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ABSTRACT
The advent of multi access edge computing (MEC) will enable

latency-critical applications such as cooperative adaptive cruise

control (also known as platooning) to be hosted at the edge of the

network. MEC-based platooning will leverage the coverage of the

cellular infrastructure to enable inter-vehicular communications,

potentially overcoming crucial problems of vehicular ad-hoc net-

works (VANETs) such as non-trivial packet loss rates. However,

MEC-based platooning will require the controller to be migrated to

the most suitable positions at the network edge, in order to main-

tain low-latency connections as the platoon moves. In this paper,

we propose a context-aware Q-learning algorithm that carries out

such migrations only as often as is necessary, and thereby reduces

the additional delays implicit in application migration across MEC

hosts. When compared to the state-of-the-art approach named Fol-

lowME, our scheme exhibits better compliance of vehicle speed

and spacing values to preset targets, as well as a reduced statistical

dispersion.

CCS CONCEPTS
•Theory of computation→Multi-agent reinforcement learn-
ing; Sequential decision making; • Networks→ Network simula-
tions; Network resources allocation; Cloud computing.
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1 INTRODUCTION
Future transportation systems will need to be highly automated

and coordinated in order to improve safety, enhance the utility of

the transportation infrastructure, and reduce the environmental

impact of vehicle use, among other goals [2, 3]. A key component

of the tools that enable these goals is cooperative adaptive cruise

control (CACC) or platooning [23]. Most current implementations

focus on managing platoons as independent vehicular ad-hoc net-

works (VANETs). However, these implementations are susceptible

to the limitations of the networking protocols that are ubiquitous

in this area such as 802.11p [19]. These limitations include high

packet loss rates, often occurring in bursts, in different types of rele-

vant vehicular scenarios. Moreover, to maintain speed-independent

spacing between vehicles in such platoons, it is necessary that

the vehicles not only receive status beacons from their predeces-

sors, but all vehicles also need to receive communications from

the platoon leader [5]. For long platoons, keeping all vehicles con-

nected to the platoon leader may be challenging, owing to turns or

obstacles along the road, which may prevent line-of-sight commu-

nications [19]. This exacerbates losses and hinders the information

transfer required to maintain the platoon.

With the advent of multi-access edge computing (MEC) for 5G

systems, each vehicle in the platoon can have a low-latency con-

nection to a controller hosted at the network edge. The use of

scheduling and robust forward error correction in 5G means that,

unlike contention-based protocols used in VANETs, packet losses

are not as pronounced. However, delivery delays remain a key

challenge [9]. There have been some recent efforts [11, 21] to ex-

plore how the MEC architecture can be leveraged for vehicle-to-

infrastructure (V2I) platooning. However, some key challenges have

not been adequately addressed, including: (i) the development of

robust controllers that can tolerate high delays; (ii) how to deal

with out-of-order reports from platoon members; and (iii) how to

intelligently migrate the controller across edge nodes to minimize

latency as the platoon moves.

In this work, we address these challenges by modifying the

platoon controller to handle V2I communication issues and develop

a context-aware Q-learning migration scheme that deploys the

controller in the most suitable location. Q-learning is a model free

reinforcement learning technique which learns the action-value

function, Q , of a state by trial and error [22].



We thereby substitute a controller in each platoon member with

a centralised one which can be migrated from one MEC host to an-

other according to the action-value function learned as the platoon

moves.

Concretely, the contributions of this paper are: (i) we design a

migration agent for the centralized control of a platoon from the

MEC, based on a Q-learning algorithm that, compared to previ-

ous approaches, incorporates context-awareness; (ii) we modify

CACC to estimate and compensate for network latency and mes-

sages delivered out of order, which is generally not required for

direct Vehicle-to-Vehicle (V2V) communications; (iii) we define

and study how multiple Q-learning agents can cooperate for rapid

policy convergence with zero synchronization overhead; (iv) we
enhance and combine existing vehicular and network simulation

frameworks, through which (v) we evaluate the performance of

intelligent controller migrations for MEC-assisted platooning, in

the presence of single or multiple Q-learning agents.

The remainder of this paper is organized as follows: Section 2

surveys related work; Section 3 describes changes to the CACC

controller; Section 4 introduces the design of theQ-learning agents

that make automatic MEC migration decisions; Section 5 discusses

our performance evaluation method and results; finally, Section 6

concludes the paper.

