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We discuss how a lattice Schwinger model can be realized in a linear ion trap, allowing a detailed study

of the physics of Abelian lattice gauge theories related to one-dimensional quantum electrodynamics.

Relying on the rich quantum-simulation toolbox available in state-of-the-art trapped-ion experiments, we

show how one can engineer an effectively gauge-invariant dynamics by imposing energetic constraints,

provided by strong Ising-like interactions. Applying exact diagonalization to ground-state and time-

dependent properties, we study the underlying microscopic model and discuss undesired interaction terms

and other imperfections. As our analysis shows, the proposed scheme allows for the observation in

realistic setups of spontaneous parity- and charge-symmetry breaking, as well as false-vacuum decay.

Besides an implementation aimed at larger ion chains, we also discuss a minimal setting, consisting of

only four ions in a simpler experimental setup, which enables us to probe basic physical phenomena

related to the full many-body problem. The proposal opens a new route for analog quantum simulation of

high-energy and condensed-matter models where gauge symmetries play a prominent role.
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I. INTRODUCTION

At present, trapped ions are one of the physical systems
in quantum-information science with the largest number of
achievements [1,2]. By coupling pseudospins represented
by internal atomic states to collective lattice vibrations,
high-fidelity entangling gates are now routinely performed
in the lab [3–6]. A natural step forward taken in recent
years was to exploit these technological possibilities for
the quantum simulation of spin models [7–9], in both
digital [5,10] and analog [11–18] protocols. The under-
lying idea of such quantum simulations is to take advan-
tage of accurate control of a physical quantum system
and to thus engineer an effective dynamics that mimics a
quantum many-body model of interest [19–24]. First ex-
tensions into the domain of high-energy physics have also
been undertaken, e.g., by simulating the Dirac equation
[25], or with proposals for simulation of coupled quantum
fields [26] or the Majorana equation [27]. However, it
remains an outstanding challenge in this field to extend
these ideas to lattice gauge theories (LGTs), whose many
facets, from static to dynamical properties, present several
technical difficulties for classical computations [28–31]. In
the context of ultracold neutral atoms, several proposals for
the quantum simulation of lattice gauge theories have been
made recently [32–41], but the realization of gauge sym-
metries in alternative atomic or optical systems is currently

unexplored [42]. The aim of this article is to show that the
excellent control of the microscopic dynamics reached
in ion traps may offer interesting perspectives in this
direction. Concretely, we propose—relying on existing
trapped-ion technology—a quantum simulation of the lattice
Schwinger model [44], which is a one-dimensional (1D)
version of quantum electrodynamics.
Currently, quantum simulation of gauge theories is receiv-

ing an increasing degree of interest, as these theories represent
one of themost solid and elegant theoretical frameworks able
to capture a variety of physical phenomena. For example, in
condensed-matter physics, gauge theories play a prominent
role in frustrated spin systems, where the identification of
emergent degrees of freedom in terms of gauge fields has
provided a deeper insight into the physics of quantum-spin
liquids and exotic insulators [45–47]. At a microscopic
level, in the standardmodel of particle physics, gauge theories
provide a natural description of interactions between
fundamental constituents of matter [28–31]. Despite their
apparent simplicity, solving gauge theories is generally chal-
lenging, a long-standing example being the theory of strong
interactions—quantum chromodynamics [28–31]. One of the
main reasons for the difficulties in solving gauge theories is
that they may present nonperturbative effects that are hard to
capture within diagrammatic expansions, preventing the ap-
plication of unbiased analytical approaches to themany-body
problem.
Some of these limitations can be circumvented in the

framework of LGTs [28–31,48]. Here, by means of
Monte Carlo simulation of the corresponding lattice action,
a broad regime of interaction parameters becomes accessible,
thus allowing the investigation of nonperturbative effects
with controlled numerical techniques [31,47]. Nevertheless,
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classical simulations are severely limited by the sign prob-
lem, which prevents an accurate description of finite-density
regimes (as relevant, e.g., for the core of dense neutron stars)
and out-of-equilibrium dynamics (which is realized in
heavy-ion collider experiments). Given these difficulties, it
becomes particularly attractive to develop a quantum simu-
lator of LGTs.

The basic elements of a LGT are (typically fermionic)
matter fields c i occupying lattice sites i, coupled to bo-
sonic degrees of freedom, the gauge fields Uij that live on

the links between neighboring sites [see Fig. 1(a)]. In the
context of a quantum simulator consisting of ultracold
neutral atoms in an optical lattice, the fermionic fields
can be naturally implemented with fermionic atoms. In
contrast, the basic degrees of freedom in a trapped-ion
quantum simulator are spins and bosons, constituted by
internal states and collective ion vibrations, respectively.
To make fermionic matter fields accessible to an ion setup,
we therefore consider one-dimensional ion chains, allow-
ing one to use the Jordan-Wigner transformation to map
fermionic degrees of freedom to pseudospins. Linear
chains have the additional advantage that they are the
natural geometry implemented in linear Paul traps.

Regarding the gauge fields, recent ideas to simulate clas-
sical gauge fields have emerged in the context of trapped ions
[49–51], following the optical-lattice counterpart [52–56].
In that case, the classical field has no dynamics of its own
and may be described by a simple phase picked up during a
tunneling process,Uij ¼ ei�ij , with� 2 R. Here, in contrast,
we are interested in dynamical gauge fields, where Uij be-

comes a quantum field. In the Wilson formulation of LGTs
[48], the Uij are characterized by continuous degrees of

freedom. In a trapped-ion setup with discrete degrees of
freedom, a natural formalism to implement the gauge fields
is provided by the so-called quantum link models (QLMs)

[57–61], which represent a generic class of models that
capture gauge invariance and, at the same time, facilitate
quantum simulations. In this framework,Abelian gauge fields
can be represented by spin-S quantum operators, where the
limit S ! 1 recovers the corresponding continuous-variable
gauge theory, such as quantum electrodynamics or quantum
chromodynamics. For lower spin representations, QLMs re-
tain exactly the featured gauge symmetry and still sharemany
features with the corresponding continuum gauge theories,
such as the physics of confinement, string breaking, or false-
vacuum decay [61]. This last feature is the example that we
will analyze in the present article. The goals of this article are
(i) to propose a realistic architecture, suitable for large ion
chains, to realize such a QLM, and (ii) to illustrate how
minimal instances of LGTs can be accessed even in basic
setups. These points thus track a possible experimental
roadmap, where steps of increasing difficulty demonstrate
significant signatures of many-body physics.
The present article is organized as follows. First, we in-

troduce a QLM version of the Schwinger model (Sec. II),
focusing especially on the spontaneous charge-conjugation
and parity-symmetry breaking encountered in this model.
Then, in Sec. III, we explain how engineered spin-spin inter-
actions can be used to enforce gauge invariance and to con-
struct a microscopic Hamiltonian that—to second-order
perturbation theory—generates the dynamics of the ideal
QLM. In Sec. IV, we show the validity of the effective model
by studying static and dynamic properties of the microscopic
Hamiltonian, using exact diagonalizations of finite chains.
Since experiments will likely start with very few ions, we
present in Sec. V a simpler (although, in contrast to Sec. III,
not scalable to larger chains) implementation with four ions.
We show that this simple system already exhibits features
related to the full many-body problem. In Sec. VI, we outline
a possible experimental sequence and discuss themost promi-
nent error sources. Finally, in Sec. VII, we present our con-
clusions and an outlook on future directions.

II. ONE-DIMENSIONAL U(1) LATTICE GAUGE
THEORIES AS QUANTUM LINK MODELS

In this article, we focus on a conceptually simple instance
of a gauge theory, a one-dimensional U(1) QLM with stag-
gered fermions. This model is chosen as a good compromise
between feasibility and fundamental interest, allowing one to
demonstrate basic phenomena, such as string breaking [62],
shared with other, more complex LGTs [34]. It can be under-
stood as a QLM version of the Schwinger model, which
represents quantum electrodynamics in one dimension. The
Hamiltonian describing the dynamics of this QLM is

~H ¼ � J

2

XNm

i¼1

ðc y
i Ui;iþ1c iþ1 þ H:c:Þ þm

XNm

i¼1

ð�1Þic y
i c i

þ g2

2

XNm

i¼1

ðEi;iþ1Þ2 (1)

FIG. 1. (a) Lattice gauge theory. Fermions with annihilation
operators c i, living on lattice sites i, couple to gauge fields,
represented by the operators Ui;iþ1, living on links i, iþ 1. (b) A
fermion tunnels from site i to i� 1 andflips the gauge field ~Si�1;i on

the link in between. (c) A filled (empty) bullet denotes an occupied
(empty) site, which are mapped by the Jordan-Wigner transforma-
tion to the pseudospin up (down) state. (d) The tunneling process of
panel (b), expressed in spin language.
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¼ ~HJ þ ~Hm þ ~Hg: (2)

The field operators c y
i and c i at the lattice sites i are creation

and annihilation operators, respectively, of ‘‘staggered-
fermion’’ particles. Staggered fermions are characterized by
a mass term ~Hm with alternating sign, and they provide an
elegant way of simultaneously incorporating matter and an-
timatter fields by using a single degree of freedomon bipartite
lattices. Onemaypicture staggered fermions as quarks,where
a fermion on even sites corresponds to a quark (q) and the
absence of a fermion on odd sites to an antiquark ( �q); the
opposite configurations denote the absence of quarks or anti-
quarks. In order to keep the symmetry between matter and
antimatter, the number of lattice sites Nm has to be even.

