2 for the first time:

> install.packages(“CLONETv2”)

5. Load the library:

> library(CLONETv2)

6. Load input files:

> seg_tb <- read.table(system.file(“sample.seg”,
package = “CLONETv2”),header = T, as.is=T)

> pileup_tumor <- read.table(system.file(“sample_
tumor_pileup.tsv”, package = “CLONETv2”),header =
T, as.is=T)
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> pileup_normal <- read.table(system.file(“sample_
normal_pileup.tsv”, package = “CLONETv2”),header =
T, as.is=T)

7. Compute beta for each input segment with default parameters:

> bt <- compute_beta_table(seg_tb, pileup_tumor,
pileup_normal)

8. Compute beta activating the plot_stats parameter:

> bt <- compute_beta_table(seg_tb, pileup_tumor,
pileup_normal, plot_stats=T)

This results in the following output:

Computed beta table of sample “sample1”
Number of processed segments: 65
Number of segments with valid beta: 49 (75%)
Quantiles of input segment lengths:
0%: 2860
25%: 17504185
50%: 38004799
75%: 59311449
100%: 147311449

Quantiles of input segment coverage:
0%: 47.0000
25%: 137.7893
50%: 168.3820
75%: 186.6769
100%: 695.6145

Quantiles of number of informative SNPs per input
segment:
0%: 0
25%: 12
50%: 99
75%: 213
100%: 404

SUPPORT
PROTOCOL 1

PREPARING PILEUP DATA

This protocol describes the steps used to prepare pileup data from a set of SNPs
and matched tumor and normal .bam (BAM) files (Li et al., 2009). The tables
pileup_normal and pileup_tumor report allelic fraction and coverage for a
set of SNP positions. Candidate SNP positions can be downloaded directly from the
dbSNP FTP server (ftp://ftp.ncbi.nlm.nih.gov/snp/). We suggest starting from the largest
possible set of SNPs, as the larger the number of informative SNPs, the more reliable the
CLONETv2 estimates. Pileups from BAM files can be obtained using any of several tools.
Here we describe how to prepare pileups using ASEQ (Romanel, Lago, Prandi, Sboner,
& Demichelis, 2015), a tool freely available at http://demichelislab.eu/tools/ASEQ.

Necessary Resources

Hardware

64-bit computer running Linux with �8 GB RAM

Software

ASEQ, curl
Prandi and
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Input files

BAM files tumor.bam and normal.bam containing aligned reads from
genomic sequencing experiments of matched tumor and normal DNA samples,
respectively

VCF (Degner et al., 2009) file known_snp_positions.vcf reporting known
SNP positions; ASEQ requires that the input VCF only lists SNPs, i.e., columns
ALT and REF must contain one of the values A, C, G, or T. ASEQ parameters
include:

� mrq: minimum read quality (ASEQ does not consider as part of the pileup reads
with read quality < mrq);

� mbq: minimum base quality (ASEQ does not consider as part of the pileup bases
with quality < mbq);

� mdc: minimum depth of coverage (ASEQ output only reports positions with cov-
erage � mdc);

� threads: number of threads available for ASEQ computation.

1. Download and uncompress the last version of ASEQ:

$ curl http://demichelislab.unitn.it/lib/exe/fetch.php?media=aseq-v1.1.11-
linux64.tar.gz > aseq-v1.1.11-linux64.tar.gz

$ tar xvf aseq-v1.1.11-linux64.tar.gz

ASEQ code will be available in the subfolder binaries/linux64/.

2. Download and uncompress ASEQ examples:

$ curl http://demichelislab.unitn.it/lib/exe/fetch.php?media=aseq-examples.
tar.gz > aseq-examples.tar.gz

$ tar xvf aseq-examples.tar.gz

ASEQ examples will available in the subfolder examples/VCF_samples/.

3. Run ASEQ on example data 1:

$./binaries/linux64/ASEQ mode=PILEUP vcf=examples/
VCF_samples/sample1.vcf bam=examples/BAM_samples/
sample1.bam mbq=20 mrq=20 mdc=1 threads=1 out=.

ASEQ produces the file sample1.PILEUP.ASEQ, reporting allelic fraction and read
coverage from the BAM file sample1.bam, for each position in the VCF file sam-
ple1.vcf. The parameters mbq = 20 and mrq = 20 tell ASEQ to ignore, respectively,
bases and reads with quality <20. The parameter mdc = 1 instructs ASEQ to ignore
positions in the BAM file with no reads. The parameters and the format of the output file
.PILEUP.ASEQ are compatible with pileup data required in Basic Protocol 1.

