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We develop a general formalism to study laser operation in active micro-ring resonators sup-
porting two counterpropagating modes. Our formalism is based on the coupled-mode equations of
motion for the field amplitudes in the two counterpropagating modes and a linearized analysis of
the small perturbations around the steady state. We show that the devices including an additional
S-shaped waveguide establishing an unidirectional coupling between both modes —the so-called
“Taiji” resonators (TJR)— feature a preferred chirality on the laser emission and can ultimately
lead to unidirectional lasing even in the presence of sizable backscattering. The efficiency of this
mode selection process is further reinforced by the Kerr nonlinearity of the material. This stable uni-
directional laser operation can be seen as an effective breaking of T -reversal symmetry dynamically
induced by the breaking of the P-symmetry of the underlying device geometry. This mechanism
appears as a promising building block to ensure non-reciprocal behaviors in integrated photonic
networks and topological lasers without the need for magnetic elements.

I. INTRODUCTION

In the last decades silicon photonics platforms em-
ploying infrared light have become a prolific playground
due to the well-established fabrication processes and the
promising perspectives of integration in photonic circuits
which are expected to form the core of next-generation
information processing systems [1, 2]. In particular, ring
resonator lasers have always been the subject of a great
attention for both the interesting physics they host and
their rich technological applications [3].

These systems support two degenerate counterpropa-
gating modes in clockwise (CW) and counterclockwise
(CCW) directions which are in strong mode competi-
tion. It has been shown that ring lasers can host stable
unidirectional lasing in each direction, yet with the un-
desired possibility of spontaneous switching between the
two states due to quantum fluctuations [4–7]. Other un-
sought features include backscattering processes coupling
the two counterpropagating modes and even light local-
ization at defects [8–12]. This leads to a finite emission
in the two directions and a spectral broadening of the
emission with possible multi-mode behaviours and can
even place the system in a self-oscillation regime where
the intensity and phase of the emission periodically vary
in time.

Preferential laser oscillation in one of the two counter-
propagating modes is an appealing milestone due to the
features that come alongside: increased output power,
single-frequency spectrum, closer overlap with the gain
profile, and improved mode stability, among others [13].
Stable unidirectional lasing in ring resonators has been
investigated by adding an S-shaped waveguide element
to the ring resonator, so to form a so-called “Taiji” res-
onator (TJR). This S-shaped element breaks spatial re-
flection P-symmetry as it allows light of one mode to
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couple into the other one but forbids the opposite pro-
cess. Robust unidirectional operation in this laser was
first demonstrated in the near-infrared in [14, 15] and
then has been further extended to other wavelengths and
cavity designs [16–18].

The TJR has found further application in parity-
time (PT ) symmetric micro-ring lasers [19] and non-
Hermitian active structures [20]. The idea of control-
ling the chirality of the laser emission via P-symmetry
breaking has also been exploited by establishing a loss
imbalance [21] and a coupling asymmetry between the
two counterpropagating modes using two non-Hermitian
nanoscatterers [22]. Very recently, a passive nonlinear
TJR has been shown to break Lorentz reciprocity [23]
and display direction-dependent transmission. As a re-
cent new development, TJRs have started being em-
ployed [24, 25] as the building block of 2D topological
lasers [26, 27] in order to select a preferential chirality
for the surface modes and prevent backscattering reflec-
tions.

Notwithstanding the proven importance of TJRs to
achieve unidirectional lasing and their connections with
deeply rooted physical ideas, we still lack a complete the-
ory describing their operation. In this paper we develop a
general theory of lasing in active resonators featuring siz-
able couplings between counter-propagating modes such
as ring and Taiji resonators. We analyze the steady-
state solutions of the coupled-mode equations of motion
for the fields’ amplitudes and we study their stability
by looking at the small fluctuations dynamics. In this
way we prove the crucial advantage of including an S-
shaped element to guarantee robust unidirectional lasing
and protect it against spurious backscattering-mediated
mode couplings, e.g. by disorder in the resonator and
interface roughness. Finally, we show how this protec-
tion is reinforced in nonlinear resonators displaying an
intensity-dependent refractive index.

The Article is organized as follows: In Sec. II we
present the coupled-mode theory equations describing
the system and the linearized approximation employed to
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(a) (b)

FIG. 1. Schematic diagrams of the ring (a) and “Taiji” (b)
microresonators. The field amplitudes of the clockwise (CW)
and counterclockwise (CCW) modes are denoted by a+ and
a−, respectively. In the Taiji microresonator (TJR) direc-
tional couplers of transmittance (coupling) amplitude t (ik)
are signalized with the dashed green rectangles.

assess the stability of their steady-state solutions. Sec. III
makes use of these theoretical tools in order to study
the laser emission of backscattering-free ring resonators
(Sec. III A) and TJRs (Sec. III B). The effect of a weak
backscattering is explored in Sec. IV, where we show the
robustness of unidirectional lasing in TJRs. This analysis
is then extended to larger values of the backscattering in
Sec. V. The positive effect of the optical nonlinearity on
the unidirectional lasing is highlighted in Sec. VI. Con-
clusions are finally drawn in Sec. VII.

II. THE PHYSICAL SYSTEM AND THE
THEORETICAL MODEL

In this Section we mathematically describe an active
resonator using the coupled-mode equations of motion
for the field amplitudes of the CW and CCW modes.
We then solve these equations for the long-time steady
states for different values of the system parameters. We
also present the linearized approximation that allows us
to study the stability of the steady-states under small
fluctuations.