In Hamiltonian ~H, the term ~Hg describes the energy of the

gauge field, with Ei;iþ1 being an electric-field operator asso-

ciated with the link i, iþ 1. While in theWilson formulation
of LGTs, the link variables Ui;iþ1 are parallel transporters

spanning an infinite-dimensional Hilbert space, in the QLM
formulation theymay be defined as spin operators of arbitrary

representationS, by settingUi;iþ1¼ ~Sþi;iþ1 andEi;iþ1/ ~Szi;iþ1.

This choice of ‘‘quantum links’’ retains the commutation
relations ½Ei;iþ1; Ui;iþ1� ¼ Ui;iþ1 that are required to assure

gauge covariance of the gauge fields. The term ~HJ, finally,
couples the matter and gauge fields via an assisted tunneling
[see Figs. 1(b) and 1(c)] and represents a key ingredient of any
gauge theory in the presence of matter fields [28–31,45].

The most distinctive feature of gauge theories, such as
the QLM of Eq. (1), is the presence of local (gauge)
symmetries.

These symmetries imply that, given a set of local sym-

metry generators f ~Gig, the system Hamiltonian is invariant
under gauge transformations of the form

~H0 ¼ Y
i

expfi�i
~Gig ~H

Y
i

expf�i�i
~Gig; (3)

where f�ig is an arbitrary set of parameters. For the gauge
theory we are interested in, the generators read

~Gi ¼ Ei�1;i � Ei;iþ1 þ c y
i c i þ ð�1Þi � 1

2
; (4)

where the constant term is due to the use of staggered
fermions.

The gauge invariance expressed in Eq. (3) is equivalent

to the condition ½ ~H; ~Gi� ¼ 0 8 i, implying that the

Hamiltonian does not mix eigenstates of ~Gi with different
eigenvalues � ~Gi

. Thus, gauge invariance can be imposed

by restricting the Hilbert space to a sector with fixed � ~Gi
.

In the case of the present U(1) gauge theory, the sector we
are interested in is the one of balanced matter, i.e., equal
number of quarks and antiquarks, and we will restrict our
considerations to this subspace. This subspace is defined
by � ~Gi

¼ 0 8 i; i.e., it consists of all states satisfying the

so-called Gauss law [29,61]

~Gijphysi ¼ 0 8 i: (5)

In the continuum limit, this condition reduces to the usual

Gauss law of quantum electrodynamics, ~r � ~E ¼ �, where
� is the density of charged matter. We call states fulfilling
the Gauss law the ‘‘physical’’ states of our problem. The
challenge for any quantum simulation of a gauge theory is
to engineer the dynamics given by H, which connects only
physical states, while avoiding gauge-variant perturbations

to states jc i with ~Gijc i � 0. (Such perturbations corre-
spond to, e.g., the spontaneous creation of an imbalance
between quarks and antiquarks and are therefore ‘‘unphys-
ical.’’) Before explaining how this challenge can be met in
the trapped-ion chain, we first discuss the basic physics of
the QLM of Eq. (1).

A. Charge-conjugation and parity-symmetry breaking

Despite its simplicity, the model of Eq. (1) captures the
physics of interesting phenomena associated with gauge
theories. When the quantum links are represented by spins
S � 1, the competition between the electric-field term ~Hg

and the mass term ~Hm leads, for J � m, g2, to a crossover

between a ‘‘string’’ state characterized by
Ph~Szi;iþ1i � 0

(for m � g2) and a ‘‘meson’’ state featuring h~Szi;iþ1i ¼ 0

(for m � g2) [34,43].
In the S ¼ 1=2 case that we are going to discuss in the

rest of this article [63], the electric-field term ~Hg is con-

stant, and the system dynamics is described by the com-
petition between the kinetic and the mass term. This
competition leads to the spontaneous breaking of the parity
(P) and charge-conjugation (C) symmetries, defined as

Pc Nm
2 þi

¼ c Nm
2 �i;

Pc y
Nm
2 þi

¼ c y
Nm
2 �i

; (6a)

PUNm
2 þi;Nm2 þiþ1

¼ Uy
Nm
2 �i�1;Nm2 �i

; (6b)

PENm
2 þi;Nm2 þiþ1

¼ ENm
2 �i�1;Nm2 �i; (6c)

Cc i ¼ ð�1Þiþ1c y
iþ1;

Cc y
i ¼ ð�1Þiþ1c iþ1;

(6d)

CUi;iþ1 ¼ Uy
iþ1;iþ2;

CEi;iþ1 ¼ �Eiþ1;iþ2: (6e)

For sufficiently large positive values of m=J, the gauge

fields are polarized,
P

ih~Szi;iþ1i � 0 [Fig. 2(a), right side].

In the corresponding state, the parity and charge-
conjugation symmetries are spontaneously broken. For
large negative values ofm=J, parity and charge conjugation

are restored, yielding
P

ih~Szi;iþ1i ¼ 0 [Fig. 2(a), left side].

To illustrate the physical meaning of this symmetry
breaking, consider the mapping to the associated quark
picture [Fig. 2(b)]. In this picture, C transforms a quark
on site i to an antiquark on site iþ 1, etc. Now, for a
pictorial visualization, consider a simplified scenario
where J ¼ 0, under periodic boundary conditions (for a
discussion of various boundary conditions, see Ref. [34]).
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In that picture, at large negativem the ground state consists
of alternating sources and drains of flux and preserves C
and P. The ground state at large positive m, however,
displays a gauge-field string that threads across the system.
This state is doubly degenerate, corresponding to the two
polarization directions, and it breaks C and P.

The transition from the former to the latter scenario is
known as false-vacuum decay. In a system with open
boundary conditions, this decay leads to the formation of
meson bound states at the boundaries. In the fermionic
picture, these states are represented by a quark-antiquark
pair in the first two and last two sites. These meson bound
states are connected by a polarized bulk with a string of
spins oriented along one direction. Since the true vacuum
has, on average, a vanishing electric flux, the C and P
breaking string for m=J ! 1 corresponds to a false
vacuum. The transition between these two situations in a
trapped-ion setup will be the main focus of this article.
Notably, the phase diagram of the model Hamiltonian (1) is
only qualitatively known, and it is the subject of ongoing
research [64]; its experimental implementation would con-
stitute a relevant instance of a quantum simulation, espe-
cially when considering dynamics, such as that associated
with the false-vacuum decay and string breaking [62].

B. Mapping to a spin model

To make the QLM of Eq. (1) accessible to a trapped-ion
setup, we first map the fermionic fields to spin-1=2 degrees
of freedom, using a Jordan-Wigner transformation,

c y
i ¼ e

i�
P
k<i

ð~�z
k
þ1Þ=2

~�þ
i ;

c i ¼ e
�i�

P
k<i

ð~�z
k
þ1Þ=2

~��
i ;

c y
i c i ¼ ~�z

i þ 1

2
:

(7)

Then, the Hamiltonian that we aim to simulate reads

~HQLM ¼ � J

2

X
i

ð~�þ
i
~Sþi;iþ1 ~�

�
iþ1 þ H:c:Þ þm

2

X
i

ð�1Þi ~�z
i :

(8)

Here, both types of spin operators denote the usual Pauli
matrices, with ~�i associated with the matter fields and
~Si;iþ1 associated with the link operators. Translated to spin

language, the tunneling process J sketched in Fig. 1(b)
becomes an assisted flip-flop process [Fig. 1(d)]. This pro-
cess is similar to a ferromagnetic XY interaction, but it is

FIG. 2. Ground states of the QLM in several equivalent representations, for m=J ! �1 (left) and m=J ! þ1 (right; only one
of two degenerate solutions is drawn). Sketches are for vanishing quantum fluctuations (J ¼ 0þ), periodic boundary conditions,
and gauge fields represented by spins 1=2. (a) Staggered-fermion QLM. Physical states are invariant under gauge transformations
with generators ~Gi, which span one matter and two gauge fields. (b) Associated quark picture. Fermions on even sites correspond
to quarks (q, light green) and vacancies on odd sites to antiquarks ( �q, dark red); the opposite configurations denote the absence of
(anti)quarks. For m=J ! �1, alternating sources and drains of flux completely cover the chain, and the ground state is charge
and parity invariant. For m=J ! þ1, the system is empty of matter and has an unbroken flux string, breaking C and P symmetry.
In this case, the Gauss law (4) requires the same orientation for all gauge fields, allowing a double energy degeneracy,
corresponding to the two directions of electric flux (only one of which is visualized here). (c) Equivalent spin model ~HQLM.

