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Abstract 

Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, 

as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers 

to resist treatment and survive under environmental stress. A comprehensive picture of the 

interplay between different somatic aberrations, from point mutations to whole-genome 5 

duplications, in tumour initiation and progression is lacking. We posit that different genomic 

aberrations generally exhibit a temporal order, shaped by a balance between the levels of 

mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, 

with compensatory roles leading to robust tumour fitness maintained throughout the tumour 

progression. A better understanding of the interplay between genetic aberrations, the 10 

microenvironment, and epigenetic and metabolic cellular states, is essential for early detection, 

prevention, and development of efficient therapeutic strategies. 
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[H1] Introduction 

Despite the impressive recent progress and the development of new, promising therapeutic avenues, 

cancer remains a puzzling phenomenon, with limited ability to treat many cancer types 1. The primary 

reason for this limited success is the enormous genetic heterogeneity and phenotypic plasticity of 

tumours, which is a major cause of resistance to treatment 2. According to the genetic paradigm of tumour 5 

evolution, cancers evolve by the acquisition of driver mutations that confer selective advantage 3,4, as has 

been demonstrated by numerous studies 5-10. Tumour evolution involves complex genomic aberrations 

that occur on every length scale including point mutations, complex insertions and deletions 11, 

microsatellite and repeat instability 12-15, gene copy number alterations, chromosomal instability and 

aneuploidy 16-22, massive genomic rearrangements 23,24, and whole-genome duplications 25. Similar 10 

somatic clonal evolution also occurs in unicellular organisms 26,27 and human normal tissues 28-30, 

emphasizing that the impact of mutations on cellular fates is highly context specific. 

 

Genomic aberrations arise randomly 31,32 but can be further driven and selected by local environmental 

conditions 33-35. Different environmental exposures (e.g., UV radiation or smoking) can affect the 15 

generation and fate of mutations and leave distinctive signatures 36. These aberrations generate 

intratumour heterogeneity, which allows cancer cells to cope with microenvironmental assaults, immune 

surveillance, and therapy, eventually resulting in tumour invasion and metastasis 37-41. Although much is 

known about how different aberrations affect tumour progression and clinical outcome, it is less clear 

how they act jointly to maintain the fitness of tumours across time.  20 

 

Beyond (and partially owing to) genome evolution, cancers evolve through phenotypic plasticity, 

mediated by metabolic adaptations and epigenetic modifications, which tightly interact with each other, 

sense and rapidly respond to changing environmental factors 42-44. The role of phenotypic plasticity in 

cancer progression has been extensively described and further contributes to the ability of cancers to 25 

develop diverse strategies to proliferate under harsh and fluctuating conditions 35,45-47, promoting 

aggressive and invasive phenotypes 37,41,48. However, how this plasticity is linked to the tumor mutational 

landscape is incompletely understood. 

 

In this Perspectives article we aim to provide insights into the temporal dynamics of different aberrations, 30 

highlighting their apparent compensatory roles in maintaining tumour fitness during different phases of 

cancer evolution. Starting with the smallest scale of point mutations and progressively moving to larger 

aberrations, we present evidence of a specific temporal order in the acquisition of different types of 

genetic alterations, whereby repeat instability emerges early in tumour evolution, followed by larger 

aberrations. We examine the interplay between different types of aberrations in the context of population 35 

genetics, pointing to similarities between their dynamics and roles in species and cancer evolution. 

Additionally, we highlight how metabolism, epigenetics and environmental stress could be involved in 

tumour initiation and the induction of oncogenic events, providing further support to the emerging 

temporal pattern of different aberrations. Lastly, we discuss the impact of interactions between mutations 

(epistasis) as well as between mutations and the metabolic and epigenetic states of cancer cells. Such 40 

interactions lead to rich fitness landscapes, but also to vulnerabilities, as tumours develop dependencies 

on specific mutations and conditions. We discuss how interactions shape the evolutionary trajectories of 

tumours and can be exploited for developing more efficient therapeutic strategies, by generalizing the 
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concept of synthetic lethality. We conclude that further elucidation of the context- and time-dependent 

acquisition of mutations in different phases of tumour evolution and their interaction with the 

environment can be expected to improve our ability to identify and distinguish between features involved 

in cancer initiation and progression, and ultimately, to improve methods for early detection and the 

efficacy of combinatorial treatments in advanced cases. 5 

 

[H1] Point mutations, selection and fitness 

In population genetics, the two key variables that determine the evolutionary fates of evolving 

populations, including populations of cancer cells, are the effective population size (Ne) and the point 

mutation rate (µ) 39,49 (BOX 1). µ determines the supply of point mutations (beneficial and deleterious), 10 

whereas Ne determines how likely is a mutation to propagate or be eliminated from the population. Large 

Ne entails dominance of purifying selection, whereby deleterious mutations are efficiently removed from 

the large population, which is the prevalent evolutionary regime in unicellular organisms, particularly 

prokaryotes. By contrast, small Ne translates into dominance of neutral evolution by genetic drift, 

whereby mutations are fixed in a population due to stochastic sampling fluctuations, which is the 15 

common regime of evolution in multicellular eukaryotes 50-52. Across the diversity of life forms, the 

product Ne x µ is a marker of macroevolution, which delineates major clades: it exhibits high values in 

prokaryotes and gradually decreases with organismal size and complexity in unicellular eukaryotes and 

plants, reaching the lowest values in animals, particularly vertebrates 49. Furthermore, when µ is high and 

Ne is small, many deleterious mutations can accumulate, leading to successive loss of the fittest 20 

genotypes, in a process known as Muller’s ratchet 53. In some cases, Muller’s ratchet can lead to 

extinction of the population, a phenomenon called mutational meltdown 54. Conversely, when µ is low 

and Ne is large, different members of the population can acquire similar beneficial mutations, leading to 

parallel evolution 55,56. Between these extremes, for intermediate Ne and µ, a population can exhibit 

complex dynamics, through the interplay between clonal spatial organization, competition (clonal 25 

interference) and genetic interactions (epistasis) 39. Therefore, the evolutionary regimes of species are 

often assessed by exploring the status of these two variables, referred to as the mutation-selection 

diagram. This diagram can be also constructed using the strength of selection, dN/dS, the ratio between 

non-synonymous and synonymous substitution rates, instead of Ne, because Ne and dN/dS are directly 

related 57,58 (BOX 1). 30 

 