2 RELATEDWORK
Platooning per se and the possibility to control it from theMEC have

already been addressed in the literature [11, 23]. Our interest focuses

on how to make the controller aware of communication issues that

can occur, and how to make the most of the fluid architecture of

cellular edge networks, which offer multiple options where to run

and possibly migrate the platoon controller.

Controllers.Work on controllers to achieve cooperative driving

dates back to the PATH project [13]. Though robust, this controller

fits a peer-to-peer ad hoc network with short delays and good

discipline in the order of communications among vehicles. The

controller proposed in [10] only requires communication between

proximate members of the platoon. While relaxing the stringent

requirement of the platoon leader communicating with all members,

it imposes a speed-dependent spacing between vehicles. Other

works such as [15] have made controllers more delay tolerant and

robust to packet errors, by taking into account the topology of

the platoon and by employing speed-dependent spacing as well as

communication between the platoon leader and all members. This

approach is markedly string-stable, but remains limited to small

platoons, and may not scale well in a MEC-driven scenario. We

enhance the well-known controller presented in [13] to account

for varying communication delays and disorderly reporting from

platoon members. These adaptations make the controller better

suited for use in V2I MEC-enabled platooning.

Service migration. Many state-of-the-art service migration

schemes exist for MEC deployments [14]. However, only a sub-

set of these fit latency-critical applications. The authors of [20]

propose a random start placement on the available nodes which is

then refined by prediction based on collected performance metrics.

In [4], the authors propose a cognitive edge computing architec-

ture supporting a service migration scheme. The scheme relies on
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Figure 1: Controller delay compensation. At time ti , car i gen-
erates the report packet with its own speed, acceleration and
distance fromvehicle i−1, and sends it to theMEC controller.
Car i + 1 does likewise at time ti+1. At tctrl

the controller col-
lates the data.

repeated evaluations of the quality of experience of the users as

they move in a network. Owing to its focus on human users, this

work does not address the strict latency requirements of platooning.

The authors of [9] design a service placement algorithm leveraging

Lyapunov optimization to decompose the problem. Each subprob-

lem is then solved by Markov approximation. The resulting scheme

tracks user mobility and locates the service at the MEC host that

minimizes the delay and cost. Although this approach consider-

ably improves latency, it does not tackle the typically time-varying

computing capability of the MEC hosts. This is particularly impor-

tant given the myriad services that a MEC node may host, which

thereby affect the latency experienced. Our proposed scheme takes

into account such variations and will therefore migrate the service,

should a previously selected MEC host become unreliably slow.

3 CONTROLLER ADAPTATIONS FOR V2I
PLATOONING

In legacy ad hoc platooning systems, the platoon leader commu-

nicates its speed and acceleration to each platoon member [16].

Each member also receives the speed and inter-vehicle spacing of

its predecessor, typically from a radar system. With these data, the

controller in each member calculates and applies the appropriate

acceleration.

In the V2I-assisted platooning case, all vehicles need only com-

municate their own speed, acceleration and distance from the pre-

ceding vehicle to the controller resident in the MEC host. Figure 1

illustrates the case of two cars back-to-back in a platoon, whose

data is used at the platoon controller with some random delay with

respect to when the cars generate the respective reports. Indeed,

network latency and the variation thereof over time strongly impact

this process.

As discussed in [7], the architecture of the network greatly influ-

ences the latency of a service. Given the proliferation of small cells

and network densification expected in 5G, handover delays will



be of particular importance in determining the performance of 5G

services. Handover latency values in the order of a few milliseconds

can be tolerated. Further, owing to the fact that uplink transmission

opportunities are subject to channel-dependent scheduling, there

exists a non-trivial delay between the moment a packet is available

for transmission at the platoon member and the time it reaches the

MEC controller. Therefore, the data in this packet will be slightly

stale, particularly in regard to speed and inter-vehicle spacing. In-

stead, we can safely assume that acceleration values will remain

coherent within a transmission window.

3.1 Controller operation adaptations
When porting CACC to the V2I context, we modify it to improve

controller operation and cope with two key issues. Depending

on when the cellular network grants a transmit opportunity to a

platoon member, either or both of the following may occur:

(1) consecutive packets from the same vehicle reach the con-

troller in quick succession, owing to a delay that spans the

interval of more than one periodic update,

(2) a packet generated at an earlier time by a leading vehicle

reaches the controller later than that of a following vehicle.

