
Graph-Aware Evolutionary Algorithms for Influence
Maximization

Kateryna Konotopska

University of Trento

Trento, Italy

konotopska.k@gmail.com

Giovanni Iacca

University of Trento

Trento, Italy

giovanni.iacca@unitn.it

ABSTRACT
Social networks represent nowadays in many contexts the main

source of information transmission and the way opinions and ac-

tions are influenced. For instance, generic advertisements are way

less powerful than suggestions from our contacts. However, this

process hugely depends on the influence of people who dissemi-

nate these suggestions. Therefore modern marketing often involves

paying some targeted users, or influencers, for advertising products
or ideas. Finding the set of nodes in a social network that lead

to the highest information spread –the so-called Influence Max-

imization (IM) problem– is therefore a pressing question and as

such it has recently attracted a great research interest. In particular,

several approaches based on Evolutionary Algorithms (EAs) have

been proposed, although they are known to scale poorly with the

graph size. In this paper, we tackle this limitation in two ways.

Firstly, we use approximate fitness functions to speed up the EA.

Secondly, we include into the EA various graph-aware mechanisms,

such as smart initialization, custom mutations and node filtering,

to facilitate the EA convergence. Our experiments show that the

proposed modifications allow to obtain a relevant runtime gain and

also improve, in some cases, the spread results.

CCS CONCEPTS
• Human-centered computing→ Social networks; Social net-
work analysis; • Theory of computation→ Evolutionary algo-
rithms; • Mathematics of computing→ Graph algorithms.

KEYWORDS
Social Network, Influence Maximization, Evolutionary Algorithm,

Graph Theory, Combinatorial Optimization.

1 INTRODUCTION
Online social networks have become a relevant part in the daily

life of the majority of people. Social networks are used every day

to maintain contact with other people, read news, search for a job,

watch movies, or do shopping. All these things are usually done

based on what other people say about products, jobs, events, and so

on. More formally, when the activity of a user 𝑢 implies an action

of the user 𝑣 , there is an edge 𝑢 → 𝑣 in the graph representing

the social network. This edge might indicate, for example, a voter

supporting a candidate for an election, or the fact that if a customer

𝑢 buys a product, the same product will be bought by the user 𝑣 . In

general, the notation𝑢→ 𝑣 indicates that information spreads from

𝑢 to 𝑣 with a certain probability. In case of success, 𝑣 is said to be

activated by 𝑢. As we will see later, different probabilistic models,

called diffusion models, are now well-established tools to study how

influence propagates over social networks.

When one wants to find which set of nodes has more chances of

producing the maximum possible number of activations in a social

network, we are dealing with a problem known as the Influence
Maximization (IM) problem. This is a crucial problem for instance

to win political campaigns, perform targeted marketing to trigger

word-of-mouth, etc. Usually, one has a limited budget on the num-

ber of nodes that can be initially activated (the so-called seed nodes).

This is a particularly challenging combinatorial problem that, being

proved to be NP-hard [20], has attracted a great research interest

in the past few years. As we will briefly summarize in Section 3,

various algorithms have been recently proposed for solving the IM

problem, either heuristics with provable guarantees, or metaheuris-

tics such as Evolutionary Algorithms (EAs). However, while several

successful techniques exist, these usually suffer from the so-called

curse of dimensionality, i.e., they either require too much time to

converge, or produce limited-quality results.

Here, we aim at improving the performance of EAs to solve the

IM problem. To do that, we first investigate two different approx-

imations of the influence spread simulation. Then, we introduce

several graph-aware mechanisms to facilitate the EA convergence.

These contributions represent the main novelty of this work: to the

best of our knowledge, a thorough investigation of these directions

has not been done in the current literature. Overall, our experi-

ments show that the proposed modifications produce a relevant

runtime gain and also improve, in some cases, the spread results.

The rest of the paper is organized as follows. In the next Section,

we provide the background concepts. Section 3 gives an overview

of the state-of-the-art in the field of IM. Sections 4 describes our

methods, while Section 5 presents our experimental setup and the

numerical results. Finally, Section 6 summarizes our main findings

and discusses the possible future work directions.

2 BACKGROUND
As said earlier, the IM problem consists in finding the set of nodes

that will lead to the maximal number of node activations according

to a given influence spread model. More specifically, the problem

can be formulated as follows: given a network, represented with a

graph𝐺 , a diffusion model𝑚, and a budget 𝑘 , find a set of 𝑘 initially

active nodes, such that the influence spread is maximized. Here,

we use the Independent Cascade (IC) and Weighted Cascade (WC)

models [20]. In IC, at each timestep 𝑡 a node can be either active or

inactive. A node can transit from inactive to active, but it cannot

become inactive again. At the beginning, only the nodes in the seed

set 𝑆 are in the active state. Then, at each timestep each active node

𝑢 has a chance of activating its neighboring nodes 𝑣 (if the edge

𝑢 → 𝑣 exists) with a probability 𝑝 , which is the same for all the

nodes in the graph and is a given parameter. The simulation stops

ar
X

iv
:2

10
4.

14
90

9v
1 

 [
cs

.N
E

] 
 3

0 
A

pr
 2

02
1



Kateryna Konotopska and Giovanni Iacca

once a convergence condition is met, see Algorithm 1 in Section 4.1.

Influence spread is thus given by the number of active nodes at the

end of the simulation. In WC, influence spread is calculated in the

same way as in IC, the only difference being the probability of node

activation: given a node 𝑣 , the probability of being activated by one

of its neighboring nodes 𝑢 is 1/(𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣)).