Cancer is a unique testing ground for exploring the mutation-selection diagram because: different cancers 

exhibit a wide range of mutation rates 59 largely reflecting characteristics of different tissues 31,32; the 

strength of selection can be assessed from patients’ mutational profiles; and because tumour fitness (BOX 

1) can be assessed using clinical data, assuming that poor outcomes reflect the capacity of cancer cells to 35 

proliferate, migrate, invade tissues and colonize. Although the mutation rate can vary greatly over space 

and time, the mutation load (ML) — that is the number of non-silent mutations in tumour genomes — can 

be used to assess the average mutation rate, provided the time interval from the birth of the neoplastic cell 

to the tumour state is known. Using this approach, data-driven population-genetics models of tumour 

evolution estimate that selection is typically weak 60. Nonetheless, there exists a trade-off between driver 40 

mutations that enhance tumour fitness 61 and deleterious passenger mutations (BOX 1), reflecting a 

mutation-selection balance 62, such that the dependency of tumour fitness on ML is non-monotonic and 
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exhibits a critical state beyond which the number of deleterious mutations becomes substantial and 

decreases tumour fitness 63,64. 

 

These properties are captured by pan-cancer data analysis (Fig. 1). First, analysis of the association 

between ML and tumour fitness (clinical outcome), using Cox regression analysis 65 (BOX1), reveals a 5 

dual regime 66, whereby (i) in low ML cancers, there is a positive correlation between ML and tumour 

fitness (i.e. the higher the ML the worse the clinical outcome), which is likely to reflect the impact of 

driver mutations, whereas (ii) in high ML cancers, the correlation between ML and tumour fitness is 

negative (a further increase in ML is associated with better outcome), apparently due to the impact of 

deleterious mutations. The damaging effect of deleterious passenger mutations is independent of immune 10 

response, as was established in experiments of human cell line and mouse models 67. Second, most of the 

individual genes 68,69 and most tumour genomes on average 66,70 evolve close to neutrality (dN/dS ≈ 1) 

although some subclones appear to be subject to substantial positive selection 71. Nonetheless, deviations 

from neutrality exist, indicating (weak) positive selection in low ML tumours, probably reflecting the 

accumulation of driver mutations in initial phases, and substantial negative selection at extreme ML, 15 

probably reflecting purifying selection that prevents mutational meltdown of the tumour cell population 
66,72,73. These properties show how positive and negative selection maintain the fitness of tumours in 

initial and advanced phases, respectively. Consistent with this view, deviations from neutrality correspond 

to decreased tumour fitness as demonstrated by the association of neutrality with the worst clinical 

outcome 66. 20 

 

Thus, the mutation-selection diagram of tumour evolution reveals a dual regime, with ML and dN/dS 

being the key variables that determine the fitness of tumours in different phases, with maximum fitness at 

intermediate ML and under neutral evolution. Next, we discuss the behaviour of other somatic aberrations 

in the context of this mutation-selection balance. 25 

 

[H1] Microsatellite and repeat instability 

The next length-scale of aberrations that can affect more than a single locus involves changes in short 

repetitive motifs (typically <100 bp) in coding and non-coding regions, hereafter referred to as ‘repeats’ 

(Fig. 2). Repeats display complex patterns, including tandem duplications, interspersed repeats, repetitive 30 

domains, and overrepresentation of motifs in low complexity regions. Repeats are hotspots of evolution 
74-76 that emerge, primarily, through replication slippage and recombination 77-79. Protein repeats serve as 

building blocks of various macromolecular complexes 80,81, and are involved in a variety of biological 

processes by mediating both protein–protein and protein–nucleic acid interactions, notably, transcription 

regulation, intracellular trafficking, immunity and stress-response 82-86. 35 

 

Repeats play important roles both in microevolution and in speciation. In microevolution, in diverse life 

forms, variations in the copy-number of repeat units facilitate the acquisition of new functions and new 

phenotypic traits, for example, cell-adhesion in yeast allowing for immune evasion 87, skull and limb 

morphology in dogs 88, and regulation of circadian clock to changing temperature in flies 89. Repeats are 40 

key regulators of gene expression 90 and RNA structure 91,92, as well as brain development 93-95 and social 

behaviour in mammals 96. Analyses of species proteomes further unravel the dynamics and evolution of 

point mutations in repeat units. Such mutations have functional consequences, as exemplified by the rapid 
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evolution of the zinc-finger array of the PRDM9 gene, which promotes meiotic recombination, and is 

directly implicated in mammalian speciation 97,98. Nearly universally, following duplication, new repeats 

in protein-coding regions are relaxed of selective constraints, diverge by accumulating mutations at 

elevated rates under positive selection 99, and subsequently, become conserved as they acquire new 

functions 99,100 (Fig. 2a). This mutational susceptibility eventually results in repeat expansion and 5 

sequence divergence among the repeat units, such that the number of repetitive ‘words’ that compose 

repeat arrays (repeat vocabulary) in proteomes, which represents the compound effect of unit duplication 

and propagation of mutations, increases over long spans of evolution, with an inverse relation to the 

ordering of species by Ne x µ 49,101,102 (Fig. 2b). Thus, repeat propagation is affected by the strength of 

purifying selection, with low repeat abundance in unicellular organisms (high Ne x µ, i.e. strong purifying 10 

selection) and high abundance in multicellular eukaryotes (low Ne x µ, i.e. weak purifying selection and 

substantial genetic drift). Therefore, repeat copy number variation and divergence represent a distinct 

evolutionary mechanism that can rapidly generate genetic variability, and is likely to compensate for the 

relatively low mutation rates in multicellular eukaryotes. 