BASIC
PROTOCOL 2

COMPUTING PLOIDY

Segmentation algorithms partition input genomic space into segments with homoge-
nous coverage. Given a pair of matched tumor and normal samples, the logR value of
a genomic segment is the log2 of the ratio between the tumor coverage and the normal
sample coverage within the segment. To account for different mean coverage in differ-
ent sequencing experiments, logR is normalized over the ratio between the mean tumor
and the mean normal coverage; this applies both to whole-genome and whole-exome
data. In the case of higher coverage in the tumor sample, if without normalization the
ratio between the mean tumor and the mean normal coverage is X, a wild-type segment
would have logR = log2(X), whereas the expected value is 0 (i.e., same number of alleles
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Figure 3 Examples of diploid and aneuploid sample. Histograms of the logR of a diploid tumor
sample (A) and an aneuploid tumor sample (B) are shown. Green line, expected value; orange
line, value corresponding to wild-type segments; turquoise line, value corresponding to segments
with copy number 4.

between tumor and normal samples). The normalization would, however, introduce a bias
whenever the difference in mean coverage between the tumor and the normal sample was
due to the presence of an abnormal number of alleles in the tumor (aneuploid) genome.
In this case, the normalization leads to a shift in the logR signal. Figure 3A shows an
example of a diploid genome sample with 127× and 69× mean tumor and mean nor-
mal coverage, respectively. The logR signal is centered on 0, as expected (green line).
Figure 3B highlights a more complex case: tumor and normal mean coverage are compa-
rable (125× and 117×, respectively), but the position of the wild-type segments (orange
line) is shifted with respect to the expected value (green line). The shift is representative
of the total number of alleles in the genome, and ploidy can be estimated as:

ploidy = 2 × 2−log2(logR shift)

Equation 2

The proof (Equation 2) is reported in the paper originally describing CLONET (Prandi
et al., 2014). The example in Figure 3A has a logR shift of 0 and ploidy of 2, whereas
the example in Figure 3B has a logR shift of –0.34 and a ploidy of 2.53.

The functioncompute_ploidy builds on this definition and is implemented to identify
wild-type genomic segments and to estimate how far the logR values deviate from 0.
The key step in the search is to restrict the genomic segments space to those with
beta = 1, i.e., those with an equal number of maternal and paternal copies. In Figure 3B,
this step excludes segments with logR around 0, as their beta is significantly lower than
1 and represent segments with copy number 3 (see Basic Protocol 4). In this context, the
green line in Figure 3B is centered on wild-type segments, and the turquoise vertical line
identifies segments of copy number 4. The function compute_ploidy includes the
following input parameters:

� beta_table: a table created using the function described in Basic Protocol 1;
� max_homo_dels_fraction (default 0.05): homozygous deletions can provide

a confounding factor in the determination of sample ploidy; the parameter sets a
percentage of genomic segments that will not be used for ploidy computation as
putative homozygous deletion, and overestimating this value does not affect ploidy
computation;
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� beta_limit_for_neutral_reads (default 0.90): in theory, neutral reads
correspond to beta = 1, but experimental noise lowers this value; therefore only
segments with beta above the limit are used to compute ploidy;

� min_coverage (default 20): only genomic segments with average coverage at
least min_coverage are used to compute DNA admixture;

� min_required_snps (default 10): only genomic segments covering at least
min_required_snps informative SNPs are considered for DNA admixture
computation.

The function returns the ploidy for the input sample.

Necessary Resources

Hardware

64-bit computer running Linux with �4 GB RAM

Software

The library has been tested with R version 3.5.2 and R libraries parallel 3.5.2, ggplot2
3.1.0, sets 1.0-18, arules 1.6-3, ggrepel 0.8.0.

1. Run R from the command line:

$ R

2. Compute beta table as described in Basic Protocol 1.

3. Compute ploidy from beta table bt:

> pl <- compute_ploidy(bt)