Fermions are mapped to spins via the Jordan-Wigner transformation. For S ¼ 1=2 quantum links, right- (left-) flowing flux
translates to an up (down) gauge-field spin. (d) Rotated spin model HQLM for experimental implementation. At m=J ! �1, the

order parameters are characterized by
P

ihSzi;iþ1i ¼ �1 and
P

ih�z
i i ¼ 1. In the C- and P-breaking state at m=J ! �1, they take

the values
P

ihSzi;iþ1i ¼ 0 and
P

ih�z
i i ¼ �1.
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accompanied by a flip of the additional spin degree of

freedom, ~S. The second part in ~HQLM is simply a staggered,

transverse magnetic field. The QLM model is now ex-
pressed purely by spin operators, which can be represented
in the ions by pseudospins consisting of two internal states.
In the implementation discussed below, the two types of
spins are distinguished by choosing different internal levels
to represent � and S spins, respectively.

The gauge-invariant subspace that we are interested in
fulfills the following constraint given by the spin version of
the Gauss law (4) and (5),

~Gijc i ¼ 0; ~Gi ¼ 1

2
½~Szi�1;i � ~Szi;iþ1 þ ~�z

i þ ð�1Þi�:
(9)

Here, we represent the electric-field operator by the Pauli z

matrix ~Szi;iþ1, Ei;iþ1 � ~Szi;iþ1=2. The product states at

m=J ¼ �1 in this spin picture are sketched in Fig. 2(c).
In the microscopic model, where gauge invariance is not

built in a priori, we will enforce gauge invariance by
adding the term

~HG ¼ 2V
X
i

ð ~GiÞ2 (10)

¼ V
X
i

½~�z
i
~Szi�1;i � ~�z

i
~Szi;iþ1 � ~Szi�1;i

~Szi;iþ1

þ ð�1Þið~�z
i þ ~Szi�1;i � ~Szi;iþ1Þ þ 2�: (11)

For V � jJj, jmj, this energetically suppresses unphysical,
gauge-variant transitions to states with ~Gijc i � 0.

In one dimension, we can remove the various alternating
signs by the basis transformation (corresponding to a stag-
gered rotation about the x axis)

~�z
i ! ð�1Þi�z

i ; ~�y
i ! ð�1Þi�y

i ; (12a)

~Szi�1;i ! ð�1ÞiSzi�1;i;
~Syi�1;i ! ð�1ÞiSyi�1;i; (12b)

while the x components remain unchanged. The product
states at m=J ¼ �1 are then rotated as sketched in
Fig. 2(d). In this basis, the model Hamiltonian becomes

HQLM ¼ � J

2

X
i

ð��
i S

þ
i;iþ1�

�
iþ1 þ H:c:Þ þm

2

X
i

�z
i

� HJ þHm; (13)

and the Gauss law reads

Gic ¼ 0; Gi ¼ ð�1Þi 1
2
ðSzi�1;i þ Szi;iþ1 þ �z

i þ 1Þ:
(14)

Therefore, the energetic restriction to the physical sub-
space is achieved by the Hamiltonian

HG ¼ V
X
i

ð�z
iS

z
i�1;i þ �z

iS
z
i;iþ1 þ Szi�1;iS

z
i;iþ1 þ �z

i

þ Szi�1;i þ Szi;iþ1 þ 2Þ: (15)

In view of the experimental implementation, the basis
transformation (12) constitutes a major simplification, as
it replaces interactions with alternating sign with uniform
ones. As it becomes apparent in the first three terms ofHG,
the way gauge invariance is recovered in this spin basis is
reminiscent of the basic frustration induced by Ising inter-
actions in triangular (ladder) geometries at fixed magneti-
zation [65]. The gauge-invariant subspace can therefore be
seen as the ground-state manifold of an associated frus-
trated Ising model with a longitudinal field. Out of this
manifold (degenerate with respect to HG), the dynamics
generated by HJ and Hm selects one state as the ground
state of the QLM.

III. MICROSCOPIC MODEL

In this section, we discuss how HQLM and HG can be

engineered in a trapped-ion experiment by employing ef-
fective spin-spin interactions [66–68] mediated by the ion
vibrations. Our system consists of a linear chain of ions,
oriented along the z direction. For simplicity, we assume
equal spacings between ions, as can be achieved around the
center of a long ion chain or by employing individual
microtraps [69,70] (see Sec. VIB for the consequences
of relaxing this conditions). As we will see later, to create
the desired couplings HG with correct weights, we need to
distinguish the� spins from theS spins. This distinction can
be made by encoding the two types of fields in pseudospins
with different resonance frequencies [Fig. 3(a)].
Next, we describe how to engineer HG, as this will

enforce gauge invariance. The associated high-energy
scale will also be used to implement perturbatively the
effective spin coupling 	J characteristic of HQLM. A dis-

cussion of possible experimental errors will be given in
Sec. VI B.

A. Effective spin-spin interactions

Engineering HG in an ion setup requires the realization
of single-spin operators proportional to �z

i and of spin-spin
interactions of zz type. The implementation of�z

i operators
is straightforward, e.g., by state-selective ac-Stark shifts
due to off-resonant Raman transitions. The zz interactions
can be engineered by a variety of schemes, e.g., by laser
addressing of optical quadrupole qubits [4,68] or by driv-
ing rf transitions in ions in spatially varying magnetic fields
[6,71]. The currently best-established technique for engi-
neering zz interactions [11,17] encodes the pseudospins in
two hyperfine states and uses Raman lasers in ‘‘moving-
standing-wave’’ configurations to generate interactions be-
tween the spins with the help of state-dependent ac-Stark
shifts [66,67]. Here, we describe the main steps for obtain-
ing effective spin-spin interactions with the last technique.
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As sketched in Fig. 3(b), in this scheme, two lasers with
optical frequencies !1 and !2 are far off resonant with
respect to a dipole-allowed transition to an auxiliary ex-
cited state jei. To avoid spurious population of jei, the
detuning � is much larger than the spontaneous decay rate
of the excited state and the Rabi frequencies �

�
i , where

i ¼ 1, 2 numbers the laser beam and � ¼# , " denotes the
internal state which is acted on. Under these conditions,
one can eliminate the excited state, thus obtaining an
effective Hamiltonian involving only the pseudospin states
and collective vibrational modes.

The resulting atom–light interaction can be written as an
effective Hamiltonian for the pseudospins [66,67,72],

Hd ¼
XN
n¼1

szn
@�n

2
eikL�rn�i!Lt þ H:c: (16)

Here, N is the number of ions, and the pseudospins are
represented by operators sn, which denote � or S spins,
depending on whether the nth ion encodes a matter field or
a gauge field. Further, �rn is the displacement of ion n
from its equilibrium position; kL ¼ k1 � k2 is the differ-
ence of the laser wave vectors; !L ¼ !1 �!2 is the
difference of the laser frequencies; and �n ¼ ð�1;#�?

2;# �
�1;"�?

2;"Þn=ð2�Þ is the two-photon differential Rabi

frequency. Here, we assume that the pseudospin energy
splitting !� is � j�j (� ¼ �, S), meaning that the detun-
ing to the excited level is approximately equal for the upper
and the lower level. Additionally, in writing Eq. (16), we
exploited the fact that unwanted transitions between the
pseudospin levels are avoided as long as the condition
!L � !� is ensured.

For concreteness, we consider the situation where the
pseudospin is coupled to the radial phonon modes in the x
direction. To enable this coupling, the laser beat note !L

has to be tuned close to the corresponding phonon frequen-
cies !q

x . In a linear chain of ions in a Paul trap, the radial
modes are ‘‘stiff,’’ meaning that the energy scale associated
with a local ion vibration (given by the transverse trapping
potential) outweighs the coupling of vibrations via the
Coulomb repulsion, i.e., �x � e2=ðM!2

xd
3
0Þ � 1, where

M is the ion mass, !x the trap frequency in the x direction,
and d0 the inter-ion distance. In such a situation, the radial
phonon modes are only slightly dispersed, and we can
approximate !q

x 
 !x. Thus, the lasers couple the internal
states almost equally to all modes. The condition of
tuning close to the phonon frequencies then becomes
!L ¼ !x � �x, with �x � !x, as sketched in Fig. 3(b).
Additionally, to address the vibrational modes in the x

direction, the difference of the laser wave vectors kL has to
point along the x axis. Then, we can use the corresponding
phonon operators to write

kL � �rn ¼
XN
q¼1

	nqa
y
q þ H:c: (17)

Here, 	nq ¼ MnqkL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M!q

x=@
p

is the Lamb-Dicke pa-

rameter, with kL ¼ jkLj. The matrices Mnq, obtained by

diagonalizing the elasticity matrix of the ion crystal, trans-
form the localized vibrations of the nth ion into normal

modes, with the creation operator ayq .
Typically,	nq � 1, so we can expand the exponential in

