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Abstract—This paper proposes a realistic setup for a digital
twin of an IoT deployment, which makes it possible to measure
the impact of IoT networking and computing slices on the
physical resources of edge computing hosts. The proposed setup
relies on a configurable IoT system, capable of emulating the
behavior of a LWM2M broker, along with a large number of
devices, both real and emulated. Through our digital twin, we
can measure IoT resource utilization and its variation over time,
quantifying utilization peaks that may occur at transients, when
devices attach to or leave the network.

Index Terms—Network slicing; Internet of Things; digital twin;
emulation; virtualization; slice sizing

I. INTRODUCTION AND RELATED WORK

Fifth-generation (5G) network slicing is a prominent strat-
egy to make the same network infrastructure available to multi-
ple virtual mobile network operators (VMNOs). Slicing works
by virtualizing network resources and allotting a portion of
them (called the “slice” in 3GPP jargon, or a logically isolated
network partition (LINP) in ITU-T jargon) to a VMNO or a
general third-party, such that a service-level agreement (SLA)
between the VMNO and the physical network operator is
honored at all times [1].

The key enabling technologies to realize slicing are
software-defined networking (SDN), network function virtual-
ization (NFV) and multi-access edge computing (MEC). SDN
enables the management of network resources through policies
defined and updated in software. NFV detaches network func-
tions (e.g., authentication, resource allocation, etc.) from the
physical hardware that provides each function, and makes it
possible to deploy a function on any sufficiently powerful plat-
form, typically through virtual machines or containers. MEC
provides computing power close to the edge of the network.
This makes it the ideal resource to deploy virtual network
functions (VNFs) that implement low-latency services, or that
pre-process data before forwarding them for remote cloud
storage [2], [3].

The onset of machine-type communications (MTC) and In-
ternet of things (IoT) network deployments poses special chal-
lenges to network operators. IoT networks can be composed

Manuscript received April 15, 2021; revised June 4, 2021; accepted July
11, 2021. This work was supported in part by the Italian Ministry for
University and Research under the initiative “Departments of Excellence”
(Law 232/2016). The associate editor coordinating the review of this paper and
approving it for publication was N. Passas. (Corresponding author: P. Casari)

All authors are with the Department of Information Engineering and
Computer Science (DISI), University of Trento, 38123 Povo (TN), Italy
(email: paolo.casari@unitn.it).

Digital Object Identifier XX.XXXX/XXXXXXXXXXX

of hundred, or even thousands of devices, whose compound
traffic can be sizeable and challenging to manage. This is
especially true if IoT devices share network resources with
other applications with diverse requirements, such as ultra-
reliable low-latency communication (URLLC) or broadband
streaming applications.

For the above reasons, network operators need actionable
data on networking and computation requirements of IoT
deployments. This way, they can prepare to modulate allotted
resources and support IoT traffic transients without impacting
other applications, and without degrading the service offered
by IoT applications themselves.

There is considerable interest in the use of MEC resources
to deliver IoT services. For example, Husain et al. propose
an architecture to deploy differentiated IoT services in edge
cloud servers [4]. The authors argue that home IoT services
can be delivered using mainstream network configurations,
whereas massive (e.g., smart city-related [5]) and ultra-low
latency (e.g., industrial [2]) IoT services require to virtualize
network access and server-side computation and move them
to the edge cloud. Theodorou and Xezonaki also consider a
massive smart city deployment, and propose the virtualization
of multiple IoT gateways through the NFV MANO framework,
in order to flexibly allocate computational capacity to different
applications [6]. The IoT-oriented architecture described by
Kapassa et al. also provisions dynamic 5G network resource
slices to IoT applications and services [7].

With an eye towards massive IoT deployments, Lekshmi
et al. advocate slicing as a key 5G network feature, that
would enable a flexible allocation of network resources over
time [8]. To reduce the requirements of VNFs composing a
slice, Ouedraogo et al. propose “flyweight” network functions,
which reduce the storage and memory footprint of a VNF and
its deployment overhead, at the price of losing isolation among
VNFs deployed on the same physical machines [9].