We consider a ring resonator of circumference L0 (see
Fig. 1a) and the equivalent TJR with the same perime-
ter enclosing an S-shaped waveguide (shown in Fig. 1b).
Without loss of generality the S waveguide was chosen
to couple the CW into the CCW mode but not vicev-
ersa. The two elements of the TJR are coupled at two
points separated by a distance LS via lossless and re-
ciprocal directional couplers with transmission and cou-
pling amplitudes given by t and ik, respectively (t and k
are real numbers satisfying t2 + k2 = 1). The S waveg-
uide tips are assumed to feature a reflection killer geom-
etry where light is scattered away, thus preventing back-
reflections [28]. The ring resonator case is recovered from
the TJR equations by setting t = 1. Even though we
considered a circular external perimeter, the model and
its results are still valid for any other shape, like race-
track or square-like resonators. In realistic experiments

the shape of the external waveguide can be optimized to
reduce backscattering.

In all cases the resonator supports two counterpropa-
gating modes in CW (+) and CCW (−) directions whose
amplitudes a± can be described using the coupled-mode
equations of motion [29]

iȧ± = ω0a± −
nNL

nL
ω0

(
|a±|2 + g|a∓|2

)
a±

+ i
P0

1 + 1
nS

(|a±|2 + g|a∓|2)
a± − iγTa±

+ β±,∓a∓ + η±(t), (1)

where ω0 is the resonance frequency of the resonator,
nL is the linear refractive index, nNL is the nonlinear
refractive index, g is a parameter describing the character
of the nonlinearity [23] (g = 1 for a nonlocal thermo-
optic nonlinearity and g = 2 for a purely local Kerr-
like one), P0 is the amplification rate of the unsaturated
gain, and nS is the gain saturation coefficient. The total
losses γT = γA + γS include the intrinsic absorption and
radiative losses γA of the ring and the effective losses
due to radiation into the S waveguide γS = cκ2S/L0nL
(where c is the vacuum speed of light). The generalized
coupling coefficients β±,∓ account for all kinds of mode
coupling, including backscattering and the S-waveguide
couplings. A backscattering-free ring resonator features
β±,∓ = 0, while our backscattering-free TJR is described

by β± = 0, β∓ = −i2ck2Seiω0nLLS/c/L0nL [30]. Finally,
η±(t) ∈ C is a background random noise much smaller
than all other terms in Eq. (1). Its purpose is to kick the
system out of the metastable state and help in driving
the transition from the trivial to the lasing regime.

In order to simulate the response of the resonators
we numerically solved Eq. 1 for the long-time (t → ∞)

steady states a
(0)
± employing a 4th order Runge-Kutta al-

gorithm and starting from random initial conditions at
t = 0. As we will see in the following sections, in gen-
eral the steady states oscillate at a single frequency and
therefore it is useful to define ã± = a±e

−iωt, where ω is
a reference frequency. The stationary values of the field

amplitudes ã
(0)
± = ã±(t → ∞) satisfy ∂tã

(0)
± = 0 and

therefore we can write the steady-state equation

0 = (ω0 − ω)ã
(0)
± −

nNL

nL
ω0

(
|ã(0)± |2 + g|ã(0)∓ |2

)
ã
(0)
±

+ i
P0

1 + 1
nS

(|ã(0)± |2 + g|ã(0)∓ |2)
ã
(0)
± − iγTã

(0)
±

+ β±,∓ã
(0)
∓ . (2)

Note that the random noise η does not explicitly appear
in Eq. (2) and on the following equations as it is much
smaller than the rest of the terms and it only functions
as a numerical aid which does not alter the physical pro-
cesses.

We now describe the linearized approximation em-
ployed to assess the stability of the steady-state solu-
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tions to Eq. (1). We start by writing the field ampli-

tudes ã± as the sum of the stationary states ã
(0)
± satis-

fying Eq. (2) and the small fluctuations |δã±| � |ã(0)± |,
i.e. ã± = ã

(0)
± + δã±. Introducing these expressions into

Eq. (1) and keeping fluctuations at linear order O(δã±)

we arrive to the equations

i
d

dt

[
δã+ δã∗+ δã− δã∗−

]T
= A

[
δã+ δã∗+ δã− δã∗−

]T
,

(3)

where the matrix A is given by

A =



(ω0 − ω)− 2nNL

nL
ω0|ã(0)+ |2

−nNL

nL
ω0g|ã(0)− |2

+i P0

1+ 1
nS

(|ã(0)
+ |2+g|ã(0)

− |2)

−iγT
−i P0/nS[

1+ 1
nS

(|ã(0)
+ |2+g|ã(0)

− |2)
]2

×|ã(0)+ |2

−nNL

nL
ω0ã

(0)2
+

−i P0/nS[
1+ 1

nS
(|ã(0)

+ |2+g|ã(0)
− |2)

]2
×ã(0)2+

−nNL

nL
ω0gã

(0)∗
− ã

(0)
+

+β±
−i P0/nS[

1+ 1
nS

(|ã(0)
+ |2+g|ã(0)

− |2)
]2

×gã(0)∗− ã
(0)
+

−nNL

nL
ω0gã

(0)
− ã

(0)
+

−i P0/nS[
1+ 1

nS
(|ã(0)

+ |2+g|ã(0)
− |2)

]2
×gã(0)− ã

(0)
+

nNL

nL
ω0ã

(0)∗2
+

−i P0/nS[
1+ 1

nS
(|ã(0)

+ |2+g|ã(0)
− |2)

]2
×ã(0)∗2+

−(ω0 − ω) + 2nNL

nL
ω0|ã(0)+ |2

+nNL

nL
ω0g|ã(0)− |2

+i P0

1+ 1
nS

(|ã(0)
+ |2+g|ã(0)

