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By using exact quantum Monte-Carlo methods we calculate the ground-state properties of the
liquid phase in one-dimensional Bose mixtures with contact interactions. We find that the liquid
state can be formed if the ratio of coupling strengths between inter-species attractive and intra-
species repulsive interactions exceeds a critical value. As a function of this ratio we determine
the density where the energy per particle has a minimum and the one where the compressibility
diverges, thereby identifying the equilibrium density and the spinodal point in the phase diagram of
the homogeneous liquid. Furthermore, in the stable liquid state, we calculate the chemical potential,
the speed of sound, as well as structural and coherence properties such as the pair correlation
function, the static structure factor and the one-body density matrix, thus providing a detailed
description of the bulk region in self-bound droplets.
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Ultracold atoms provide a rich toolbox to realize dif-
ferent states of matter where many-body correlations can
be investigated in a very clean experimental setup. In
early years, the most common gas phase, both in the
normal and superfluid regime, and artificial crystals cre-
ated by external lattice potentials were routinely pro-
duced [1]. More recently, interaction effects have been
exploited to obtain spontaneous breaking of translational
symmetry in ordered arrangements of particles subject to
long-range forces [2] and in most exotic supersolid sys-
tems, featuring both the rigidity of standard solids and
the dissipationless motion of vacancies typical of super-
fluids [3, 4]. Furthermore, self-bound liquid droplets were
generated as a result of quantum fluctuations in samples
interacting via anisotropic dipolar forces [5–9] as well as
via contact interparticle potentials [10–12].

In three and two dimensions such droplets would col-
lapse according to mean-field theory and are stabilized,
for large enough numbers of particles, by repulsive cor-
relations beyond the mean-field description. Dipolar
droplets were characterized theoretically by means of a
generalized nonlocal, nonlinear Schrödinger equation [13]
and also by exact quantum Monte-Carlo (QMC) meth-
ods, employing a model two-body potential with hard-
core repulsion [14]. Droplets in a two-component Bose
gas with short-range interactions have been first pre-
dicted and studied using a generalized Gross-Pitaevskii
(GGP) equation in Ref. [15]. QMC simulations of these
latter systems have also been carried out, even though
only for limited numbers of particles [16].

In one spatial dimension (1D), quantum droplets of
Bose mixtures with contact interactions have been pre-
dicted to occur as a result of a different mechanism.
Here, beyond mean-field fluctuations are attractive and
one needs a net mean-field repulsion in order to stabilize
the droplet, which therefore are expected to form in the
region where, according to mean-field theory, the homo-

geneous gas mixture is still stable [17]. The approach
based on the GGP equation is valid in the weak-coupling
limit and provides a full description of the ground-state
energetics of the bulk liquid phase as well as of the density
profiles in droplets with a finite number of particles [17].

Droplets in 1D are also particularly interesting because
of the enhanced role of quantum fluctuations and because
stable regimes of strong correlations are experimentally
achievable [18–21] and enjoy enhanced stability. This
opens the intriguing perspective of investigating the 1D
liquid phase when interactions are strong and can not
be accounted for by the GGP approach. In the present
Letter we address theoretically the regime of strongly cor-
related liquids by means of exact QMC methods applied
to a 1D mixture of Bose gases with contact interactions.
We determine the phase diagram of the homogeneous
liquid in terms of density and coupling strengths. Fur-
thermore, in bulk systems at equilibrium a number of
relevant thermodynamic quantities is calculated, such as
chemical potential and compressibility, as well as the be-
haviour of correlation functions which provides a clear
indication of the presence of strong interactions.