Several contributions focus on slicing in long range wide
area network (LoRaWAN) IoT deployments. In this case, slice
resources are modulated by changing LoRa’s transmission
parameters in order to achieve the best QoS and agent ex-
perience. For example, Dawalibi et al. employ game theory
to achieve the above [10], whereas Messaoud et al. design a
deep learning approach to automatically tune LoRa’s spreading
factor and transmission power [11].

To assess the effectiveness of slicing for an IoT deploy-
ment, key aspects are modeling and estimating the amount of
networking and computation resources that such deployment
requires. While some of the above works model IoT require-
ments at least by distinguishing, e.g., low-latency vs. delay-
tolerant applications, a clear evaluation of the transient and
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long-run requirements of IoT slices is still missing in the
literature.

In this letter, we intend to fill this gap by introducing the
concept of digital twin [12] of the IoT service, and by using
such digital twin to estimate the amount of networking and
computing resources an IoT service requires during typical
work cycles. The digital twin is built by exploiting the emu-
lated IoT platform (ELIoT) [13] framework. ELIoT is part of
a recent trend [13]–[15] that emulates network deployments
using realistic virtualization technologies, as would be em-
ployed in production networking and computing systems. For
our study, this enables the emulation of large IoT deployments
while concentrating on network-side management aspects.

ELIoT provides the implementation of well known protocols
for IoT and the deployment of a lightweight machine-to-
machine (LWM2M) server, along with sample devices repre-
sented in LWM2M/IP for smart objects (IPSO) formats. Yet,
for a digital twin to be an effective tool, it needs to be automat-
ically deployed and configured in an edge server orchestration
scenario. In this work, we deploy the digital twin in a realistic
edge server configuration including typical toolchain elements
such as Docker, Kubernetes, Helm and Grafana. Using such
environment, the network manager can realistically analyze
real-time as well as “what-if” scenario implementations to
predict requirements on edge-side computation, network com-
munications as well as system memory for different types of
IoT deployments. Our system also enables researchers to easily
build realistic performance and resource consumption datasets
as a basis to train machine learning (ML)-based and artificial
intelligence (AI)-based prediction and adaptation schemes,
including automated methods to optimize resource allocation
to the corresponding IoT slices.

The letter is organized as follows: in Section II we detail our
evaluation setup; we then describe our results in Section III,
provide a summary discussion in Section IV and draw con-
cluding remarks in Section V.

II. EVALUATION SETUP

A digital twin needs to represent and closely replicate the
behavior of its “real-life” counterpart. Therefore, for the case
of an IoT service, we decided to use an emulator that can
generate realistic traffic, e.g., between IoT devices and the
IoT broker. To achieve this goal, we extended the original
ELIoT project by deploying the system in Kubernetes (K8s),
and by adding monitoring capabilities via Prometheus [16]
and Grafana [17]. We containerize ELIoT components using
Docker and run it on a local K8s cluster using Kubernetes in
Docker (KIND) [18]. It is worth mentioning that this digital
twin architecture also enables the integration of real sensors
via TCP/IP connections. However, for the purpose of this
work, we decided to run only emulated sensors, which enables
the easier scaling of device numbers and traffic characteristics.

We elect to use K8s as it makes it possible to orchestrate
containerized applications: it automates the deployment and
connectivity of an application by specifying all required pa-
rameters in configuration files. Moreover, KIND provides a
set of scripts written in the Go language to run a K8s cluster

Fig. 1. Monitoring system architecture and integration with ELIoT

Fig. 2. Snapshot of our Grafana dashboard.

within a Docker container. The scripts implement cluster
creation and deletion. In addition to this, KIND exposes a
command-line interface for cluster management.

Prometheus is a monitoring system based on a time se-
ries database, which collects metrics from specified targets
at predefined intervals. It also provides a query language
that automates the evaluation of rule expressions and the
retrieval of specific metrics. Prometheus easily integrates with
Grafana, a tool that exposes dashboards encompassing time
series graphs and charts for the visualization of metrics and
other related information including, e.g., CPU and memory
utilization, container startup time, etc.