 15 

The rapid evolution of repeats comes at the cost of promoting genetic diseases. Variation in the number of 

repeats (mostly expansion, but also contraction), hereafter referred to as repeat instability (RI), is 

implicated in a variety of neurological disorders, including Huntington disease, fragile X disorders, 

Friedrich ataxia, spinocerebellar ataxia, frontotemporal dementia (FTD) and amyotrophic lateral sclerosis 

(ALS) 103-111. Repeat instability in different regions of genes (i.e., introns, 5ʹ and 3ʹ untranslated regions 20 

(UTRs) and coding sequences) is associated with different diseases 105,109,110. For example, the expansion 

of intronic TTTCA and GGGGCC repeats is associated with ALS and FTD, respectively112,113, The most 

prevalent variation involves short tandem repeats of alanine and glutamine tracts, but other types and 

complex repeat variations are known, with unit sizes ranging from a few base pairs (microsatellites) to 

10–1000 bp 105,108 and larger structural variations 109. The extent of variation often correlates with disease 25 

severity 105,108, as the expansion of repeats leads to RNA toxicity, autophagy stress and epigenetic 

dysregulation (e.g., nucleosome assembly exclusion, or promotor-bound gene silencing) which promote 

disease 105,107,110. 

 

RI is also implicated in cancer somatic evolution, which often exhibits aberrant DNA replication and 30 

repair that promote RI 114,115. The best-studied type of RI implicated in cancer is microsatellite instability 

(MSI), partially due to technical difficulties inherent in the identification of larger repeats with current 

next-generation sequencing (NGS) technologies 116,117. MSI is a widespread phenomenon affecting most 

cancer types 12-14, and shows distinct dynamics and roles in tumour evolution (Fig. 2c). At the pan-cancer 

level, across patients, MSI is inversely proportional to ML 14, and is a prognostic marker of favourable 35 

clinical outcome 13,118. This indicates tolerance for RI at low mutational burden, but as cancer progresses 

and the burden increases, MSI is not tolerated. Indeed, generalizing from MSI to RI, by accounting for a 

wider range of repeats in the analysis of NGS data, we have recently shown that the inverse relationship 

between ML and RI is captured in individual patients 15. Relative to healthy tissue, RI increased 

significantly in primary tumour samples, but then gradually reduced in metastases, whereas ML continued 40 

to increase during tumour progression to metastases, accurately capturing tumour phylogeny in individual 

patients (Fig. 2c). Thus, RI was high when ML was low (in primary samples) but was low when ML was 

high (in metastatic samples). Normal tissues adjacent to tumours exhibited similar RI to that of tumours, 

suggesting that RI might be induced by microenvironmental cues, even prior to the fixation of a driver, 
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oncogenic mutation and pathological evidence. We address the link between somatic aberrations, 

epigenetics and environmental stress in the dedicated section below. 

 

These observations suggest a distinct, compensatory role of RI in cancer evolution, which can be 

explained in the context of the dual mutation-selection evolutionary regime. In the initial phase, RI is 5 

most pronounced, possibly compensating for the low number of cancer drivers and allowing the cells to 

cope with environmental stress. In this regime, ML is low, and RI is positively selected for. Later in 

evolution, as tumours acquire more mutations, ML increases and RI becomes a vulnerability to cancer 

cells, consistent with the association of high-MSI with better prognosis (i.e., decreased tumour fitness) 13. 

In this regime, RI is reduced both by cell autonomous mechanisms associated with the high burden of 10 

deleterious mutations (cf. Fig. 1), and by the immune response to tumour neoantigens, which become 

prominent at high MLs 119-122. The immune system then exercises purifying selection as demonstrated for 

microsatellite-unstable colon cancer, where strong purifying selection eliminated antigen-presenting 

tumours, whereas immune-adapted MSI tumours metastasized 123,124. These findings also indicate that RI 

plays an adaptive role in immune evasion (reminiscent of the repeat variation in yeast mentioned above 15 
87) and metastasis formation. 

 

In summary, the effects of selection on the propagation of mutations in repeats in species evolution (Fig. 

2a and 2b) and on the repeat copy-number in cancer evolution (Fig. 2c) are similar, demonstrating that 

repeats can propagate by drift under weak purifying selection but are eliminated by strong purifying 20 

selection. Positive selection, both in species (Fig. 2a) and in cancer evolution (Fig. 2c), drives repeat 

propagation in the initial phases and rapidly generates genetic and functional variability. This variability 

confers fast adaptability, possibly in response to environmental factors, and might be a universal rapid 

compensatory mechanism under evolutionary regimes of low mutation rates and environmental stress. 

The importance of point mutations in repeats in species evolution suggests that, beyond copy-number 25 

variations, mutations in new repeat copies may have functional implications in cancer, as has been 

demonstrated in colon cancer 125 but remains largely unexplored. 
 

[H1] Larger genomic aberrations 

Next, we address the impact of large genomic aberrations, such as aneuploidy and chromosomal 30 

instability (CIN), manifested by whole-arm gains or losses, as well as by focal somatic copy number 

alterations (SCNA) and whole-genome duplications (WGD). What is the role of these large genomic 

aberrations in maintaining tumour fitness, and how do they act through different phases and contexts of 

tumour evolution? In addressing these questions, we emphasize the temporal behaviours of different 

aberrations and their effects on clinical outcome (Fig. 3). 35 

 

Aneuploidy is the most common genomic aberration in cancer that affects nearly 90% of cancers, in a 

highly tissue-specific manner, and covers about 25% of a typical tumour genome 18-22. In species 

evolution, across diverse life forms including humans, aneuploidy is strongly deleterious, presumably as a 

consequence of a highly imbalanced gene expression 22. Nonetheless, its effects on the fitness of cells are 40 

strongly context-specific. Under physiological conditions, aneuploidy is mostly detrimental, but under 

selective pressures, it can be beneficial, in particular, conferring drug resistance by increasing karyotypic 

and phenotypic diversity 19,20,22. This dual effect of aneuploidy has been demonstrated in yeast under 
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normal 126 and stress 127 conditions. Consistently, in cancer, aneuploidy can act either as a tumour driver 

or as a suppressor 128,129. Nonetheless, recent studies indicate that CIN-induced aneuploidy is mostly a 

driver of tumour evolution, which correlates with tumour progression 130 and directly drives metastasis 

formation via activation of the cGAS–STING DNA-sensing pathway, in response to DNA spilled by 

aneuploid cells into the cytosol, promoting cellular invasion 131. Aneuploidy is a hallmark of late stages in 5 

tumour evolution, appearing at increasingly high rates as a tumour progresses, possibly marking the 

transformation to an invasive phenotype 22,132. Indeed, the association of aneuploidy with clinical outcome 

further supports its dominant role as a tumour driver: in the vast majority of cancers, aneuploidy is 

associated with adverse clinical outcome, except for a few cancer types, notably haematopoietic 

malignancies 22,133. Most cancer types show a positive association between driver mutations and 10 

aneuploidy, which appear to synergistically contribute to poor clinical outcome 134. Nonetheless, extreme 

levels of aneuploidy appear to decrease tumour fitness, thereby leading to improved clinical outcome 135-

137, presumably due to the increased genomic burden in the tumour cells. Indeed, excess levels of rates of 

chromosomal mis-segregation lead to tumour suppression and cell death 138. Nonetheless, in tumours, 

CIN levels can be regulated through mutations in anaphase-promoting complex/cyclosome APC/C, 15 

dampening the effect of aneuploidy 139. Thus, similarly to the case of ML, there seems to be an optimal 

aneuploidy level for tumour progression, but the critical level is not easily crossed during tumour 

evolution, and is likely to depend on the distribution of cancer genes affected by aneuploidy 140. 