3 RELATEDWORKS
The existing approaches for solving the IM problem can be divided

into two main categories: approximation algorithms with provable

guarantees, and metaheuristics. The former provide good results,

but their long runtime make them impractical on large-scale net-

works. The latter compromise runtime with approximate solutions,

although they suffer from curse of dimensionality. We provide be-

low an overview of the related works from both categories.

3.1 Approximation algorithms
The IM problem was formulated for the first time as a combinato-

rial optimization problem in [20], and proven to be NP-hard. The

authors also proposed a greedy algorithm that yields an (1−1/𝑒−𝜖)
approximation. The submodular property of the objective func-

tion was later used in the CELF algorithm [23], producing a 700x

speedup w.r.t. a greedy approach. This property was further ex-

plored in CELF++ [13], with an additional 35-55% gain in runtime.

More recent algorithms, namely TIM and TIM+ [27], and its

improved version IMM [26], use a different approach to calculate the

nodes with the maximum spread, based on Reverse Reachable (RR)

sets. Each RR set is obtained by taking the set of nodes reached by

the spread from one node (one for each RR set) and by putting them

in an hypergraph as an hyperedge. The solution is then calculated

iteratively by selecting the node with the highest degree in the

hypergraph and removing then that node with all its incident edges.

The difference between the three algorithms consists in the ways of

calculating the sufficient number of RR sets and the method used to

sample nodes for their generation. All three algorithms outperform

both CELF and CELF++, while IMM outperforms both TIM and

TIM+. A further improvement of IMM is BCT [16], specifically

designed for cost-aware targeted viral marketing, where each node

has a benefit and a cost associated to it. BCT uses this information

in order to first sample nodes with higher benefit for creation of

the RR sets, resulting in an algorithm significantly faster than IMM.

3.2 Metaheuristics
The first application of EAs to the IM problem was proposed in [3],

in which a basic EA without any domain knowledge outperformed

the greedy algorithm [20] in terms of runtime while obtaining

comparable influence spread results. Since that, a plethora of im-

provements were done in this direction. In [29], for instance, a

GPU-parallelized EA outperformed the greedy algorithm given the

same runtime, taking up to 34 times less time to archive the same

result. The impact of the EA parameters on the IM problem was

studied instead in [30]. Another recent study [10] investigated the

effect of two selection schemes used for solving the IM problem

with EAs, and found that the (`, _) scheme performs better than

(` + _) when the size of the seed set increases.

Other works have investigated the use of smart initialization of

the initial EA population. In [31], different initialization strategies

were compared, with PageRank-based initialization [25] giving the

worst results. A smart initialization approach was also adopted in

[11], that unlike standard high-degree initialization can guarantee

a higher diversity of the solutions. In the same work, the authors

used 2-hop spread [22] as approximated fitness function, and a

similarity-based local search. Their results were quite promising,

with a 10x speedup w.r.t. CELF and comparable influence results. In

another work, the same authors proposed a discrete Particle Swarm

Optimization algorithm (DPSO) [12], which made use of 2-hop

spread approximation and a smart initialization based on degree

discount. DPSO outperformed CELF++ in terms of runtime, while

the influence results were similar. Smart initialization techniques

were also studied in [21], where each node has a probability to be

inserted into the initial population proportional to its degree, and

[9], producing better results than the basic EA.

Custom genetic operators were used in [24], where an informed

mutation operator was introduced, based on a neural network pre-

dicting which nodes to change in a solution using centrality metrics

as inputs. In [32], the EA premature convergence problem was han-

dled using multi-population competition with specific crossover

and mutation operations among populations. In other studies the

IM problem was formulated instead as a multi-objective problem. In

[15] a multi-objective differential evolution was used to maximize

influence while minimizing the information delivery cost. Similarly,

a multi-objective EA was used in [4] to maximize influence while

minimizing the size of the seed set.

4 METHODS
We now explain the main modifications we applied to the basic EA

proposed in [3]. This algorithm uses a direct encoding in which each

individual genotype is simply a vector of IDs of nodes in the social

network graph, i.e., a seed set. Initialization is done by randomly se-

lecting a seed set of 𝑘 nodes from the graph. At each generation, par-

ents are selected by performing tournament selection, which then

reproduce by means of one-point crossover operator. Differently

from [3], the crossover operator adopted here has two additional

constraints: 1) to produce solutions without node repetitions, and

2) to produce solutions different from those given in input, in order

to improve diversity. To satisfy the former condition, we swap only

nodes which are not in common between the two parents, while

maintaining the other nodes in common. Regarding the latter prop-

erty, we simply force a mutation of at least one random node in each

child produced by crossover. This is then followed by a random mu-

tation that simply resets each node, with a given probability, to one

of the other possible node IDs (excluding those already present in

the seed set). The new population is then obtainedwith generational

replacement with elitism. The evolution is continued until a maxi-

mum number of generations is reached, or stopped earlier if there is

not any improvement for 𝛼 consecutive generations, where 𝛼 was

set to 10% of the maximum number of generations. In our experi-

ments, we set population_size=100, generational_budget=100 gener-
ations, crossover_rate=1.0, mutation_rate=0.1, tournament_size=5,
and num_elites=1. This parametrization follows the one used in [3],



Graph-Aware Evolutionary Algorithms for Influence Maximization

to obtain a fair comparison with the basic EA. A specific parameter

tuning, as done in [30], is instead out of the scope of this work.

