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The transport of excitations governs fundamental properties of matter. Particularly rich physics
emerges in the interplay between disorder and environmental noise, even in small systems such
as photosynthetic biomolecules. Counterintuitively, noise can enhance coherent quantum trans-
port, which has been proposed as a mechanism behind the high transport efficiencies observed in
photosynthetic complexes. This effect has been called ”environment-assisted quantum transport”
(ENAQT). Here, we propose a quantum simulation of the excitation transport in an open quan-
tum network, taking advantage of the high controllability of current trapped-ion experiments. Our
scheme allows for the controlled study of various different aspects of the excitation transfer, rang-
ing from the influence of static disorder and interaction range, over the effect of Markovian and
non-Markovian dephasing, to the impact of a continuous insertion of excitations. Our proposal
discusses experimental error sources and realistic parameters, showing that it can be implemented

in state-of-the-art ion-chain experiments.

PACS numbers:

I. INTRODUCTION

The way how excitations propagate through a network
defines the fundamental properties of matter from large
solids to small molecules. Extremely rich physics can be
at play even in apparently simple systems, especially if
coupled to an outside environment, such as happens in
photosynthesic complexes [1-3]. In such biomolecules,
photon energy is absorbed in pigments of a photosyn-
thetic antenna, creating an exciton quasiparticle. The
exciton is then transferred to a reaction center where the
energy is harvested in a biochemical process. The sur-
prisingly high efficiency of this energy transfer triggered
several decades of active research (see, e.g., [4-7]). After
experiments demonstrated the presence of long-lived co-
herences in the dynamics of the Fenna—Matthews—Olson
(FMO) complex [8-10], various theoretical investigations
suggested that quantum dynamical processes are of ma-
jor importance for the excitation transport in such biolog-
ical systems [11-18]. These studies found that the Ander-
son localization of excitations, induced by static disorder
within the network, can be lifted by dephasing, induced
by coupling to the environment. The result is an un-
expectedly large transfer efficiency, termed environment-
assisted quantum transport (ENAQT). Whether this ef-
fect actually appears in biomolecules is, however, dis-
puted, because the illuminating sunlight is incoherent
[1]. Moreover, the effect depends on the precise way the
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transfer from the network to the reaction center is mod-
eled [19]. Recently, model experiments have started in-
vestigating ENAQT in small networks of photonic wave-
guides [20, 21], classical electrical oscillators [22], and
superconducting qubits [23, 24]. Proposals exist also to
analyse ENAQT in embedded Rydberg aggregates [25—
28], where first studies on the quantum transport under
dissipation have already been performed [29].

Here, we discuss how the precisely controllable plat-
form of trapped ions can be used to realize engineered
noise, and thus investigate ENAQT with various highly
tunable parameters. These include disorder strength, en-
vironmental dephasing rate, noise spectrum, and hopping
range of excitations. Importantly, the trapped-ion plat-
form allows also for control of injection and extraction
rates, enabling a systematic study of the effect of inter-
actions on the quantum transport. Rather than aiming
at a quantitative modeling of ENAQT in biomolecules,
our aim in this work is to illustrate the broad range of
phenomena that can be explored in trapped-ion quantum
simulation. Our numerical studies should be of indepen-
dent interest for understanding the excitation transfer in
quantum networks. Our theoretical proposal is accom-
panied by a detailed discussion of the experimental error
sources, showing that the proposed quantum simulation
can be implemented in state-of-the-art experiments. The
engineered noise brings a new dimension to transport
experiments in trapped ions or cold gases, which have
investigated clean [30-33] as well as disordered systems
[34-39], but mostly viewing environmental noise as a nui-
sance. Here, we are interested in the beneficial effects of
engineered noise for enhanced quantum transport.

The quantum network we are interested in is repre-
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FIG. 1: Proposed quantum-simulation setup to study exci-
tation transfer in the interplay between engineered disorder,
dephasing, and long-range hopping. (a) Spin model of the
open quantum network. Spins at sites ¢ have disordered on-
site energies hw;, and are coupled to other spins with hopping
strength J;;. The considered scenario is the propagation of an
initial excitation injected at site isource to the target site igink.
(b) Hlustration of the proposed ion-trap implementation. The
spins are mapped onto internal, electric degrees of freedom
of ions (blue dots) arranged in a linear chain. The quantum
simulation requires laser beams with single-site addressability
(red) to locally adjust AC-Stark shifts, which induce disorder
and dephasing, as well as a broad laser beam illuminating the
entire ion chain (green), which drives the interactions J;;.

sented by a spin model [Fig. 1(a)], which can be mapped
onto internal, electric degrees of freedom of the ions
[Fig. 1(b)]. Tunable hoppings of excitations are gen-
erated by spin-dependent forces, induced by lasers and
transmitted by phonons [31, 40-44]. We focus on lin-
ear chains with interactions that have approximately a
power-law distance dependence, as are natural in vari-
ous trapped-ion experiments [31, 43, 44], but the pro-
posal can also be applied to other realizable geometries
[44-47]. In particular, the irregular networks found in
biological molecules could be designed in special trap de-
signs such as segmented Paul traps [48] or surface traps
[49], as well as by engineering the interactions via time-
periodic driving [50] or additional laser frequencies [51].
Addressable AC-Stark shifts have been shown to enable
the generation of programmable disorder [39] and have
been proposed for the simulation of dephasing in adia-
batic quantum optimization [52]. Amplitude and phase
modulations have also been used to simulate a qubit in
a dephasing environment [53]. These ingredients render
trapped ions a highly versatile platform for investigating
the excitation transfer in open quantum networks.

Below, we will use detailed numerical investigations to
discuss how the quantum transport depends on various
parameters that become accessible in this platform, espe-
cially hopping range, disorder strength, Markovian and

non-Markovian dephasing, and non-linear effects appear-
ing at large injection rates of excitations. We now briefly
summarize the main effects for each of these parameters.

A series of recent works has demonstrated that the
propagation of excitations in regular networks with
power-law hoppings depends crucially on the hopping
range [54-57]: If the hopping strength diminishes fast
with distance, the propagation is bound to effective sound
cones, similar to what happens for exponentially localized
interactions [58]. In the opposite limit of infinite-range
hopping, destructive interference between hopping paths
suppresses the transfer efficiency [13]. For large but fi-
nite hopping range, this effect is weakened, leading to ex-
tremely slow excitation modes balanced by other modes
with divergent propagation speed [54, 57]. In our nu-
merical studies we find that this co-existence increases
transfer efficiency at short times as compared to short-
range interactions and decreases it at longer times. Disor-
der has a non-trivial effect on this behavior: While large
amounts of disorder leads to Anderson localization [59] or
many-body localization [39], weak disorder counteracts
the destructive interference induced by the long-range
hopping [13], thus actually improving the transfer effi-
ciency. Trapped-ion experiments have already observed
the fast excitation modes appearing with power-law in-
teractions [31, 32|, as well as the obstruction of ther-
malization due to long-range interactions [60] as well as
many-body localization. Here, we propose to perform
similar experiments in view of the efficiency of excitation
transport and in the interplay with engineered noise.