We consider the following Hamiltonian

H = − h̄2

2m

Na∑
i=1

∂2

∂x2
i

+ g
∑
i<j

δ(xi − xj)−
h̄2

2m

Nb∑
α=1

∂2

∂x2
α

+ g
∑
α<β

δ(xα − xβ) + g̃
∑
i,α

δ(xi − xα) , (1)

composed of the kinetic energy of the two components
with the same mass m and atom numbers Na and Nb,
of the repulsive intra-species potentials modelled by the
same coupling constant g > 0 and by the attractive inter-
species potential of strength g̃ < 0. Here xi with i =
1, . . . , Na and xα with α = 1, . . . , Nb denote, respectively,
the positions of particles belonging to component a and
b of the mixture. In a box of size L the homogeneous
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densities of the two components are given by na = Na/L
and nb = Nb/L. We consider balanced systems where
Na = Nb = N/2, such that the relevant dimensionless

coupling parameters are given by γ = gm
nh̄2 and η = |g̃|m

nh̄2

in terms of the total density n = N/L. An important
energy scale is fixed by the binding energy of dimers in

vacuum, εb = − h̄2

mã2 , where ã = 2h̄2

m|g̃| is the 1D scattering

length associated with the attractive inter-species contact
potential.

Let us first discuss the ground state of the Hamiltonian
in Eq. (1) in the weak-coupling limit, corresponding to
γ � 1 and η � 1. The energy density in terms of the
total density n is given by

EGGP

L
=

n2

4
(g − |g̃|)

−
√
mn3/2

3
√

2πh̄

[
(g − |g̃|)3/2

+ (g + |g̃|)3/2
]
. (2)

This represents the local energy to which the
GGP functional adds the kinetic energy contribution
h̄2

2m (∇
√
n)2 [17]. From the ground-state energy E of

the mixture one can extract all relevant thermodynamic

quantities: the extremum condition dE/N
dn = 0 yields

the equilibrium density neq of the liquid and the rela-

tions µ = dE
dN and mc2 = ndµdn calculated at the density

neq give, respectively, the chemical potential µeq and the
speed of sound ceq at equilibrium. In the GGP approach
these quantities are obtained using EGGP of Eq. (2) as a
perturbative approximation to the energy E.

We study the ground-state properties of the Hamilto-
nian in Eq. (1) in a box of size L with periodic boundary
conditions by means of QMC techniques. More specif-
ically, the diffusion Monte-Carlo (DMC) method solves
the many-body Schrödinger equation in imaginary time,
thereby obtaining the exact ground-state energy through
a large-time projection [22]. Importance sampling is im-
plemented via a guiding function, which also encodes the
contact boundary conditions imposed by the interactions
in the Hamiltonian. The guiding wave function is con-
structed as a product of pairwise correlation terms which,
at short interparticle distance, reproduce the exact solu-
tion of the two-body problem with the contact potential
and at longer distances account for many-body correla-
tions [23, 24]. Finite-size effects are considered by per-
forming calculations with different N and are found to
be smaller than the typical statistical uncertainty.

The results for the ground-state energy per particle
E/N are shown in Fig. 1 for fixed values of the ratio of
coupling constants |g̃|/g and as a function of the dimen-

sionless gas parameter n|a|. Here, a = − 2h̄2

mg is the scat-
tering length associated with collision processes of the
repulsive intra-species potential with strength g. Two
distinct behaviours are clearly visible: if the ratio |g̃|/g
is sufficiently small the energy is a monotonously increas-
ing function of the density signalling a gas phase where

FIG. 1: Energy per particle, in units of half of the binding
energy, as a function of the density for different values of the
ratio |g̃|/g of coupling constants. Error bars are smaller than
the symbol sizes. The dashed line is the result of the GGP
approach at |g̃|/g = 0.9 (cyan) and at |g̃|/g = 0.6 (yellow).

FIG. 2: Phase diagram of the homogeneous liquid phase:
(blue) circles correspond to the equilibrium density of the
liquid and (red) squares to the spinodal point where the com-
pressibility diverges. Dashed lines refer to the predictions of
the GGP theory.

the minimum of energy is reached at a vanishing density
and corresponds to half of the binding energy εb. On
the contrary, if the ratio is larger than a critical value, a
minimum shows up in E/N and the density at the mini-
mum corresponds to the equilibrium density of the liquid
phase. The critical ratio of coupling strengths is found to
be (|g̃|/g)crit = 0.47(2). This value is in close agreement
with the result of the four-body scattering problem where
the effective interaction between dimers crosses from re-
pulsive to attractive [27]. Simultaneous effective three-
dimer repulsion [28] provides a microscopic scenario for
the formation of the liquid which is consistent with our
many-body calculations. Fig. 1 reports also the result
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of the GGP theory based on the energy functional of
Eq. (2). At high density, where the weak-coupling theory
is applicable, we find good agreement, but large devia-
tions both in the energy of the minimum and in the shape
of curve are visible at small density. Similar results for
the 3D homogeneous liquid phase have been obtained in
Ref. [29] using a variational approach.