To extract the information about K8s resources we employ
the Metrics Server, whereas for machine utilization data we
resort to the Prometheus Node Exporter. K8s’s Metrics Server
is a source of container resource metrics used that K8s
leverages for autoscaling purposes. The Metrics Server enables
the collection of resource metrics from kubelet agents, and
exposes such metrics in the K8s API. The Prometheus Node
Exporter, instead, makes it possible to retrieve hardware and
OS metrics.

Our Grafana dashboard, developed starting from an es-
tablished dashboard for Docker [19], allows us to monitor
the system at runtime, and to execute retrospective analysis.
The dashboard keeps track of system statistics such as the
number of running containers, the network traffic, as well
as memory and CPU utilization. We persist data on disk
and log timestamps of test execution steps. Moreover, the
dashboard allows us to easily export information collected
during our tests, in order to post-process them. This data can
also be directly queried using Prometheus. The architecture
of the monitoring system is summarized in Fig. 1. In Fig. 2
we provide a visual example of a Grafana dashboard. Our
setup involves open-source components, which makes the
results presented in this paper fully reproducible. To favor
this, we provide our code and configurations, along with
full instructions for the installation of our framework, at our
GitHub repository (https://github.com/ricCap/ELIoT).

https://github.com/ricCap/ELIoT


3

TABLE I
RESOURCE REQUIREMENTS PER EMULATED IOT DEVICE TYPE

Device type

Resource Low Medium High

RAM (idle) 70 MByte 70 MByte 70 MByte
Network traffic out 65 Byte/s 125 Byte/s 1.2 kByte/s
Network traffic in 49 Byte/s 180 Byte/s 923 Byte/s
Data generation period 2 s 700 ms 100 ms

TABLE II
EMULATION RESULTS PER APPLICATION TYPE

Application type

Metric APP1 APP2 APP3

RAM (LWM2M server) 1.6 GByte 1.4 GByte 4.5 GByte
RAM (LWM2M server + dev.) 14 GByte 9.4 GByte 9.3 GByte
RAM (Monitoring) 15 GByte 9.3 GByte 5 GByte
LWM2M input network traffic 13 kByte/s 13 kByte/s 61 kByte/s

We run the ecosystem on a dedicated workstation with
an AMD Ryzen Threadripper 3990X CPU (offering 64 hy-
perthreaded cores), 128 GByte of RAM, and a 512 GByte
storage unit. We test our system by deploying the monitoring
infrastructure on a K8s cluster using KIND, and subsequently
test different ELIoT deployments; we oversee the tests using
our dashboard, and finally evaluate the results by extracting
data from Prometheus and Grafana.

In the following, we will also refer to the ELIoT LWM2M
server using the common term “broker.” For our evaluation,
we implement three types of sensors (Low, Medium, High)
with three different data generation patterns, as summarized
in Table I. We observe the devices using the Observe/Notify
mechanism implemented by the broker. In ELIoT, this results
in a symmetric exchange of messages between the devices
and the broker. We then combine the three types of devices
into applications that simulate real world scenarios: APP1:
an “environmental monitoring” application, with 200 Low-type
devices; APP2: a “road monitoring” application, encompass-
ing 100 Medium-type devices APP3: an “intensive monitoring”
application, featuring 50 High-type devices.

In the charts and tables that follow, we only consider one-
way traffic for the broker; different applications that interact
with the broker may have different communication patterns.

III. RESULTS

A. System evaluation

We start with Table II, which provides a summary of the
metrics obtained from the digital twin for the three application
types defined above. For this evaluation, we obtain the metrics’
values at exactly 5 minutes after all components are deployed:
at this time, the management operations of the system are
completed, and the related values have stabilized. Because of
this, we obtained negligibly different values in two subsequent
tests: the results in Table II are the averages of these two runs.

The results focus on the amount of RAM required for each
application and on the amount of network traffic at the input
of the LWM2M server. We observe that the server RAM

Fig. 3. Broker RAM usage for an increasing number of Medium devices.

allocation is reasonably limited to less than 2 GBytes for both
APP1 and APP2. Only for APP3 does the RAM requirement
increase to 4.5 GBytes. This is due to the caching of API
calls, which are much more frequent for APP3 than for the
other two applications.