Although noise destroys the linear superpositions that
are a main feature of quantum mechanics, it is known
that dephasing can lift Anderson localization and thus
lead to ENAQT [11-13]. When the dephasing becomes
too strong, however, a quantum Zeno dynamics sets in
that freezes the excitation [61]. Thus, maximum trans-
fer efficiencies are attained in an intermediate regime of
dephasing. Moreover, the character of the noise can be
adjusted from Markovian to non-Markovian. We com-
pare Markovian noise to a simple non-Markovian pro-
cess, where we find that—while the maximum achievable
transfer efficiency is similar for both types of noise—
the non-Markovian dephasing can yield high transfer ef-
ficiencies in a broader parameter range. Recent theoreti-
cal investigations have shown that non-Markovian baths
play a crucial role in ENAQT. They enhance coherences
[14, 16, 62] and baths that are structured to fit the en-
ergy spectrum of the network can strongly improve the
energy transfer [15, 17, 18]. This advantage disappears,
however, at long times if the transfer to the reaction cen-
ter is the only loss mechanism [62], showing the delicate
interplay between different dissipative and coherent ef-
fects. In biomolecules, structured non-Markovian noise
appear through coupling to phonon modes. Here, they
can be designed by hand by adjusting the power spectra
of the engineered dephasing.

Finally, the presented scheme can also be used to in-
vestigate non-linear effects in the spin network, which ap-



pear in the presence of multiple excitations. We investi-
gate the dynamics of a driven-dissipative system in which
the excitations are continuously injected into the sys-
tem by incoherently coupling a source site to an infinite-
temperature heat bath. The injection of excitations from
a heat bath is of particular significance for simulating the
dynamics of biomolecules, as it resembles the incoherent
absorption of photons by photosynthetic systems [1]. We
find that there exists a finite value of the driving that
yields optimal transfer rates.

The body of this article is structured as follows. First,
in Sec. II, we introduce the model of the quantum net-
work that we propose to simulate. We show how this
model can be implemented in the ion chain in Sec. III. In
Sec. IV, we present numerical studies for various scenar-
ios of excitation transfer that may be simulated in the
ion chain. In Sec. V, we address the robustness of the
simulation towards possible sources of errors in a realis-
tic experimental setup. Finally, in Sec. VI, we present
our conclusions.

II. MODEL OF THE QUANTUM NETWORK

In this section, we introduce the model that we use for
studying the excitation transfer, depicted in Fig. 1(a).
Its realization in a chain of trapped ions is discussed in
the next section. In photosynthetic complexes, the trans-
port is governed by exciton quasiparticles. Their bosonic
commutation relations are naturally matched by the in-
ternal pseudo-spins manipulated in trapped-ion setups.
The dynamics of such a spin network, consisting of N
connected sites, is modeled by the Hamiltonian

I;[ = _HJ + I:Iwi (1)
with
Hy = h)_Jy6te; +He, (2)
i<j
H, = hY wiole; . (3)
Here, 6;7(6; ) are spin raising (lowering) operators for

site 4, fuw; is the on-site excitation energy, and J;; denote
the coupling strengths between spin ¢ and j. We denote
the eigenvectors of the operator 6;¢; , which counts the
presence/absence of an excitation at site 4, with |1); for
the eigenvalue 1 and |]); for the elgenvalue 0.

In the following, we focus mainly on a situation where
an exciton quasiparticle has just been generated. We
model this situation through an initial state with only
the spin at site isource in state |1) and all the other spins
in state |}), i.e

[U (o)) =1 )2 Misowree Misowreet1 - I+ (4)

We are interested in the transfer of the initial excitation
to the remote site 44, where the excitation is absorbed

and removed from the quantum network. The absorption
of the excitations is modeled by a Markovian dissipation
process, described by the Lindblad super operator

Edl“ [ { T i hmk’p} + 20—1>mkp Z}nk:l ’(5)
with T’ being the rate at which an excitation at site isinx
is removed from the quantum network.

Moreover, we consider the transport behavior under
dephasing processes that act independently on each site,
as are caused by environmental noise. If the correlation
time of the noise goes to zero, the dephasing process is
Markovian, which can be modeled by the Lindblad super
operator
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with +; denoting the dephasing rate at site ¢. In the
following, we will also study non-Markovian dephasing
caused by noise generated by the Goldstein—Kac tele-
graph process [63, 64]. This process allows us to adjust
the bath correlation time, thereby enabling us to study
the crossover from Markovian to non-Markovian noise.

In total, the time evolution of the quantum network is
described by the Master equation

d
at’

The dynamics of the model discussed above is con-
fined to the single-excitation and zero-excitation sec-
tors, as H and Lgepn preserve the excitation number
(1 (t0)] Nexc [¥ (to)) = 1 with Nexe = >, 67765, and Laiss
can only reduce it. Here, interactions between the exci-
tations are of no importance. However, the framework
presented in this article can also be used to investigate
the non-linear dynamics of a spin network when several
excitations are present. In Sec. IV D, we study the regime
where a large number of excitations is injected by a con-
tinuous drive. This driven dynamics can be modeled by
the Markovian process

b= [H] 4 Lowp) + Lan(s). (7)

»Csource(ﬁ) = (8)
Doowse [_ {5+ o 5} + 20005
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which describes the incoherent creation and annihilation
of particles at site isource caused by the coupling to an
infinite-temperature heat bath, modeling the absorption
of photons by photosynthetic systems [11-13].

III. MAPPING OF THE MODEL TO AN ION
CHAIN

In this section, we discuss an implementation of the
above model in an ion-trap quantum simulation. A



schematic representation of such an ion trap is depicted
in Fig. 1(b). We focus here on the setup described in
Ref. [65] for °Ca™ ions. Similar considerations also ap-
ply to other experimental implementations. We consider
an ion chain with N ions, confined in a linear Paul trap
with axial trapping frequency w, and radial trapping
frequencies w, . Each site of the spin model is repre-
sented by a qubit encoded in the internal level struc-
ture of a single ion, |1); = [32Ds/am; = —1/2). and

1) = [42S12m; = —1/2),.