The curves shown in Fig. 1 allow us to determine the
phase diagram of the homogeneous liquid in the region of
ratios (|g̃|/g)crit < |g̃|/g < 1 where this state can exist.
The phase diagram is shown in Fig. 2, where we report
the values of the equilibrium density neq and of the spin-

odal density, defined as the point where d2E/L
dn2 = 0. At

density n below the spinodal line the homogeneous sys-
tem is mechanically unstable and breaks into droplets.
For larger values of n the homogeneous phase is sta-
ble with a positive or negative pressure depending on
whether n is larger or smaller than neq. We also find
that the GGP approach is quite reliable in predicting
both the equilibrium and the spinodal line. Deviations
start to appear for |g̃|/g <∼ 0.6.

Various ground-state properties of the liquid state at
the equilibrium density neq are shown in Fig. 3 as a func-
tion of the ratio |g̃|/g. In particular, we provide results
for the chemical potential µeq, which determines the rate
of evaporation of particles from a droplet due to ther-
mal effects, and the speed of sound ceq, fixing the low-
lying collective modes of the droplet. Significant devia-
tions compared to the GGP approach are found for µeq

at small ratios, where the weak-coupling theory fails to
recover the physics of bound dimers. On the other hand,
we find that ceq is well described by the GGP energy
functional down to the smallest values of |g̃|/g consid-
ered in Fig. 3. Notice, however, that the speed of sound
is reported here in units of the Fermi velocity vF =

h̄πneq

2m
which itself depends on the equilibrium density neq.

Relevant information about the structure of the liq-
uid state at equilibrium are obtained from the study of
correlation functions. The pair correlation functions of
parallel and anti-parallel spins are defined as expectation
values 〈. . . 〉 over the ground state

gaa(s) = 1 +
4

n2

(
〈δna(x+ s)δna(x)〉 − n

2
δ(s)

)
gab(s) = 1 +

4

n2
〈δna(x+ s)δnb(x)〉 , (3)

of the density fluctuations δna(x) =
∑Na

i=1 δ(x− xi)−
n
2

and δnb(x) =
∑Nb

α=1 δ(x − xα) − n
2 of the two com-

ponents measured with respect to the average density.
These functions are shown in Fig. 4 for different val-
ues of the ratio |g̃|/g. At large distances correlations
vanish yielding the result gaa = gab = 1. The anti-
parallel spin correlation function gab shows a long-range
suppression and a peak for s <∼ ã. This behaviour arises
from the short-range pairing between opposite spins oc-
curring on length scales of the order of the size ã of a

FIG. 3: Chemical potential µeq in units of half of the dimer
binding energy: (blue) circles and right vertical axis. Speed
of sound ceq in units of the Fermi velocity: (red) squares and
left vertical axis. The dashed lines correspond to the results
of the GGP theory.

FIG. 4: Pair correlation function of parallel spins gaa (dashed
lines) and anti-parallel spins gab (solid lines) in the liquid for
different values of the ratio |g̃|/g of coupling constants.

dimer and from the phononic long-range tail. By reduc-
ing the ratio |g̃|/g both the minimum and the height
of the peak become more prominent. On the contrary,
the behaviour of gaa is fully determined by the repulsive
intra-species correlations and it exhibits a monotonously
decreasing behaviour as the distance is reduced. Also in
this case, for smaller values of |g̃|/g, correlation effects
are stronger and close to the critical ratio the repulsion
between like particles produces a large suppression of
gaa. We notice that the density pair correlation func-
tion, defined as the average gD(s) = 1

2 [gaa(s) + gab(s)],
is peaked at short distances signalling the dominant role
of attractive interactions characteristic of a liquid. Con-
versely, the magnetic pair correlation function defined as
gM (s) = 1 + 1

2 [gaa(s)− gab(s)] is suppressed at short dis-
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FIG. 5: Density (full symbols) and magnetic (open symbols)
static structure factor in the liquid as a function of q/kF for
different values of the ratio |g̃|/g. Here kF = h̄πn

2
is the Fermi

wave vector. Dashed lines correspond to the low-q linear de-
pendence fixed by the compressibility and by the magnetic
susceptibility respectively for SD(q) and SM (q).