BASIC
PROTOCOL 3

COMPUTING DNA ADMIXTURE

DNA admixture is defined as the percentage of non-tumor cells in a tumor sample. DNA
admixture is an important confounding factor in genomic analysis, as it dilutes somatic
aberration signal across all genomic and molecular alterations. Relevant to genomic anal-
yses, it dilutes somatic copy-number aberration (SCNA) and SNV signal. In a 100% pure
tumor sample, the expected coverage across a monoallelic (i.e., hemizygous) deletion
should be about half of coverage of wild-type segments, and therefore the logR should
be equal to –1 (i.e., log2(½)). However, if the purity is 50%, then only half of the total
number of cells harbor the hemizygous deletion, and the expected logR is log2(¾), or
around –0.415. Similarly, the value of beta of a genomic segment varies depending on
the level of DNA admixture. In Basic Protocol 1, we saw that the beta of a hemizygous
deletion in a 100% pure sample is 0, as no neutral reads are present. However, 50%
admixture would increase beta to ⅔, as for each tumor active read there would be two
neutral read from the admixed cells. The original CLONET manuscript (Prandi et al.,
2014) describes the equations that define the expected logR and beta corresponding to
the spectrum of tumor admixture. The function compute_dna_admixture searches
the (logR, beta) space defined by the function compute_beta_table (Basic Pro-
tocol 1) for a value of DNA admixture that better explains the observed value in the
beta_table. The function compute_dna_admixture also requires the ploidy
value, as computed by the function compute_ploidy (Basic Protocol 2), to account
for the shift in logR values due to possible aneuploidy tumor genomes. The function
compute_dna_admixture has the following input parameters:

� beta_table: a table created using the function described in Basic Protocol 1;
� ploidy_table: a table created using the function described in Basic Protocol 2; Prandi and
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� min_coverage (default 20): only genomic segments with average coverage at
least min_coverage are used to compute DNA admixture;

� min_required_snps (default 10): only genomic segments covering at least
min_required_snps informative SNPs are considered for DNA admixture
computation;

� error_tb: the number of informative SNPs and the coverage of the considered
segment affect the accuracy of the estimation of beta of a genomic. The table
error_tb reports, for each combination of number of informative SNPs and
coverage, the expected error around the beta estimate. CLONETv2 embeds a pre-
computed error_tb (details in Prandi et al., 2014) previously tested in several
studies (Beltran et al., 2015; Beltran et al., 2016; Faltas et al., 2016). However,
specific experimental settings, such as ultra-deep targeted sequencing or low-pass
whole-genome sequencing, may require an ad hoc error_tb table.

The function returns the estimated DNA admixture for the input sample as well as mini-
mum and maximum DNA admixture values accounting for errors around beta estimates.

Necessary Resources

Hardware

64-bit computer running Linux with �4 GB RAM

Software

The library has been tested with R version 3.5.2 and the R libraries parallel 3.5.2,
ggplot2 3.1.0, sets 1.0-18, arules 1.6-3, and ggrepel 0.8.0

1. Run R from the command line:

$ R

2. Compute beta table as described in Basic Protocol 1.

3. Compute ploidy table as described in Basic Protocol 2.

4. Given beta table bt and ploidy pl, compute DNA admixture:

> adm <- compute_dna_admixture(bt, pl)

SUPPORT
PROTOCOL 2

VISUALIZING AND INTERPRETING BETA TABLE, PLOIDY, AND DNA
ADMIXTURE

Basic Protocol 1 describes how to derive the value of beta for a genomic segment. A
tumor sample is then described as a set of (beta, logR) values extending the usual logR
space and enabling the computation of ploidy and DNA admixture in Basic Protocols 2
and 3, respectively. To help interpreting the results of Basic Protocols 1 to 3, CLONETv2
provides the function check_ploidy_and_admixture that plots beta-vs.-logR
space for a given samples. Figure 4A and 4B show the values of beta against the logR of the
same samples presented in Figure 3A and B, respectively. For each genomic segment, the
plot reports the logR as well as the beta computed by functioncompute_beta_table.
To help the user, the function predicts expected (beta, logR) given the input ploidy and
DNA admixture level according to the equations described in CLONET paper (Prandi
et al., 2014). Predicted values are computed for different combinations of allele-specific
copy numbers (see Basic Protocol 4) and represented as red circles. Comparing the
expected (red circles) and the observed (gray dots) values helps the interpretation of the
estimates. For instance, segments with logR near 0 in Figure 3B cannot be wild type, as
their betas are �0.8, a value compatible with the presence of three DNA copies.Prandi and
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Figure 4 Examples of beta-vs.-logR space. Panels A and B extend the logR histograms of
Figure 1A and B, respectively, to the beta-vs.-logR space. Each gray dot represents a genomic
segment. Large light-red circles represent expected (beta, logR) values corresponding to the esti-
mated ploidy and DNA admixture (reported above the corresponding plot). A circle corresponding
to clonal homozygous deletions, if represented, would be at coordinate (–�, 1).

Necessary Resources

Hardware

64-bit computer running Linux with �4 GB RAM

Software

The library has been tested with R version 3.5.2 and the R libraries parallel 3.5.2,
ggplot2 3.1.0, sets 1.0-18, arules 1.6-3, and ggrepel 0.8.0

1. Run R from the command line:

$ R

2. Follow Basic Protocols 1, 2, and 3 to compute beta table bt, ploidy table pl, and
DNA admixture table adm, respectively.