In the case 1, we implement a filter that keeps only the latest packet

from a given vehicle, as it represents the most updated information.

In case 2, as depicted in Figure 1, we implement a data collection

window to receive the packets from all members of the platoon.

The controller then uses these data to compute the acceleration

directive for each vehicle.

3.2 Latency compensation in the control law
The MEC controller has to account for the discussed latency val-

ues before computing the acceleration directives. Thus, we design

the controller so as to update the speed assuming the previously

assigned acceleration for the vehicle and update the spacing by

estimating the distance travelled by the vehicle and by its corre-

sponding predecessor. Given that these lags are in the order of (up

to several tens of) milliseconds, these updates can be approximated

as piece-wise linear functions as depicted in Figure 1. In particular,

the speeds of vehicles i and its follower i + 1 at control epoch t
ctrl

can be computed based on speed and acceleration values sent with

their freshest updates, at times ti and ti+1, respectively:

Vi (tctrl
) ≈ ai (ti ) · (tctrl

− ti ) +Vi (ti ) (1)

Vi+1(tctrl
) ≈ ai+1(ti+1) · (tctrl

− ti+1) +Vi+1(ti+1) . (2)

With the update generated at time ti+1, the distance d̂i ,i+1 between

the two vehicles is then estimated as:

d̂i ,i+1 = di ,i+1 +

(∫ t
ctrl

ti+1

Vi (t) dt −

∫ t
ctrl

ti+1

Vi+1(t) dt

)
. (3)

4 Q-LEARNING AGENTS FOR CONTROLLER
MIGRATION

As a platoon moves, the distance between the vehicles and the

controller will change. Even if we resort to network slicing and

assign dedicated resources to the platoon controller, at some point

such controller may have to be migrated closer to the platoon in

dλ

d∆

d11 d12 d
1(n−1)

d
2(n−1)

dM (n−1)

d21 d22

dM1 dM2

PM1

PM1

PM1 PM2

PM2

PM2 PM3

PM3

PM3 PMn−1

PMn−1

PMn−1 PMn

PMn

PMn

Measurement 1

Measurement 2

MeasurementM

Figure 2: Platoonmetrics as reported to the MECHost. “PM”
denotes a platoon member; dλ is the required vehicle spac-
ing; d∆ is the spacing tolerance.

order to guarantee responsiveness. For this, we design a migration

agent and assume that its actions are either to move the controller

to a candidate MEC node or to leave it in its current location. With

high probability, the chosen action will influence changes in com-

munication delays impacting the delivery of acceleration directives

to the platoon members. Consequently, the speed and the spacing

between platoon members will be impacted.

By defining the state as a combination of the processing capac-

ity of a MEC host and of the platoon topology (relative spacing

between platoon members), we can approximate the system as a

state machine. In the following, we refer to the system as the “envi-

ronment,” in order to align with common reinforcement learning

jargon [18]. The action of the migration agent will cause a state

transition with some probability. We can therefore formulate the

migration problem as a Markov Decision Process (MDP).
1

4.1 Data for state context definition
A schematic showing the measurements received at the MEC is

illustrated in Figure 2. The controller communicates at regular inter-

vals to the vehicles to issue directives for braking and acceleration.

The directive to migrate the controller from one MEC host to an-

other takes place less frequently, hence several measurements of the

platoon are received between two such directives. These measure-

ments are used by the mobile edge application orchestrator (MEAO)

to obtain platoon-specific state variables (or “context”) for the mi-

gration agent We derive the platoon topology context {Γ(−), Γ(+)}
from the measurements depicted in Figure 2, withM measurements

and n cars, as:

γ (−) =
1

M(n − 1)

M∑
i=1

n−1∑
j=1

⌊
dλ − di j

d∆

⌋
for di j ⩽ dλ (4)

Γ(−) =
γ (−)

1 + γ (−)
(5)

(6)

1
We remark that other causes of delay may exist which are independent of migration.

In this sense, our MDP is partially observable.



γ (+) =
1

M(n − 1)

M∑
i=1

n−1∑
j=1

⌊
di j − dλ

d∆

⌋
for di j ⩾ dλ (7)

Γ(+) =
γ (+)

1 + γ (+)
. (8)

Here, dλ is the platooning target for the inter-vehicular spacing

di j , and d∆ is the spacing tolerance. The quantities γ (−) and γ (+)

measure average deviations from the target, relative to tolerance,

and group negative and positive deviations, respectively. Finally

Γ(−) and Γ(+) are normalized versions of average relative deviations,

which guarantee values in the range between 0 and 1, 0 being

the ideal target. In particular, Γ(−) tells how well (or how bad)

the controller is maintaining a safe distance, whereas Γ(+) signals
whether the controller is accruing or losing the benefits of platoon

compactness.