In order to improve the basic EA, we collected the best ideas

from the literature, discussed in the previous Section, and put them

in practice by adapting them to the algorithm. As we will see in the

next Section, some of themwere more successful, while some others

hardly produced any improvement. Nevertheless, we report all of

our results in order to provide valuable knowledge on what are

the most promising directions. In a nutshell, the objectives of our

work are to: 1) reduce the runtime of the fitness function, the main

bottleneck of the EA, by using fitness function approximations; 2)

boost the EA convergence with smart initialization; 3) improve the

search efficiency by using graph-aware mutations, also including a

mechanism for dynamic selection of multiple mutations; 4) reduce

the EA search space by filtering the most promising nodes before

starting the search. Next, we discuss these four elements in detail.

4.1 Fitness function approximations
The influence spread computation under the IC and WC models

was proven to be #P-complete in [13], and as such it is one of the

main bottlenecks for the IM algorithms. This is usually calculated

by usingMonte Carlo (MC) sampling. According to this procedure,

the influence spread is calculated by simulating the information

spread in the graph, using the specified diffusion model, a given

number of times (usually very large, > 10.000). The influence spread

is then approximated by the mean spread across the simulations.

As seen earlier, an alternative to the expensive MC sampling

is the use of RR sets [8]. A preliminary study of surrogate mod-

els was instead conducted in [5], but the results were contrasting.

More promising solutions make use of spread function approxima-

tions, which are faster than MC sampling. This is the idea we have

decided to adopt in this work. In particular, we use two different

approximations. The first one is the 2-hop spread approximation

function introduced in [22], which as discussed earlier was used in

[11] because of its efficiency. According to this approximation, the

influence spread is given by:

�̂�𝑆 =
∑︁
𝑠∈𝑆

�̂�{𝑠 } −
©«
∑︁
𝑠∈𝑆

∑︁
𝑐∈𝐶𝑠∩𝑆

𝑝 (𝑠, 𝑐)
(
𝜎1𝑐 − 𝑝 (𝑐, 𝑠)

)ª®¬ − 𝜒,

where: 𝜒 =
∑
𝑠∈𝑆

∑
𝑐∈𝐶𝑠\𝑆

∑
𝑑∈𝐶𝑐∩𝑆\{𝑠 } 𝑝 (𝑠, 𝑐)𝑝 (𝑐, 𝑑), 𝜎

1

𝑢 is the one-

hop influence spread of node 𝑢, defined as 𝜎1𝑢 = 1 +∑𝑐∈𝐶𝑢
𝑝 (𝑢, 𝑐),

and 𝐶𝑢 denotes the set of neighbors of node 𝑢.

The second approximation is a variation of MC sampling, called

MCmax-hop. In this case, influence is propagated up to a maxi-

mum number of hops𝑚𝑎𝑥_ℎ𝑜𝑝 . If e.g.𝑚𝑎𝑥_ℎ𝑜𝑝 = 2, the influence

is propagated up to the neighbors of the neighbors of the seed set 𝑆 .

The pseudo-code of the algorithm is shown in Algorithm 1, where

setting max_hop to Inf produces the original MC sampling.

4.2 Smart initialization
Introducing custom-built solutions into the initial population is a

common practice in Evolutionary Computation [6, 7, 18]. As we

have seen earlier, several works [9, 11, 12, 21, 31] have reported a

positive effect of smart initialization on the IM problem. Here we

Algorithm 1 Monte Carlo max-hop simulation.

input: seed set 𝑆 , seed set size 𝑘 , graph 𝐺 , social model model,
number of simulations no_simulations,
maximum number of hops max_hop

output: spread mean value avg, spread standard deviation std
1: procedure MonteCarloMaxHopSimulation

2: 𝑠𝑎𝑚𝑝𝑙𝑒 ← initialize_array(k)
3: 𝑖 ←1

4: for 𝑖 ≤ no_simulations do
5: 𝐴← S
6: 𝐵 ← S
7: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← False
8: 𝑗 ←𝑚𝑎𝑥_ℎ𝑜𝑝

9: while not 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 and 𝑗 ≤ 𝑚𝑎𝑥_ℎ𝑜𝑝 do
10: 𝑛𝑒𝑥𝑡𝐵 ← ()
11: for 𝑛 in 𝐵 do
12: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← get_neighbors(n, G)
13: 𝑛𝑜𝑡_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 ← set_difference(neighbors, A)
14: for𝑚 in 𝑛𝑜𝑡_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 do
15: 𝑠𝑝𝑟𝑒𝑎𝑑_𝑝𝑟𝑜𝑝 ← get_influence(n, m, model)
16: 𝑝 ← random_real(0, 1)
17: if p > spread_prop then
18: add_element_to_set(m, nextB)
19: 𝐵 ← 𝑛𝑒𝑥𝑡𝐵

20: if is_empty(nextB) then
21: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝑇𝑟𝑢𝑒

22: 𝐴← union(A, B)
23: 𝑗 ← 𝑗 + 1
24: 𝑠𝑎𝑚𝑝𝑙𝑒 [𝑖] ← length(A)
25: 𝑖 ← i + 1
26: 𝑎𝑣𝑔←𝑚𝑒𝑎𝑛(𝑠𝑎𝑚𝑝𝑙𝑒)
27: 𝑠𝑡𝑑 ← standard_deviation(sample)

consider different initialization techniques, described below.