3. Compute basic beta-vs.-logR plot:

> check_plot <- check_ploidy_and_admixture(bt,pl,adm)

check_plot is a ggplot object (Wickham, 2009) that can be customized by the user
(e.g., for font size, color, line width).

4. Print final plot with the command:

> print(check_plot)

BASIC
PROTOCOL 4

COMPUTING ALLELE-SPECIFIC COPY NUMBER

Figure 3 suggests a relation between the values (beta, logR) for a genomic segment and its
allele-specific copy number. Consider a 100% pure tumor sample and a genomic segment
with wild-type logR, in which the log2 ratio is equal to 0; then beta could either be equal
to 1 (if one copy each of the maternal and paternal alleles are present) or be equal to 0
(if the two alleles come from the same parent: the copy-neutral loss of heterozygosity,
or CN-LOH, case). The approach is generalized in Beltran et al. (2016) by defining the Prandi and
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exact equations that relates (logR, beta) to allele-specific copy number, given the ploidy
and the DNA admixture. Figure 5A shows an example in which CLONETv2 identifies
three classes of loss of heterozygosity: the well-characterized classes of hemizygous
deletion and CN-LOH, and the less common gain-LOH, in which one allele is lost
but the total copy number (logR value) is consistent with a gain of DNA. Mapping
(logR, beta) space to allele-specific copy-number space (Fig. 5B) simplifies interpretation
the genomic landscape of a sample. Of note, the allele-specific copy-number signal in
Figure 5B does not contain information about the ploidy and purity of the original
sample, making it easy to compare samples with different ploidy and purity values.
The example highlights the novelty and power of allele-specific copy-number analysis.
The function compute_allele_specific_scna_table transforms (logR, beta)
pairs into allele-specific copy-number pairs (cnA, cnB). The function requires estimates
of purity and ploidy and has the following parameters:

� beta_table: a table created using the bt function described in Basic Protocol
1;

� ploidy_table: a table created using thepl function described in Basic Protocol
2;

� admixture_table: a table created using the adm function described in Basic
Protocol 3;

� error_tb: the same error_tb used in the function compute_dna_
admixture of Basic Protocol 3, step 4;

� allelic_imbalance_th (default 0.5): function compute_allele_
specific_scna_table also returns integer values cnA.int and cnB.int
for cnA and cnB, respectively. The value cnA.int is the rounded-off value of
cnA if |cnA.int - cnA| < allelic_imbalance_th; otherwise cnA.int
is not defined. cnB.int is defined similarly with respect to cnB.

The function compute_allele_specific_scna_table extends input
beta_table with columns related to allele-specific copy-number:

Figure 5 From beta-vs.-logR to allele-specific copy-number space. (A) Beta vs. logR of a tumor
sample (as in Fig. 2). (B) Allele-specific plot obtained by transforming the tumor sample data
from A. Each dot corresponds to a genomic segment for which the copy-number values of the
two alleles are reported (with higher copy-number values conventionally reported in the x axis).
Colored arrows and circles show how combinations of beta and logR correspond to different allele-
specific copy-number values. Color code: gray, wild type; light blue, hemizygous deletion; red, gain;
yellow, CN-LOH (copy-neutral loss of heterozygosity); orange, gain-LOH (loss of heterozygosity
in which one allele is lost and the logR indicates a gain of DNA).
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� log2.corr: logR value adjusted by ploidy and purity: i.e., the logR value the
segment would have in a diploid 100% pure tumor sample;

� cnA, cnB: number of copies of major (cnA) and minor (cnB) allele; the values do
not contain information about ploidy and purity — indeed, cnA + cnB equals 2 ×
2log2.corr;

� cnA.int, cnB.int: integer number of copies of major and minor alleles,
respectively.

Necessary Resources

Hardware

64-bit computer running Linux with �4 GB RAM

Software

The library has been tested with R version 3.5.2 and the R libraries parallel 3.5.2,
ggplot2 3.1.0, sets 1.0-18, arules 1.6-3, and ggrepel 0.8.0

1. Run R from the command line:

$ R

2. Follow Basic Protocols 1, 2, and 3 to compute beta table bt, ploidy table pl, and
DNA admixture table adm, respectively.