Besides, in order to make informed migration decisions, we need

to obtain the network specific aspect of the context, so we estimate

the delay in V2I communications. Specifically, there are two delay

components due to data delivery and migration overhead.

The estimated data delivery time, T
ddt

is calculated as:

T
ddt
= Tnet +Tproc , (9)

where Tnet is the estimated time for data to traverse the network

and Tproc is the estimated time taken by the platoon controller

to calculate the driving directives for the platoon members. Tproc

depends on the capabilities of the MEC host and can be more re-

liably measured than Tnet. In fact, Tnet is influenced by multiple

factors including the capacity of the wireless channel, the number

of hops through routers in the wired network, and congestion on

the switched links therein.

The overhead,T
ovh

, includes the time it takes to migrate the VNF

from one host to another, Tmigration, and the time it takes to signal

the platoon members about the new location to communicate to,

T
signaling

:

T
ovh
= T

signaling
+Tmigration. (10)

In case no migration takes place, T
ovh
= 0.

Given a maximum permissible delay budget, T
budget

, the result-

ing reference time ratio, TR is calculated as:

TR =
T

ddt
+T

ovh

T
budget

. (11)

Any candidate MEC positions yielding estimates such that TR ⩾ 1

are not considered for migration.

Further, given that the response times of a given MEC host will

vary depending on how busy it is over a given period, the change

in processing time in successive epochs, T∆, is a crucial decision

variable.

T∆ = 2

T
(t )
proc
−T
(t−1)
proc

T
(t )
proc
+T
(t−1)
proc

, (12)

where (t) represents the current epoch defined as the interval [t −
1, t) and (t −1) represents the previous epoch defined as the interval

[t − 2, t − 1). We set the duration of each epoch as 20s.

Each candidate MEC with TR < 1 presents a migration option

characterised by a given relativemigration delay,θ = T candidate

migration
/T

budget
,

∗
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Figure 3: Migrator State and Action Spaces. The relative mi-
gration delay and relative candidate MEC power tuple {θ , β},
the change in processing time between successive epochs,T∆

and the platoon topology given by the tuple {Γ(−), Γ(+)} con-
stitute the state space. The actions “Remain in the current
MEC host” and “Migrate to any MEC host characterized by
TR < 1” form the action space.

and relative processing capability, β = T candidate

proc
/T current

proc
. The tu-

ple of θ and β serves to contextualize the migration option along

with the change in processing time T∆. We quantize θ , β and T∆

into discrete steps.

The state of the environment is therefore fully specified by the

values of {Γ(−), Γ(+)} computed from the last measurement set, and

the values of θ , β and T∆ for all MEC hosts in the environment.

Possible actions for the migration agent are restricted to keep the

controller in the current MEC host or migrate it to any MEC host

with TR < 1.

4.2 Q-learning
Q-learning is a Reinforcement Learning (RL) technique in which

the agent approximates the optimal action value without prior

knowledge of the Markov Decision Process (MDP) that underlies

its environment.When the environment is in state S , the agent takes
action a, obtains the reward R and the environment transitions to

state S ′ [18]. Therefore, we have

Q(S,A) ← Q(S,A) + α
(
R + γ maxaQ(S

′,a) −Q(S,A)
)
, (13)

where γ ∈ [0, 1] is a discounting factor that weighs the contribution
future rewards will have when starting in state S ′, and α ∈ (0, 1] is
the learning rate, and makes it possible to tune the pace at which

the policy converges towards the expected action-value Q(S,A). If
all states are visited with equal probability, α can be chosen as a

fixed parameter. However, given that the agent will realistically

observe only a subset of the states, we keep track of the number of

times k that the agent was in state S and took action A and define
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α =
1

k
,k > 0. As will become clear later, this choice also facilitates

the weighing of the Q-values when multiple agents share their

experiences in the asynchronous shared learning we use to expe-

dite policy convergence. Actions are decided after a time window

termed an epoch. The set of epochs from the beginning to when the

environment encounters a terminal state, where no further actions

can be taken, constitute an episode.