Eq. (16) up to first order. Then, including the eigenenergies
of the collective vibrational modes, we obtain a spin-
phonon Hamiltonian of the form [67,72]

FIG. 3. Proposed experimental scheme. (a) Two kinds of pseudospins encode matter and gauge fields in an alternating fashion, with
associated spin matrices �i and Si;iþ1. The corresponding internal states are labeled as j #i�, j "i� and j #iS, j "iS, respectively. (b) and
(c) Spin interactions of zz type are transmitted by coupling the pseudospin levels (sketched for a single ion) to phonons. (b) For
hyperfine qubits, one can engineer these couplings via a differential light shift induced by two pairs of Raman beams (with Rabi
frequencies�";#

1;2 and detuning j�j � !�; here !� is the qubit energy difference, with � ¼ �, S). The Raman transition is detuned by

�x from the phonon frequency !x. jni denotes the phonon-number Fock state. (c) For optical qubits, one can use two beams with Rabi
frequencies �1 ¼ �2 ¼ �0 that are tuned (with a small detuning �x) close to half the phonon frequency !x.
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Hsp ¼
XN
q¼1

@�q
xa

y
qaq þ i

XN
n¼1

szn
@�n

2

XN
q¼1

	nqa
y
q þ H:c:

(18)

Here, we transformed the equation into an interaction
picture with respect to the laser beat note !L, in which
the eigenfrequencies of the phonon operators are shifted to
�q
x � !q

x �!L. Moreover, we employed a rotating-wave
approximation, neglecting terms rotating at frequencies
!q

x þ!L, which is valid for �n � !L. Since !L 
 !x,
for realistic trap frequencies lying in the range !x ¼
1–10 MHz, it suffices to consider �n ¼ 0:1–1 MHz.

For pseudospins encoded in an optical quadrupole tran-
sition, one can derive an effective Hamiltonian equivalent
to Eq. (18) by using two laser beams, one tuned close to the
middle between the carrier and red sideband and the
other between the carrier and blue sideband, as depicted
in Fig. 3(c). If these beams have the same Rabi frequency
�0

n, one obtains the spin-phonon coupling as in
Hamiltonian (18), with �n ¼ 2j�0

nj2=!x [68]. As a major
advantage of this scheme, the two beams copropagate so that
kL is directly the laser wave number instead of the difference
between two beams, allowing larger coupling strengths.

In Hamiltonian (18), the local spin degree of freedom
couples to delocalized phonon modes, which perturba-
tively transmit the desired interaction between different
spins. To see this, it is useful to separate spins and phonons
by the canonical transformation H ! eSHe�S , with

S ¼ i
X
n

szn
�n

2

X
q

	nq

�q
x
ayq � H:c: (19)

In addition to linear terms / �z
i , this transformations gives

the effective spin-spin interaction [66,67,72,73]

HV ¼ X
m;n

Vmns
z
ms

z
n; (20)

where the sum is taken over all pairs of ions, and where the
interaction strength is

Vmn ¼ �X
q

Reð�?
m�nÞ@2k2L
8M

MnqMmq

!q
x�

q
x

: (21)

For the moment, we assume that Eq. (20) is exact. We will
address the errors arising in its derivation in Sec. VI B.

B. Engineering the Gauss law

When constructing HG via the spin-spin interactions
(20), we have to consider an additional subtlety: The
distance dðSi�1;i; Si;iþ1Þ is twice as large as dðSi�1;i; �iÞ
or dð�i; Si;iþ1Þ, but, for �x � 1, Vmn approximately de-

cays as a dipolar power law with distance between ions m
and n. Therefore, to obtain HG with equal couplings, as
given in Eq. (15), we need to strengthen the Szi�1;iS

z
i;iþ1

interactions with respect to the terms �z
iS

z
i�1;i and �

z
iS

z
i;iþ1.

Since � and S spins have different resonance frequencies,
one can achieve different coupling strengths via global
laser beams, where the beam that is close to resonance
for the S-spin transition has a larger intensity than the one
for the �-spin transition. This possibility of strengthening
the interaction Szi�1;iS

z
i;iþ1 is the main reason why one needs

two different types of pseudospins. Using�n¼�� if n is a
� spin and j�nj ¼ j�Sj ¼ 8j��j if n denotes an S spin, we
obtain the Hamiltonian

HV¼V

�X
i;j

1

D�S
ij

�z
iS

z
j;jþ1þ

X
i<j

1

Dij

�
Szi;iþ1S

z
j;jþ1þ

1

26
�z

i�
z
j

��
;

(22)

with the interaction energy scale

V ¼ @
Reð�?

S��Þ	2
x

8�2
x

�x!x; (23)

where 	x � kL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M!x=@

p
. In Eq. (22),Dij ¼ ji� jj3 and

D�S
ij ¼ ½2ji� jj þ sgnði� jÞ�3 encode the dipolar distance

dependence, where we defined sgnðXÞ ¼ þ1 if X � 0 and
sgnðXÞ ¼ �1 otherwise. Because of the choice of j�Sj ¼
8j��j, the interactions for the pairs �z

iS
z
i�1;i, �

z
iS

z
i;iþ1,

and Szi�1;iS
z
i;iþ1, required for HG, have equal strengths,

Di�1;i ¼ D�S
i;iþ1 ¼ D�S

i;i�1 ¼ 1.

Collecting the largest contributions �z
iS

z
i;iþ1, �

z
iS

z
i�1;i,

and Szi�1;iS
z
i;iþ1, and adding suitable single-spin operators

V
P

ið�z
i þ 2Szi;iþ1Þ, we obtain HG, given by Eq. (15), as

desired [74]. If V is stronger than all other energy scales,
the system is now energetically constrained to stay in the
gauge-invariant subspace.
As an undesired by-product, Eq. (22) leaves us with the

interactions

Herr
V ¼ V

X
i

� X
j�i;i�1

1

D�S
ij

�z
iS

z
j;jþ1 þ

X
i<j�1

1

Dij

Szi;iþ1S
z
j;jþ1

þX
i<j

1

Dij

1

26
�z

i�
z
j

�
: (24)

We identify three types of (gauge-invariant) imperfections,
all of which follow dipolar power laws, but with different
strengths because j�Sj � j��j: (i) an interaction between
matter and gauge fields, with the strongest contribution
having the weight V=27; (ii) an interaction among matter
fields, with the strongest contribution being V=64; and
(iii) an interaction among gauge fields, with the strongest
contribution being V=8. These interactions are much
smaller than V. They can be treated as small perturbations,
as long as they decay sufficiently fast to be irrelevant in the
renormalization-group sense, as is the case for dipolar
interactions in 1D [75,76]. An improved suppression of
undesired longer-range interactions may be achievable by a
suitable choice of detunings and trapping frequencies [66].
Alternatively, but more demanding, one could engineer
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the spin-phonon couplings with a larger number of laser
frequencies, which allows one to generate only the desired
interaction pattern [77].

In Sec. IV, we will address the quantitative effects of the
gauge-invariant contributions given by Herr

V . Before that,
we will show how one can generate the desired dynamics
HQLM within a perturbative framework, provided the sys-

tem dynamics is energetically constrained onto the gauge-
invariant subspace by means of a strong HG.

C. Engineering the system dynamics

The desired dynamics of the QLM given by Eq. (13)
consists of the mass term Hm and the matter-field–gauge-
field interaction HJ. The single-particle terms generating
Hm are simple to implement, e.g., via laser-induced ac-
Stark shifts. On the other hand, the three-body terms
appearing in HJ present a major challenge, as they are
usually not generated as direct interaction processes.
Nevertheless, taking advantage of the large energy scale
V imposing gauge symmetry, they can be obtained in
second-order perturbation theory.

Our starting point is conventional two- and one-body
terms,

H1 ¼ HK þHB ¼ X
i<j

Kij�
x
i �

x
j þ

X
i

BSxi;iþ1; (25)

where we consider the regime jKijj, jBj � V. The single-

spin terms of HB can be created in a straightforward way
by radio-frequency or Raman beams driving the internal
transition. The term HK can be implemented as Mølmer-
Sørensen–type interactions [78]. Such interactions are gen-
erated by two lasers with equal Rabi frequencies��;xx and

with optical frequencies !� � ��. Here, !� is the energy
difference of the �-pseudospin levels, and the detuning ��

lies close to vibrational frequencies !q. Because of the

different energy splittings of the� and S qubits, these lasers
do not couple to the S spins. The resulting spin-spin inter-
actions act only among � spins, with strength [12–16]

Kij ¼ �X
q

j��;xxj2	iq	jq@!q

�2
� �!2

q

: (26)

To avoid cross terms of the type�x
i �

z
j, it is convenient if the

phonon modes addressed here are different from those used
for the zz couplings, for example, by choosing vibrations in
a different direction. Alternatively, such cross terms will be
energetically suppressed by the Gauss law.