3. Given beta table bt, ploidy table pl, and DNA admixture table adm, compute the
allele-specific SCNA table:

> as_tb <- compute_allele_specific_scna_table(bt, pl,
adm)

BASIC
PROTOCOL 5

COMPUTING SOMATIC COPY-NUMBER CLONALITY

A somatic aberration is clonal if all the tumor cells harbor the aberration. Suppose a
100% pure tumor sample with monoallelic deletions of genomic segments D1 and D2,
with 100% and 50% clonality, respectively: i.e., all tumor cells harbor D1 deletion, but
only 50% harbor D2 deletion. The expected logR is then log2(½) = –1 for D1 and log2(¾)
(about –0.415) for D2. Note that the expected logR for D2 is the same that would result
given a clonal deletion in a 50% pure sample (see Basic Protocol 3). This is because,
in genomic region D2, the reads sequenced from cells not harboring the deletion cannot
be distinguished from those derived from admixed non-tumor cells. The same consider-
ation holds for the expected proportion of neutral reads, beta. The CLONET equations
(Carreira et al., 2014) build on this intuition and define a map from (logR, beta) pairs to
the clonality of somatic copy-number aberrations. However, fluctuations in the level of
coverage that introduce noise in the logR signal, as well as limitations in the sensitivity
of the inference of beta due to the number of available informative SNPs, make it difficult
to compare the clonality levels of aberrations across different tumor samples. To facili-
tate such clonality comparisons, the function compute_scna_clonality_table
returns a minimum and maximum estimated clonality value and a discretized
clonality status. The function considers DNA admixture level, distribution of logR val-
ues, and errors around beta estimates and assigns to each genomic segment a minimum
and a maximum observed clonality. Lower and upper bound for clonality are used to
assign to define the segment clonality status, among clonal, uncertain.clonal, uncer-
tain.subclonal, subclonal, and not.analysed. Clonal and subclonal statuses correspond
to more reliable clonality calls, whereas an uncertain prefix is used when clonality es-
timate can be affected by the noise of the input data. For instance, Figure 6 reports
the example of a tumor sample with two clusters of hemizygous deletions: clonal in
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Figure 6 Example of tumor sample with subclonal copy number. Plot of beta vs. logR of a tumor
sample with subclonal copy-number segments. Each dot represents a genomic segment, and the
color code indicates clonality status as indicated in the color legend.

(–0.6, 0.45) and subclonal in (–0.25, 0.8). Segments in (–0.9, 0.53) correspond to a
region with subclonal homozygous deletion, in which 20% of the tumor cells lack both
alleles whereas the other 80% retain one allele. Uncertain clonality status calls refer to
segments at (–0.45, 0.58) and at (–0.63, 0.51); compared to clonal segments, the former
shows markedly different beta but borderline logR (uncertain.subclonal), and the latter
shows only small deviation in beta (uncertain.clonal segment). Not.analysed segments
include wild-type segments and aberrant segments with (logR, beta) values that do not
fit CLONETv2 model. The function compute_scna_clonality_table takes a
beta table and the associated estimates of purity and ploidy together with the following
parameters:

� beta_table: a table created using the function described in Basic Protocol 1;
� ploidy_table: a table created using the function described in Basic Protocol 2;
� admixture_table: a table created using the function described in Basic

Protocol 3;
� error_tb: sameerror_tb used in the functioncompute_dna_admixture

of Basic Protocol 3; error around beta is propagated to clonality estimate and used
in its discretization;

� clonality_threshold (default = 0.85): the function compute_scna_
clonality_table returns minimum and maximum clonality for input genomic
segments; clonality_threshold is used to discretize clonality as described
by Prandi et al. (2014);

� beta_threshold (default = 0.9): input beta values below beta_theshold
are marked as potentially aberrant and used for clonality estimates.

The function compute_scna_clonality_table extends input beta_table
with clonality-related columns:

� clonality: real value representing the estimated percentage of tumor cells with
uniform copy number for a given genomic segment;

� clonality.min, clonality.max: real values representing minimum and
maximum estimated clonality given the distribution of beta and logR values;

� clonality.status: discretized clonality.
Prandi and
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Necessary Resources

Hardware

64-bit computer running Linux with �4 GB RAM

Software

The library has been tested with R version 3.5.2 and the R libraries parallel 3.5.2,
ggplot2 3.1.0, sets 1.0-18, arules 1.6-3, and ggrepel 0.8.0

1. Run R from the command line:

$ R

2. Follow Basic Protocols 1, 2, and 3 to compute beta table bt, ploidy table pl, and
DNA admixture table adm, respectively.