Single smart solution: A single “smart” solution is inserted into

the initial population, that is generated by taking the first 𝑘 nodes

obtaining the highest centrality scores. We tested the following

centrality metrics:

• betweenness: measures how often the node is on the shortest

path among any two nodes in the graph;

• closeness: corresponds to the mean length of the shortest path

between the node and all the other nodes in the graph;

• degree: the number of out-going links of the node;

• eigenvector: nodes neighboringwith few highly-connected nodes

score higher;

• katz: a variant of the eigenvector metric, where the distance

between two nodes is measured by considering the number of

possible paths among them, instead of only the shortest path.

Multiple smart solutions: A percentage of the initial population

is initialized according to one of the following strategies:

• degree random: the probability of a node to be inserted into a

solution is proportional to its degree;



Kateryna Konotopska and Giovanni Iacca

• degree random ranked: the probability of a node to be inserted

into a solution is proportional to its ranking position w.r.t. the

nodes’ degree;

• community degree: the general idea is that the network might

have community structure and a good solution should contain the

most influential nodes from the largest communities. Here, we use

the Louvain algorithm [28] to perform community detection. The

solutions are then built as follows: first, we select a community,

with probability proportional to its size. Then, we select the node

within the selected community, with probability proportional to

its degree.

When using the initialization with both single and multiple smart

solutions, the rest of the population is initialized randomly.

4.3 Graph-aware mutations
We attempt to accelerate the search process by introducing some

knowledge about the node properties and graph structure into the

mutation operator. In particular, we considered four different mu-

tation schemes, described below.

Global mutation methods: We mutate the selected node to an-

other node randomly chosen from the graph. Table 1 recapitulates

the node selection techniques we use with the global mutation

methods.

Local mutation methods: The idea is to perform a local search
on the graph, i.e., to apply a mutation that preserves a certain

proximity to the current solution (i.e., the seed set). In this case the

node to be mutated is selected randomly, while the new node is

chosen according to one of the criteria listed in Table 2.

Combination of multiple mutations: We have observed that

some mutations are more effective than others when used in dif-

ferent evolution phases and when applied to networks with dif-

ferent degree distributions. Here, we model the dynamic selection

of which mutation to use within a pool of available mutations as

a non-stationary Multi Armed Bandit (MAB) problem. To solve

the MAB problem, we adopt the Upper Confidence Bound (UCB1)

algorithm [1], which promotes actions (in our case, mutations)

with larger reward uncertainty. More precisely, to select the next

action, the UCB1 algorithm maximizes the following expression:

𝑄 (𝑎) + 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡 ·
√︁
(2 log 𝑡)/𝑁𝑡 (𝑎), where 𝑄 (𝑎) is the

cumulative reward of the last 𝑛 times the action 𝑎 was selected (𝑛 is

a sliding window size), 𝑁𝑡 (𝑎) corresponds to the number of times

𝑎 was chosen, and 𝑡 is the counter of the total action selections. To

shrink the learning phase, we adopted an exponentially decaying

exploration weight 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) = 𝑔−3, where 𝑔 is the

generation counter. Note that the sliding window is used since the

problem is non-stationary, i.e., the reward of a certain mutation may

change during the evolutionary process. This mechanism should

then produce a fair trade-off between exploration and exploitation

along the search.

4.4 Node filtering
The search space of the IM problem is combinatorial, therefore most

existing algorithms scale poorly with the graph size. We investigate

two ways to reduce the search space by filtering the nodes in the

Table 1: Selection techniques used with global mutations.

Mutation Description
Global random The node to be mutated is selected randomly.

Global low

degree

The mutation probability of a nodes is inversely

proportional to its degree.

Global low

spread

The mutation probability of a node is inversely

proportional to its influence spread value.

Global low

additional

spread

The mutation probability of a node is inversely

proportional to the increase in influence spread it

produces when added to the seed set excluding it.

Table 2: Selection techniques used with local mutations.

Mutation Description
Local neighbors

random

The new node is selected randomly among the

neighbors of the node to be mutated.

Local neighbors

second degree

The new node is selected among the neighbors of

the node to be mutated, with probability propor-

tional to its degree.

Local neighbors

approximated

spread

The new node is selected among the neighbors of

the node to be mutated, with probability propor-

tional to its approximated spread.

Local

embeddings

random

The new node is selected randomly among the

nodes closest to the node to be mutated, according

to its corresponding node2vec [14] embeddings

(i.e., a continuous feature representation of the

graph’s nodes, trained to predict the probability of

nodes being neighbors).

graph before applying the EA.

Mindegree nodes: Nodeswith low degree have a very little chance

of influencing the others, so it is very unlikely that they would be

part of the optimal solution. Here, we filter the 𝑛 nodes with degree

larger than a given threshold.

Best spread nodes: When considering large-scale networks, it is

very likely that the optimal seed set would be made of nodes placed

far enough from each other, to avoid activating the same nodes.

According to this assumption, it is highly probable that the nodes in

the optimal solution are isolated among them. In other words, their

activations do not overlap and the resulting spread is very close to

the sum of the spreads of each of the nodes calculated separately.

To test this assumption, we first compute the spread generated by

each node, separately, and then filter the best 𝑛 nodes in terms of

mean spread. This technique requires the spread measures of any

two nodes to be comparable with each other, in order to determine

which one is bigger. Furthermore, this technique is computationally

expensive since it requires to perform MC simulations for all the
nodes in the network, before running the EA. However, deciding

a priori the required number of MC simulations needed to have a

statistically significant comparison of the spread produced by all

nodes (averaged across multiple MC simulations, as seen earlier)

is not possible. Therefore, we use the following procedure that

increases iteratively the number of MC simulations, until a needed

precision is reached:

(1) Initialize a node set N with all the nodes in the graph, and set

the maximum error rate𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒 to a given value.