A. Implementation of the hopping terms

The hopping of an excitation between sites as de-
scribed by H; can be generated by a non-local inter-
action between the qubits in the ion chain, such as
in Mglmer—Sgrenson-type protocols [31, 40, 43]. The
Mglmer—Sgrenson interaction is driven by a laser field
that illuminates the entire ion register uniformly with
two frequencies wy = wy = A, being wqy the frequency
of the atomic transition |[1) <> |[{) and A a detuning of
the laser fields. By coupling the transverse vibrational
modes of the ion chain to the electronic state of the ions,
one can implement the interaction Hamiltonian

ﬁint = hz JijO'iIO'f . (9)

i<j
The coupling strength between ion ¢ and j is given by

hk? bi nbjn

T om A2 — 27
n

Jij = Q2 (10)

with m the ion mass, v, the eigenfrequencies of the
transverse phononic modes, and b;, the elements of
the normal-mode-matrix [66]. Further, k is the laser
wavenumber and €); are the Rabi frequencies induced by
the laser driving. For the sake of simplicity, we assume
all Q; equal. .

In addition to the interaction described by Hiy, one
can realize large, constant on-site excitation energies as
described by [31, 32, 67]

ﬁwconst = NWeonst Z&j—&; (11)

This is achieved by shifting the two frequencies of the
laser beam that implement the Mglmer—Sgrenson inter-
action by a frequency weonst- In the limit of large on-site
energies Weonst > JZ-]-, we can neglect off-resonant transi-

tions generated by & &j and ¢; 6, and we obtain

]A{iﬂt + ﬁwconst - IA{J + ﬁwconst . (12)

In this limit, the Hamiltonian approximately decouples
into sectors with conserved excitation number.

An interesting feature of the ion-chain implementation
is the ability to tune the range of the interaction encoded

4

in J;;, as given by Eq. (10), by changing the detuning A
[31, 43, 44]. The result is an adjustable distance depen-
dence approximating a power-law, i.e.,

|Jiz] oc [[xi — x;]| 7%, (13)

where the x; denote the equilibrium positions of the ions.
For an ion chain with almost equidistant ions the power-
law simplifies to

| Jiz| o< |i — 5] 7. (14)

This tunability allows us to study networks with different
geometrical properties. In principle, the decay exponent
a can be tuned between 0 and 3, though realistic laser
intensities restrict it to the range a € [0.75,1.75] while
maintaining reasonable coupling strength on the order of
100 s™1 [31, 43, 44]. By addressing the axial center-of-
mass mode, it is additionally possible to study the limit
a = 0[40]. In the following, this limit will be of particular
interest, as it corresponds to the well-studied model of a
fully connected, equally weighted graph [13], with

| Jij| = |Jirjr| fori# 4, i" #j". (15)

In order to determine the exponent « for a given detun-
ing, we fit the spin-wave dispersion relation in the single-
excitation manifold (the eigenvalues of the coupling ma-
trix J) for an exact power-law dependence, as given by
Eq. (13), to the dispersion relation for the experimentally
relevant J;; derived from Eq. (10) [31]. The relation be-
tween « and the detuning A is illustrated in Fig. 2 for re-
alistic experimental parameters. As this figure shows, the
power-law dependence is a good approximation for small
systems [31]. For large chains, the distance dependence
is better described by a combination of power law and
exponential decay [68]. In the limiting cases o = 0 and
a = 3, however, the ideal power law becomes exact [68].
Moreover, deviations from the ideal power law are very
small in the range « € [2,3]. This behavior is consistent
with the fact that in this range the power-law interac-
tions have only a weak effect on, e.g., dispersion relation
and dynamics as compared to a system with short-range
interactions [54].

B. Implementation of the on-site energies

Another important ingredient of our model is the abil-
ity to realize on-site energies hw; that vary from site to
site, used to simulate static disorder. By letting them
fluctuate over time, they moreover simulate Markovian as
well as non-Markovian dephasing. Such on-site energies
can be generated in an ion chain through the quadratic
AC-Stark effect induced by an additional, off-resonant
laser field. The realization of site-dependent on-site en-
ergies requires tightly focused, steerable laser beams, as
have been demonstrated in the setup described in [65]
and have been used to implement static disorder for stud-
ies of many-body localization in an ion chain [39].
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FIG. 2: Fitting the experimentally relevant interactions to
an ideal power law. (a) Detuning A plotted over the fitted
exponent «, obtained from fitting the dispersion relation for
an exact power law to the dispersion relation calculated for
an experimental implementation. The parameters are: wg,, =
50w, for N = 5,10, 20, 30 (red, orange, green, blue). (b) The
deviations of the fit, measured by x2, increase with system
size. In the limits @« = 0 and a = 3, the ideal power law
becomes exact, but already in the range o = 2. .. 3 deviations
are small.

C. Initial state preparation

The initial state |¢p) as given in Eq. (4) can be re-
alized faithfully through optical pumping and steerable,
addressable laser beams [31].

D. Implementation of Laiss

The Markovian process described by Lagjss, which mod-
els the absorption of the excitation at site iginx, can be
implemented by exploiting spontaneous decay processes
in the level structure of the ions. A suitable realization
is via the quantum operation

gdecay

= > KlpK; (16)

i€{1,2}

with the Kraus operators

K, = v/Pdecay Ufimka (17)
Ko |‘J’>isink bsink TV 1 — paecay |T>ismk <T (18)

By interrupting the time evolution after a time AT,
applying Egecay, and repeating this process, we recover
in the limit AT — 0 the decay process described by
Laecay With Ddecay = T'AT. The implementation of
this amplitude-damping operation in an ion chain is de-
scribed in Ref. [65]. There, the tightly focused, steer-
able laser beams are used to transfer some population
from the qubit state 1), to the intermediate state

1S iiie = 142S1/2my =1/2), _ via a partial Rabi flop.
The amplitude damping is corbr‘lxi)leted by a laser field that
drives the transition from |S’);_, . to the manifold 42 P; /2
and pumps the population to the qubit state ||), = via
optical pumping. Single-side addressability of the second
laser beam is here not required, since only ions in the

intermediate state |S’); . . are affected.

Tsink

Tsink

For an experimental investigation of the system dy-
namics, it may also be of interest to realize the decay of
[1)i tO a third auxiliary internal level by pumping the
population to a different state of the ions. In this way, the
simulated amplitude damping as described by Lgiss can
be distinguished from the radiation-field-induced sponta-
neous decay process acting on the ions.