3. Given beta table bt, ploidy table pl, and DNA admixture table adm, compute the
SCNA clonality table:

> clonality_tb <- compute_scna_clonality_table(bt,
pl, adm)

BASIC
PROTOCOL 6

COMPUTING SINGLE-NUCLEOTIDE VARIANT CLONALITY

Each SNV is characterized by the variant allele fraction (VAF), i.e., the proportion
of reads supporting the alternative allele; intuitively, the VAF is representative of the
amount of tumor DNA harboring the mutation (as no alternative read is expected from
the admixed normal cells). Therefore, low VAF values correspond to low clonality. In a
100% pure diploid sample, a clonal monoallelic SNV within a wild-type genomic segment
is expected to show a VAF of 0.5 (for simplicity, we here ignore the reference mapping
bias; Degner et al., 2009) whereas, in the same setting, an SNV that is present in the
60% of the tumor cells is expected to show a VAF of 0.3. However, several technical and
biological factors influence VAF value, including DNA admixture, ploidy, and somatic
copy-number status. In Faltas et al. (2016), we extended the original implementation to
deal with SNVs in the context of allele-specific copy number. SNV VAF ranges over a
finite set of values dictated by the DNA copy-number state: for instance, a clonal SNV
in a copy number aberrant segment (CN = 3) in a 100% pure diploid sample may have
VAF equal to ⅓, ⅔, or 1, depending on the number of alleles harboring the mutation.
By utilizing the sample admixture estimate and the its lower and upper bounds (function
compute_dna_admixture), we first estimate the minimum and maximum clonality
and next, as for SCNA, assign a discretize clonality value (clonal, uncertain.clonal,
uncertain.subclonal, or subclonal). Figure 7A shows an example of SNV clonality (y
axis) distributions per discretized class (x axis) regardless of the copy number of the
genomic segments harboring the SNVs (Fig. 7B). Given a tumor sample, the function
compute_snv_clonality takes as input the following parameters:

� snv_read_count: a table reporting in each row the genomic coordinates of an
SNV together with the numbers of reference and alternative reads covering the
mutated position;

� beta_table: a table created using the function described in Basic Protocol 1;
� ploidy_table: a table created using the function described in Basic Protocol 2;
� admixture_table: a table created using the function described in Basic

Protocol 3;
� error_tb: the same error_tb used in the function com-
pute_dna_admixture of Basic Protocol 3; error around beta is propagated to
assess clonality estimate boundary and in turn is used for its discretization;
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Figure 7 Example of clonality analysis of SNVs. (A) Box plot reporting the clonality values of the
SNVs of a tumor sample. The clonality value (y axis) distributions are shown including all variants
of a tumor sample, stratified by the automatically assigned clonality status class (x axis). (B) For
each SNV in panel A, allele-specific copy-number data of the genomic segment containing the
mutations are reported.

� error_rate (default = 0.05): fraction of SNVs to exclude based on adjusted
VAF distribution.

The function compute_snv_clonality extends the input table snv_read_
count with clonality-related columns:

� cnA, cnB: allele-specific copy numbers of the genomic segment containing the
SNV;

� t_af_corr: tumor VAF adjusted for ploidy, admixture, and allele-specific copy
number;

� SNV.clonality: percentage of tumor cells harboring the SNV;
� SNV.clonality.status: discretized SNV.clonality.

Necessary Resources

Hardware

64-bit computer running Linux with �4 GB RAM

Software

The library has been tested with R version 3.5.2 and the R libraries parallel 3.5.2,
ggplot2 3.1.0, sets 1.0-18, arules 1.6-3, and ggrepel 0.8.0

1. Run R from the command line:

$ R

2. Follow Basic Protocols 1, 2, and 3 to compute beta table bt, ploidy table pl, and
DNA admixture table adm, respectively.

3. Read an SNV table snv_reads with columns rc_ref_tumor and
rc_alt_tumor for reference and alternative read counts, respectively:

> read.table(system.file(“sample_snv_read_count.tsv”,
package = “CLONETv2”),header = T, as.is=T,
comment.char = “", check.names = F, na.strings =
”-")
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4. Given beta table bt, ploidy table pl, and DNA admixture table adm, compute the
clonality of SNVs:

> snv_clonality_tb <- compute_snv_clonality
(“sample1”, snv_reads, bt, pl, adm)