− |2)

−iγT
−i P0/nS[

1+ 1
nS

(|ã(0)
+ |2+g|ã(0)

− |2)
]2

×|ã(0)+ |2

nNL

nL
ω0gã

(0)∗
− ã

(0)∗
+

−i P0/nS[
1+ 1

nS
(|ã(0)

+ |2+g|ã(0)
− |2)

]2
×gã(0)∗− ã

(0)∗
+

nNL

nL
ω0gã

(0)
− ã

(0)∗
+

−β∗±
−i P0/nS[

1+ 1
nS

(|ã(0)
+ |2+g|ã(0)

− |2)
]2

×gã(0)− ã
(0)∗
+

−nNL

nL
ω0gã

(0)∗
+ ã

(0)
−

+β∓
−i P0/nS[

1+ 1
nS

(|ã(0)
− |2+g|ã(0)

+ |2)
]

×gã(0)∗+ ã
(0)
−

−nNL

nL
ω0gã

(0)
+ ã

(0)
−

−i P0/nS[
1+ 1

nS
(|ã(0)

− |2+g|ã(0)
+ |2)

]2
×gã(0)+ ã

(0)
−

(ω0 − ω)− 2nNL

nL
ω0|ã(0)− |2

−nNL

nL
ω0g|ã(0)+ |2

+i P0

1+ 1
nS

(|ã(0)
− |2+g|ã(0)

+ |2)

−iγT
−i P0/nS[

1+ 1
nS

(|ã(0)
− |2+g|ã(0)

+ |2)
]2

×|ã(0)− |2

−nNL

nL
ω0ã

(0)2
−

−i P0/nS[
1+ 1

nS
(|ã(0)

− |2+g|ã(0)
+ |2)

]2
×ã(0)2−

nNL

nL
ω0gã

(0)∗
+ ã

(0)∗
−

−i P0/nS[
1+ 1

nS
(|ã(0)

− |2+g|ã(0)
+ |2)

]2
×gã(0)∗+ ã

(0)∗
−

nNL

nL
ω0gã

(0)
+ ã

(0)∗
−

−β∗∓
−i P0/nS[

1+ 1
nS

(|ã(0)
− |2+g|ã(0)

+ |2)
]2

×gã(0)+ ã
(0)∗
−

nNL

nL
ω0ã

(0)∗2
−

−i P0/nS[
1+ 1

nS
(|ã(0)

− |2+g|ã(0)
+ |2)

]2
×ã(0)∗2−

−(ω0 − ω) + 2nNL

nL
ω0|ã(0)− |2

+nNL

nL
ω0g|ã(0)+ |2

+i P0

1+ 1
nS

(|ã(0)
− |2+g|ã(0)

+ |2)

−iγT
−i P0/nS[

1+ 1
nS

(|ã(0)
− |2+g|ã(0)

+ |2)
]2

×|ã(0)− |2



.

(4)

Altogether, Eqs. (3-4) describe the fluctuation dynamics.
The steady states described by Eq. (2) are asymptotically
stable whenever all eigenvalues of the matrix A in Eq. (4)
have a negative imaginary part. This means that fluctu-
ations are damped out as t → ∞ and the steady states
behave as attractors in the (a+, a−) space.

Throughout our calculations we employ the parame-
ters L0 = 20 µm, LS = L0/2, nL = 3.5, γA = 6.8 × 109

s−1, and ω0 = 1.2163× 1015 s−1. The general behaviour
of the system is nevertheless independent of this partic-
ular choice, which was selected only with the purpose of

reflecting a realistic setup.

III. BACKSCATTERING-FREE RESONATORS

In this Section we present the results for the paradig-
matic cases of a ring resonator and a TJR without
backscattering. We solve Eq. (1) to find the possible
steady-state solutions and plug them into Eqs. (3-4) in
order to determine their stability. The analysis in this
Section is valid in both the linear and nonlinear regimes.
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FIG. 2. (a,b) Steady-state intensity of the CW (|ã(0)+ |2) and

CCW (|ã(0)− |2) modes for a backscattering-free ring resonator
laser as a function of the pump rate P0. Panel (a) refers to
a nonlocal thermo-optic nonlinearity (g = 1), while panel (b)
corresponds to a local Kerr nonlinearity (g = 2). The black
dashed line represents the total intensity summed over the
two directions. (c,d) Imaginary part of the system eigenval-
ues λ for a ring resonator laser as a function of the pump rate
P0. Panel (c) refers to a nonlocal thermo-optic nonlinearity
(g = 1), while panel (d) corresponds to a local Kerr nonlin-
earity (g = 2). The numbers below the curves indicate their
degeneracy.

Without loss of generality, the field amplitudes ã± can be
taken as real quantities by choosing a rotating reference
frame co-moving with the (possibly nonlinear-shifted)
resonance frequency of the resonator.