Graph-Aware Evolutionary Algorithms for Influence Maximization

(2) Perform MC sampling of the spread of each node in N with a

number of MC simulations (which might be different for each

node) needed to ensure a maximum error rate𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒

on the mean spread. The error of the mean is estimated by cal-

culating the confidence interval of the Student’s T distribution.

(3) Set N to the best 𝑛 nodes in terms of mean spread, plus all

the nodes in the graph which are not statistically comparable

with the node with the lowest spread among the best 𝑛 nodes.

Decrease𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒 and go to step 2.

This loop is repeated until all the best 𝑛 nodes are comparable with

the others. However, the sample size required to compare any pair

of nodes would be too costly, thus we stop the loop as soon as the

number of best nodes falls in a given range [𝑙, 𝑢]. More specifically,

as soon as the algorithm finds a number of best nodes 𝑙 , and the

number of nodes incomparable with those 𝑙 nodes is lower than

𝑢 − 𝑙 , it stops. When the algorithm terminates, it returns the 𝑙 best

nodes, plus all the nodes which cannot be compared with them.

Table 3: Real-world datasets specifications.

Dataset Graph size Node degree
Avg Std Min Max Median

Wiki-vote

7.115 nodes

103.689 edges

14.57 42.28 0 893 2

Amazon

262.111 nodes

1.234.877 edges

4.71 0.95 0 5 5

CA-GrQc

5.242 nodes

14.496 edges

5.52 7.92 1 81 3

Table 4: Synthetic Barabási-Albert datasets specifications.
The 𝑛_𝑒𝑑𝑔𝑒𝑠 parameter indicates the number of edges added
from a new node to the existing nodes.

Graph size Node degree
Avg Std Min Max Median

1.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=1 1.99 3.51 1 75 1

1.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=3 5.98 7.37 3 99 4

1.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=5 9.95 10.57 2 114 7

1.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=7 13.90 12.80 7 137 10

1.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=9 17.84 15.65 9 148 12

1.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=11 21.76 19.25 11 211 15

10.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=1 1.99 4.13 1 243 1

10.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=3 5.99 8.96 3 293 4

10.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=5 9.99 13.45 2 365 7

10.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=7 13.99 17.00 7 446 10

10.000 nodes 𝑛_𝑒𝑑𝑔𝑒𝑠=9 17.98 21.25 9 470 12

10.000 nodes𝑛_𝑒𝑑𝑔𝑒𝑠=11 21.98 25.97 11 695 15

5 EXPERIMENTS
For the experiments, we used three real-world graphs taken from

the SNAP repository [19], namely Wiki-Vote, Amazon and CA-

GrQc. In Wiki-Vote the edges represent who-voted-whom infor-

mation in elections for promoting adminship. The Amazon dataset

contains co-purchased products relations. The smallest dataset, CA-

GrQc, is a network of collaboration in the General Relativity and

Quantum Cosmology fields. Table 3 contains a detailed description

of each of the aforementioned graphs. For testing the function ap-

proximations, we also used 6 synthetic datasets generated by the

Barabási-Albert model [2], detailed in Table 4. These were created

using the networkx library [17] with a 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑒𝑑 parameter set

to 0. Except for the function approximations experiments, where

we set 𝑝 = 0.1 in the IC model and𝑚𝑎𝑥_ℎ𝑜𝑝 = 2, in all the other

experiments we set 𝑝 = 0.01 and𝑚𝑎𝑥_ℎ𝑜𝑝 = 3. Each of the four

proposed modifications presented above (fitness function approx-

imations, smart initialization, graph-aware mutations, and node

filtering) was tested separately. Every experimental condition was

repeated for 10 independent runs (in the next figures, we provide

mean values ± std. dev.)
1
.

5.1 Fitness function approximations
The first part of the experimentation was aimed at verifying which

fitness function approximation works best in terms of runtime and

quality of results. To do that, we compared the runtime and spread

(mean and std. dev. across multiple simulations) computed by MC

sampling and the two approximations, i.e., 2-hop spread and MC

max-hop (𝑚𝑎𝑥_ℎ𝑜𝑝 = 2), on the different datasets above, under

both the IC and WC models. For each dataset and model, the three

methods were executed on 100 randomly generated seed sets, the

same for all the methods. The Pearson correlation on the spread

values calculated by the proposed approximations andMC sampling

was then calculated.

Generally, we observed that both approximations in some cases

had an important gain in runtime and high spread correlations

w.r.t. MC sampling. The correlation of the spread values is high

for both approximations (> 0.9) for the WC model, and for the IC

model with low 𝑝 values (𝑝 ≤ 0.1). On the other hand, we observed

a dependency of the runtime on the size and connectivity of the

graph, the size of the seed set 𝑘 , and, of course, the number of

simulations used for the MC methods. Figure 1 shows the runtime

of the three methods on six selected datasets as the number of

MC simulations varies (WC model, seed set size 𝑘 = 5). Here we

can observe the linear growth of the runtime of the MC methods

w.r.t the number of simulations. We can also notice that in some

cases the 2-hop spread is slower not only when the number of MC

simulations is low (somehow an obvious result), but also when

the dataset size grows. Another thing which can be noticed is

that MC max-hop is particularly useful as the dataset connectivity

increases. See the Barabási-Albert graphs in the figure, where MC

max-hop obtains a lower performance gain in the top row (lower

connectivity) than in the bottom row (higher connectivity). We

observed this trend in all our experiments: more connected graphs

yield a longer influence spread process since usually more nodes

get influenced, so a truncation of this process up to some level (as

in MC max-hop) can lead to larger runtime gains.