GUIDELINES FOR UNDERSTANDING RESULTS

We present a complete R package to compute allele-specific data from next-generation se-
quencing experiments with paired tumor and matched normal DNA samples. CLONETv2
works on preprocessed data (not on BAM or fastq files), including segmented genomic
profiles and pileups of relevant genomic positions. This makes CLONETv2 more flex-
ible than tools such as ABSOLUTE (Carter et al., 2012), which requires segmented
data from HAPSEG (bundled with ABSOLUTE), or FACETS (Shen & Seshan, 2016),
which integrates logR segmentation with allele-specific analysis. The advantage is that
CLONETv2 allows the user to choose the segmentation solution that best fits the study
needs. As a didactic example, we ran CLONETv2 Basic Protocols 1 to 3 on the sample
from Figure 4A (showing segments from CNVkit; Talevich, Shain, Botton, & Bastian,
2016), using segmented data computed with EXCAVATOR2 (D’Aurizio et al., 2016;
Fig. 8A) or FACETS (Fig. 8B). EXCAVATOR2 and CNVkit data in this space are
similarly distributed, although the former shows noisier signal, and the ploidy and DNA
admixture estimates perfectly match. In contrast, with this specific example, the FACETS
estimates are different, as expected given, for instance, a set of segments with logR around
–0.75 and beta = 1.

The central notion introduced with CLONETv2 is the proportion of neutral reads beta
calculated in Basic Protocol 1. This value expands the one-dimensional logR space
returned by the segmentation algorithms to the two-dimensional beta-vs.-logR space; an
example of the utility of this approach is offered in Figure 3B, in which CLONETv2
resolves an ambiguous logR profile from by utilizing beta values (Support Protocol 2).
However, as more complex genomic profiles may require inspection of output estimates,
we designed a function, check_ploidy_and_admixture, to help the user interpret

Figure 8 Example of beta vs. logR of segments obtained with different segmentation algorithms.
Plots of beta vs. logR for the tumor sample from Figure 2A based on the logR values produced
with EXCAVATOR2 (A) or FACETs (B) are shown. Gray dots represent genomic segments, and
light red circles represent expected (beta, logR) values corresponding to the estimated ploidy and
DNA admixture (reported above the plots).
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Figure 9 Example of conflicting ploidy estimates. Beta-vs.-logR plot of the same tumor sample
based on two sets of estimates for ploidy and DNA admixture. Panels A and B show expected
positions for different allele-specific copy number based on each set of ploidy and DNA admixture
estimates. Gray dots represent genomic segments, light red circles represent expected (beta, logR)
values corresponding to the estimated ploidy and DNA admixture (reported above the plots), green
circles (A) highlight genomic segments for which the estimates do not fit the observed values, and
light red circles with green borders in panel B correspond to green circles in panel A. Panels C
and D show allele-specific copy-number plots given the estimates in A and B, respectively. Circle
color codes are as for panels A and B.

complex copy-number data. Figure 9A shows a beta-vs.-logR plot of a sample, S, that
CLONETv2 defines as having ploidy equals = 2.01 (diploidy) and low DNA admixture.
The unique feature of the check_ploidy_and_admixture function is its ability to
plot the expected position of a genomic segment in the beta-vs.-logR space, given ploidy
and DNA admixture (red circles). In Figure 9A, green circles highlight genomic segments
that are not explained by estimated ploidy and DNA admixture and are compatible with
subclonality, as in Figure 6. However, an alternative interpretation is possible, whereby
sample S is aneuploid, and no wild-type segments are present throughout the tumor
genome; the segments in (1, 0) (Fig. 9A) instead represent CN-LOH (as depicted in
Fig. 9B, due to a shift in the logR signal; Basic Protocol 2) and, therefore, wild-type
segments are expected at coordinates (–0.67, 1). Applying the log shift equation (Basic
Protocol 2) results in a ploidy of 3.14, and the function compute_dna_admixture,
in turn, estimates a DNA admixture value of 0.42. Subclonal copy-number segments
(green circles, Fig. 9A) are then classified as clonal (red circles with green border,
Fig. 9B). Given the observed data, both interpretations are plausible. The allele-specific
plots (Figs. 9C and 9D for Fig. 9A and B, respectively), transparent to ploidy and
DNA admixture values, may provide additional information to contextualize the two
scenarios. The first one (Fig. 9C) represents a tumor in which exactly half of the cells
harbor exactly the same set of subclonal hemizygous deletions, subclonal CN-LOH,
and subclonal gain (green circles). The second one (Fig. 9D) suggests genomic events
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that included whole-genome duplication (or duplication of several chromosomal arms),
exemplified by numerous allele-specific copy numbers of (2, 2) and CN-LOH (2,0).

Importantly, CLONETv2 computations are agnostic to gene models so as to
avoid cross-study constraints. To facilitate gene-level-focused analysis, the out-
puts of the functions compute_allele_specific_scna_table and com-
pute_scna_clonality_table can be lifted using any gene model that includes
chromosome and start and end position information; tables reporting allele-specific copy
number and clonality values are compatible with BED format (Quinlan & Hall, 2010)
and can easily be annotated with common gene models from, e.g., Ensembl (Zerbino
et al., 2018).