A. Ring resonator

We begin by studying the solutions to Eq. (1) in
the simplest backscattering-free ring resonator case (i.e.
t = 1, β±,∓ = 0). Fig. 2 shows the steady-state inten-
sities |ã0±|2 of both modes (panels (a) and (b)) together
with the imaginary parts of the eigenvalues of the fluctua-
tion dynamics matrix (1) (panels (c) and (d)) for growing
values of the pump rate from P0 = 0 to P0 = 4γT in the
g = 1 (panels (a) and (c)) and g = 2 (panels (b) and
(d)) cases. In both situations, below the lasing threshold

P0 < γT the intensity |ã(0)± |2 of both modes is zero and
the four eigenvalues

λ1,2 = +(ω0 − ω) + i(P0 − γT), (5)

λ3,4 = −(ω0 − ω) + i(P0 − γT), (6)

feature the same negative imaginary part. Since gain

saturates with ã
(0)
± , in this regime the only possible stable

1

3

4 4

1

1

2

FIG. 3. (a,b) Steady-state intensity of the CW (|ã(0)+ |2) and

CCW (|ã(0)− |2) modes for a backscattering-free TJR laser as
a function of the pump rate P0. Panel (a) refers to a nonlo-
cal thermo-optic nonlinearity (g = 1), while panel (b) corre-
sponds to a local Kerr nonlinearity (g = 2). The black dashed
line represents the total intensity summed over the two direc-
tions. (c,d) Imaginary part of the system eigenvalues λ for a
TJR laser as a function of the pump rate P0. Panel (c) refers
to a nonlocal thermo-optic nonlinearity (g = 1), while panel
(d) corresponds to a local Kerr nonlinearity (g = 2). The
numbers below the curves indicate their degeneracy.

solution is that no coherent light is present. Above the
lasing threshold P0 > γT the eigenvalues change to

λ1/γT = −nNL

nL
ω0(g − 1)nS

(
P0

γT
− 1

)
+ i

(
P0/γT

1 + g(P0/γT − 1)
− 1

)
, (7)

λ2/γT = +
nNL

nL
ω0(g − 1)nS

(
P0

γT
− 1

)
+ i

(
P0/γT

1 + g(P0/γT − 1)
− 1

)
, (8)

λ3 = 0, (9)

λ4/γT = −2i
P0/γT − 1

P0/γT
. (10)

The g = 1 case presents a particular behaviour as it
is the only situation in which the system shows effective
gain in both directions and features a threefold degener-
ate Goldstone mode with λ1,2,3 = 0. This is due to the
phase freedom of each direction and the CW ↔ CCW
symmetry which is present in this case only. Beyond
the bifurcation point both intensities depart linearly with

randomly-chosen values satisfying (|ã(0)+ |2 + |ã(0)− |2)/nS =
P0/γT − 1.
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For any other value 1 < g ≤ 2 the resonator lases
randomly in one mode only with equal probability as

|ã(0)± |2/nS = P0/γT − 1, while the other one remains un-
amplified. In contrast to the g = 1 case, now the lin-
earized analysis features a single Goldstone mode (λ3 =
0, λ1,2,4 6= 0). Due to the asymmetric gain amplification
terms in Eq. (1) a larger intensity in a certain direction
randomly determined by the initial conditions and the
background random noise η± leads to a smaller ampli-
fication in the other one. As t evolves this asymmetry
drives the system into a unidirectional lasing state in the
randomly favored mode, while the other is killed.

By employing a Fourier transform we were able to as-
certain that for P0 > γT the steady-state field amplitudes

a
(0)
± oscillate in time at the nonlinear-shifted resonance

frequency of the resonator, which we take as the reference
frequency ω. In the g = 1 case this is given by

ω = ω0 −
nNL

nL
ω0(|ã(0)+ |2 + |ã(0)− |2), (11)

while for g > 1 the intensity in one of the two directions
vanishes and one has either

ω = ω0 −
nNL

nL
ω0|ã(0)± |2 (12)

for unidirectional lasing in the CW or CCW direction,
respectively.

The fact that no bidirectional lasing can be observed
for g > 1 can be put on more solid grounds as follows.

From Eq. (2) one sees that if both field amplitudes ã
(0)
±

are taken as real numbers a finite intensity in the two

directions (i.e. ã
(0)
± 6= 0) would simultaneously imply

P0

1 + 1
nS

(|ã(0)± |2 + g|ã(0)∓ |2)
= γT, (13)

which necessarily sets |ã(0)+ |2 = |ã(0)− |2. Diagonalizing the
matrix in this case, one obtains the eigenvalues

λ1,2 = 0, (14)

λ3/γT = +2i
P0/γT − 1

P0/γT

g − 1

g + 1
, (15)

λ4/γT = −2i
P0/γT − 1

P0/γT
. (16)

Having g > 1 implies Im{λ3} > 0 and therefore this
solution is unstable. We conclude that for g > 1 the
only possible stable solutions involve unidirectional lasing
in one of the two counter-propagating modes, randomly
chosen by the initial conditions.

B. TJR

We now move on to the study of the stability of an
active TJR under the same ramp in the pump rate
employed in the previous Subsection. For these sim-
ulations we set γS = 0.2γA, β± = 0, and β∓ =
−i2ck2Seiω0nLLS/c/L0nL. We have neglected the nonlin-
ear phase shift inside the S waveguide as the optical
power inside it is very small compared to that circulating
along the external waveguide.

Fig. 3 shows the steady-state intensities |ã(0)± |2 (in pan-
els (a) and (b) for g = 1 and g = 2, respectively) and
the imaginary part of the eigenvalues (in panels (c) and
(d) for g = 1 and g = 2, respectively) for the family of
steady-state solutions that are most commonly reached.
Below the lasing threshold P0 < γT the two directions
feature a zero intensity for both interaction types. Above
the lasing threshold P0 > γT the intensity of the mode
in which the S-waveguide coupling is directed (in our
case the CCW) departs linearly from the bifurcation as

|ã(0)− |2/nS = P0/γT − 1, while the other mode (the CW
one) remains empty. The off-diagonal S-waveguide cou-
pling in Eq. (4) does not change the eigenvalues of the
linearized theory w.r.t. the ring resonator case and there-
fore they are given again by Eqs. (5-6) below threshold
and by Eqs. (7-10) above threshold. As opposed to the
ring resonator case, not even for g = 1 one can have a
finite intensity in both modes simultaneously: the pres-
ence of the S waveguide breaks in fact the CW ↔ CCW
symmetry and favors unidirectional lasing in the CCW
direction. As in the previous Subsection using a Fourier
transform we found that above P0 > γT the steady-state

field amplitudes a
(0)
± oscillate at the nonlinear-shifted res-

onance frequency of the resonator, which is taken as the
reference frequency ω. For our TJR this is given by

ω = ω0 −
nNL

nL
ω0|ã(0)− |2 (17)

for any value of g.