 

At the pan-cancer level, aneuploidy is significantly positively correlated with ML and inversely correlated 20 

with MSI 21. Consistently, and opposite to the adverse effects of high aneuploidy on patient survival, high 

MSI is strongly associated with better clinical outcome 13. These findings further strengthen the 

conclusion that MSI, and more generally, RI, contributes to tumour fitness at early stages, whereas later in 

tumour evolution aneuploidy becomes the dominant mechanism. Indeed, RI and MSI levels are low in 

high ML tumour genomes 14, and are significantly reduced in the transition to metastatic states 15, 25 

presumably due to immune surveillance 123. By contrast, aneuploidy negatively correlates with immune 

signatures, apparently, being tolerated as cancers evolve mechanisms to evade immune control, but often 

positively correlates with proliferation and with the transition to metastatic states 21,22,131,132,141. Recent 

observations further identify multinucleated neoplastic cells as a group of cells with unique capabilities 

for conferring renewal potential and coping with stress and therapy, leading to aggressive phenotypes 30 
142,143. 

 

Taken together, these findings propose possible complementary roles of ML, RI/MSI, SCNA and 

aneuploidy in tumour evolution (Fig. 3). Specifically, RI (and MSI) appear to play an important role in 

tumour initiation and achieves optimal levels at early stages, whereas aneuploidy is likely to become 35 

important later, with optimal effects observed at extreme levels. In late stages of tumour evolution, high 

levels of RI (MSI) are not tolerated, and aneuploidy assumes the dominant role as a driver. Furthermore, 

the association of SCNA (focal and broad) with the clinical outcome shows that medium levels of SCNA 

are associated with the worst outcome, whereas low and high levels are associated with better prognosis 
144. Thus, focal SCNA appear to be associated with high tumour fitness, whereas the addition of CIN, 40 

once it leads to a high genomic burden, could reduce tumour fitness. A recent study 145 has shown that 

focal SCNA indeed portents worse prognosis than broad SCNA, in support of the observed trend, even if 

focal SCNA affect only about 10% of a typical cancer genome 18. Thus, focal SCNA seem to reach the 
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optimal level for tumour fitness at intermediate stages, but are likely to remain high and contribute to 

tumour fitness throughout the course of progression (Fig. 3).  

 

These findings suggest ordering of the types of genomics changes by time and the increasing length scale 

of the aberrations along the course of tumour progression: first, RI (MSI), at the short length scale, is a 5 

major contributor at early stages; second, focal SCNA, at the intermediate length scale, become important 

at intermediate stages, as RI declines; and third, aneuploidy, at the longest length scale, dominates late in 

tumour evolution (Fig. 3). Along the same lines, differences between the evolution of gene and repeat 

copies following duplication are pertinent also in species evolution. Whereas repeat copies evolve rapidly, 

under combined effects of positive selection and strongly relaxed purifying selection, presumably driving 10 

the evolution of new functions via neofunctionalization 99, gene duplicates typically evolve much slower, 

under weak, relaxed purifying selection, and are mostly implicated in subfunctionalization of ancestral 

genes 146-148. This difference could, in part, stem from the different length scales of the affected sequences, 

whereby new repeats can be strongly affected by a single mutation, whereas new genes are less 

susceptible to mutations. 15 

 

Finally, the largest aberration is WGD, a common phenomenon in cancers, which affects about 30% of 

patients with advanced cancer. WGD occurs relatively early in tumour evolution and accumulates in 

cancer cells in a manner that is positively correlated with tumour proliferation, and with poor clinical 

outcome 25. Bielski et al.25 have found that WGD occurs only following the acquisition of specific driver 20 

mutations, which lead to either p53 dysfunction or E2F-mediated cell-cycle arrest malfunction, but 

precedes SCNA, hence WGD possibly serves as a precursor to facilitate SCNA. WGD was also similarly 

frequent in primary tumours and metastases, with some cancers (e.g., pancreatic, prostate, and non-small 

cell lung cancers) exhibiting higher WGD frequency in the metastatic state. WGD could promote 

tolerance to aneuploidy 149, as indicated by the elevated levels of aneuploidy and chromosomal instability 25 

in tumours exhibiting WGD, consistent with its role as a precursor to SCNA. Conceivably, WGD 

dampens the unbalancing effect of aneuploidy, thereby creating aneuploidy-permissive conditions 22. 

Furthermore, in the context of the mutation-selection balance, the observation that the deleterious effects 

of mutations can be mitigated by ploidy in asexual reproduction 150 further indicates that large somatic 

aberrations play a role in evolution when ML becomes substantial, reducing the risk of mutational 30 

meltdown. 