We also employ ϵ-greedy action selection, whereby an action is

chosen randomly with probability ϵ . We initially set ϵ = 1 for each

state, and reduce this value progressively (down to ϵmin = 0.01)

as more visits are made to the state. This encourages exploration

in the initial phases to discover the most rewarding actions and

exploitation in the latter stages to make use of the policies learnt. At

convergence, action selection is largely on policy and the algorithm

chooses the action procuring the highest reward.

Leveraging some aspects of our previous work on short-term

memory Q-learning [1], we design a migration agent that exploits

context-awareness. The agent first retrieves the platoon spacing

data to derive the context as specified in (5) and (8). It then obtains

a listing of the available MEC hosts and estimates the migration

time to the new host, either based on any previous logs of a similar

migration, or based on a default value if no recent migration tar-

geted that host. The agent also obtains the processing statistics of

the MEC hosts in order to estimate their capacity with reference to

the current host. With these data it calculates the quantized levels

of θ , β andT∆ for each MEC host. The latter parameters identify the

Q-values of the migration options in the decision structure shown

in Figure 3. Comparing these options, according to (13), the agent

makes an ϵ-greedy decision as to which MEC host to migrate to as

shown in Figure 4.

4.3 Reward Functions
A key element in an MDP is the reward function which serves as a

feedback to the agent to evaluate how suitable or unsuitable a deci-

sion was. The reward function we design and implement, given the

cyber-physical nature of platooning, consists of two components:

the network related and the vehicular positioning reward. These

rewards are calculated at every epoch. Furthermore the network

component takes into account the delivery intervals of control pack-

ets and a small penalty, ζ , for controller migration. The latter is to

dissuade unnecessary migrations, which may perturb the platoon

owing to the resulting delays.

We now consider the network component of the reward as re-

gards packet delivery intervals. Our controller deems a packet

urgent and therefore require expedited delivery if all of the follow-
ing conditions are fulfilled: (i) its current estimate of the spacing

between the recipient vehicle and its immediate predecessor is

smaller than the inter-vehicle gap dλ ; (ii) the current speed of the

recipient is higher than the speed of its immediate predecessor; (iii)
the previous estimate of the spacing between the recipient vehicle

and its immediate predecessor was smaller than the platoon gap;

and (iv) the previous speed of the recipient vehicle was higher than
that of its immediate predecessor. If the latter conditions are not ful-

filled then the packet is deemed normal. If Xurgent and Xnormal
are

the number of packets deemed urgent and normal over an epoch,

respectively, the resulting network reward component is

Rnet =
X

normal

Xurgent + Xnormal

− ζ . (14)

To evaluate the second component, which accounts for platoon

spacing rewards, we define the following sets and quantities in

analogy to what done for the topology context with {γ (−),γ (+)}

and {Γ(−), Γ(+)}:

D B
{
di j

}i=M , j=n−1

i=1, j=1

Dϵ B {d ∈ D : d < dλ − d∆}

DΩ B {d ∈ D : d > dλ + d∆}

D0 B {d ∈ D : |d − dλ | ⩽ d∆}
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rϵ =
1

|Dϵ |

∑
di j ∈Dϵ

����dλ − di jd∆

���� (15)

Rϵ =
rϵ

1 + rϵ
(16)

rΩ =
1

|DΩ |

∑
di j ∈DΩ

����dλ − di jd∆

���� (17)

RΩ =
rΩ

1 + rΩ
(18)

r0 =
1

|D0 |

∑
di j ∈D0

����dλ − di jd∆

���� (19)

R0 = 0.5 −
r0

1 + r0

(20)

Here, we have tri-partitioned inter-vehicular distances into the sets

of distances within a given target interval dλ ± d∆, or below that

interval, or above. In addition, we define a safety indicator that tells

whether the spacing between two cars is dangerously below the

target, i.e., below d
safe
≪ dλ :

R
safe
=

{
0 if di j ⩾ d

safe
∀di j ∈ D

1 otherwise

(21)

With the above definitions, we can then compute the vehicular

positioning component of the reward as:

Rλ = |Dϵ |wϵRϵ + |DΩ |wΩRΩ + |D0 |w0R0 − |D|Rsafe
, (22)

where wϵ ,wΩ,w0 are weights assigned so as to prioritise either

safety or spacing of the platoon and d
safe

is the minimum spacing

below which a crash is likely to occur. The total reward R, accrued
in one epoch, is then calculated as:

R = |D|Rnet + Rλ . (23)

A training episode, characterised by several consecutive epochs,

terminates with the platoon successfully completing a given road

segment (e.g., a lap in a circuit).