While the unidirectional CCW-only solutions depicted
in Fig. 3 are the steady-state that is most frequently
reached by the numerics, it is important to verify whether
other solutions are possible in specific parameter regimes.
To this purpose, we considered Eq. (2) assuming a finite

intensity in both modes, i.e. ã
(0)
± 6= 0. Without loss of

generality ã
(0)
+ is taken to be a real number. From Eq. (2)

this would require
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2

(a)

1

0

(b) (c)

FIG. 4. (a) Pump rate P0 vs. square root of the S-coupling losses
√
γS diagram for a backscattering-free TJR with g = 2

and nNL = 0. The region where only the trivial solution is present is depicted in white. The light blue region represents
the parameter range where only CCW lasing is possible. In the dark blue region two solutions exist: single-mode lasing in

the preferred CCW direction and bidirectional lasing with |ã(0)+ | � |ã
(0)
− |. Each region is labeled by the numbers 0, 1, and 2,

respectively. (b) Normalized steady-state intensity |ã(0)± |2 obtained by numerically solving Eq. (1) as a function of
√
γS for a

fixed P0 = 5γA as indicated by the dashed horizontal line in (a). (c) Imaginary part of the system eigenvalues λ as a function
of
√
γS corresponding to the path shown as the dashed horizontal line of panel (a). The points are numerically calculated by

diagonalizing the matrix A in Eq. (4) for the steady-state solutions displayed in panel (b). The dashed lines correpond to the
analytic eigenvalues (5-10).

ω0 − ω =
nNL

nL
ω0(|ã(0)+ |2 + g|ã(0)− |2), (18)

P0

1 + 1
nS

(|ã(0)+ |2 + g|ã(0)− |2)
= γT, (19)

ã
(0)
− =

i c
L0nL

2κ2Se
iω0nLLS/c

(ω0 − ω)− nNL

nL
ω0

(
|ã(0)− |2 + g|ã(0)+ |2

)
+ i P0

1+ 1
nS

(|ã(0)
− |2+g|ã(0)

+ |2)
− iγT

ã
(0)
+ . (20)

In the g = 1 case the first two conditions impose the
denominator in Eq. (20) to vanish, which implies that

ã
(0)
+ = 0.

To carry on this analysis in the g > 1 case we explored
the phase space of the problem by numerically solving
Eq. (1) using different values of P0 and γS in order to ex-
plore its possible steady-state solutions. We found that
stable bidirectional lasing is possible for values of P0 and
γS within the dark blue region of Fig. 4a. This kind of
solutions involve a strong lasing in the CW direction and
a smaller intensity populating the CCW due to the pres-

ence of a weak S coupling. For larger values of γS, |ã(0)− |2

increases up to a threshold in which the ã
(0)
+ 6= 0 solution

disappears and only the ã
(0)
− 6= 0 one remains. While this

figure is plotted in the linear (nNL = 0) regime, we have
verified that the same conclusion holds in the presence
of nonlinearities, nNL 6= 0. However, the stronger is the

nonlinearity nNL, the smaller is |ã(0)− |2 in the bidirectional
solution.

The light blue parameter range of Fig. 2 features a
single solution with emission in the CCW mode only.
The lower limit is given by the pump threshold P0 = γT.
Of course, this CCW-mode lasing solution also extends
in the dark-blue region of Fig. 2 where it coexist with the
other, bidirectional solution. Which of the two solutions
is actually chosen by the system will depend on the initial
conditions.

Panels (b) and (c) show the lasing intensity and the
imaginary part of the eigenvalues (calculated by diago-
nalizing the matrix A in Eq. (4)) for the ramp depicted
as the dashed line in panel (a), respectively. The initial
conditions correspond to unidirectional lasing in the CW
direction. As γS is increased the initially unfavored CCW
mode gets rapidly populated and the emission intensity
in the CW mode decreases. As this happens the imagi-
nary part of one of the eigenvalues grows and eventually
crosses zero towards positive values. At this point the
solution becomes unstable and the system experiences a
transition towards a unidirectional lasing regime in the
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CCW direction. Note that as γS grows, the total loss rate
γT is also enhanced so that the CCW intensity decreases
until the system ends up in the trivial solution.

We conclude that the presence of the S-shaped element
breaking P-symmetry in Eq. (1) rules out the possibility
of pure unidirectional lasing solutions in the unfavored
direction. For g = 1 not even bidirectional emission is
possible and beyond the lasing threshold the system com-
pulsory lases in a single direction with the preferential
chirality introduced by the S waveguide. For g > 1 bidi-
rectional lasing is possible for a small enough S-coupling,
but only for particular values of the parameters and al-

ways giving |ã(0)+ |2 � |ã
(0)
− |2.