Taking H1 as a perturbation to HG, we can obtain an
effective Hamiltonian for the low-energy sector of HG,
given by Ec � hc jHGjc i ¼ 0. This sector is equivalent

to the gauge-invariant subspace defined byGijc i ¼ 08 i.
In second-order perturbation theory, we obtain the effec-
tive interaction in the gauge-invariant subspace

HJ ¼ � J

2

X
i

ð��
i S

þ
i;iþ1�

�
iþ1 þ H:c:Þ; (27)

where we defined J � KB
V , assuming a homogeneous

Ki;iþ1 ¼ K. Similar hopping terms, realized within four

hyperfine states of a single ion and for a single-mode
coupling, have been envisioned in Ref. [26]. Notably,
Eq. (27) is a nearest-neighbor Hamiltonian; longer-range
interactions and terms such as�þ

i S
þ
i;iþ1�

þ
iþ1 are suppressed

by the energy penalty HG [79].
Summarizing, the microscopic model reads

Hmicro ¼ HK þHB þHm þHG þHerr
V

¼ X
i<j

Kij�
x
i �

x
j þ

X
i

BSxi;iþ1 þ
m

2

X
i

�z
i

þ 2V
X
i

ðGiÞ2 þHerr
V : (28)

Here, Gi is given by Eq. (14) and Herr
V by Eq. (24). The

spin-phonon couplings required to generateHG andHK are
summarized in Fig. 4.
In the limit jKj, jBj � V, the dynamics of Hmicro is

confined to the gauge-invariant subspace and effectively
reduces to HQLM þHG, plus the undesired dipolar zz
interactions Herr

V . The accuracy of the quantum simulation
will, therefore, be dominated by two error sources. On the
one hand, for the desired dynamicsHQLM to dominate over

Herr
V , one needs jmj, jJj * V=8. On the other hand, one

requires jJj � V in order to neglect contributions to the

FIG. 4. Schematic-level diagram of a single ion summarizing
the applied spin-phonon couplings (sketched for optical quadru-
pole qubits as in 40Caþ). The processes in Figs. 3(b) and 3(c)
couple �z

i and Szi;iþ1 to radial phonon modes. The correct weight

of zz interactions for the Gauss law requires effective coupling
strengths j�Sj ¼ 8j��j. The xx interactions in HK may be
generated by Mølmer-Sørensen–type couplings of strength
��;xx. Coupling to undesired internal levels is avoided by

selection rules and Zeeman splittings �EZee;D=S. Whether the

ion represents an S or a � spin is determined by its initialization
in the state j #iS or j #i�.
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effective Hamiltonian (27) arising in higher orders of
J=V ¼ KB=V2. Such contributions can modify the system
dynamics and compromise gauge invariance. We will show
next that the parameter window left open by these two error
sources allows us to retain approximate gauge invariance
while, at the same time, observing the correct dynamics.

IV. NUMERICAL ANALYSIS

As explained in the previous section, at small J=V the
microscopic modelHmicro, Eq. (28), reproduces the physics
of the lattice gauge theory HQLM, Eq. (13). In this section,

we test these perturbation-theoretical considerations via
exact diagonalizations of finite chains. We consider six
matter-field spins plus six gauge-field spins, under periodic
boundary conditions to avoid boundary effects (see
Sec. VI B for a discussion of possible effects of nonhomo-
geneous ion distances and open boundary conditions). For
simplicity, we set B ¼ K, and we assume a dipolar decay
of the interactions in HV and HK. In particular, we study
the influence of these error terms on the system when
changing the sign of m (with J > 0). Below, we first
consider ground-state properties. Afterwards, we estimate
the optimal parameter values to see the false-vacuum decay
in an adiabatic sweep from the C- and P-invariant to the
C- and P-breaking situation.

A. Ground state of the microscopic model

The degree of gauge invariance achieved by the micro-
scopic model is measured by violations to the Gauss
law (14), which can be quantified by �G2 � P

ihG2
i i=Nm

[Figs. 5(a) and 5(b)]. As expected, when KB=V2 is not a
small energy scale, second-order perturbation theory
breaks down, and HG is no longer efficient in energetically
suppressing gauge-variant terms. The onset of this effect
is linear in J=V and quadratic when expressed in K=V, as
expected from second-order perturbation theory. Up to the
range of J=V 
 0:3, however, the system remains approxi-
mately gauge invariant.

As J=V is increased, because of the presence of HB

the gauge fields acquire a finite polarization �Sx �P
ihSxi;iþ1i=Nm [Fig. 5(c)]. Simultaneously, because of HK

the matter fields display an antiferromagnetic ordering in
the x direction. Neither effect is foreseen in the ideal model
(13). These effects are more pronounced close to m ¼ 0,
which corresponds to a potential critical region in the QLM.

A quantitative indicator for deviations resulting from
these perturbations is provided by the overlap of the exact
microscopic ground state to the ideal one [Fig. 5(d)]. In
general, this overlap is a very strict measure, and we can
understand it as a loose lower bound to the quality of the
ground state. As expected from the analysis of �Sx and the
gauge invariance, it decreases at large J=V and in a
relatively broad region around m ¼ 0. Additionally, the
overlap is strongly suppressed at small J=V because of

the undesired dipolar terms Herr
V . These terms form a

relevant contribution when J=V & 1=8 or jmj=V & 1=8.
Being gauge invariant, they do not affect the Gauss law, but
they do change the dynamics of the system.
To analyze howmuch these deviations affect the ground-

state phase diagram, we now study the order parameters
�Sz � P

ihSzi;iþ1i=Nm [Figs. 6(a) and 6(b)] and ��z �P
ih�z

i i=Nm [Fig. 6(c)]. As discussed in Fig. 2(d), atm=J ¼
�1, we expect ��z ¼ 1 and �Sz ¼ �1 for the ideal model.
At m=J ¼ 1, we expect ��z ¼ �1 and �Sz ¼ 0. The last
value is realized by a superposition of the two parity-
breaking states with fluxes in the negative and positive
directions [see Fig. 2(a)], i.e., by the two antiferromagnetic
configurations of Szi;iþ1 that are shifted by one lattice

spacing. The expected behavior at large jmj is indeed
what is observed in the microscopic model.
Deviating from the QLM, around m ¼ 0, we find the

precursor of a plateau where the order parameters remain
constant at �Sz 
 ��z 
 �1=3 over an entire range of m=J.
This plateau becomes more pronounced at smaller J=V
(for the curve at J=V ¼ 0:125, it stretches beyond the
plotted range). As a result, the corresponding curves
change the sign of their curvature twice. Since peaks in
@ ��z=@ðm=JÞ or @ �Sz=@ðm=JÞ are good indicators for quan-
tum phase transitions in the thermodynamic limit, this
suggests two distinct transition points in the microscopic
model. This is in contrast to the ideal QLM, where we
expect only a single quantum phase transition [64].

FIG. 5. Validity of the microscopic model. (a) and (b) Gauge
invariance, quantified by �G2 � P

iG
2
i =Nm, is only violated sub-

stantially when V=J is not a strong energy scale. (c) At large
J=V ¼ KB=V2, the gauge fields acquire a finite �Sx �P

iS
x
i;iþ1=Nm. The detrimental effects encountered in panels

(a)–(c) are enhanced around m ¼ 0, i.e., close to the quantum
phase transition of the QLM. Curves in panels (a) and (c) are for
m=J � 0, as given in the figures. The behavior for m=J < 0 is
very similar. (d) The overlap F ¼ hc ðm; J; VÞjc idealðm; JÞi be-
tween the ground states of the microscopic model and the ideal
QLM, Eq. (13), is largest at intermediate J=V and increases with
increasing jm=Jj.
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The assumption of two transitions is confirmed by the
fidelity susceptibility, which is a reliable tool to detect
conventional quantum phase transitions [80,81]. It is de-
fined as


ðm; JÞ ¼ lim
�m!0

� logjhc ðm; JÞjc ðmþ �m; JÞij2
�m2

; (29)

where jc ðm; JÞi is the ground state of the microscopic
model at fixed m and J. In analogy to other, long-
established susceptibilities, the fidelity susceptibility mea-
sures the response of the ground state towards an external
perturbation, in this case, a change of the Hamiltonian.
Close to a quantum critical point, the wave function
changes its behavior drastically, yielding peaks in

ðm; JÞ. For the microscopic model, we find two such
peaks [see Fig. 6(d)]. As can be expected, at the position
of these peaks, the Gauss law is more strongly violated [see
Fig. 5(b)].