4.4 Asynchronous Shared Learning
We now propose an extension to the above framework that enables

shared learning across different platoons. This extension makes it

possible to leverage the state exploration in different platoons and

thus explore the state space more extensively in less time.

We assume that multiple platoons exist and visit the same road

segments. Each platoon controller runs on an independent slice in

the MEC host. As such, each platoon could be transparent to the

others. However, we further assume that the migration agent of

each platoon can read and write a common migration policy file,

from where it fetches its own policy. The agent can also update the

policy by annotating what it learns. Each migration agent can only

access this shared file every so often, so that we can neglect the

overhead associated with sharing the experience learned by other

platoons.

In this scheme, agents do not need to be synchronized, and

rather could access the migration policy at any time. Between two

consecutive accesses to the shared policy file, each agent keeps its

own version of the file, with updates on visited state’s Q-values
that will be only later reflected in the shared policy.

The scheme described above can model the behaviour of a dis-

tributed learning process, in which a central entity asynchronously

collates updates from all agents, e.g., when they connect to a given

eNodeB, or when they migrate to a specific MEC host. The scheme

can also be extended to become virtually overhead-free and dis-

tributed, if we assume that each MEC host maintains a migration

policy file, and that platoon controllers migrating to a MEC host

bring in all their past learned policy values. This way, the policy

built at a MEC host can be spread to the other MEC hosts by simply

being transferred jointly with controllers during migrations. We ar-

gue that this asynchronous scheme is potentially effective to speed

up the convergence of learned migration policies.

5 PERFORMANCE EVALUATION
5.1 Method
Our simulation testbed comprises three main components as shown

in Figure 5. The first is the robust vehicular simulator SUMO from

the German Aerospace Agency DLR [6]. It is widely used in re-

search given its highly realistic depiction of vehicular mobility. The

second component is the OMNeT++ Framework “Vehicles in Net-

work Simulation (VeINS)” [17]. This framework provides an API

that facilitates the coordination of the vehicle simulation in SUMO

with the network simulation of corresponding UE in OMNeT++.

The third component of the simulator is SimuLTE-MEC [8], an OM-

NeT++ framework that realistically simulates the LTE-Advanced

network with mobile edge computing extensions.

We implement the migration scheme as a python script that

monitors the logs generated by OMNeT++ as the platoon traverses

its course. The script uses the logs as input to the Q-learning mi-

gration scheme. It also monitors the simulation time and, at regular

intervals, updates a reference file with the selected MEC host. In the

process of generating a vehicular report to send to the MEC host,

SimuLTE reads the reference file. If there is a change, it triggers

a migration from the current location to the selected MEC host.

Table 1 lists the key parameter choices we make in SimuLTE to

better capture the envisaged 5G network capabilities. In particular,



we set the handover delay to random values below 10 ms. A han-

dover occurs when a vehicle receives 3 successive signals from a

target eNodeB that have a higher RSSI compared to the one that

is currently serving it. Table 1 also lists the parameters used to to

compute the reward function of platooning. The chosen weights

are as such that the negative reward (i.e., the penalty) of being 20%

below the target spacing or 50% above is the same impact as for a

migration. The rationale is that we have observed up to about 20%

of variation in speed profiles with migrations, which is comparable

with driving 20% below the target for what concerns safety, and

with the platoon occupying about 20% more road space when driv-

ing at 15 m instead of 10 m, although the exact value depends on

platoon size.