From a more abstract perspective, we can conclude this
section by noting that, for any value of g, in contrast to
what happens in a passive device or for a pump rate P0 <
γT, the solution for P0 > γT is not invariant under T -
reversal even though the underlying equations of motion
are fully T -reversal symmetric. We can therefore state
that the presence of the P-breaking S-shaped element
induces a dynamical breaking of T -symmetry above the
lasing threshold.

IV. SMALL BACKSCATTERING

In this Section we study how the laser emission of ac-
tive ring resonators and TJRs is affected by a random
backscattering smaller in modulus than the intrinsic ab-
sorption and radiative loss rate γA of the ring. The ana-
log analysis for a backscattering larger than γA can be
found in Sec. V. In both Sec. IV and Sec. V the non-
linear shift of the resonance frequency of the resonator
is neglected (i.e. we set nNL = 0). This effect will be
studied in Sec. VI. As the pure nonlocal g = 1 case is not
representative of a realistic experiment, starting from the
present Section we will focus exclusively in values within
the range 1 < g ≤ 2. As in Sec. III we employ the refer-
ence frequencies (12) and (17) which for nNL = 0 reduce
to the resonance frequency of the resonator ω = ω0.

In general, the effect of backscattering can be summa-
rized by the Hermitian and non-Hermitian coefficients

h = −
β∓ + β∗±

2
, (21)

n = i
β∓ − β∗±

2
, (22)

defined in [31]. The former gives rise to a symmetric,
conservative exchange of energy between the CW and
CCW modes, while the latter introduces a different bal-
ance between the back-reflection in each mode that can
lead to gain and losses beyond the saturable gain (∝ P0)
and losses (∝ γT) terms in Eq. (1). Therefore we need
|n| ≤ γT in order to preserve the validity of our model.

The distinction between small and large backscatter-
ing made through this Article is referred to the loss rate
without S couplings γA. By small backscattering we in-
tend that it is at least one order of magnitude smaller

(a)

(b)

FIG. 5. Ring resonator with g = 2 and backscattering pa-
rameters |n| = 0.1γA and h = 0. (a) Steady-state intensity

|ã(0)± |2 in each mode as a function of the pump rate P0. The
dashed line is the backscattering-free intensity. (b) Imaginary
part of the fluctuation dynamics eigenvalues λ as a function
of P0. The dashed lines represent the imaginary part of the
backscattering-free eigenvalues (5-10).

than γA, i.e. |h|, |n| . 10−1 × γA. On the other hand,
we labeled as large backscattering that which is at least
comparable with γA, i.e. |h| & 10−1γA. For all param-
eter choices, simulations are carried by solving Eq. (1)
for different values of n and h and finding the t → ∞
steady states ã

(0)
± . As usual, the stability of the solutions

is assessed by calculating the corresponding eigenvalues
of the fluctuation dynamics matrix in Eq. (4).

A. Perturbative solution

Prior to the numerics we discuss the perturbative
analytical solution of Eq. (1) valid for both the ring
resonator and the TJR as microscopic backscattering
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FIG. 6. Probability of a ring resonator with g > 1 to lase preferentially in the CW (dark blue) and CCW (light blue) direction
for different values of the backscattering. (a) Fixed modulus |h| = |n| ' 5 × 10−4γA as a function of the relative phase angle
∆φ = φn − φh. (b) Fixed ∆φ = π/2 and |h| ' 5× 10−4γA as a function of |n|. (c) Fixed ∆φ = π/2 and |n| ' 5× 10−4γA as
a function of |h|.

is added. We assume that this is so small that the
backscattering-free solution of Eq. (1) involving unidi-
rectional lasing does not substantially change. In or-
der to account for the small intensity in the suppressed
mode we considered the backscattering couplings β̃±,∓
as the small perturbations to the backscattering-free
ring resonator and TJR solutions explored in Sec. III.
The new coupling parameters for the ring resonator are
β±,∓ = β̃±,∓, while those for the TJR are β± = β̃±
and β∓ = −i2ck2Seiω0nLLS/c/L0nL + β̃∓. Without loss of
generality, and in order to use the same indices in both
cases, we considered an unperturbed solution in which
the ring resonator lases unidirectionally in the CCW
mode. We can then write the perturbed solutions as

ã
(0)
± = ã

(0)
±,un + δã

(0)
± , where ã

(0)
±,un are the unperturbed

solutions with β̃±,∓ = 0. As shown in Sec. III these

are given by ã
(0)
+,un = 0 and |ã(0)−,un|2/nS = P0/γT − 1.

On the other hand δã
(0)
± are the first-order perturbative

corrections. Introducing the perturbed solution into the
steady-state given by Eq. (2) and staying at linear order

O(β̃±,∓), O(δã
(0)
± ) in the perturbation we arrive at

δã
(0)
+ =

iβ̃±
P0

1+ g
nS
|ã(0)

−,un|2
− γT

ã
(0)
−,un. (23)

The intensity in the perturbatively populated CW mode

is given by |δã(0)+ |2. This means that as long as backscat-
tering couples light from the CCW into the CW mode
(i.e. for β̃± 6= 0) the CW mode will host a finite emis-
sion. Note that the intensity in the CW mode increases
whenever the system features a smaller value of g, that is
a more nonlocal gain saturation. The perturbation the-
ory breaks down for a pure thermo-optically driven gain
saturation as Eq. (23) diverges for g = 1. This is a conse-
quence of the threefold-degenerate Goldstone mode that

appears in this case.