FIG. 6: Spatial dependence of the OBDM for different values
of the ratio |g̃|/g of coupling constants. Dashed lines are
power-law fits 1/xα to the long-range behaviour. In the inset
we report the values of the exponent α obtained from the fit.

tances as a consequence of the repulsion between dimers.

From the Fourier transforms of the pair correlation
functions gD(M)(s) one obtains the density and mag-
netic static structure factors defined as SD(M)(q) =

1 + n
∫
ds eiqs

(
gD(M)(s)− 1

)
. Both structure factors

are shown in Fig. 5. At large momenta SD(q) and SM (q)
tend to unity, while for small values of q we find in both
cases a linear dependence. This is expected in the case
of the density structure factor which should obey the law
SD(q) = h̄q

2mceq
fixed by the speed of sound ceq. In the

case of SM (q), instead, one might expect a quadratic de-
pendence as q → 0 caused by the presence of a pairing
gap in the spin sector [30]. However, as evident from

Fig. 3, we are in the regime |εb| <∼ |µeq| where the pair-
ing gap is exponentially suppressed [30]. This implies
that the q2 dependence of the magnetic structure factor
should take over only at vanishingly small values of q not
reachable in our simulations. In Fig. 5 we compare the
low-q behaviour of both structure factors with the linear

slope fixed by SD(M)(q) = h̄q
2

√
χD(M)

mneq
where χD =

neq

mc2eq

is the isothermal compressibility and χM = 2
g+|g̃| is the

estimate of the magnetic susceptibility assuming the spin
sector gapless [31].

Coherence properties in the liquid state at equilibrium
are characterised by the behaviour of the one-body den-
sity matrix (OBDM). This is invariant under the ex-
change of the two species and is defined as

ρ(s) = 〈ψ†a(b)(x+ s)ψa(b)(x)〉 , (4)

in terms of the field operators giving the density of each
component: na(b)(x) = ψ†a(b)(x)ψa(b)(x). In systems ex-

hibiting off-diagonal long-range order the OBDM at large
distance s reaches a constant value identified with the
condensate density. However, Bose-Einstein condensa-
tion does not exist in 1D and at T = 0 the OBDM is
expected to decay with a power law. In Fig. 6 we show
the results of ρ(s) by varying the ratio |g̃|/g and we find
a clear algebraic decay with the distance: ρ(s) ∝ 1/|s|α,
which sets in at sufficiently large values of s. The value
of the exponent α is reported in the inset of Fig. 6 as
a function of the ratio |g̃/g|. The exponent ranges from
very small values at |g̃|/g ' 1, where the GGP theory
is applicable, to values as large as α ' 0.3 close to the
critical ratio of coupling constants. We emphasise that
in the Tonks-Girardeau regime of a single-component
Bose gas, corresponding to particles being impenetra-
ble and behaving like fermions, the OBDM decays as
ρ(s) ∝ 1/

√
|s| [32]. The values of α found moving to-

wards the critical ratio (|g̃|/g)crit arise from very strong
correlations acting between particles of the same species,
which result in a suppression of the momentum distri-
bution peak at low wave vectors n(q) ∝ 1/|q|1−α as en-
tailed by the relation between n(q) and the OBDM via
the Fourier transform n(q) =

∫
ds eiqsρ(s).

In conclusion, we have investigated the properties of
the bulk liquid state in attractive 1D Bose-Bose mixtures
by using exact QMC methods. We find that the liquid
state can exist only if the ratio of coupling constants ex-
ceeds a critical value. The thermodynamic properties of
the equilibrium state derived from our simulations are
crucial ingredients when studying the stability and the
collective modes of the liquid droplets realised in exper-
iments. In particular, we find that regimes of strongly
correlated liquid states are achievable in 1D well beyond
the conditions of applicability of the weak-coupling GGP
theory.
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