We curtail fading aspects of the channel given that network

densification with small cells will lead to higher probability of line-

of-sight communications.We enhance the computing infrastructure

of theMEC hosts with FIFO queues, in order to simulate the variabil-

ity of processing delays due to competing third party background

processes. In addition we introduce queuing delays on the switching

elements to account for routing delays that occur when the MEC

node hosting the controller is not directly connected to the eNodeB

serving a vehicle. Figure 6 depicts the road circuit that we use in

SUMO to delimit a training episode, along with the communication

network in SimuLTE. We remark that our scheme is independent

of the placement of the MEC hosts within the network (whether

closer to the eNodeB or to the core) given that it distinguishes them

based on processing capacity and migration delay. The simulation

time at location A is 31s, the subsequent intervals after that are 20s

each. These are the epochs at which the migration agent makes its

decisions. Each eNodeB has a MEC node attached to it such that

the controller may be hosted at those locations. The background

traffic of the MEC nodes, independent of the platooning load, is

Table 1: Simulation Parameters

Parameter Value

Path loss model ITU Rural macro cell

eNodeB antenna gain 18 dB

eNodeB height 25 m

eNodeB transmit range 500 m

eNodeB transmit power 43 dBm

Size of uplink and downlink packet 39 Bytes

Block error rate 1%

Handover latency (per vehicle) X ∼ U(0, 10) ms

Core routing delay (per packet) X ∼ Exp(1) ms

X2 hop delay (per packet) 50 µs
Migration delay (per vehicle) X ∼ U(1, 3) ms

Migration epoch interval 20 s

Vehicular reporting interval 100 ms

Platoon speed (Amplitude) 21.5 m/s - 28.9 m/s

Platoon speed (Frequency) 0.1 Hz

Number of cars (n) 30

Platoon spacing (dλ ) 10 m

Migration penalty (ζ ) 0.05

d
safe

1 m

d∆ 0.5 m

wϵ -0.5

wΩ -0.1

w0 0.25

Figure 6: Road and MEC Network. The scale corresponds to
the road network, eNodeBs and MEC hosts are exaggerated
to make them discernible.
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Figure 7: MEC host load due to background traffic.

depicted in Figure 7. We chose these patterns to represent realistic

workload traces with different periodicity. We remark that none of

the patterns is in sync with the time the platoon needs in order to

complete a loop along the circuit of Figure 6.

5.2 Asynchronous Shared Learning Extension
To test the potential of the asynchronous shared learning scheme

described in Section 4.4, we use parallel simulations of platoons of

cars lapping through a same circuit. We test the centralized version

of our scheme, with each platoon accessing the shared migration

policy every 5 epochs.

At initialization, the parent platooning simulation directory is

cloned into a number of directories commensurate to the number

of parallel agents chosen. However, the overall policy file is placed

in a directory accessible to all participating agents. After cloning, a
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shell script triggers the start of the SUMO/OMNeT++ simulation as

well as that of the migration script in each directory.

When the migration agent starts, it reads the overall policy file

into a data structure and proceeds to update it as it makes its deci-

sions. The start time of the simulation is different in each directory,

in order to mirror the separation of the platoons in the real world.

After about 100 s (which corresponds to about five migration de-

cisions), the migration agent locks the policy file and reads the

overall policy into its data structure, so as to capture any updates

by the other participating agents. The agent then proceeds to up-

date the data structure with Q-values and immediate rewards of

just the states it visited as prescribed in Eq. (13). It then overwrites

the policy file with the updated data structure. Finally, it re-reads

the overall policy into its data structure and unlocks the policy

file. Should an agent find the file locked by another, it waits for a

random time and then retries until the file is unlocked.

5.3 Evaluation results
In this section we examine the results from the modifications on the

controller. We then consider platoon performance resulting from

the use of our migration scheme, compared to that of the state of

the art scheme proposed in [9].

5.3.1 Controller Modifications. We first examine the platoon for-

mation when the controller is hosted on the MEC. In order to set

the most challenging condition for the controller [15], we add a si-

nusoidal perturbation to the movement speed of the platoon leader.

This sinusoidal driving pattern also accounts for speed variations

as the platoon may need to slow down or speed up depending on

driving conditions. The platoon speed oscillates between 21.5 m/s

(77 km/h) and ≈29 m/s (104 km/h). The 30 vehicles of the platoon

fully stabilize in about 100 s, as shown in Figure 8. The spacing

between the first follower and the platoon leader exhibits the high-

est variation, as expected. The effect on the rest of the followers is

progressively damped down towards the tail of the platoon. From

this result, we conclude that our modifications on the MEC-hosted

controller preserve string stability [12] and thereby ensure platoon

safety.

5.3.2 Migration Strategies. The proximity to an eNodeB and the

load on a given MEC host may be contrasting objectives for the

migration agent to pursue. For example, the agent may run on the

MEC host connected to the eNodeB closest to the platoon (hence it

perceives a low air interface communication latency). However, if

the load on this MEC host increases, the agent may need to migrate

to a different MEC host, and the resulting routing and switching

delays may nullify the advantage of being connected to a near

eNodeB. Another important consideration is that the migrations

should be kept at a minimum given the extra delays involved in

switching from one MEC host to another.

