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Abstract
We define linear codes which are s-Locally Recoverable Codes (or s-LRC), i.e. codes which
are LRC in s ways, the case s = 1 roughly corresponding to the classical case of LRC
codes. We use them to describe codes which correct many erasures, although they have small
minimum distance. Any letter of a received word may be corrected using s different local
codes. We use the Segre embedding of s local codes and then a linear projection.
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1 Introduction

Fix a prime q . The goal is to find long Locally Recoverable Codes (also known as Locally
Reparable Codes or LRC) over Fq ([1–3,8,15–17,20]). We do this using s layers of MDS
codes in which the layers are structured in the shape of an MDS code. Our codes have not
good minimum distance, but (in our opinion) they are excellent for erasures, because they
have the following additional structure.

Definition 1.1 Fix positive integers s and n. Let C be a length n code. We say that C is s-
recoverable or s-LRC if for each letter x ∈ {1, . . . , n} there are codes C1(x), . . . , , Cs(x)}
with each Ci (x) acting on a subset Si (x) of {1, . . . , n} and Si (x)∩ S j (x) = {x} for all i �= j .
We say the C is a linear s-LRC code if all codes C and all Ci (x) are linear.

In our construction we will also get additional properties on the local codes Ci (x), 1 ≤ i ≤
s, x ∈ {1, . . . , n}. Fix i ∈ {1, . . . , s}. All local codes Ci (x), x ∈ {1, . . . , n} are isomorphic
and in particular they have the same parameters. We call the structure {Ci (x)}x∈{1,...,n} the

Communicated by J. W. P. Hirschfeld.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

B E. Ballico
ballico@science.unitn.it

1 Department of Mathematics, University of Trento, 38123 Povo, TN, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-021-00905-4&domain=pdf
http://orcid.org/0000-0002-1432-7413


2158 E. Ballico

i-th layer of the s-LRC code C. The i-th layer is associated to a single code Ci with the
parameters of each Ci .

In some sense as an input we are also using well-known LRC codes, the case s = 1
corresponding to the classical case of Locally Recoverable Codes, because each codeword
belongs to s local codes C1, . . . , Cs , and if at least one local code, say Ci , has only a few
erasures or errors we may correct them using only Ci (Remark 2.4). Still, these codes have
only length up to (q + 1)s (except a few cases for q even described in Remark 2.3). If we
only take s = 1 we only have small, but not too small, well-known codes. For s � 0 we get
arbitrarily long codes, but at the expense of the simplicity of the codes. In any case, even for
large s, the local codes have small length. Since the construction works for arbitrary linear
codes C1, . . . , Cs we state the result for s ≥ 2 arbitrary codes. We stress that the minimum
distance of these codes is low, but we find that this type of long codes structured in layers
may correct a huge number of erasures. Given an evaluation code C and a received word
w ∈ F

n
q we do not need to receive other letters to get the true codeword w̃ received as w

(assuming there are no errors, only erasures). To get w̃ from w we may work off-line. To get
linear codes with arbitrarily high length, even using only s = 2, it is sufficient for instance
to use an AG code as one of the codes ([14,18,19,21]) and use s − 1 smaller codes, say s − 1
MDS codes.

In the next theoremwe speak about evaluation codes ([6,7]). A non-degenerate linear code
is an evaluation code ([21, Theorem 1.1.6]) and the converse holds, since every linear code
is isomorphic to its bidual, but we consider directly the dual Ci and its minimum distance
di , because it is not easy (unless Ci is an MDS) to compute di only knowing the minimum
distance of C⊥

i .

Theorem 1.2 Fix a prime power q, an integer s ≥ 2 and s linear evaluation codes C1, . . . , Cs
over Fq with Ci an [ni , ki , di ] evaluation code. Set n := ∏n

i=1 ni and k := ∏s
i=1 ki . Let t be

the maximal non-negative integer such that

qt+1 − 1

q − 1
+ qt−1√q ≥

(
n

2

)

(q − 1) +
s∑

i=1

(n/ni )
qki − 1

q − 1
(1)

Then there exists an [n, k− t] linear code over Fq which corrects at least−1+∏s
i=1(di −1)

erasures (assuming that no error occurs).

Remark 1.3 More precisely for each integerw such that 0 ≤ w ≤ t we construct an [n, k−w]
evaluation codeDw which corrects at least−1+∏s

i=1(di−1) erasures (assuming that no error
occurs). The code D0 is just the dual of the tensor product of the codes C⊥

1 , . . . , C⊥
s , while

all other codes Dw are linear projections of D0 which preserves the length, n, the structure
of s-LRC code and the ability to correct at least −1+ ∏s

i=1(di − 1) erasures (assuming that
no error occurs). Suppose that for some x ∈ {1, . . . , n} the local codes Ci (x), 1 ≤ i ≤ s, are
not sufficient to get the value of the received word at x . Call S ⊂ {1, . . . , n} the set of all
such letters x . If #S is at most the minimum distance of the global code, then we may correct
the received word.