We also observed that the runtime has, obviously, a linear re-

lationship with the seed set size 𝑘 . Figure 2 reports the runtime

as a function of 𝑘 (WC model, number of MC simulations set to

100). Here we can observe that the 2-hop spread may be convenient

only if the graph size is kept small, while for the real-world cases it

might be the slowest spread evaluation method.

1
Our code is available at: https://github.com/katerynak/Influence-Maximization.

https://github.com/katerynak/Influence-Maximization


Kateryna Konotopska and Giovanni Iacca

Figure 1: Spread function runtime as a function of the number of MC simulations.

Figure 2: Spread function runtime as a function of the seed set size 𝑘 .

Figure 3: Single smart solution initialization techniques compared.

5.2 Smart initialization
We tested smart initialization only on the three real-world datasets.

Overall, the results indicate that smart initialization is most useful

in the case of datasets that contain single, highly connected nodes.



Graph-Aware Evolutionary Algorithms for Influence Maximization

Single smart solution: We were not able to run complete experi-

ments for the Amazon dataset, given their cost in memory and/or

runtime (we did not consider centrality metrics with computation

time > 12 hours). As shown in Figure 3, the degree metric is a clear

winner for the Wiki-Vote dataset, which is reasonable considering

its degree distribution. CA-GrQc experiments did not present a

clear difference between various metrics under the IC model, while

when considering the WC model the betweenness metric obtained

slightly better results w.r.t. the other metrics. The only metric we

could compute for the Amazon dataset was the degree metric, but

this did not bring any improvement to the basic EA (results not

shown for brevity).

Multiple smart solutions: Due to computing resource limitations,

we could not run these experiments for different values of 𝑘 . We

used instead a fixed seed set size, 𝑘 = 10, and a percentage of smart

solutions of 50%. From Table 5, it can be seen that there is not a clear

winner. On the other hand the degree random strategies are to be

preferred because of the much lower computation time requirement

w.r.t. the community degree strategy.

Table 5: Multiple smart solutions initialization techniques
compared (for 𝑘 = 10).

Dataset Model

Best fitness (averaged across 10 runs)
Degree
random

Comm.
degree

Degree
random
ranked

No
smart.
init.

Wiki-Vote WC 226.24 223.35 230.65 220.75

Wiki-Vote IC 93.7 93.21 94.04 87.92

Ca-GrQc WC 147.38 147.36 146.91 146.13

Ca-GrQc IC 18.64 18.59 18.59 18.67
Amazon WC 66.55 65.99 67.97 67.87

Amazon IC 10.79 10.83 10.80 10.82

5.3 Graph-aware mutations
Also in this case we tested only the Wiki-vote, CA-GrQc and Ama-

zon graphs. We omit for brevity the detailed results, but we report

below our main findings.

Globalmutations: The global low degreemutation obtained slightly

better results on the graphs presenting a low number of large de-

gree nodes, such as Wiki-Vote and CA-GrQc, while for the Amazon

dataset it led to worse results. The runtime of these methods were in

general comparable, except the global low additional spread method

whose runtime grows linearly with the seed set size.

Local mutations: We report the results of the local mutations

in Figure 4. For this specific experiment, we trained node2vec on

the Amazon dataset and fine-tuned its parameters. As expected

then, the local embeddings random mutation performed better on

the Amazon dataset, while its results for CA-GrQc and Wiki-Vote

were way worse than the other mutations: this shows that local

embeddings may work well, but at a cost of an expensive and time-

consuming tuning process. On the other hand, the local neighbors
second degree mutation was at least as good as the global random
mutation for all the datasets, while the local neighbors approximated

spread and the local neighbors random mutation worked well on

CA-GrQc and Wiki-Vote, but not on the Amazon dataset.

Combination of multiple mutations: We tested the UCB1 algo-

rithm with all the mutations in Tables 1-2 and a sliding window

size of 100. We noted that while the improvement w.r.t. the basic

EA was not very significant, it was however positive for all graphs,

which confirms that the dynamic selection of mutations adapts well

to different cases (results not shown for brevity).

5.4 Node filtering
Filtering was tested only on the real-world graphs. Below we report

our findings.

Min degree nodes: Min-degree values of 1, 2, 3 and 4 were tested.

We obtained a visible improvement w.r.t. the basic EA only on the

Wiki-Vote dataset, while in the other cases the high std. dev. did

not permit to define a clear winner.

Best spread nodes: We used MC max-hop with 𝑚𝑎𝑥_ℎ𝑜𝑝 = 2

to approximate the spread of each single node; 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒

was set initially to 0.8 and subsequently decreased of 0.1 at each

iteration. We set 𝑙 = 10
9
and 𝑢 = 10

11
, in order to have the same

search space size regardless of 𝑘 . From Figure 5, we can see that

this method significantly improved the basic EA (up to 40%).