E. Simulation of dephasing and non-Markovian
dynamics

In the trapped-ion quantum simulator, controlled noise
can be induced by time-dependent laser fields to realize
fluctuating on-site energies hw;(t) [52, 53]. A strength
of the proposed trapped-ion setup is that it can real-
ize almost arbitrary power spectra, which will allow a
quantitative modeling of the structured spectra charac-
teristic of biomolecules [14-18, 62]. We focus in the fol-
lowing on a generic and simple noise process generated
by the Goldstein—Kac telegraph model [63, 64], as has
been applied, e.g., to investigate the impact of phase
[69] and intensity fluctuations [70] on atom-laser interac-
tions. The Goldstein—Kac process simulates Markovian
dephasing as induced by a heat bath with vanishing bath
correlation time and modeled by Lgepn, as well as non-
Markovian processes associated to heat baths with finite
correlation time such as phonon fluctuations with expo-
nential memory. The Goldstein—Kac telegraph process
is a dichotomic process (i.e., w;(t) € {—wak /2, wek/2}),
described by the Markovian master equation

O, P [wi(t2) = twek /2| wi(t1) = w] =
—AL P w;i(t2) = twak/2|wi(t1) =w]  (19)
+Ax P [wi(te) = Fwak /2| wi(t1) = W]

for w € {—wgk/2,wek/2} and to > t.

Here, A+ are the transition rates of the dichotomic
Markovian process. For the sake of simplicity, we as-
sume that A = A_ = X and that at time ¢y the process
attained its equilibrium state

Plw;i(ty) = wek /2] = P lwi(ty) = —wek /2] =1/2.
(20)
Furthermore, we assume that energies hw;(t) of different
sites are sampled from independent telegraph processes.
The two-time correlation function is then given by

(wit)w;(t +0))r = §ijwee M /4, (21)
corresponding to a Lorentzian noise spectrum
wix
Si.j =0 j——. 22
(W) IO\ iw (22)

Even though the Goldstein—Kac telegraph process, as
given by Eq. (19), is itself Markovian, the distribution of
w;(t) that it generates can be non-Markovian, character-
ized by a frequency-dependent noise spectrum of .S; ;(w).



We recover Markovian dephasing, as described by Lgeph,

Eq. (6), in the limit A — oo, with associated dephas-
2

ing rates v, = v = ‘”2% Non-Markovian features be-

come unimportant as soon as the rate A is larger than

all the other rates and frequencies in the system, i.e.,

A> Jija F7 Fsource7 WGK -

F. Implementation of Leource

The tightly focused steerable laser beam used to imple-
ment Lgepn can also be employed in a similar way to gen-
erate the Markovian process described by Lsource, EQ. (8).
For this, the laser field has to be tuned in resonance to the
transition [1), <> [}); and the intensity as well
as its phase has to be modulated faster than the time
scales induced by the rates I', I'source, 7, and J;; in order
to simulate the thermal noise of an infinite-temperature
reservoir. This can be done by implementing suitable
step functions as described in Sec. IIT E.

IV. NUMERICAL RESULTS

Thus, all terms describing the model of a quantum net-
work given by the Master equation Eq. (7) can be realized
with existing trapped-ion technology. We postpone the
discussion of potential error sources to Sec. V, and first
investigate numerically the excitation transport through
a quantum network described by the Master equation
Eq. (7). These results not only enable predictions for
the ion-chain quantum simulator, they also represent
detailed theoretical studies for excitation transfer and
ENAQT in systems with power-law interactions. Our nu-
merical simulations have been performed by propagating
the density operator as described by the Lindblad mas-
ter equation (7) using the QuTiP (Quantum Toolbox in
Python) package [73]. In the numerical calculations, we
focus mainly on ion chains of length N = 10, which is on
the order of system sizes where current experiments have
demonstrated individually addressable AC-Stark shifts
[39, 74], but we present results for up to N = 70 ions.
We assume that the radial trapping frequency w, 4 in the
linear Paul trap is 20 times the axial trapping frequency
w,. To simplify the following discussion, we moreover
introduce the maximum value of the coupling strengths

Jmax = max |Jij‘ (23)
1<J

and express all other relevant parameters in units of Jyax.
The calculations are performed for a decay rate at site
isink Of I' = Jmax. Furthermore, we assume that the
dephasing rates for all sites are equal, i.e.,

vy=n; forallie{1,2..,N}. (24)

With the exception of Sec. IV D, we take I'source = 0, such
that excitations are brought into the system only during

the preparation of the initial state |¢ (t9)). In order to
reduce the impact of boundary effects, we assume that
the excitation is initially injected at ion isource = N/5+1
and is removed by the dissipative process at iginx = 4N/5
(when comparing different N) and g = 7 (when con-
sidering fixed N = 10), respectively. We study the speed
of excitation transfer through the ion chain by evaluating
the probability for having absorbed the excitation after
a certain time at site igip).

We address several physical regimes of interest. In par-
ticular, we study the transfer efficiency in dependence
on hopping range, disorder, and Markovian and non-
Markovian dephasing. At the end of this section, we
will moreover consider a driven system with I'youpee 7 0,
where interactions between excitations play a fundamen-
tal role.

A. Influence of the hopping range

We start our investigation by studying the influence of
the hopping range on the speed of the excitation transfer.
To cleanly extract the influence of the hopping range, we
assume for now that no static disorder is present.

It is known that the dynamics of a one-dimensional
spin model quantitatively differs in the three regimes
a<l,1<a<2anda > 231,32, 54-57]. In the regime
« > 2, the propagation of the excitation is confined by
a well-defined sound cone, typical of systems with short-
range interactions [58]. In the regime 1 < o < 2 of
weakly long-range interactions, a clear sound cone can-
not be defined, because some spin-wave modes develop
a weakly divergent speed of propagation. A fully non-
local behaviour can be observed in the regime a < 1.
In this regime, a strong divergence appears in the spin-
wave dispersion relation, and a part of the excitation can
spread almost instantaneously over the entire network.
The total weight of the excitation carried by these diver-
gent modes, however, remains limited. Away from the
divergence, the dispersion relation flattens out, and the
corresponding modes become slower and slower with de-
creasing «, so that extremely fast and extremely slow
modes coexist [54, 57].