Table II also reports the amount of RAM required to
emulate the devices and to support data collection in the
monitoring system. Emulating the 200 Low devices of APP1
requires a total of about 14 GBytes, whereas APP2 and
APP3 require only slightly more than 9 GBytes. As the three
applications feature 200, 100, and 50 devices, respectively,
the monitoring system requires correspondingly less memory
resources: 15 GBytes, 9.3 GBytes, and 5 GBytes, respectively.
The input network traffic seen at the LWM2M server also
depends on the application. As each of the 100 Medium devices
of APP2 generates 125 Bytes/s, the LWM2M server sees
about 13 kBytes/s of traffic. Similarly, APP3 generates about
60 kBytes/s of traffic.

We further inspect the RAM and network utilization re-
quirements by considering the amount of system resources
that the broker seizes as a function of the number of deployed
devices. Fig. 3 shows the RAM usage as an average of five
different runs (solid blue line). A light-blue band conveys the
minimum and maximum RAM usage values throughout all
five runs. For this test, we deploy 50 devices simultaneously
every 5 minutes. The average usage increases from a minimum
of about 300 MBytes up to 2.5 GBytes when 250 devices
are deployed. The RAM increase is linear at the beginning,
whereas further batches of 50 devices lead to step-like memory
increases that occur with some delay with respect to our
instantiation command. This delay is due to the time it takes
to complete device spawning, for the devices to register with
the broker, and for monitoring to start in the broker when all
devices have completed their startup and registration process.

In Fig. 4, we show how increasing the number of deployed
devices affects the network traffic. Again, the solid blue
line conveys the average traffic over time, computed as an
average over five runs, whereas the light-blue band conveys the
minimum and maximum values measured in our tests. Here,
devices appear in batches of 50, about every 5 minutes. We
observe an initial traffic spike as devices bootstrap and set up a
connection with the LWM2M server, after which the network
traffic stabilizes to the expected level of 125 Bytes/s times the
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Fig. 4. Broker network traffic for an increasing number of Medium devices.

number of deployed Medium-type devices. The minimum and
maximum values remain very close to the average, as different
executions with the same storyboard yield very coherent
results.

We now put the system under stress through a different
setup. Here, we schedule the deployment of 200 Low-type
devices at the start of the emulation, after all the monitoring
containers are running. This ensures that the time required to
pull containers images does not affect the simulation statistics.

Fig. 5 shows the RAM utilization over time, including both
the average over five executions and the minimum/maximum
span. We observe that the RAM requirements tend to increase
rapidly and peak at about 15 GBytes on average after spawn-
ing 200 devices. We then decrease the number of devices
from 200 to 100 (whereby the RAM usage decreases to about
11 GBytes) and then increase them back to 200 devices,
showing that the amount of RAM required by the system
follows the number of scheduled devices accurately. After
the latter operation, the amount of allocated RAM increases
to about 18 GBytes due to API call caching. We finally
remove all devices from the emulation system after slightly
more than 11 minutes from the start. In line with previous
results, the system’s performance is predictable in steady-state
conditions. The data show a slightly greater variation in the
device deployment and removal phases, where system metrics
change faster over time, and each specific realization may
yield a different resource allocation, depending on the way
the system schedules the components of the emulated IoT
deployment. The min-max interval confirms this statement.

We conclude our evaluation with Fig. 6, where we provide
the evolution of the network traffic over time in the same
conditions of Fig. 5. In line with Fig. 3, we observe that
increasing the number of deployed devices implies a larger
network traffic burden. For the two periods where 200 devices
are deployed, the amount of traffic coherently settles around
20 kByte/s, and decreases to slightly more than 10 kByte/s
when we transition to 100 devices. As before, the min-max
interval shows that all executions behave coherently, and that
only when we start deploying or removing devices does traffic
greater more statistical variability.