6 CONCLUSIONS
We improved a basic EA applied in previous research to the IM prob-

lem with various graph-aware enhancements aimed at reducing the

algorithm runtime. Using MC max-hop instead of MC sampling to

evaluate the influence spread permitted a significant computational

time saving, and allowed the possibility to conduct a variety of ex-

periments. The most important progress was achieved by limiting

the search space of the EA by means of node filtering, a method

which selected the most promising nodes in terms of information

spread before running the evolutionary search: the limited number

of node combinations allowed in fact the EA to better scale with

the increasing graph size. Moreover, the combination of several

local and global graph-aware mutations permitted the EA to adapt

to graphs with different structure or connectivity.

There are, on the other hand, some limitations in the proposed

mechanisms. For instance, MC max-hop may be not a good choice

in case of networks with scarce connectivity or under the IC model

with high probability values. Furthermore, node filtering is valid

only under the assumption that the most influential nodes are dis-

tant, in the sense that they do not influence the same nodes. So

this method may perform worse on small-scale networks where

the optimal seed set may include nodes with common spread in-

fluence. Additionally, the runtime of the metrics which involve the

computation of the influence spread, as well as the degree-based

mutations, is proportional to the fitness of the solution. So, the

runtime of the algorithm is proportional to the graph connectivity

and a large number of fitter candidates found during the search

may imply an increasingly high computation cost.

There is still further research to do on graph-aware mutations,

which would probably work better with a small number of pre-

filtered nodes. In particular, the success of the node2vec embeddings

mutation (although with some hyper-parameter search) suggests



Kateryna Konotopska and Giovanni Iacca

Figure 4: Local mutations compared.

Figure 5: Best spread node filtering compared.

that this might be a promising direction to explore more in depth,

also because differently from the other tested mutations this kind

of mutation does not need node-specific expensive computations.



Graph-Aware Evolutionary Algorithms for Influence Maximization

REFERENCES
[1] Auer, Peter and Cesa-Bianchi, Nicolo and Fischer, Paul. 2002. Finite-time analysis

of the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[2] Barabási, Albert-László and Albert, Réka. 1999. Emergence of Scaling in Random

Networks. Science 286, 5439 (1999), 509–512.
[3] Bucur, Doina and Iacca, Giovanni. 2016. Influence Maximization in Social Net-

works with Genetic Algorithms. In European Conference on the Applications of
Evolutionary Computation (LNCS, Vol. 9597). Springer, Berlin, Heidelberg, 379–
392.

[4] Bucur, Doina and Iacca, Giovanni and Marcelli, Andrea and Squillero, Giovanni

and Tonda, Alberto. 2017. Multi-objective Evolutionary Algorithms for Influence

Maximization in Social Networks. In European Conference on the Applications of
Evolutionary Computation (LNCS, Vol. 10199). Springer, Cham, 221–233.

[5] Bucur, Doina and Iacca, Giovanni and Marcelli, Andrea and Squillero, Giovanni

and Tonda, Alberto. 2018. Evaluating Surrogate Models for Multi-Objective Influ-

ence Maximization in Social Networks. In Genetic and Evolutionary Computation
Conference Companion (GECCO). ACM, New York, NY, USA, 1258–1265.

[6] Caraffini, Fabio and Iacca, Giovanni and Neri, Ferrante and Picinali, Lorenzo

and Mininno, Ernesto. 2013. A CMA-ES super-fit scheme for the re-sampled

inheritance search. In Congress on Evolutionary Computation. IEEE, Piscataway,
NJ, USA, 1123–1130.

[7] Caraffini, Fabio and Neri, Ferrante and Cheng, Jixiang and Zhang, Gexiang and

Picinali, Lorenzo and Iacca, Giovanni and Mininno, Ernesto. 2013. Super-fit multi-

criteria adaptive differential evolution. In Congress on Evolutionary Computation.
IEEE, Piscataway, NJ, USA, 1678–1685.

[8] Christian Borgs and Michael Brautbar and Jennifer Chayes and Brendan Lucier.

2014. Maximizing Social Influence in Nearly Optimal Time. In Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). ACM, New York, NY, USA, 946–957.

[9] da Silva, Arthur Rodrigues and Rodrigues, Rodrigo Ferreira and da Fonseca Vieira,

Vinícius and Xavier, Carolina Ribeiro. 2018. Influence Maximization in Network

by Genetic Algorithm on Linear Threshold Model. In International Conference on
Computational Science and its Applications (ICCSA). Springer, Cham, 96–109.

[10] García-Nájera, Abel and Zapotecas-Martínez, Saúl and Bernal-Jaquez, Roberto.

2020. Selection Schemes Analysis in Genetic Algorithms for the Maximum

Influence Problem. In Mexican International Conference on Artificial Intelligence
(MICAI). Springer, Cham, 211–222.

[11] Gong, Maoguo and Song, Chao and Duan, Chao and Ma, Lijia and Shen, Bo. 2016.

An Efficient Memetic Algorithm for Influence Maximization in Social Networks.

IEEE Computational Intelligence Magazine 11, 3 (2016), 22–33.
[12] Gong, Maoguo and Yan, Jianan and Shen, Bo and Lijia, Ma and Cai, Qing. 2016.

Influence Maximization in Social Networks Based on Discrete Particle Swarm

Optimization. Information Sciences 367 (2016), 600–614.
[13] Goyal, Amit and Lu, Wei and Lakshmanan, Laks V.S. 2011. CELF++: Optimizing

the Greedy Algorithm for Influence Maximization in Social Networks. In Interna-
tional Conference Companion on World Wide Web (Hyderabad, India) (WWW).
ACM, New York, NY, USA, 47–48.