A subset of the migration strategies obtained by our algorithm

are depicted in Figure 9. These sequences were the most recurrent

in which every visited state was fully converged (i.e., ϵ = ϵmin). We

omitted less frequently observed sequences for brevity. By design,

we initially position the controller at MEC 3 (towards the top-right

section of the track). This avoids any biases that might give undue

advantage to one migration policy over the other.

Our algorithm learns policies that exploit both the proximity and

the computing capability of the MEC host. This reflects in the agent

migration patterns, which initially involve different MEC servers,

but then prefer stabilizing the controller on the same server despite

the server load and the additional routing delays. Notably, different

policies attain the same conclusions, and elect a MEC server on

which they remain until the end of our simulations. In contrast, the

state-of-the-art Follow ME algorithm [9], only considers proximity

when selecting the preferred MEC host, and forces numerous mi-

grations, as shown in Figure 10. Yet, these migrations may prove

inconvenient, as we discuss next.

5.3.3 Platoon stability. Considering the same sinusoidal driving

pattern employed so far, Figure 11 shows that the speed of the

first follower adapts very well to that of the platoon leader. This

takes place despite the sinusoidal perturbations on the platoon

leader speed, and confirms that the learned migration policies show

very good robustness. In comparison, Follow ME [9] exhibits much

greater variability. This points to the effectiveness of the minimal

migrations that our algorithm decides to perform.

When compared to Follow ME, our scheme exhibits better pla-

toon spacing discipline. This is shown in Figure 12, which employs

box-plots to convey the distribution of vehicle spacing across the

platoon at different simulation times. Each blue box extends from

the 1st to the 3rd quartile of the distribution, the red bar denotes

the median, and whiskers cover the 10th-90th percentile range. Red

“+” markers denote the data along the tails of the distribution. From

Figure 12, we observe that our Q-migration algorithm achieves

smaller inter-quartile ranges (Figure 12a and Figure 12b) compared

to those of Follow ME (Figure 12c). This implies higher string sta-

bility and a generally better driving experience. In particular, the

occurrences of long whiskers are due to the the spacing between

the first follower and the platoon leader, which varies the most

under the sinusoidal motion of the leader.

5.3.4 Asynchronous Shared Learning. The acceleration of conver-

gence through the use of asynchronous shared learning is apparent
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Figure 9: Sample Q-migration policies
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Figure 11: Speed profiles of the first follower

from Table 2. In this table, we take each consecutive set of parallel

episodes, and we examine the log of the states that each agent

visits. If ϵ = ϵmin at every epoch for any of the agents, we consider

that episode as exhibiting convergence. The nth
time that this is

observed is termed the nth
convergence. The results prove that hav-

ing more agents sharing their own experience with other agents

greatly increases the speed at which migration policies fully con-

verge. However, after the initial significant gain, the advantage of

having more parallel agents decreases. This points to a diminishing

return in the value of parallel agents after the first convergence.

6 CONCLUSIONS AND FUTUREWORK
We presented a context-aware Q-learning-based migration algo-

rithm for vehicle platoon controllers. The algorithm learns the
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Figure 12: Distribution of spacing between platoon mem-
bers. Each box plot represents data taken over 20 s windows.
The last box plot represents data in the last 10 s.

appropriate strategies to migrate the controller from one MEC host

to another in a cellular network context. Our approach reduces

the number of migrations required for the controller to keep pace

with the platoon and maintain it in formation. Our approach also

makes it possible to easily and effectively leverage the presence

of multiple platoons in order to learn migration policies faster. In

particular, compared to the state-of-the-art scheme FollowME, our



Table 2: Parallel episodes until convergence

# Agents 1
st Conv. 2

nd Conv. 3
rd Conv. 4

th Conv.

10 27 28 29 31

5 63 67 75 77

1 389 482 495 499

approach complies better with vehicle speed and spacing presets,

and achieves a reduced statistical dispersion of spacing values.

Because sub-optimal migration decisions may occur in the initial

learning phases of our algorithm and may lead to string instability,

we intend to explore controllers with speed-dependent spacing

as a means to enhance safety during the training phase. We will

also investigate the ideal number of agents that achieves the best

trade-off between policy exploration and exploitation.
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