The presence of two peaks in the fidelity susceptibility
indicates the appearance of an intermediate phase around
m ¼ 0, which is absent in the ideal QLM. In this central
region, the physics of the microscopic model is governed
by a complex interplay between Hm and Herr

V — while the
mass termHm favors the states sketched in Fig. 2(d), with a
finite z polarization of the matter fields, the frustration
arising from Herr

V tends to suppress such polarizations.
Because of this interplay, transitions away from this region
occur roughly when Hm dominates over Herr

V , i.e., when
jmj=V * 1=8 or, equivalently, jmj=J * V=ð8JÞ. For this

reason, the extent of the intermediate region increases at
smaller J=V. However, because of the dipolar nature of
Herr

V , this region underlies appreciable finite-size effects at
the considered system sizes. Additionally, it presents a
considerable asymmetry upon m ! �m. This asymmetry
derives from the �z

iS
z
i;iþ1 interactions, which favor the

state achieved at m=J ! �1 over the one reached at
m=J ! þ1.
To summarize this analysis, while there seems to be a

novel phase because of Herr
V in the region around m ¼ 0,

the transition from a parity-conserving state to a parity-
broken state can be clearly observed in the microscopic
model, even at small chain lengths. Further, by restricting
oneself to the regime of J=V 
 0:2, one can realize a
situation where J dominates over the error terms Herr

V —
and thus induces the desired dynamics—while retaining
approximate gauge invariance.

B. Sweep across the transition

We now want to check the possibility of observing the
false-vacuumdecay and the associated spontaneousC and P
breaking in experiments along the lines of Refs. [11,13–16].
For this end, we consider an adiabatic sweep from the
C- and P-invariant region to the C- and P-broken region.
We keep V and J positive and constant and apply a linear
quench of the mass term, mðtÞ ¼ minit þ t�m=�t, with
minit � mðt ¼ 0Þ< 0. We finish the sweep at mfin �
mðtfinÞ ¼ �minit. The duration of the quench, tfin, depends
on the quench range and speed. In our analysis, we consider
a system of four matter-field spins plus four gauge-field
spins for similar parameters as in the preceding section.
As a strict measure for how well this sweep reproduces

the false-vacuum decay, we study the quench fidelity. It is
defined as the overlap of the microscopic state after
the sweep, c fin, with the ground state of the ideal QLM
at the final parameter values, c idealðmfin=JÞ, i.e., Fqu �
jhc finjc idealðmfin=JÞij2. As seen in Fig. 7(a), with increas-
ing J=V, the errors committed in the perturbative treatment
of Sec. III C reduce Fqu. More drastic, however, is the

effect of the dipolar error terms Herr
V : In order to start and

finish in the correct states of Fig. 2(d), we require
jminit=Jj � V=ð8JÞ. Otherwise, the sweep happens within
the central phase, which is not present in the ideal QLM,
and the overlap with the ideal final state vanishes.
Furthermore, as usual, a small �m=�t is desirable to

assure the adiabaticity of the process. The parameter region
that is most relevant for our purposes, 1=8 & J=V � 1, is
especially sensitive to a change of sweep speeds. For a
good fidelity, one will thus want to choose not only a large
jminit=Jj but also a small �m=�t, both of which increase
the total quench time tfin. In experiment, where available
time scales are restricted (e.g., by the lifetime of the upper
pseudospin level and spontaneous Raman scattering from
the optical beams [82]), one will therefore have to find a
compromise.

FIG. 6. Ground-state behavior of the microscopic model. (a)–
(c) Similar to the ideal QLM, the system reaches �Sz 
 �1 and
��z 
 1 form=J!�1, and �Sz 
 0 and ��z 
 �1 form=J ! 1.
This denotes a transition from a parity- and charge-symmetric
state to a parity- and charge-symmetry breaking state. Curves from
lighter to darker and shorter to longer dashes: J=V ¼ 0:125, 0.25,
0.275. Solid line: Ideal QLM. The curves change their sign of
curvature twice, indicating two phase transitions. (d) Similarly,
the fidelity susceptibility 
ðm; JÞ has two peaks, suggesting two
phase transitions. This behavior is in contrast to the ideal model,
where 
ðm; JÞ has a single peak at m ¼ 0.
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In contrast to the quench fidelity, the gauge invariance is
not decreased by a possible nonadiabaticity of the sweep.
Instead, it remains on the level of the ground-state values at
minit=J, as can be appreciated by comparing Fig. 7(b) to
Fig. 5(a). For this reason, a large jðm=JÞinitj appears to be
more important than a small �m=�t.

For the parameter regimes where the quench fidelity is
large, the order parameters �Sz [Fig. 7(c)] and ��z [Fig. 7(d)]
reach the final value expected for the C- and P-breaking
state (0 and �1, respectively). For J=V & 0:05, however,
the quench happens entirely in the central region, and �Sz

and ��z practically remain at their initial values; for a
system of four matter-field spins and four gauge-field
spins, these are �Sz ¼ �0:5 and ��z ¼ 0. In the range
0:05 & J=V & 0:1, the quench still ends in the central
region, but now it starts close to the C- and P-retaining
state sketched in Fig. 2(d), left side, where �Sz ¼ �1 and
��z ¼ 1. The starting values of the order parameters now lie
farther away from the ones of the C- and P-breaking state.
Therefore, in the parameter region of 0:05 & J=V & 0:1,
the final values of the order parameters actually seemworse
than for J=V & 0:05. Onlywhen the sweep starts in aC- and
P-retaining state and ends in the C- and P-breaking region
(or vice versa) do we obtain the expected final values of
the order parameters �Sz and ��z. Depending on jðm=JÞinitj,
this result is achieved for J=V * 0:2.

Besides this overall behavior, all considered quantities
display some oscillations as a function of J=V. These
derive from oscillations during the time evolution, the

frequency of which changes as a function of the coupling
parameters J=V. Since we take a snapshot at the fixed time
tfin, these oscillations are imprinted on the final state.
To summarize this part, the fidelity of the process can

reach large values of approximately 90% while retaining
approximate gauge invariance. A reasonable choice of pa-
rameters could be minit=J ¼ �4 and �m=�t ¼ 0:2V2=@.
For a realistic value of V=@ ¼ 2�1 kHz [8,17] (see
Sec. VI B), this choice corresponds to a sweep time of tfin ¼
40@=V ¼ 6:5 ms. This is a reasonable value compared to
experimental time scales. The latter are limited by dephas-
ing times, which typically lie in the range 5–10 ms and can
reach up to 100 ms [17]. The quality of the final state could
be further increased by optimizing the quench protocol,
for example, by choosing faster sweep velocities in regions
where the gap to the first excited state is large [83].

V. MINIMAL IMPLEMENTATION
USING FOUR IONS

Up to now, we have considered an implementation of
the QLM (13) that is suitable also for large ion chains.
However, current experiments are typically restricted to a
few ions. In the following, we discuss a minimal experi-
ment that can be realized with four ions and by only
addressing axial modes, but which already contains the
physics of false-vacuum decay explained above. We focus
on the unrotated QLM (8) with S ¼ 1=2 and two sites plus
two links, under periodic boundary conditions. This system
is sketched in Fig. 8.

A. Possible implementation

The implementation of this two-site QLM is straightfor-
ward: To induce the interactions for ~HG, we exploit the fact

FIG. 7. Final state after a linear sweep,mðtÞ ¼ minit þ t�m=�t,
with mfin ¼ �minit and fixed V and J. Solid lines from lighter to
darker shades [bottom to top in panel (a)]:minit=J ¼ �2,�3,�4
for �m=�t ¼ 0:2V2=@. Short (long) dashed lines: minit=J ¼ �3
and �m=�t ¼ 0:4ð0:1ÞV2=@. The arrows show how the precision
of the quench increases for larger minit and smaller quench
velocities �m=�t. The total times considered range from
tfin ¼ 15@=V (for minit=J ¼ �3, �m=�t ¼ 0:4V2=@) to 60@=V
(minit=J ¼ �3,�m=�t ¼ 0:1). ForV=@ ¼ 2�1 kHz [8,17], these
correspond to 3.2–9.5 ms. (a)–(d) For a value of J=V 
 0:15–0:2,
the final, C- and P-breaking state is reached with (a) high fidelity,
(b) small gauge variance, and the desired behavior for (c) the
gauge field and (d) the matter field.