 

The temporal order depicted in Fig. 3 represents only an average or a common evolutionary scenario of 

tumour progression, from which many deviations exist. Arguably, however, some of these exceptional 

cases can be explained within the framework developed here. The context-dependent recurrences and 35 

fates of mutations reviewed here imply that, beyond this consensus order, a variety of genomic 

aberrations can be induced and become a dominant driver under specific molecular and environmental 

conditions, in a certain tumour type. Clearly, some large-scale structural genomic events are crucial for 

the initiation of certain cancers, such as TEL-AML1 fusions in acute lymphoblastic leukaemia (ALL)151, 

gains of specific chromosomes in glioblastomas 152, and chromothripsis in childhood medulloblastomas, 40 

kidney and other cancers 153-155. Such early events are distinct from the phenomenon of CIN discussed 

above which occurs, mostly, in late phases of tumour evolution. In Barrett’s esophagus, although 

aneuploidy is clearly a late event, it preceded transformation to invasive phenotypes 156, and CNA rates 

increased prior to WGD and were maintained, indicating that WGD was not a precursor for CIN in this 
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case 157. Furthermore, some tumours can harbour enormous numbers of mutations, as in the case of 

children born with biallelic mismatch repair (MMR) deficiency that acquire a POLE/POLD1 

hypermutator phenotype in some central nervous system (CNS) and gastrointestinal (GI) cancers 14. These 

tumours are associated with poor clinical outcome, suggesting that high ML does not reduce tumour 

fitness in this case (cf. Fig 1). In GI tumours, unlike most cancers, aneuploidy, but not the number of 5 

driver mutations in cancer genes, has been shown to uniquely correlate with poor clinical outcome 134. 

Thus, in these cases aneuploidy appears to be the dominant driver, which may explain the tolerance for 

hypermutators, in a manner reminiscent of the effect of WGD on mitigating the risk of a mutational 

meltdown 73. 

 10 

[H1] Phenotypic plasticity 

Beyond genome evolution, tumours evolve through phenotypic plasticity, which involves extensive 

metabolic adaptations and epigenetic modifications. The metabolic and epigenetic circuits interact with 

each other, enabling cells to sense and respond to environmental cues, adapt to harsh conditions, 

determine cell fates and embrace diverse strategies to survive 35,43,44,46,158. How might these metabolic and 15 

epigenetic changes be linked to the induction of genomic aberrations in cancer cells, beyond the baseline 

stochastic variability of normal cells? How do these complex interactions affect the fitness landscape of 

tumours, and can such effects be exploited for therapeutics? 

 

Metabolic adaptations are universal hallmarks of cancer 37 that emerge as a series of adaptive strategies, 20 

ordered in time, that help tumours to overcome physiological and microenvironmental barriers 45. 

Adaptation to loss of basement membrane induced apoptosis marks the transition to hyperplasia, followed 

by adaptations to nutrient deprivation, such as insufficient growth factors and oxygen availability 

(hypoxia) as cells proliferate into the lumen 45. At these early stages, adaptation to hypoxia is 

accompanied by a switch to aerobic glycolysis, known as the ‘Warburg effect’ 159, which supports tumour 25 

cell proliferation 160 and promotes the selection of acid-producing cells 161. Consequently, the tumour 

microenvironment becomes not only hypoxic by also acidic, with concomitant transition of the 

intracellular environment to a redox-stressed, alkaline state 45,162,163. Adaptation to these harsh conditions 

confers invasive capabilities through diverse mechanisms 35,42,45, including suppression of immune 

surveillance 164,165 and proliferation of aggressive tumour phenotypes 166. Eventually, to invade and 30 

metastasize, cells must adapt to fluctuations in the blood flow and develop supporting vasculature 41. 

 

The metabolic changes in cancer impose stress on cells, which in turn can induce mutations that increase 

genetic variability and hence facilitate adaptation 35, a fundamental factor of evolution under stress in all 

organisms 167,168. This causality could be mediated by epigenetic signals. In unicellular organisms, stress-35 

induced mutagenesis mechanisms employ SOS-response 169 and subsequent error-prone DNA repair 170,171 

which promote mutations. These pathways have parallels in cancer 172. More generally, stress can induce 

mutations through diverse mechanisms that affect the DNA repair machinery, such as excess levels of 

reactive oxygen species (ROS)35. Stress can be transduced by epigenetic signals, via the production of a 

variety of metabolites (e.g., acetyl-CoA and α-ketoglutarate) that regulate enzymatic activity in the 40 

nucleus and are essential for epigenetic imprinting 44. Consequently, some genes in the epigenetic 

machinery, known as mediators, can confer renewal potential to tumour cells (i.e., cancer stem cells) in 

early stages of tumorigenesis, even prior to the emergence of driver mutations 43 (e.g., loss of imprinting 
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of IGF2 or aberrant WNT/β-catenin signalling 173). Other genes comprising the epigenetic machinery, 

such as those involved in chromatin remodelling, DNA methylation, and histone modification (e.g., 

PRDM9, ARID, DNMT and HDA genes), and/or those acting further upstream, sensing and responding to 

cellular environmental factors (e.g., APC, KRAS, STAT3 and CTCF), are tightly involved in cancer 

progression and are often mutated 43. 5 

 

What is the correspondence between the temporal order of different types of metabolic stress in cancer 

and the temporal order of somatic aberrations? Stress can induce diverse types of aberrations. For 

example, in colorectal cancer cell lines, glucose deprivation can select for cells with an oncogenic KRAS 

mutation 174. In murine tumour cells, hypoxia can induce SCNA and chromosomal rearrangements 175. 10 

Critically, however, among all types of genomic aberrations (cf. Fig 3), RI appears to be the most 

susceptible to hypoxia and oxidative stress. This effect has been demonstrated in Escherichia coli, 

following DNA oxidative damage 176, and in human cell-line experiments, under microenvironmental 

stress conditions that mimic the conditions in cancer, such as hypoxia and oxidative stress 33,177. 

Mechanistically, under hypoxia, the transcription factor HIF1α induces MSI by downregulating MutSα 34. 15 

Because hypoxia and oxidative stress occur early in tumorigenesis, this link implies a primary role of RI 

as a mechanism of escape from stress in early stages. 

 

Less is known about potential effects of stress on larger aberrations, such as aneuploidy. Aneuploidy is 

believed to be mainly mediated by mutations in genes that control replication fidelity and chromosome 20 

segregation 178. Once aneuploidy emerges, it can cause epigenetic changes 179,180, but a causal relationship 

between epigenetic changes and aneuploidy in tumour evolution remains uncertain. Some studies have 

suggested that aneuploidy can be induced by stress factors, such as exposure to carcinogens (e.g., 

cadmium, nickel and arsenite), which cause DNA methylation in DNMT genes and subsequent 

chromosomal instability 181. In yeast, under pH and heat stress, aneuploidy is transiently induced, and 25 

then, vanishes once the stress is removed 182,183. Indeed, acidosis, a relatively late condition in cancer, 

appears to be involved in the induction of large aberrations, such as chromosomal breaks and 

translocations, but the exact mechanisms remain obscure 35. Generally, these findings are consistent with 

aneuploidy being a mechanism that confers fitness advantage under stress in late stages of tumorigenesis. 