[14] Grover, Aditya and Leskovec, Jure. 2016. Node2vec: Scalable Feature Learning for

Networks. In International Conference on Knowledge Discovery and Data Mining
(San Francisco, California, USA) (KDD). ACM, New York, NY, USA, 855–864.

[15] Guo, Jian-bin and Chen, Fu-zan and Li, Min-qiang. 2019. A Multi-objective

Optimization Approach for Influence Maximization in Social Networks. In In-
ternational Conference on Industrial Engineering and Engineering Management
(IEEM). Springer, Singapore, 706–715.

[16] H. T. Nguyen and M. T. Thai and T. N. Dinh. 2017. A Billion-Scale Approximation

Algorithm for Maximizing Benefit in Viral Marketing. IEEE/ACM Transactions
on Networking 25, 4 (2017), 2419–2429.

[17] Hagberg, Aric and Swart, Pieter and Chult, Daniel. 2008. Exploring Network

Structure, Dynamics, and Function Using NetworkX. In Python in Science Con-
ference. SciPy, Pasadena, CA USA, 11–15.

[18] Iacca, Giovanni and Mallipeddi, Rammohan and Mininno, Ernesto and Neri,

Ferrante and Suganthan, Pannuthurai Nagaratnam. 2011. Super-fit and popula-

tion size reduction in compact differential evolution. In Workshop on Memetic
Computing. IEEE, Piscataway, NJ, USA, 1–8.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[20] Kempe, David and Kleinberg, Jon and Tardos, Éva. 2003. Maximizing the Spread

of Influence Through a Social Network. In International Conference on Knowledge
Discovery and Data Mining (Washington, D.C.) (KDD). ACM, New York, NY, USA,

137–146.

[21] Krömer, Pavel and Nowaková, Jana. 2017. Guided Genetic Algorithm for the

Influence Maximization Problem. In International Computing and Combinatorics
Conference (COCOON). Springer, Cham, 630–641.

[22] Lee, Jong-Ryul and Chung, Chin-Wan. 2014. A Fast Approximation for Influence

Maximization in Large Social Networks. In International Conference on World
Wide Web (Seoul, Korea) (WWW). ACM, New York, NY, USA, 1157–1162.

[23] Leskovec, Jure and Krause, Andreas and Guestrin, Carlos and Faloutsos, Chris-

tos and Faloutsos, Christos and VanBriesen, Jeanne and Glance, Natalie. 2007.

Cost-effective Outbreak Detection in Networks. In International Conference on
Knowledge Discovery and Data Mining (San Jose, California, USA) (KDD). ACM,

New York, NY, USA, 420–429.

[24] Michalak, Krzysztof. 2018. Informed Mutation Operator Using Machine Learning

for Optimization in Epidemics Prevention. In Genetic and Evolutionary Computa-
tion Conference (Kyoto, Japan) (GECCO). ACM, New York, NY, USA, 1294–1301.

[25] Rodrigues, Rodrigo and Silva, Arthur and Vieira, Vinícius and Xavier, Carolina.

2018. Optimization of the Choice of Individuals to Be Immunized Through the

Genetic Algorithm in the SIRModel. In International Conference on Computational
Science and its Applications (ICCSA). Springer, Cham, 62–75.

[26] Tang, Youze and Shi, Yanchen and Xiao, Xiaokui. 2015. Influence Maximization

in Near-Linear Time: A Martingale Approach. In International Conference on
Management of Data (Melbourne, Victoria, Australia) (SIGMOD). ACM, New

York, NY, USA, 1539–1554.

[27] Tang, Youze and Xiao, Xiaokui and Shi, Yanchen. 2014. Influence Maximization:

Near-Optimal Time Complexity Meets Practical Efficiency. In International Con-
ference on Management of Data (Snowbird, Utah, USA) (SIGMOD). ACM, New

York, NY, USA, 75–86.

[28] Vincent D Blondel and Jean-Loup Guillaume and Renaud Lambiotte and Etienne

Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment 2008, 10 (2008), P10008.

[29] Weskida, Michal andMichalski, Radosław. 2016. Evolutionary Algorithm for Seed

Selection in Social Influence Process. In International Conference on Advances
in Social Networks Analysis and Mining (Davis, California) (ASONAM). IEEE,
Piscataway, NJ, USA, 1189–1196.

[30] Weskida, Michal and Michalski, Radosław. 2018. Finding Influentials in Social

Networks using Evolutionary Algorithm. Journal of Computational Science 31
(2018), 77–85.

[31] Xavier, Carolina and Vieira, Vinícius and Evsukoff, Alexandre. 2016. Populational

Algorithm for Influence Maximization. In International Conference on Computa-
tional Science and its Applications (ICCSA). Springer, Cham, 346–357.

[32] Zhang, Kaiqi and Du, Haifeng and Feldman, Marcus. 2017. Maximizing influence

in a social network: Improved results using a genetic algorithm. Physica A:
Statistical Mechanics and its Applications 478 (2017), 20–30.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Background
	3 Related works
	3.1 Approximation algorithms
	3.2 Metaheuristics

	4 Methods
	4.1 Fitness function approximations
	4.2 Smart initialization
	4.3 Graph-aware mutations
	4.4 Node filtering

	5 Experiments
	5.1 Fitness function approximations
	5.2 Smart initialization
	5.3 Graph-aware mutations
	5.4 Node filtering

	6 Conclusions
	References