For our purposes, the transition from o < 1 to a > 1
is of particular significance, as this can directly be ob-
served in the short-time behaviour of the quantum net-
work. This is illustrated in Fig. 3(a), where we com-
pare three different parameters, o = 1.2 (blue), o = 1
(orange), and a = 0.8 (red). For comparison, we in-
clude ideal power-law interaction dependence as given
by Eq. (14) (dashed lines), as well as realistic coupling
strengths that can be realized in the ion chain, given by
Eq. (10) (solid lines). In both cases, the initial excitation
transfer accelerates with decreasing a.

As illustrated in Fig. 3(b), this short-time behaviour
is robust against dephasing. The chosen value of v =
0.1Jmax is well beyond natural dephasing rates from ex-
perimental imperfections in a state-of-the-art ion-trap ex-
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Transfer efficiency, defined as the time-dependent probability for having absorbed the excitation at site isink, as

function of time, comparing different hopping ranges o and dephasing rates. The system is without static disorder and its size
is N = 10 sites. (a,b) Comparison between o« = 0.8 (red), o = 1.0 (orange), and o = 1.2 (blue). Solid lines correspond to
realistic couplings in the ion chain (see Eq. (10)) and dashed lines to an ideal power-law dependence (see Eq. (14)). (a) Results
for vanishing dephasing. Initially, a few fast modes carry part of the excitation earlier to the target site with decreasing «
(insets). At later times, destructive interference effects decelerate the excitation transfer for small «. (b) This characteristic
behaviour is rather robust against dephasing (data for v = 0.1Jmax). (c) Long-time behavior for o = 0. Without dephasing,
destructive interference hinders a large part of the excitation from ever reaching the target site (solid line). Non-vanishing
dephasing cancels the interference effect and facilitates the excitation transfer (dashed line).

periment [65] (see Sec. V). Even in the presence of such
strong dephasing, the characteristic behaviour in the dy-
namical regimes o < 1 and « > 1 can be observed.

For large times, another effect comes into play. As
shown in Ref. [13], in case of a fully connected graph
with equal coupling strengths, the probability for hav-
ing absorbed the excitation after (¢t — tg) — oo converges
against ﬁ For t — oo, the remaining quantum state
has zero overlap with ignk, and, hence, a large part of
the excitation remains in the network without ever be-
ing absorbed at ig,k. This behaviour, which can be un-
derstood as a destructive interference effect, can clearly
be observed in the time evolution for « — 0 shown in
Fig. 3(c). In the presence of dephasing, however, the de-
structive interference at g, is destroyed and for all a the
probability for having absorbed the excitation converges
against unity for t — oo.

We find that the same destructive interference effect
also causes a slowing-down of the absorption rate for
small but non-zero «, as can be observed in Figs. 3(a)
and (b). As a result, for not too short times, lower values
of « result in a lower absorption efficiency, thus revers-
ing the short-time behaviour. This behavior can also be
understood in terms of the spin-wave dispersion relation,
with its coexistence of fast and slow modes.

To work out the dependence on the hopping range
more clearly, we study the absorption probability at fixed
times as a function of the exponent o and system size. To
facilitate comparison between different ion numbers N,
we choose an ideal power-law dependence of the inter-
actions (see Eq. (14)). As we are interested in transport
from one end of the chain to the other, where the distance
between source and target sites increases as a function of
N, we require a suitable scaling of (¢ — tg).

In Fig. 4(a), we take (¢t — o) simply proportional to N.
For the chosen proportionality constant, the probability
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FIG. 4: System-size dependence of the transfer efficiency

as function of hopping range «, for vanishing dephasing rate
and static disorder. System sizes are N = 10 (red), N = 30
(orange), N = 50 (green), and N = 70 (blue), and plotted
is the probability for having absorbed an excitation (initially
created at isource = N/5+ 1) at site igink = 4IN/5 after a fixed
time (¢ — to). (a) Considering (t — to)Jmax = N/10, there
appears a rather smooth increase of the absorption probability
below a < 1.7 and a sharp drop at & — 0. (b) Choosing
(t — to0) (vg) = (Isink — Isource)/D, With (vg) the average group
velocity, the absorption probability drastically increases at
a < 2 and has a maximum in the range 1 < a < 2 (except for
the smallest studied system size of N = 10). Results are for
an ideal power-law dependence.

for having absorbed the excitation goes to 0 for large
«, as in short-range interacting chains the excitation re-
quires a finite propagation time to reach the target site.
At smaller «, fast modes reach the target site even at
short times, leading to a non-vanishing absorption prob-
ability. In the opposite limit of @ — 0, the destructive
interference effect suppresses the excitation transfer. As
a consequence, large transfer efficiencies are reached in
the range 0 < a =~ 1.7.

Since the time required for an excitation to propagate
is given by the group velocity, it can be more convenient
to use this quantity to define the size-dependence of t.



Corresponding results are plotted in Fig. 4(b), where we
used the average group velocity

(vg) = (N = 1) (wn —w1) /7 (25)

to fix (t — to) (vg) = (isink — Fsource)/D. Here, the wy <
we < ... < wp are the eigenfrequencies of the coupling
matrix J defining the spin-wave dispersion. The time is
chosen such that the target site lies outside the sound
cone existing at & > 2, which is determined by the maxi-
mum group velocity. With this choice, we observe a clear
transition between the two regimes o < 2 and v > 2. For
a < 2, a clear sound cone can not be defined [54], and
part of the excitation can reach the target site already at
very short times, even for large systems.

These results hold true in the short-time regime. For
larger t — to the situation is quite different, as the de-
structive interference effect and the larger number of slow
spin-wave modes dominate the behavior. The probabil-
ity for absorbing the excitation at i then increases for
higher values of «.

B. Influence of static disorder

Another question that can be addressed by the pro-
posed quantum simulation is the influence of static dis-
order. In the following, we choose the on-site energies
randomly and independently from a uniform distribu-
tion over the interval [—W, W], with W being the dis-
order strength. Such a bounded distribution captures
the physics of doped semiconductors and alloy models
(see [75] and references therein), but other disorder dis-
tributions could also be easily realized in the trapped-
ion setup. For large «, the transport efficiency will be
reduced by disorder-induced localization. For small «,
however, we expect a trade-off between the destructive
interference described previously, which is destroyed for
finite values of W [13], and Anderson localization, which
sets in at large W. The trade-off between both effects,
giving an optimal transfer efficiency at intermediate dis-
order strengths, is illustrated in Fig. 5.

C. Impact of non-Markovian dephasing

The impact of non-Markovian environmental noise
on excitation transfer in biological systems has re-
cently become an active field of research [14-16, 18,
62]. Our scheme allows for the investigation of such
non-Markovian effects following the ideas outlined in
Sec. ITITE. In the following, we focus on the propagation
of an excitation in a fully connected network with oo = 0.
The results of a numerical simulation are illustrated in
Fig. 6.