Remark 1.4 If eachCi is an evaluationMDScods, i.e. ifdi = ki+1, each codeDw, 0 ≤ w ≤ t ,
corrects k − 1 erasures (if no error occurs). If all but one local code, say Ch , has no error or
erasure and s ≥ 2, just assuming dh ≥ 2 for all h �= i is sufficient to correct every received
word of each Dw (Remark 2.4).
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2 The proof

Inmany papers the LRC is usedwith respect to disjoint supports, i.e. if we have an [n, k]-code
U with m local codes U1, . . . ,Um we assume the existence of a partition I1 � · · · � Im of
{1, . . . .n} such that each Uh has as letters the elements of Ih . This is the set-up of [1,3,5] and
of many other schemes for locally recoverable codes and we were inspired by these papers.

We follow [5, Sect. 3.1], [6,7] and [21, Sect. 1.1.6] to use projective geometry to handle
linear codes over Fq . Recall that there is a bijection equivalence classes of non-degenerate
linear [n, k, d]q codes and the set of equivalence classes of projective [n, k, d]q systems, the
latter being described by a set S ⊂ P

k−1(Fq) spanning Pk−1(Fq) and with cardinality n ([21,
Theorem 1.1.6]). In the description of [21, Theorem 1.1.6] a dual vector space occurs and
this explain our reason to call them evaluation codes, not just linear codes.

We recall that any linear code over a finite field is isomorphic to the dual of its dual and
hence each linear code is equivalent to a dual code over the same field. It is also equivalent
to a code constructed from a finite set S ⊂ P

k−1(Fq) ([5]). For a finite set S ⊂ P
k−1(Fq) the

integer #S is the length of the equivalent code C, k is an upper bound for the integer k′ such
that C is an [n, k′] code. More precisely, k′ − 1 = dim〈S〉, where 〈 〉 denotes the linear span.
Thus C is an [n, k]-code if and only if S spans Pk−1(Fq). We say that S or S ⊂ P

k−1(Fq) is
an evaluation code. Let S ⊂ P

k−1(Fq) be an evaluation code. Its minimum distance is the
smallest integer d such that there is S′ ⊆ S such that #S′ = d and dim〈S′〉 ≤ d − 2. Fix an
integer s ≥ 2. In the set-up of evaluation codes the dual of the product C⊥

1 ⊗ · · · ⊗ C⊥
s (or

tensor product as it is known in linear algebra) of the codes Ci , 1 ≤ i ≤ s, obtained using
the set Si ⊂ P

ki−1(Fq) is a code with length
∏s

i=1 #Si and obtained evaluating the image
ν(S) ⊂ P

k−1(Fq), where k := ∏s
i=1 ki , and ν : ∏s

i=1 P
ki−1(Fq) → P

k−1(Fq) is the Segre
embedding ([10]). Note that for a fixed prime power q for s � 0 the length of C1 ⊗ · · · ⊗ Cs
goes to +∞.

Remark 2.1 Let C be a linear [n, k]-code associated to a finite set S ⊆ P
k−1(Fq). For any

A ⊆ S set δ(A) := #S − 1 − dim〈A〉. A set A ⊆ S is the support of a codeword of C if and
only if δ(A′) < δ(A) for all A′ ⊆ A, i.e. if and only if 〈B〉 = 〈A〉 for all B ⊂ A such that
#B = #A − 1.

Take A ⊆ S such that δ(A′) < δ(A) for all A′ ⊆ A. This is the case if and only if
〈ν(E)〉 = 〈ν(A)〉 for all E ⊂ A such that #E = #A − 1. If one of the previous equivalent
conditions is satisfied we say that A (or ν(A)) is equally dependent.

Remark 2.2 Let C be an [n, k, d] code over the field Fq . Its dual C⊥ with respect to the
Hamming metric is an [n, n − k]-code over Fq . It is complicated to know the minimum
distance of C⊥, unless we know more about C, but it would be the case in the following two
important cases. If C is an MDS, i.e. if d = n − k + 1, then C⊥ is an MDS, i.e. C⊥ has
minimum distance k + 1. Now assume that C is an AG code over a smooth genus g curve X .
In this case we will not use the true minimum distance of C, but only that d ≥ n − k + 1− g
([14, Theorem 5.2.2], [19,21]). In this case C⊥ is a AG code over the same smooth curve X
([19, §8.1]) and hence C⊥ has minimum distance at least k + 1 − g. In our paper we will
only use C⊥ and its minimum distance k + 1 or its lower bound k + 1 − g. This is the case
because we use evaluation codes induced by finite sets S ⊂ P

k−1(Fq), where #S = n and S
spans Pk−1(Fq).

An [n, k, d] code C corrects d −1 erasures (assuming as always in this paper that no error
occurs) ([12, pp. 44-45], [13, p. 55]). Then C⊥ corrects k erasures if C is an MDS and at least
k − g erasures if C is an AG code on a smooth curve of genus g.
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Remark 2.3 If q is even and ki = 3 for some i , wemay take ni = q+2 and take as Ci anMDS
code for the following reason. It was classically known the existence of a set S2 ⊂ P

2(Fq)

such that #S2 = q + 2 and no 3 of the point of S2 are collinear (an arc in the terminology of
[9,11]).