 30 

The entirety of these observations indicates an important role of stress-induced mutagenesis in cancer that 

is consistent with the temporal order of mutations (Fig. 3), whereby RI emerges first in response to stress, 

along with other oncogenic events, whereas larger aberrations follow, presumably as mutations 

accumulate and the environmental conditions change. Moreover, these observations suggest that RI could 

be involved in the onset of cancer, even prior to fixation of oncogenic events, via stress-induced signals, 35 

which affect the epigenetic machinery and subsequently promote RI. This causality appears plausible, 

given that metabolic stress typically occurs early in carcinoma in situ, and even in precancer ducts 
45,161,184, and in light of the intimate dependence of RI on DNA metabolic processes 105,107 and the 

induction of RI through epigenetic mechanisms, as exemplified in the cases of mutated CTCF binding 

regulatory factor and the DNA methyltransferase 1 (DNMT1) deficiency that are implicated in genomic 40 

imprinting and chromatin remodelling 185-187. This concept accounts for the observation that RI is also 

manifested in tissues adjacent to tumours (cf. Fig. 2c), which are exposed to and sense similar 

environmental stresses as those that affect cancer cells in the tumour microenvironment. Furthermore, 

environmental stress that develops during the lifetime of an individual, prior to cancer onset, is likely to 
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contribute to cancer initiation, which could explain the notable propensity for cancer in individuals with 

obesity and type 2 diabetes 188. 

 

Finally, it is important to consider the impact of phenotypic adaptations on the fitness landscape of 

tumours. Phenotypic adaptation to temporal changes in environmental conditions is a fundamental driving 5 

force of organismal evolution 189. Temporal environmental changes affect the probability of fixation of 

mutations and the efficacy of selection that acts on them 190. In the case of cancer cells, this dependency 

can blur the difference between driver and passenger mutations, highlighting the context-dependent 

nature of mutations 191. Fluctuations also promote evolution of generalist traits, for example, when 

tumours adapt to blood flow changes, eventually evolving towards invasiveness 41. Generalist traits 10 

evolving through the tumour history might underlie its capacity to metastasize and explain the difficulties 

in treating metastases 192. 

 

Adding to this complexity is the high prevalence of genetic interactions between mutations (epistasis) in 

cancer 193. Epistasis, the different fitness effect of co-occurring mutations compared to the sum of the 15 

effects of the corresponding individual mutations, leads to complex, rugged fitness landscapes 194,195. 

Thus, tumours likely exhibit a more complex fitness landscape than the simple dual regime of low and 

high mutational burdens that is captured by the current analyses and population-genetic models of tumour 

evolution (cf. Fig. 1). This rich landscape likely reflects vulnerabilities that can be exploited for 

therapeutics, in the setting of synthetic lethality, where two events together are deleterious, whereas each 20 

of them alone is not 196,197. Notable examples include synthetic lethality between mutations in the BRCA 

oncogenes and poly(ADP-ribose) polymerase (PARP) inhibitors 198, whereby PARP inhibitors and BRCA 

deficiency (leading to impaired DNA repair), combined, push tumours into the regime of high levels of 

instability, associated with good prognosis; and, between mutations in the ARID1A oncogene, a 

chromatin remodeller, which leads to aggressive ovarian cancer, and EZH2 methyltransferase 199. 25 

Synthetic lethal pairs exist also between different types of somatic aberrations, as in the case of WRN 

helicase and MSI in several cancers 200. In this case, DNA mismatch repair leading to MSI is essential for 

cancer progression, whereas depletion of WRN, a RecQ-like DNA helicase, selectively hampers those 

MSI cancers. 

 30 

The concept of synthetic lethality can be further expanded to interactions not only between mutations, but 

also between the metabolic state of cells and their mutational profile. For example, cancer cells show 

elevated production of reactive oxygen species (ROS) which promotes tumour progression, but also 

represents a therapeutic opportunity because excess of ROS can trigger apoptosis and/or increase the 

mutation rate, thereby pushing cancers towards the Muller’s ratchet regime and increasing the likelihood 35 

of a mutational meltdown 201. Thus, gene targets whose knockdown increases ROS production might be 

synthetic lethal pairs for high ROS cancers. Another example is the identification of anti-cancer metabolic 

targets with amplified effects at low intracellular pH, forming an effective synthetic pair between gene 

targets (e.g., GAPDH) and the intracellular state of cells to combat aggressive phenotypes 166. Thus, a 

better understanding of the interactions in different phases of tumour evolution, not only between 40 

mutations, but also between mutations and phenotypic perturbations, could lead to new, efficient 

therapeutic approaches. 
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[H1] Conclusions and future directions 

The key parameters that determine the evolutionary fate of evolving populations are mutation and 

selection. Both population genetic theory of tumour evolution and empirical observations support the 

existence of a dual regime, whereby the accumulation of driver mutations promotes tumour evolution in 

the initial phases, with signatures of positive selection, but as the number of deleterious passenger 5 

mutations increases, cancer fitness drops, exacerbated by immune response, with a signature of purifying 

selection on the tumour genome. This dual mutation-selection regime appears to be a major determinant 

of tumour evolution that shapes the evolutionary trajectories of tumours, resulting in a distinct temporal 

order in the accumulation of different somatic aberrations, with compensatory interactions leading to 

robust tumour fitness (Fig. 3). Specifically, RI appears to be an early event, presumably, induced by 10 

environmental stress, and even preceding the appearance of driver mutations, whereas focal CNA and 

aneuploidy mainly gain prominence in intermediate and late phases of tumour progression, respectively. 

The contrasting associations of these aberrations with clinical outcomes further support their distinct roles 

in tumour evolution, and may suggest how cancers remain fit during different phases of evolution, by 

embarrassing diverse mechanisms. The validity of this picture of tumour evolution and the extent of 15 

variability across patients and cancer types should be further investigated by tracking the evolution of 

tumours in individual patients. Future studies making use of liquid biopsies to longitudinally follow 

individual tumour trajectories in patients might provide the necessary comprehensive data to address 

those questions on a variety of tumour types. Understanding the dynamics of the relationship between 

different aberrations and elucidating how environmental factors might induce these aberrations should 20 

provide mechanistic insights into the factors that contribute to cancer initiation and progression.  