We employ the Goldstein—Kac telegraph process de-
scribed in Sec. IITE to model physical scenarios with
varying temporal noise correlations. For long persist-
ing temporal correlations, i.e., A < Jyax, s W, wagk, the
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FIG. 5: Impact of static disorder on the transfer effi-
ciency, for two dephasing rates (solid lines: v = 0; dashed:
v = 0.1Jmax) and two system sizes (blue: N = 10 at time
t —to = 10/Jmax; Ted: N = 20 at time t — to = 20/ Jmax;
isource = IN/5 + 1 and 4gink = 4N/5). Results are for oo = 0.
The destructive interference hindering the excitation transfer
in clean systems is lifted by small amounts of disorder, while
at large disorder Anderson localization obstructs the trans-
fer. Optimal transfer efficiency is achieved in an intermedi-
ate range of disorder. Markovian dephasing (dashed lines,
v = 0.1Jmax) can increase the absorption probability when
compared to the noise-free system (solid lines, v = 0). The
numerical simulations show averages over 1000 randomly gen-
erated samples of static disorder.

noise behaves effectively as static disorder. Its impact
on the system dynamics differs from what has been dis-
cussed in Sec. I'V B, since under the dichotomic telegraph
process at A — 0 and « = 0, the network effectively de-
couples into two infinitely connected subgraphs defined
by w; = fwgk/2. Within each subgraph, transport is
unhindered, in contrast to disorder chosen from the uni-
form distribution over the interval [—W, W].

With increasing A, the noise enhances the absorp-
tion probability, similar to the impact of Markovian
dephasing discussed above. In the opposite limit of
A > Jmax, s W,wgk, where the temporal correlations of
the noise are extremely short, one recovers an effectively
Markovian dephasing process with associated dephasing
rate

wix

T=ES) (26)
When sending A — oo with wgk = const., the dephas-
ing rate v — 0; the impact of the noise vanishes and the
excitation is again localized by the destructive interfer-
ence effect. Consequently, the probability for absorbing
the excitation attains its maximum for intermediate val-
ues of )\, in a regime dominated by finite temporal noise
correlations and non-Markovian behavior.

In Fig. 6, we also compare these results with a cor-
responding Markovian process, with the dephasing rate
given by Eq. (26). The maximally achieved values of the
absorption probabilities are similar for Markovian and
non-Markovian noise. Nevertheless, non-Markovian de-
phasing can reach higher absorption probabilities over
a larger parameter range as compared to its Markovian
counterpart.
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FIG. 6: Impact of non-Markovian dephasing on the transfer
efficiency, as a function of the rate A = A; = A_ characteriz-
ing the Goldstein—Kac telegraph process (bullets). Data are
for a =0, N =10, t — to = 2.5/Jmax, and hwck/Jmax =
4,8,16,32,64 (brown, red, orange, blue, and green). The ab-
sorption probabilities for corresponding Markovian processes
with dephasing rate v = wé&y/(2)\) are plotted as dashed
lines. These illustrate the crossover from the non-Markovian
regime (A < 10Jmax) to the Markovian regime (A 2 10Jmax)-
The numerical simulations are performed by averaging over
500 randomly generated samples of noise.
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FIG. 7:  Trace distance as measure of non-Markovianity.
At low rates A, strong recurrences (i.e., positive deriva-
tives) demonstrate the non-Markovian nature of the noise.
As the rate is increased, the curves gradually become more
monotonic, indicating purely Markovian behavior. Data for
WGk [Jmax = 4, « = 0, N = 10, averages over 150 noise
realizations. Red, orange, green, blue curves correspond to
A/Jmax = 0.1,1, 10, 100, respectively.

We can quantify the crossover from Markovian to non-
Markovian behavior by computing the distance between
two different starting states [71, 72]. At sufficiently long
times, all states will converge to ®£1 |4);- In the Marko-
vian case, this convergence is monotonic, while the mem-
ory effects of non-Markovian noise can lead to temporary
recurrences of the trace distance. Figure 7 shows the
trace distance for two starting states, p(t = 0) = |11) (1]
and o(t = 0) = ) (us], with [v) = o ®L2, [1), and
[1he) = %(H—FO’;) ®§21 [1);, where there is a single exci-
tation at site 2, respectively half an excitation. As it can
be seen in Fig. 7, in the region that is well described by
the equivalent Markovian process (Fig. 6), the trace dis-
tance decreases monotonically. Upon crossing over into
the non-Markovian region, clear recurrences appear.
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FIG. 8: Transfer in a continuously driven system as a func-
tion of driving rate, without dephasing and static disorder.
Excitations are created at site isource = 2 with rate I'source
and the target site is isink = 5, in a system of size N = 6.
The couplings are approximate power-laws characterized by
a = 0, 1.5, 3.0 (red, orange, blue). (a) Rate for absorbing
excitations at site isink and (b) total number of excitations
in the steady state. Due to non-linear effects, the absorption
rate is a non-monotonic function of I'source.
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FIG. 9: Maximum transfer rate in the steady state of a

continuously driven system as a function of hopping range,
for realistic couplings (solid) and an idealized power-law de-
pendence (dashed), without collective dephasing and static
disorder. The source site iS isource = 2 and the target site
isink = D, with NV = 6. (a) The maximum absorption rate of
excitations at ignx has a minimum at intermediate values of
a. (b) The optimal source rate I'$ht... achieving the maxi-
mum transfer rate given in panel (a) decreases monotonically
with a.

D. Dynamics of a driven system

Within the proposed scheme, one can go beyond single
excitations and investigate non-linear interaction effects.
One way to study these is by continuously pumping ex-
citations into the system, for example by the incoher-
ent Markovian process described by the super-operator
Lsource introduced in Sec. II. In the following, we concen-
trate on the properties of the steady state that emerges
in the limit (¢ — ¢y) — oo due to the interplay of the
Markovian processes described by Leource, Ldiss, and the
hopping term H;. We performed these calculations by
numerically searching for the steady state of the Lindblad
master equation (7) using the QuTiP package [73].

In the limit (¢ — ¢9) — oo, the rate at which the ex-
citations are removed from the system at g, converges
against a constant value, which in a photosynthetic sys-
tem corresponds to the rate at which excitations are re-
combined at the target site. We numerically evaluate this
rate as a function of I'soyree, Which quantifies the coupling
strength of site igource to the thermal reservoir. The cor-
responding results are depicted in Fig. 8(a), while the



total number of excitations in the system is presented in
Fig. 8(b). Naively, one would expect that the rate for ab-
sorbing excitations as well as the total number of excita-
tions in the system increases monotonically with I'source-
However, as Fig. 8 illustrates, there is an optimal injec-
tion rate ISPt that yields a maximal rate. This optimal
value depends on o and hence on the connectivity of the

network, as depicted in Fig. 9.