COMMENTARY

Background Information
Tumor ploidy and normal DNA admix-

ture fraction are critical parameters in can-
cer genomic analysis, as incorrect estimation
of either one may compromise any down-
stream analysis (see example in Fig. 9).
CLONETv2 provides a reliable and flexi-
ble environment to process matched tumor
and normal samples together using the func-
tion check_ploidy_and_admixture,
which help users evaluate the reliability of es-
timates. Of note, CLONETv2 is bound nei-
ther to a specific copy-number caller nor to
specific gene models. Finally, CLONETv2 is
distributed as an R package, and thus down-
stream processing, including allele-specific
copy-number and subclonality estimation, can
be easily integrated into broader analysis
pipelines.

Critical Parameters
CLONETv2 default parameters have been

tested in a variety of studies spanning tis-
sue and plasma samples in different tu-
mor settings. However, data analysis from
specific experimental conditions or analy-
sis prerequisites would benefit from tweak-
ing CLONETv2 parameters. The parame-
ter min_coverage is common to many
CLONETv2 functions and is used to filter out
genomic segments with low mean coverage at
informative SNPs; min_required_snps
filters out segments with too few informa-
tive SNPs. Higher values of min_coverage
and min_required_snps correspond to
more reliable results but at the same time to
fewer segments to be used in computing allele-
specific copy number and clonality. The opti-
mal trade-off between the reliability and exten-
siveness of the analysis is study dependent. For
instance, an ultra-deep-sequencing experiment
(e.g., mean coverage > 5000×) would benefit
frommin_coverage higher than 20 (the de-
fault value); in fact, that value corresponds to

0.4% of the expected coverage for a sequenc-
ing study of that depth and can hardly be dis-
tinguished from the background experimental
noise. In contrast, low-pass whole-genome se-
quencing experiments (coverage >4×) require
a lower min_coverage by design.

A second critical parameter is er-
ror_table, a table reporting the error
around beta estimates for different combina-
tions of coverage and number of informative
SNPs. CLONETv2 has an error table bundled
in, obtained by simulating different inputs to
the function compute_beta_table with
combinations of values for the coverage and
the number of informative SNPs. If, for a given
genomic segment, the number of informative
SNPs and the mean coverage are not reported
in the error_table, CLONETv2 uses the
nearest available pair of values, as previously
described (Prandi et al., 2014).

Troubleshooting
CLONETv2 offers a robust framework

for the genomic analysis of somatic copy-
number data together with the possibility
of manually curating estimates (see Support
Protocol 2). However, some specific cases
may prevent CLONETv2 from completing the
analysis.

Figure 10A shows the beta-vs.-logR plot
of a tumor sample with an uncommon profile.
The profile presents genomic segments with all
beta values close to 1 (alleles equally represent
the parental chromosomes of origin) and logR
ranges in the interval (–0.5, 0.5), correspond-
ing to approximately the loss of half a copy
and the gain of one copy. Moreover, the cloud
of beta values around 0.75 within the same
logR range does not fit any CLONETv2 model.
These data are either the result of uneven
sequence-read coverage (Wang, Shashikant,
Jensen, Altman, & Girirajan, 2017) that af-
fects both the logR signal and the AF of infor-
mative SNPs, or the representation of a large
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Figure 10 Example of samples with no CLONETv2 DNA admixture estimates. Examples of
tumor samples in the beta-vs.-logR spaces showing poor segment clusters (A) or lack of somatic
copy-number aberrations (B).

number of subclonal populations with diverse
ploidy and somatic copy-number profiles. Al-
together, the information from the segmented
data and pileup of informative SNPs are not
sufficient to disentangle such cases, and such
data should not be included in any downstream
analysis.

A second problematic case is presented in
Figure 10B. All segments show logR around 0
and beta close to 1, i.e., all genomic segments
have wild-type copy number. These beta-vs.-
logR profile data are compatible with two
very different situations: (i) a copy-number-
quiet tumor sample, i.e., one in which no dele-
tions or amplifications are detected; (ii) a near
100% DNA-admixed tumor sample, i.e., one
in which almost all the cells are non-tumor
cells. The first interpretation points to a po-
tentially interesting case, whereas the second
highlights limitations either in the sample of
origin or in the preparation. As for the case in
Figure 10A, CLONETv2 cannot distinguish
between the two interpretations and therefore
the sample should not be considered.
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