Our simulations confirm that Eq. (23) correctly ac-
counts for the intensity of the perturbatively populated
CW mode as long as |β̃±| � γT. The intensity in the
preferred mode is still given with a large precision by the

unperturbed solution |ã(0)−,un|2 and the eigenvalues of the
matrix A in Eq. (4) do not significantly change. There-
fore we conclude that in the presence of perturbative
backscattering both the ring resonator and the TJR lase
unidirectionally to a great extent, although some light is
also present in the unfavored mode at the same frequency,
with an intensity proportional to the backscattering cou-
pling in its direction.

B. Ring resonator

Here we demonstrate how the values of the Hermi-
tian and non-Hermitian coefficients describing backscat-
tering (21-22) control the lasing chirality in a ring res-
onator. This fact can be employed to construct unidi-
rectional lasers by properly engineering the resonator’s
microscopic backscattering, for example by means of one
or more nanotips coupled with the evanescent field of the
resonator, similarly to the experiment of [22]. Note that
in a ring resonator γS = 0 and therefore γT = γA.

As was shown in Sec. IV A the presence of perturba-
tive backscattering does not appreciably change the fluc-
tuation dynamics eigenvalues and the system lases uni-
directionally to a great extent. Nevertheless, for values
|β̃±,∓| & 10−2|γA| the perturbation theory (23) breaks
down, a significant intensity populates the unfavored las-
ing direction and the intensity in the preferred direction
falls below its usual value P0/γA − 1. Fig. 5 shows the
intensities (panel (a)) and imaginary part of the eigen-
values of matrix A (panel (b)) for a ring resonator fea-
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turing g = 2, h = 0 and |n| = 0.1γA. Above the las-
ing threshold located at P0 ' 0.9γA both counterpropa-
gating modes are amplified with the same intensity and
oscillate simultaneously in a coherent way. As P0 and

|ã(0)± |2 grow the effect of mode competition in the gain
saturation gets reinforced and intensity fluctuations be-
come more susceptible of breaking the symmetry of the
laser emission. This is evident from panel (b), where
one of the imaginary parts quickly grows as P0 increases
and at some point turns positive. Here, the system un-
dergoes a transition towards a regime with a larger las-
ing intensity in a preferred mode. The larger g (that
is, the larger the local character of the gain saturation),
the smaller the value of P0 necessary to drive the system
out of the bidirectional emission state as gain saturation
asymmetry becomes more important. Nevertheless, the
unfavored mode maintains a small intensity due to the
finite backscattering in both directions.

The smaller lasing threshold obtained in Fig. 5 can
be understood by diagonalizing the matrix A of Eq. (4).
In the general coupling case β±,∓ 6= 0 below the lasing

threshold (i.e. for |ã(0)± |2 = 0) the eigenvalues are

λ1 = +(ω0 − ω) + i(P0 − γA) + (β±β∓)1/2, (24)

λ2 = −(ω0 − ω) + i(P0 − γA)− (β∗±β
∗
∓)1/2, (25)

λ3 = +(ω0 − ω) + i(P0 − γA)− (β±β∓)1/2, (26)

λ4 = −(ω0 − ω) + i(P0 − γA) + (β∗±β
∗
∓)1/2. (27)

The terms in the square roots can modify their imaginary
parts, therefore shifting the threshold position w.r.t. the
backscattering-free case, where these terms were zero.
The new lasing threshold takes place at a power P0 =
γA − Im{(β±β∓)1/2}. If n = 0 one has that β∓ = β∗±
and the square roots are purely real. In this case the
lasing threshold remains at its usual position P0 = γA.
The same is true for a unidirectional coupling (featuring
either β± = 0 or β∓ = 0). The maximum shift for fixed
|β±,∓| occurs for h = 0 and is given by P0 = γA − |β±|.

In spite of the finite intensity emitted in the unfavored
direction, in the small backscattering regime the majority
of the ring resonator’s emission still takes place in a pref-
erential direction determined by the particular choice of
backscattering coefficients. Fig. 6 shows the probability
of a ring resonator featuring g > 1 to lase preferentially
in a certain direction as a function of the Hermitian and
non-Hermitian parameters. Here, the probability is cal-
culated by averaging over many independent realizations
of the initial noise used to seed the laser operation.

We first study the situation in which both of them are
finite and of equal strength, i.e. |h| = |n| 6= 0. In panel
(a) these are kept at a fixed modulus |h| = |n| ' 5 ×
10−4γA while the phase angle between them ∆φ = φn −
φh is varied. For ∆φ = 0, π (which implies |β±| = |β∓|)
the system has equal probabilities of lasing in each mode,
while for ∆φ = ±π/2 the emission preferentially takes
place in one particular direction with 100% probability.
It is easy to realize that ∆φ = +π/2 implies β∓ = 0 while

(a)

(b)

FIG. 7. Ramp in the S-waveguide coupling from γS = 0 to√
γS/γA = 1.5 for a ring resonator with g = 2 in the pres-

ence of a backscattering described by |n| = 0.1γA and h = 0
for a fixed pump rate P ' 36γA. (a) Intensities in each

mode |ã(0)± |2 as a function of the square root of the S-coupling
losses

√
γS. (b) Imaginary part of the linearized fluctuation

dynamics eigenvalues λ as a function of
√
γS. The dashed

lines correspond to the backscattering-free eigenvalues (7-10).

∆φ = −π/2 corresponds to having β± = 0. These results
are in perfect agreement with the behavior of passive
microdisk resonators reported in [31].