The existence of an optimal value for I'sgurce is @ man-
ifestation of non-linear effects that come into play as the
number of excitation in the spin network grows. In order
to understand this behaviour, we first focus on a > 0 in
the limiting cases I'source K Jmax and Dsource => Jmax- In
the regime I'source € Jmax, the dynamics of the system is
dominated by the hopping term described by H; with its
highly delocalized eigenstates, and the driving described
by Lsource can be treated as a perturbation. The excita-
tions brought into the system by Lgource delocalize. As
the excitations spread over the entire spin network, non-
linear effects arising from the fact that each site can only
support a single excitation are negligible.

Increasing I'source brings more excitations into the sys-
tem and initially improves the absorption rate. As I'source
increases further, however, Lgource can no longer be
treated as a perturbation. In the regime I'source > Jmax,
the structure of the eigenstates of the super-operator
Lsource dominates the dynamics, and H; represents a
small perturbation. Since Lgouree describes the creation
of excitations at isource, its eigenvectors reflect a highly
localized dynamics, and in the limit [soupce > Jmax the
excitation remains localized at igource in a Zeno-like effect.
This behaviour is illustrated in Fig. 10(a) for a = 1.5.
The probability for finding the excitation at igink 7 isource
goes to zero as ['source — 00. In this limit, ign decouples
from the rest of the system, and the resulting dynamics
is that of a single two-level atom coupled to an infinite-
temperature heat bath. Consequently, the average num-
ber of excitations in the system converges against 0.5.

The behavior changes drastically when o = 0. For
large values of I'yource, the steady state is similar to ae > 0,
with 0.5 excitations at isource and vanishing excitation
number everywhere else. In the limit of small T'source,
however, the steady state for a = 0 deviates signifi-
cantly from the steady state for non-zero a. The rea-
son is again the destructive interference effect, which re-
duces the number of excitations that reach site igyi in
a given time, and thus decreases the rate for absorbing
the excitations when compared to scenarios with a > 0
(Fig. 8(a)). As a consequence, excitations can accumu-
late in the system, and, instead of vanishing numbers of
excitations, we find an average excitation number of 0.25
at each site, except at ignk (Fig. 10(b) and Fig. 8(b)).
The result is a counterintuitive behavior: while overall
more excitations are present in the steady state, fewer
of them are absorbed at the target site. As these re-
sults show, the non-linear behaviour due to interactions
between excitations leads to highly non-trivial dynamics.
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FIG. 10: Average number of excitations per site in the steady
state, plotted against the rate I'source for an ion chain with
N = 6 ions. The excitations are created at site isource = 2 and
are absorbed at site isink = 5 . The parameters are a = 1.5
(a), « =0 (b), and with v = 0 and no static disorder.

V. EXPERIMENTAL CONSIDERATIONS

In this section, we address possible sources of er-
rors in a realistic experiment and compare their rates
to achievable time scales. The Mglmer—Sgrenson gate
at @ — 0, employing the axial center-of-mass mode,
can be performed with gate times up to 50us (Jmax =~
15.7-103s71) [76]. When addressing the radial modes
to obtain tunable long-range interactions, realistic inter-
action strengths are Jyax ~ {230,360,125,100}s~! for
a = {0.75, 1.07, 1.41, 1.75} [31]. The observation of the
phenomena discussed for « — 0 requires times not longer
than T = 20/Jmax =~ 1.25ms. The transition between
the dynamical regimes aw < 1 and o > 1 can be observed

within times on the order of T' = JA <0.1sfor N =10

ionsand T' = JQO < 0.2 s for N =20 ions. In the follow-
ing, we Compargaﬂlese time scales to two classes of errors,
those which limit the time over which physical qubits can
store quantum information, and those which concern the
operations performed on the qubit.

A. Qubits as quantum memories

Two possible error sources are particularly relevant for
reducing the coherence time of the qubits in the absence
of additional operations: Amplitude damping, which is
caused by spontaneous decay, and phase damping, which
is predominantly caused by relative fluctuations between
the frequency of the qubit transition and the laser field
used to read out the state of the qubit.

For an optical qubit in the setup described in [65], the
lifetime is 73 = 1.13s. The run times T estimated above
are at least an order of magnitude smaller than the life-
time 7p. Since the spontaneous decay acts on all ions
with the same decay rate of 7, ! its effect on the absorp-
tion probability can be removed in the single excitation
sector via the analytical expression

Pl(t)=1—¢ (t-t)/m [ —

Ba(t)] - (27)

Here, P,(t) is the probability for having absorbed the ex-



citation at site ignk in the absence of spontaneous decay
and P.(t) is the probability for not finding the excita-
tion in the quantum network at time t in the presence
of spontaneous emission. Due to the simple structure of
Eq. (27), it is straightforward to eliminate the effect of
spontaneous decay in the post-processing of the experi-
mental data.

In addition, frequency fluctuations of the qubit transi-
tions and the laser field generate dephasing noise, which,
however, has been reported to be almost identical for all
the ions [65]. Hence, one can find decoherence-free sub-
spaces (DFSs) in which this type of dephasing is practi-
cally absent. In our case, subspaces of fixed excitation
numbers are decoherence free. Decoherence between dif-
ferent subspaces does not affect the proposed quantum
simulations, since the coherent Hamiltonian part of the
time evolution as well as the (possibly non-Markovian)
dephasing noise conserve the number of excitations, while
the excitation number is only changed by the incoherent
Markovian processes Lqiss and Lgource-

B. Errors from faulty qubit operations

A second class of error appears as soon as operations
on the qubits are performed, in particular initialization,
generation of the dynamics, and readout.

Preparation of the initial state: The first step of the
proposed experiment is the preparation of the initial state
|1 (to)). This can be done via optical pumping, which al-
lows for the preparation of the states |[|); and |1); with a
fidelity beyond F = 99.9% [77]. Another important ini-
tialization step is the cooling of the vibrational modes of
the ion chain. After a cooling time of 200 us, an average
steady-state phonon number of (n) = 0.5 per mode can
be achieved, sufficient to implement Mglmer—Sgrenson-
type interactions with satisfactory fidelity [65].