FIG. 8. Setup for the minimal implementation using four ions.
Spin-spin interactions are created by pairs of Raman beams, as
explained in Fig. 3, with strengths �S ¼ 2��. By tuning close
to the vibrational mode q0 characterized by amplitudes Mnq0 ¼
ð1;�1;�1; 1Þn=2, one obtains zz spin-spin couplings, as desired
for ~HG [Eq. (10)] (green solid lines). An additional undesired,
weaker interaction (orange dashed line) does not affect the
system dynamics. Mediated by a different vibrational mode, an
additional laser pair generates the xx interaction, as required for
HK (blue dotted line).
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that in a chain of four ions, there is a vibrational mode q0
with amplitudes Mnq0 ¼ ð1;�1;�1; 1Þn=2. The index n

labels the ions from 1 to 4, where n ¼ 1, 3 denotes the
matter fields �1 and �2, and n ¼ 2, 4 denotes the gauge
fields S12 and S21, respectively. The frequency spacing of
the phonon modes is / ffiffiffiffiffiffiffi

��

p
!�, where, as before, !�

denotes the trap frequency in direction �, and �� ¼
e2=ðM!2

�d
3
0Þ is the associated stiffness parameter. For the

axial direction, this energy spacing is sufficiently large to
tune the beat note !L of a laser pair close to mode q0, with
detuning �q0 ¼ !q0 �!L, while negligibly driving the

other modes.
To obtain the correct weights of the interactions, we

assume that the effective Rabi frequencies �n coupling
the S spins to the phonons is twice as large as for the �
ions, �S ¼ 2��. Applying Eq. (21) to this case gives
Vmn � �Reð�?

m�nÞ@2k2LMmq0Mnq0=ð8M!q0�q0Þ. We

thus obtain the interaction strength between ion m and n,

Vmn ¼ �V

0 �1 � 1
2 1

�1 0 1 �2

� 1
2 1 0 �1

1 �2 �1 0

0
BBBBB@

1
CCCCCA

mn

; (30)

with V ¼ j��j2@2k2L=ð16M!q0�q0Þ. For negative detun-

ing, these interactions constitute exactly the zz interaction
terms of the Gauss-law constraint (10) [i.e., the one before
the rotation (12) in spin space]. Additionally, we obtain the
undesired, but weaker interaction �z

1�
z
2V=2. This interac-

tion is gauge invariant, and we find that it does not alter the
system dynamics (see Sec. VB).

The�x
1�

x
2 interactions that generateHK can be mediated

via a different phonon mode, with lasers that address only
the � pseudospins. Notably, because of the large mode
spacing, all interactions in this minimal implementation
can be generated by using only axial modes. For the
architecture presented in Secs. III and IV, this was not
possible since a sufficiently fast decay of Herr

V requires
the use of radial modes.

An alternative four-ion implementation that avoids the
use of two types of pseudospins can be obtained by group-
ing the gauge-field spins in the center. Then, the order of
the ions in the trap does not correspond to their position in
the lattice, but an adequate addressing of the vibrational
modes can engineer the desired interactions. For example,
the correct weight of the interactions in HG can be gen-
erated simply by off resonantly driving the center-of-mass
mode with a laser that is focused more strongly on the
center of the chain. The xx interactions between matter-
field spins 1 and 2 (now at positions 1 and 4 of the ion
chain) can be transmitted by a mode that has amplitudes
Mnq 
 ð�0:66;�0:25; 0:25; 0:66Þn. We checked numeri-

cally that the additional, unwanted xx interactions in-
duced by that mode do not compromise the ground-state

behavior. In the following, we focus on the cleaner case
described in Fig. 8.

B. Numerical analysis of the ground-state behavior

We now illustrate that the minimal implementation of
Fig. 8 already contains much of the physics of the full-
fledged many-body problem. Using again exact diagonal-
izations, we analyze in this section the ground-state
behavior. In the next section, we study the sweep dynamics.
For better comparison with the implementation discussed
in Sec. IV, we interpret our results, presented in Fig. 10,
in the rotated basis (12). For convenience, we reproduce in
Fig. 9 the product states atm=J �1 for the present case of
two sites under periodic boundary conditions.
As seen in Fig. 10(a), for this small system, gauge

invariance is even better retained than what we saw in
Sec. IV. Again, deviations are stronger at large J=V and
around m ¼ 0, i.e., close to the expected phase transition
of the ideal QLM (13). The order parameters �Sz and ��z

behave very similarly to an ideal QLM of the same size
[Figs. 10(b) and 10(c)]. In particular, at large jmj, the
polarization of the product states sketched in Fig. 9 is
attained. The behavior of the order parameters is practi-
cally independent of J=V. This finding suggests that in the

FIG. 9. Product states at m=J ¼ �1 for the minimal imple-
mentation of four ions. (a) State at m=J ! �1, conserving C
and P invariance. (b) State at m=J ! þ1, breaking C and P
invariance. This state is degenerate with the opposite configura-
tion of gauge-field spins (i.e., jS12i ¼ j "i, jS21i ¼ j #i).

FIG. 10. Observables in the minimal implementation. (a) The
gauge invariance is only violated substantially where V=J is not a
strong energy scale. The order parameters (b) �Sz � ðSz12 þ Sz21Þ=2
and (c) ��z � ð�z

1 þ �z
2Þ=2 behave similarly to the ideal QLM

(solid line). The transition from a C- and P-invariant
state to a C- and P-breaking state can be clearly seen. The blue
curves from lighter to darker and shorter to longer dashes denote
J=V ¼ 0:125, 0.25, 0.275, but practically coincide.
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considered parameter range, the errors that are introduced
by generating the system dynamics perturbatively are
negligible (see Sec. III C). Moreover, the interactions
V�z

1�
z
2=2 do not alter the ground state. Such interactions

would favor an antiferromagnetic correlation between �z
1

and �z
2, a behavior that violates the Gauss law (14). The

influence of this interaction is therefore canceled by the
strongerHG. As a result, the region at smallm=V that is not
contained in the ideal QLM, and that appeared in the large-
chain scheme because of the dipolar interactions Herr

V , is
absent in this minimal model. Consequently, the fidelity
susceptibility (not shown) has only a single peak at m ¼ 0,
in accordance with the ideal QLM.

C. Numerical analysis of adiabatic sweeps

In order to provide a better connection to experimental
realizations, we now study adiabatic sweeps through the
C- and P-breaking transition. For ease of comparison, we
consider the same linear quench protocol as in Sec. IVB,
namely, a sweep from m=J � 0 to m=J � 0, with the
same sweep speeds and ranges.

As the quench fidelity shows [Fig. 11(a)], for the con-
sidered parameter range, the accuracy of the sweep does
practically not depend on minit=J but only on the chosen
quench speed. As in the scheme of Sec. IV, we remark that
there is a considerable drop of fidelity at low J=V. In this
case, however, the drop has its origin not in dipolar error
terms but in the fact that the intrinsic energy scale of the
system dynamics decreases with J=V. This results in a
smaller gap, thus requiring slower evolutions to retain
adiabaticity. Therefore, slower sweeps particularly improve
the quench fidelity at small J=V.

This behavior is reflected in the order parameters �Sz

[Fig. 11(c)] and ��z [Fig. 11(d)]. For the considered quench
velocities, the sweep is nonadiabatic at low J=V, and the
order parameters almost retain their initial values �Sz ¼ �1
and ��z ¼ 1 [cf. Fig. 9(a)]. Only when J=V * 0:1 do the
final values of the order parameters approach the values
expected for the ideal QLM at largem, namely, �Sz ¼ 0 and
��z ¼ �1 [cf. Fig. 9(b)]. We observe, again, an oscillatory
behavior as a function of J=V. Similar to Sec. IVB, these
oscillations appear because we take a snapshot of the
evolution at a fixed final time tfin.

In contrast to quench fidelity and order parameters, the
overall breaking of gauge invariance rises with J=V and
does not depend much on the quench speed [Fig. 11(b)].
It does, however, acquire stronger oscillations for faster
sweeps. Thus, while adiabaticity requires a sufficiently
large J=V, to retain approximate gauge invariance, large
J=V should be avoided—again, there is an optimal pa-
rameter window. For the considered parameters, it lies
around J=V 
 0:1–0:2. Staying within this window, the
minimal model retains approximate gauge invariance
while displaying the C- and P-breaking physics character-
istic of the full many-body problem.

VI. EXPERIMENTAL CONSIDERATIONS

In this section, we discuss some experimental issues,
including an outline of a meaningful experimental run, as
well as possible error sources.

A. Experimental sequence

A meaningful experimental sequence should typically
contain (i) initialization in a state that can be prepared
with high fidelity, (ii) time evolution under a desired
Hamiltonian, and (iii) measurement of a relevant observ-
able. All of these points can be implemented with high
accuracy in state-of-the-art trapped-ion experiments.
For the initialization, one can choose the ground states

at m=J ¼ �1. Since these are product states [as sketched
in Fig. 2(d)], they can be prepared with high fidelity by
optically pumping each ion into the appropriate internal
state (this step includes preparing the ions as � or S spins,
as appropriate). Then, to protect gauge invariance, one
needs to induce the Gauss-law interactions HG by turning
on the corresponding lasers. Afterwards, one can turn on
the system dynamics given by HK þHB þHm, in an
adiabatic or an abrupt manner, depending on whether one
wants to study ground states or quantum dynamics after a
sudden quench. Notably, applying only HK þHB, without
generating Hm, corresponds to a quench from m=J ¼ �1
to m ¼ 0. This quench ends in the critical region, which is
a highly interesting situation [84].