Remark 2.4 A linear code with minimum distance d > 2a + b corrects at least a errors and
b erasures. Suppose you receive a word τ for one of the codesDw , 0 ≤ w ≤ t , considered in
Remark 1.3 and let τi the part of τ corresponding to the letters of the local code Ci . Suppose
that τi contains at most a errors and b erasures with 2a + b ≤ di − 1. Then we correct τi
using only the local code Ci . Hence in the set-up of Theorem 1.2 we are allowed in each
local code a small number of errors (if the local code has very few erasures), but we must
correct all the errors before running the algorithm to correct the erasures, otherwise we only
get garbage.

Remark 2.5 We recall that a t-blocking set of a projective space Pr (Fq) is a set B ⊂ P
r (Fq)

such that B ∩ V �= ∅ for all V ∈ Gr(r − t + 1, r + 1)(Fq). If B ⊇ B ′ and B ′ is a t-
blocking set, then B is a blocking set. Any W ∈ Gr(t + 1, r + 1)(Fq) is a t-blocking set.

A. Beutelspacher proved that #B ≥ qt+1−1
q−1 + qt−1√q if B is a t-blocking set containing no

W ∈ Gr(t + 1, r + 1)(Fq) ( [4]). We mention that blocking sets and [4] were used for the
construction of LRC in [5,17].

Proof of Theorem 1.2: First of all we need to prove that some x > 0 exists. The proof will also
show that the code Dt is layered so that it may be used as an s-LRC. Set Y := ∏s

i=1 P
ki−1

and take Si ⊂ P
ki−1(Fq) inducing the evaluation code Ci . Let ν : Y → P

k−1 denote the
Segre embedding. Fix i ∈ {1, . . . , s}. Let Ti be the union of the n/ni linear subspaces of
P
k−1(Fq) spanned by the sets A1×· · ·× As with Ai = Si and #A j = 1 for all j �= 0. For any

integerw ≥ 0 letGr(w+1, k)(Fq) denote the Grassmannian of allw-dimensional Fq -linear
subspaces of Pk−1(Fq). For any W ∈ Gr(w + 1, k) let �W : Pk−1(Fq) \ W → P

k−1−w(Fq)

denote the linear projection from W . We want to find w and W ∈ Gr(w + 1, k)(Fq) such
that the linear projection from W induces an [n, k − w − 2] codes which corrects at least
δ errors and preserve the layered structure so that the corresponding code Dt corrects at
least

∏s
i=1(di − 1) erasures. Fix an integer w ≥ 0. We want to find a w-dimensional linear

subspace W such that the linear projection from w gives an [n, k − 2− w] code layered into
s codes with the parameters of the codes C1, . . . , Cs . To get that the length of the code is n it
is sufficient to find W such that W ∩ S = ∅ and W intersects no line spanned by two points
of S.

Then we want to preserve the layers. We need that the projection �W preserves the layers,
i.e. it sends the linear spaces giving the layers onto same dimensional linear spaces, i.e. that
W ∩ M = ∅ for all linear spaces giving the layers. We do not need that after the projection
these linear spaces are different and we do not need that the images of linear spaces belonging
to the same layer (which before the linear projection were disjoint) are mapped by �W to
disjoined linear spaces. We need that the

∑s
i=1 n/ni linear subspace of Pk−1(Fq) used do not

meet W (we do not need that their images by �W are disjoint, not even that all these images
are different linear subspaces).

Let B ′ the union of all linear spaces in the layers. For 1 ≤ i ≤ s there are n/ni layers
belonging to the layer corresponding to Ci and each of these linear spaces has dimension

ki − 1 and hence it has qki −1
q−1 points. Let B ′′ be the union of the lines spanned by 2 of the

points of S. Set B := B ′ ∪ B ′′. ��
Claim 1: #B <

(n
2

)
(q − 1) + ∑s

i=1(n/ni )
qki −1
q−1 .
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Proof of Claim 1: There are at most
(n
2

)
lines spanned by the points of S. Any line

L ⊂ P
k−1(Fq) has cardinality q + 1. Since any line occurring in the definition of B ′′

contains 2 points of S, #B ′′ ≤ (n
2

)
(q − 1) + n. Since S ⊂ B ′, #(B \ B ′) ≤ (n

2

)
(q − 1). B ′′

is the union of n/ni (ki − 1)-dimensional linear spaces, 1 ≤ i ≤ s. Strict inequality holds in
Claim 1 because s ≥ 2 and linear spaces belonging to different rulings of Y meets at points
defined over Fq .

To conclude the proof it is sufficient to find W ∈ Gr(n + 1 − t, n + 1)(Fq) such that
B ∩ W = ∅, i.e. to prove that B is not a t-blocking set in the sense of [4].

Claim 2: B does not contain any t-dimensional linear subspace.
Proof of Claim 2: Since Si spans Pki−1(Fq), the set S spans Pk−1(Fq) and hence Claim

2 follows from the inclusion S ⊂ B.
By [4] (Remark 2.5) to conclude the proof it is sufficient to quote Claims 1 and 2. ��
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