Time evolution: By implementing the Hamiltonian H
as well as the dephasing and dissipative processes dis-
cussed in Sec. I1, intensity fluctuations of laser fields enter
as additional error source. Since the time scale of these
fluctuations, on the order of seconds or minutes [65], is
much longer than a single run of the experiment, this er-
ror amounts to a random variation of Jy.x that remains
static within each run. The numerical results presented
above indicate that the excitation transfer does not cru-
cially depend on the precise value of Jyax, so this error
should not change the results significantly. In addition,
intensity fluctuations of the addressed beams generating
the AC-Stark shifts lead to fluctuations of the local ex-
citation energies hw;. However, these appear only in the
form of static disorder and dephasing. These will ran-
domize somewhat the amplitude of the disorder strength
and the dephasing rate, but since observables depend
smoothly on both parameters, the effect should not be
significant. Thus, our proposed quantum simulation will
be robust against the intensity fluctuations of the laser
field.
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FIG. 11:  Comparison of the time evolution with and without
off-resonant terms in Hing, Eq. (9). Solid curves are from
bottom to top for weonst / Jmax = 1, 2, 10 (orange, green, blue).
Already with weonst /Jmax = 10, the result is hardly discernible
from the ideal case of weonst/Jmax — 00 (red dashed). The
exponent describing the hopping range is a = 1, system size
is N = 10, and there is no static disorder or dephasing.

Influence of off-resonant terms in the interaction
Hamiltonian: In Sec. II, we have proposed to engineer
the Hamiltonian H; by implementing H;,; and eliminat-
ing off-resonant terms such as Uj oj by working in the
regime fiweonsy > Ji;. With a finite ratio weonst/Jij, off-
resonant terms may influence the system dynamics by
creating and annihilating excitations. In order to quan-
tify the impact of such off-resonant excitations, we per-
formed a simulation taking them into account, with the
result depicted in Fig. 11. Already for weonst /Jmax = 10.0
the impact of the off-resonant terms in fIint is hardly dis-
cernible.

Measurement: In the final step of the experiment, one
measures the number of remaining excitations (number
of ions in state |1);). This can be done through electron
shelving [78] with extremely high accuracy [65], such that
the errors it introduces can be neglected relative to other
error sources discussed above.

C. Accessible parameter regimes

To estimate the reachable parameter regimes, we com-
pare the relative rates of the ingredients generating
Eq. (7). As mentioned above, interactions have been
experimentally demonstrated with Jy,.x on the order of
100 s~ up to 15.7 - 10® s~!. Disorder and dephasing
amplitudes can be orders of magnitude larger: with de-
tunings of 100 GHz from the 42P3/2 & 32D5/2 transition
an AC-Stark shift of 27 - 1 MHz is achievable [79] and in
[74] AC-Stark shifts of up to 10 MHz have been demon-
strated. Further, dephasing autocorrelation time can be
much shorter than the other relevant time scales. For
example, by changing the intensity of the corresponding
lasers using an acousto-optic modulator one can achieve
switching times on a nanosecond scale, allowing for the
realization of dephasing deep in the Markovian regime.
For '"'Ybt+ ions, with the qubit transition in the mi-
crowave range, flat as well as structured dephasing noise



has been demonstrated up to a cutoff frequency of 200Hz
[53].

VI. CONCLUSION

In summary, we have presented a feasible scheme to
quantum simulate the transfer of excitations through
a quantum network. The proposal exploits existing
trapped-ion technology and can be robustly implemented
in state-of-the-art experiments.

As we have shown, the main parameters describing
ENAQT—disorder strength and dephasing rate—can be
tuned over wide ranges, permitting the study of this phe-
nomenon in the interplay between Anderson localization,
noise-induced transfer, and freezing due to quantum Zeno
dynamics. An additional feature of ion chains are tun-
able long-range interactions. In detailed numerical sim-
ulations, we have illustrated how the transfer efficiency
grows with increasing hopping range at short times, but
diminishes at larger times due to a localization phe-
nomenon induced by destructive interference [13]. Coun-
terintuitively, but similar to the case of disorder-induced
ENAQT, small amounts of disorder or dephasing destroy
the destructive interference and thus enhance the trans-
port efficiencies for large hopping ranges.

Furthermore, the proposed scheme allows one to study
the impact of non-Markovian effects on the excitation
transfer, thus complementing recent theoretical investi-
gations into the role of non-Markovian processes for the
energy transfer process in biomolecules [14-18, 62]. In
our numerical calculations, we have found that, while the
Markovian and a simple non-Markovian dephasing reach
similar maximal transfer efficiencies, the non-Markovian
noise can hold larger values over a broader parameter
range. Here, we have been interested in the transfer up
to a fixed but finite time, which in realistic experiments
will be limited by loss mechanisms. In the limit of infinite
waiting times, the efficiency will become independent of
non-Markovian effects [62].

Our scheme also provides a framework for investigat-
ing non-linear dynamics, which emerges as larger num-
bers of excitations are injected into the spin network. In
this regime, numerical calculations are intractable except
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for very small systems, thus making it a particularly at-
tractive target for quantum-simulation experiments. We
have studied this regime for small driven-dissipative sys-
tems in which excitations are injected continuously from
an infinite-temperature heat bath, resembling the inco-
herent absorption of photons by photosynthetic systems.
We have found markedly different behavior for o = 0 and
a > 0. While for a = 0 large numbers of excitations may
be present, due to the destructive interference effect the
rate of absorbing them at the target site may actually
be lower than for o > 0. It will be interesting to use
interactions between excitations to design so-called ‘op-
tical ratchet’ states. There, the system can continue to
absorb excitations while not losing to spontaneous emis-
sion those already gained [80].

Experiments may investigate these effects not only in
one-dimensional chains, but also in other geometries.
Two-dimensional crystals can be realized, e.g., in Pen-
ning traps [44, 46] or linear Paul traps with strong
axial confinement [47], and segmented Paul traps [48],
nanofabricated surface traps [49], periodic driving [50],
or additional laser frequencies [51] may allow to design
arbitrary interaction patterns. A further future direction
will be to design the dissipation as a true quantum bath
instead of classical dephasing. This may be achieved, e.g.,
by coupling the spin network to the vibrational phonon
modes of the ion crystal, as has been proposed for the
study of spin-boson models [81, 82].

To conclude, by exploiting the high level of control
of current ion-chain experiments, it will be possible to
study many different aspects of excitation transfer in
open quantum networks in a highly controllable envi-
ronment. These studies may permit deeper insights into
phenomena such as the energy transfer in photosynthetic
systems or the conductance properties of materials.
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