B. The case of a real IoT localization network

We now use our framework to implement a digital twin
of the IoT localization testbed deployed at the Department of

Fig. 5. ELIoT (broker + devices) RAM usage during transition phases.

Fig. 6. ELIoT (broker + devices) network traffic during transition phases.

Information Engineering and Computer Science of the Univer-
sity of Trento, Italy. The testbed has been recently extended
to a total of 130 ceiling-mounted stations spanning two floors
over two different buildings. Each station embeds different
low-power wireless platforms offering communication options,
e.g., via ultra-wideband (UWB), bluetooth low energy (BLE),
as well as IEEE 802.15.4.

Here, we consider the UWB-based localization protocol
TALLA [20], where ceiling-mounted nodes act as anchors,
and mobile UWB tags initiate the localization process. The
latter is centralized: a broker collects messages from the
anchors and computes the location of each tag that sends a
localization request. Each testbed node reports to the broker
of the localization service in one of three cases: (i) when it
receives a localization request from a UWB tag; (ii) when it
broadcasts a synchronization message to neighboring anchors;
or (iii) when it receives such a message from another anchor.
UWB tags wishing to be localized send messages four times
per second. Synchronization messages are sent three times per
second by 25% of the anchors. Each of the messages sent to
the broker in any of the above cases has a size of 120 Bytes.
For additional testbed details, as well as for the design of the
TALLA location system, we refer the reader to [20].

Fig. 7 shows the result of the IoT localization testbed’s
digital twin, including the total network traffic (top panel)
and the broker RAM usage (bottom). We tested the system
with 10 and 20 users trying to localize themselves. We
observe that more users relate to a higher network traffic to
transmit localization data. The difference between 10 and 20
users is minimal, because the IoT nodes exchange at least
synchronization messages, which always generate traffic for
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Fig. 7. Results for the digital twin of an IoT localization network. (Top) Total
system (broker + devices) network traffic. (Bottom) Broker RAM usage.

the broker. A similar observation holds for the RAM usage at
the broker, which increases over time due to the caching of
API calls, in line with previous observations.

IV. DISCUSSION

Our results suggest that the most impacted system resource
is the RAM. This is mainly due to the number of emulated
devices, as the broker caches all API calls related to device
communication and data reporting until the end of the em-
ulation. Therefore, applications with more devices and with
higher data generation rates fill RAM faster over time. Fig. 3
supports this claim: in fact, the required amount of RAM
increases by about 1 GByte when we scale up to 100 devices,
and by 2.25 GBytes when the system transitions from 100 to
200 devices. Fig. 5 also shows how decreasing the number of
devices frees the memory allocated to the devices, but has no
effect on the API calls stored in the broker.

We also remark that the system can scale to simulate a
larger number of devices. We made tests with 500 devices:
by configuring Docker and K8s to guarantee that no resource
allocation limits interfere with the emulation, our workstation
can handle such deployments. We can support up to 1000
devices, mostly due to the limits of Docker bridge.

Finally, our setup has a monitoring overhead, as it is likely
the case in any production deployment. In our configuration,
at least 50% of the RAM allocated to monitoring tools stores
system data that was unnecessary in this evaluation. Such
configuration can be tuned to extract only the information
displayed in the dashboard. Moreover, running Grafana is not
mandatory during the emulation.

V. CONCLUSIONS

In this paper, we set up a digital twin to analyze and
forecast the behavior of an IoT computing and networking
slice. Our system supports different kinds of applications,
which may encompass different types of IoT devices. The
digital twin emulates IoT network components through the
ELIoT framework, deployed in Kubernetes by using Docker
and KIND, and monitored through Prometheus and Grafana.

Deploying the digital twin makes it possible to measure
the amount of network and RAM resources to be allocated
to different IoT applications. We observed that the measured
resource usage is very coherent across different runs, and tends

to exhibit greater variability only during transition phases. This
makes our digital twin ideal to size resource provisioning prior
to physical deployment, to perform “what-if” studies, as well
as to inform quality management policies that uphold appli-
cation requirements, possibly supported by machine learning
algorithms.
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