FIG. 11. Final state after a linear sweep for the minimal
implementation. We change mðtÞ ¼ minit þ t�m=�t, with mfin ¼
�minit, and keep V and J fixed. Solid lines from lighter to darker
shades: minit=J ¼ �2, �3, �4 for �m=�t ¼ 0:2V2=@. Short
(long) dashed lines: minit=J ¼ �3 and �m=�t ¼ 0:4ð0:1ÞV2=@.
The arrows show how the precision of the quench increases for
smaller quench velocities �m=�t. The total times considered
range from tfin ¼ 15@=V (for minit=J ¼ �3, �m=�t ¼ 0:4V2=@)
to 60@=V (minit=J ¼ �3, �m=�t ¼ 0:1). For V=@ ¼ 2� 1 kHz
[8,17], these correspond to 3.2–9.5 ms. (a)–(d) For a value of
J=V * 0:1, the final C- and P-breaking state is reached (a) with
high fidelity, (b) good gauge invariance, and the desired behavior
for (c) the gauge field and (d) the matter field.
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The most important information can be read out easily
by measuring the local polarization, i.e., the occupation
of the pseudospin levels. From this simple measurement,
one can extract the signature of the parity-breaking
phase transition through hSzi;iþ1i or h�z

i i. From the corre-

sponding two-point correlations, one can compute hG2
i i

and thus quantify the breaking of gauge invariance.
Complementary observables such as the x spin compo-
nents can be measured by rotating the spins prior to
detection.

B. Error sources

An important restriction of the proposed scheme is the
condition J=V � 1. A small J signifies a slow dynamics,
so one may ask whether physical phenomena associated
with the QLM (13) are observable within realistic experi-
mental time scales. For approximately realizing the correct
gauge-invariant dynamics, we require values of J 
 V=5
(see Sec. IV). State-of-the-art experiments reach interac-
tion strengths as large as V=@ 
 2�1 kHz [8,17,85].
The corresponding time scale for the system dynamics is
@=J 
 0:8 ms. This time scale is well below the dephasing
time, which typically is 5–10 ms and can reach up to
100 ms [17]. It is also far below realistic relaxation times,
which can reach up to 1 s [8,17]. As we have seen in Fig. 7,
an adiabatic sweep with good fidelity requires only a few
ms, so the C- and P-breaking transition should be observ-
able in realistic setups.

For small J=V, another type of error might arise in the
derivation of the effective spin-spin interactions. Namely,
the step from the spin-phonon coupling (18) to the spin-spin
interaction (20) involves truncating the canonical transfor-
mation (19) to leading order in � � j�nj	nq=ð2�q

xÞ. One
could think that higher-order terms neglectedwhen deriving
the strong interactions V may compete with the first-order
terms of weaker interactions such as H1 [Eq. (25)].
However, the Lamb-Dicke parameter is 	nq � 1 in typical

trapped-ion quantum simulations, so � can easily be on the
order of 1=8 [15]. Consequently, higher-order terms in the
canonical transformation are of order �2 ¼ 0:01 [66]. We
found in Sec. IV that reasonable parameters for H1 are
J¼KB

V 
V=5 or, equivalently, K=V, B=V 
 0:45 � 0:01.

Generally speaking, the inherent errors discussed in
Sec. IV, namely, the dipolar terms Herr

V and gauge-variant
contributions to H1 that are not sufficiently suppressed by
HV , will by far dominate over other error sources, such
as experimental inaccuracies. For example, for typical
experimental parameters, errors due to finite phonon oc-
cupation, phonon heating, and micromotion can be esti-
mated to be at most a few percent [66,72]. Additional
errors, appearing if noncommuting spin-spin interactions
are induced simultaneously, are strongly suppressed if the
used phonon frequencies are sufficiently different [66].
Let us also remark that the low-energy, many-body prop-
erties of the system are expected to be robust in the

presence of small gauge-variant terms (see Refs. [37,86]
for a general treatment and a discussion in the context of
quantum simulators).
In our analysis for the longer chains (Sec. IV), we

assumed equidistant ions, but in a realistic linear Paul
trap, this is typically not truly fulfilled, resulting in inho-
mogeneous coupling strengths. To achieve equal distances,
one could employ unharmonic trap potentials, study only
the central part of a large ion chain, or resort to individual
ion traps [69,70]. However, even if the interactions are not
homogeneous, the preservation of gauge invariance en-
forced by HG will remain valid, although with a position-
dependent strength (the position dependence of V may
possibly even be compensated by the one of K, so that
J ¼ KB=V remains homogeneous).
Moreover, realistic ion chains are governed by open

boundary conditions, while in our numerical calculations
of Sec. IV, we considered periodic boundary conditions
because these better reproduce the physics of larger sys-
tems. Nevertheless, since all involved phases are gapped,
we can expect a strong influence of the boundary condi-
tions only close to quantum phase transitions. The physics
of the false-vacuum decay should depend only weakly on
the choice of boundary conditions.
Finally, let us note that the interactions used in our

scheme have, in a different context, all been successfully
implemented in experiments. Namely, quantum simula-
tions using hyperfine qubits have been realized by employ-
ing both the zz couplings depicted in Figs. 3(b) and 3(c)
[11,17] and xx-type spin-spin couplings generated by
Mølmer-Sørensen gates [12–16,18]. For optical qubits,
high-fidelity gates of xx type [3,5] and zz type have been
demonstrated [4]. An alternative implementation, based on
rf coupling of hyperfine qubits in spatially varying mag-
netic fields, has also been realized recently [6]. Rotations
of the coordinate system allow one to choose from these
coupling schemes the most practical one for a given setup.
For example, it may be simpler to implement yy interac-
tions than zz interactions and to redefine the coordinate
system accordingly.

VII. CONCLUSION AND OUTLOOK

In conclusion, we have presented a scheme to realize,
with existing technology, a lattice gauge theory in a chain
of trapped ions. Studying ground-state and dynamical be-
havior via exact diagonalizations, we identified the optimal
parameter regime for the observation of false-vacuum
decay. An interesting roadmap for experiments would be
to demonstrate the basic building block with two or three
ions. Then, one could proceed to the proof-of-principle
realization of the parity-breaking transition with the use
of four ions and finally aim at a full-fledged quantum
simulation on larger ion chains.
Our scheme leaves way for adjustment to the concrete

experimental situation. For example, the distinction
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between matter-field and gauge-field spins could alterna-
tively be achieved via staggered fields that shift the reso-
nance frequencies for every other spin, or via individual
laser addressing, or by separating the ions spatially, e.g., by
employing a narrow zigzag chain [87–90]. Moreover, if a
large number of laser frequencies is available, some of the
most prominent errors due to dipolar interactions could be
removed by appropriately engineering the spin-phonon
couplings [77]. An additional advantage of our scheme is
that imperfections in the realization of the Gauss law can
be monitored by means of post-selection measurement of
the local pseudospin polarization along the z direction.

Regarding future perspectives, since the Jordan-Wigner
transformation is only practical in one dimension, it seems to
be out of reach for trapped ions to quantum simulate lattice
gauge theories of fermionic matter in higher dimensions in
an analog setup. This limitation can be overcome in digital
quantum simulations, where the Jordan-Wigner mapping is
useful also in higher dimensions, resulting in a number of
gates that scale polynomially with the number of involved
fermionic modes [91–93]. While analog quantum simula-
tions have advantages in scalability because of the ‘‘always-
on’’ nature of interactions, digital approaches allow larger
control and especially error correction [20]. But, despite the
limitations set by the Jordan-Wigner transformation, a vari-
ety of relevant lattice gauge theories should be accessible to
analog quantum simulation in larger dimensions, e.g., in the
two-dimensional ion crystals that can now be realized in
experiment [17]. Interesting examples may include gauge
fields coupled to bosonic matter [47], possibly allowing
the observation of the Higgs mechanism according to the
Fradkin-Shenker scenario in 2D systems [94] (this phenome-
non, beyond its intrinsic interest, has drawn particular atten-
tion in the context of condensed-matter theory; see, e.g.,
Ref. [95]). Another interesting future direction would be
the investigation of pure gauge theories, either Abelian or
non-Abelian [47]. The lattice versions of such gauge theories
are often directly formulated in the language of spins, which
makes trapped-ion setups seem rather promising. For ex-
ample, a natural next step would be the quantum simulation
of quantum dimer models, as are usually obtained from
frustrated spin Hamiltonians [47,65].

In the shorter term, a number of rather straightforward
extensions to the scheme proposed here seems foreseeable.
For example, one could use three different types of pseu-
dospins to simulate two flavors of matter fields coupled to a
single gauge field. As another conceptually simple general-
ization, one could mimic S ¼ 1 gauge fields by the use of
three internal levels [96,97]. Finally, it will be interesting to
explore alternative possibilities to protect the gauge invari-
ance, e.g., by the use of classical noise [98].
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[1] H. Häffner, C. F. Roos, and R. Blatt, Quantum Computing
with Trapped Ions, Phys. Rep. 469, 155 (2008).

[2] C. Monroe and J. Kim, Scaling the Ion Trap Quantum
Processor, Science 339, 1164 (2013).

[3] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt,
Towards Fault-Tolerant Quantum Computing with
Trapped Ions, Nat. Phys. 4, 463 (2008).

[4] T. Monz, K. Kim, A. S. Villar, P. Schindler, M. Chwalla,
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