 

Beyond genome evolution, cancer cells evolve by epigenetic and metabolic adaptations to 

microenvironmental conditions which promote phenotypic plasticity. Both genetic variability and 

phenotypic plasticity contribute to cancer proliferation, survival and the ability to invade, metastasize and 25 

resist therapy. This plasticity is mediated by a tight, complex, context-dependent interactions between the 

environment, the epigenome and metabolism. Such interactions likely lead to more complex fitness 

landscapes than the simple dual regime captured by the current models and mutational data analysis. 

Understanding the nature of the interactions between different types of genetic and non-genetic changes 

occurring in cancer cells can unravel vulnerabilities that might be exploited for therapeutics.  30 
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Figures 
 

 

Figure 1.  The mutation-selection diagram of tumour evolution. a | The dependency of tumour fitness 5 

on the point mutation load (ML) The graph illustrates the dual evolutionary regime of cancers (coloured 

curves). In initial phases (low mutation loads, blue lines), tumour progression is characterized by an 

increasing number of positively selected drivers (dN/dS>1) and increased tumour fitness (poor clinical 

outcome, β>0). By contrast, later in tumour progression, accumulation of deleterious passenger mutations 

becomes critical, leading to better clinical outcome (β<0, red lines) and purifying selection (dN/dS<1), 10 

thereby avoiding mutation meltdown at extreme mutation loads. Solid coloured lines denote observed 

behaviour, whereas dashed coloured curves denote theoretically inferred behaviour. β is the prognostic 

factor (Hazard ratio, HR=eβ) derived from Cox regression analysis of patient survival data and dN/dS is 

the ratio between the rates of non-silent (dN) and silent (dS) mutations. (Box 1). Collectively, these 

empirical results corroborate theoretical predictions (black curve) 63,64. b | The observed relationship 15 

between the prognostic factor β of Cox regression analysis and the median ML, estimated across patients, 

in 23 cancer types from The Cancer Genome Atlas (TCGA), from which Fig 1a. is derived. Each point 

represents a cancer type, showing the change in evolutionary regimes, from β>0 (i.e., mutations lead to 

adverse outcome) for low ML cancers, to β<0 (i.e., mutations lead to favourable outcome) for high ML 

cancers. Results are shown for both the overall survival (OS) and the disease-free survival (DFS) data. 20 

Parts a and b are adapted with permission from ref66. 
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Figure 2. The dynamics and role of repeat instability in species and cancer evolution. a | Accelerated 

evolution of repeats following duplication of a new copy (R3, arrow) in a protein, illustrated by the 

evolutionary rates (colour code) of all repeat units (R1–R3)99. The new copy is most relaxed of selective 

constraints, and rapidly diverges at an elevated rate (red), under positive selection and relaxed purifying 5 

selection. This evolutionary divergence can yield a new function, followed by fixation, conservation and 

slowing down of evolutionary rates (blue). b | Over longer spans of organismal evolution, following 

several cycles of repeat unit duplications and fixation of mutations in new copies, this process translates 

into a rich vocabulary of repetitive elements, which can be measured by the number of ‘words’ (here, 

amino-acid triplets) that compose the repeat arrays in proteomes of different species102 (boxes). This 10 

repeat diversity provides a marker of macroevolution that anticorrelates with Ne × µ (black curve, where 

Ne is the effective population size and µ is the mutation rate per nucleotide site per generation; median 

values derived from ref49 are shown). c | A proposed model of evolutionary repeat dynamics in cancer and 

normal tissues. In cancer evolution, repeat instability (RI) is most pronounced at early stages and, 

presumably, is positively selected for, compensating for the low number of driver mutations. By contrast, 15 

at later stages, RI is substantially reduced by negative selection because, as cancer progresses, the 

genomic burden becomes detrimental to the tumour and an immune response to neoantigens is evoked. 

Adjacent tissues show mutational signatures similar to those in tumours, presumably because they 

respond to similar environmental stress factors, but exhibit a faster dynamic15. d | The dynamics in Fig. 2c 

can be translated into a tumour fitness landscape, where both adjacent and tumour cells climb the 20 

landscape through increased RI, as an escape mechanism from stress. Cells that acquire driver point 

mutations become neoplastic (blue) and further climb the landscape, whereas adjacent cells (green) do not 

harbour driver mutations and retain normal function. At late stages, RI is reduced in both tumours and 

adjacent tissue by purifying selection. Part a is adapted from ref99. Part b is adapted from ref102. Part c is 

adapted from ref15. 25 
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Figure 3. Proposed compensatory relationships between different types of genomic aberrations 

during tumour evolution. The extent of somatic aberrations, normalized to maximum, is illustrated as a 

function of time. A healthy cell transforms into a neoplastic cell following epigenetic changes and/or 

acquisition of a driver mutation, which could occur randomly or induced by environmental stress 35. The 5 

point mutation load (ML) increases nearly irreversibly with time and cancer progression (black curve). 

Microsatellite instability (MSI), and repeat instability (RI) are induced in early stages of the primary 

tumour, presumably compensating for the low number of drivers 14,15. Later in the tumour evolution, the 

genomic burden increases, and MSI and RI decline, via both cell autonomous mechanisms and through 

the evoked immune response to neoantigens which elicits purifying selection. In individual patients, this 10 

reduction is most evident during the transition to metastatic states. As high MSI becomes a vulnerability 
13, aneuploidy acts as a compensatory mechanism at late stages 21,22. Conceivably, the immune system 

suppresses the accumulation of aneuploidy at early stages, but as cancers evolve mechanisms to avoid 

immune surveillance, aneuploidy is more tolerated, especially when preceded by whole-genome 

duplication (WGD) (shown by the circle). Aneuploidy can facilitate metastasis formation and the 15 

emergence of resistant phenotypes and mitigate Muller’s ratchet. However, extreme levels of aneuploidy 

become a vulnerability. Focal somatic copy number alterations (SCNA) appear to serve as a 

compensatory mechanism in intermediate stages, after MSI and RI reduce and before aneuploidy 

accumulation confers a fitness advantage 144,145. The cumulative action of these compensatory 

mechanisms may provide for the maintenance of robust tumour fitness over the course of evolution 20 

(dashed curve). The temporal order of metabolic stress (upper panel) parallels the induction of somatic 

aberrations, whereby hypoxia and oxidative stress can induce RI and point mutations, whereas larger 

aberrations are likely to depend on the accumulation of mutations in DNA repair and replication 

machineries and/or can be induced by acidosis (see the main text). 

  25 
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BOX 1: Key variables and concepts of populations genetics and cancer genomics 

[b1] Mutation rate (µ) 

The number of mutations per nucleotide site per generation. Typically, µ is high in prokaryotes and 

unicellular eukaryotes, but substantially lower in multicellular eukaryotes. 5 

[b1] Effective population size (Ne) 

The number of individuals in a population that participate in reproduction. Typically, Ne is high in 

prokaryotes and unicellular eukaryotes and substantially lower in multicellular eukaryotes. Thus, the 

product Ne x µ defines the characteristic evolutionary regimes of major clades 49. For a population of N 

cancer cells, each with a driver mutation conferring tumorigenic renewal potential, Ne can be 10 
approximated by N.  

[b1] Selection coefficient (s) 

The effect of a mutation on the fitness of a genotype. s>0 denotes selective advantage, whereas s<0 

denotes selective disadvantage (i.e., a deleterious mutation). 

[b1] Fixation probability 15 

The probability that a mutation spreads across the population and will become fixed, reaching a stable 

allele frequency in the population. Kimura 57 has shown that the fixation probability (for a diploid) is 

related to Ne x s: Pfix = (1-e-4Nesq)/( 1-e-4Nes), where q is the initial allele frequency, such that for a new 

mutation (q=1/2N) and assuming Ne=N, Pfix = 2s/(1-e-4Ns). 

[b1] Selection (dN/dS) 20 

Acting on a protein-coding sequence: the ratio between the substitution rate of non-silent mutations per 

non-synonymous site (dN), that is mutations that change the amino acid sequence, and the rate of 

synonymous mutations (dS), that is, mutations that do not result in amino acid changes. In a haploid, 

assuming that synonymous mutations are neutral (s=0, with substitution rate µ) and non-synonymous 

mutations have selection coefficient s (s>0), dN/dS = µN x Pfix / µ= 2Ns/(1-e-2Ns); hence the direct 25 
correspondence between dN/dS and Ne 58. 

[b1] Positive selection 

Excess level of non-synonymous mutations over synonymous mutations, dN/dS>1, s>0. 

[b1] Purifying (negative) selection 

Excess of synonymous mutations over non-synonymous mutations, dN/dS<1, s<0. 30 

[b1] Genetic drift 

Changes in allele frequency due to random sampling of progeny in the process of reproduction. In 

populations with small Ne, random fluctuations due to sampling can lead to fixation of not only beneficial 

but also of moderately deleterious mutations.   

[b1] Neutral evolution 35 



26 
 

Evolution by fixation of selectively neutral mutant alleles (s=0). According to the modern theory of 

molecular evolution 50, most of the variation within and between species is (nearly) neutral. 

[b1] Muller’s ratchet 

A situation in which the fittest clone in an asexual population carries an excess of deleterious mutations, 

which can lead to mutational meltdown and extinction of the entire population 53,54. In sexual populations, 5 
Muller’s ratchet is unlikely because recombination can mitigate the accumulation of deleterious 

mutations. 

[b1] Mutation load (ML) 

The total number of non-silent, that is, protein changing, point mutations in a tumour genome of a patient, 

relative to blood or matched-normal tissue of the same patient, which serve as proxies for the germline 10 
genome. ML represents the integral of the mutation rate (µ)_for non-silent mutations across the genome 

and over time T, from the emergence of a neoplastic cell to the current time. ML correlates with time and 

the age of a tissue 29, and assuming T is known and sufficiently large, the average µ can be estimated from 

ML 60. ML usually includes a small fraction (< 5%) of in-frame and out-of-frame insertions and deletions 

(indels) and splice variants. 15 

[b1] Genomic burden 

For reversible mutations, such as repeat instability (RI), somatic copy-number alterations (SCNA) and 

chromosomal instability (CIN), the extent of aberration is often measured by the genomic burden, defined 

as the total amount (or fraction) of DNA affected by the respective type of mutations, relative to wild-

type. Genomic burden is proportional to the integral over time of the net rate of amplification and 20 
deletions, µamp

i – µdel
i, summed (in absolute value) across regions i. 

[b1] Driver and passenger mutations 

A cancer driver mutation is any type of mutation that confers a cell with a selective advantage (s>0), 

whereas a passenger mutation is either neutral or deleterious (s≤0). Driver mutations often occur in a 

small subset of genes, such as oncogenes and tumour suppressors, known as cancer genes 61. 25 

[b1] Tumour fitness 

The fitness of a tumour is defined here as the inverse of the clinical outcome (survival rate) of patients. 

Favourable outcomes (high survival rates) correspond to low tumour fitness, and adverse outcomes (low 

survival rate) correspond to high tumour fitness. Accordingly, the effect of a mutation on the fitness of 

tumours is defined as the inverse of its correlation with the clinical outcome (survival rate). This is a 30 
biologically intuitive and practical definition that weighs in the compound effect of the capacity of cancer 

cells to proliferate, migrate, and eventually, invade and colonize tissues. 

[b1] Cox regression 

A semi-parameterized approach that fits the survival data to a hazard function [h(t) = −d[logS(t)]/dt, 

where S(t) is the survival probability at time t] and tests the effect of variables (X) under the “proportional 35 
hazard” assumption [h(X,t) = ho(t)eXβ; ho the baseline hazard], namely, that the tested hazard functions 

are log-linearly scaled by a constant factor beta (β), which determines the hazard ratio, HR (HR = eβ) 65. β 

> 0 (HR >1) indicates poor survival, whereas β < 0 (HR < 1) indicates better survival, for sufficiently 

large X. 

 40 
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Table of contents blurb 

Although cancer genetics analyses have often focused on individual mutations of classic cancer genes, a 

wealth of cancer sequencing data is allowing a more comprehensive understanding of the cumulative 

effects of mutations genome-wide. In this Perspectives article, the authors propose how the burden of 5 
different types of mutations — from point mutations to large-scale chromosomal aberrations — has 

distinct and compensatory roles on tumour fitness and selection during different stages of cancer 

evolution.  

 