However, this is only valid when |h| = |n| 6= 0. If
one of the two parameters is kept fixed and the other is
reduced to zero, the lasing probability in each direction
tends to P = 0.5 regardless of the phase difference ∆φ,
as shown in panels (b) and (c). This is easily understood
by exploring Eqs. (21-22): either n = 0 or h = 0 imply
in fact an equal coupling strength in the two directions,
i.e. |β±| = |β∓|.
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C. TJR

In the case of a TJR coupling unidirectionally the CW
into the CCW direction one has that |β∓| � |β±| and
therefore

h '− β∓
2
, (28)

n ' i
β∓
2
, (29)

which falls into the |n| = |h|, ∆φ = −π/2 case. As al-
ready shown in this Section, this implies that even though
the resonator hosts a small intensity in the CW mode due
to the finite coupling β± 6= 0, the majority of the system
emission takes place in the CCW mode. The presence of
additional backscattering coupling light into the CCW
direction does not have any visible effect as it does not
modify the coupling β∓ significatively [32].

In order to shine more light into the role of the S
waveguide we performed a coupling ramp from γS = 0
(which corresponds to a ring resonator) to

√
γS/γA = 1.5

in a resonator featuring g = 2 and a fixed pump rate
P0 ' 36γA. The initial situation is described by the
backscattering parameters employed in Fig. 5, namely
|n| = 0.1γA and h = 0, for which the two directions have
equal probabilities of hosting the preferential lasing emis-
sion. Our results are displayed in Fig. 7. As γS grows
β∓ increases: This leads to an intensity transfer from

the CW to the CCW mode. For
√
γS/γA & 0.25 the S-

waveguide coupling strength grows beyond the backscat-
tering couplings and the imaginary part of one of the
eigenvalues of matrix (4) crosses zero from below. The
system then experiences a transition towards a state with
preferential lasing in the CCW direction. As γS con-
tinues growing the relative importance of backscattering
w.r.t. the S coupling decreases. For

√
γS/γA ' 1 the ra-

tio between backscattering in the CW direction β± and
the total loss rate γT already gives |β±| ' 5 × 10−2γT,
which means that the system is approaching the pertur-
bative backscattering regime described in Sec. IV A. As
this happens the spectrum of eigenvalues of the matrix
A in Eq. (4) approaches the backscattering-free eigenval-
ues (7-10) and the intensity ratio between the two di-

rections already gives a sizable value |ã(0)− |2 ' 250|ã(0)+ |2

for
√
γS/γA = 1.5. The eventual decrease of the inten-

sity also in the CCW direction that is observed at higher
γS is due to the growth of the total loss rate γT that is
naturally associated to the increasing γS.

These results confirm the possibility to use the S
waveguide in order to guarantee unidirectional lasing.
The necessary condition is to implement a sufficiently
large coupling allowing to treat backscattering as a mi-
croscopic perturbation to unidirectional lasing, which ac-
cording to our model is legitimate at least up to |β̃±,∓| .
10−2γT.

V. LARGE BACKSCATTERING

In this Section we investigate lasing in ring resonators
and TJRs characterized by the presence of a large Hermi-
tian backscattering compared with the resonator loss rate
in the absence of the S element, i.e. |h| & γA. As we will
show such a coupling introduces self-oscillations of the in-
tensity in the two directions. The requirement |n| ≤ γT
that is needed to avoid an unphysical backscattering-
induced gain implies that our model can only account
for a large Hermitian backscattering. For simplicity, we
will then consider n = 0 throughout this Section. The
addition of a non-Hermitian coupling would only intro-
duce an asymmetry between the two counter-propagating
directions that damps the oscillating behavior for values
of n approaching γT. As in Sec. IV, the analysis car-
ried in this Section does not take into account the reso-
nance shift due to the nonlinearity, i.e. nNL = 0. This
additional effect will be studied in Sec. VI. Under this
condition, lasing occurs at the resonator frequency ω0.

Fig. 8a shows the time evolution of the intensity in
each mode for a ring resonator featuring g = 2, n = 0,
and |h| = γA at a pump rate P0 = 4.5γA. As observed
in previous works [10, 12] for such a large backscatter-
ing coupling the resonator enters a regime in which the
intensity in the two directions oscillates in phase oppo-
sition at a frequency given by twice the modulus of the
backscattering coupling |h|. Panel (b) shows the am-
plitude ∆N± of these oscillations as a function of P0.
This is equal in the two directions and is slightly smaller
than the backscattering-free amplitude, which is given
by P0/γA − 1. The frequency at which the field ampli-
tudes ã± oscillate ωFT is extracted from a Fourier trans-
form, and displayed in panel (c) for a fixed pump rate
P0 = 4.5γT as a function of |h|. As shown in Sec. IV
for a small backscattering in our reference frame rotat-
ing at a frequency ω = ω0 the field amplitudes do not
oscillate. As |h| grows beyond approximately 0.1γA both
field amplitudes start oscillating with two opposite fre-
quency components which rapidly approach ±|h| as the
Hermitian backscattering grows.

This situation changes dramatically when the S-shaped
waveguide of the TJR is introduced. In Fig. 9 a ring res-
onator featuring the same g parameter and backscatter-
ing coefficients as in the simulation displayed in Fig. 8
is subjected to an S-coupling ramp. The pump rate
is fixed at P0 = 20γA. Panel (a) shows the mean
value between the maximum and minimum intensities
N± = (max{|ã±|2} + min{|ã±|2})/2 emitted in each
direction. In the oscillatory regime that takes place
for

√
γS/γA . 0.5 this quantity corresponds to half

the amplitude of the oscillations. In the nonoscillatory
regime (for

√
γS/γA & 0.5) one has that max{|ã±|2} =

min{|ã±|2} and therefore N± = |ã(0)± |2. On the other
hand, Fig. 9b shows the oscillation frequency ωFT ex-
tracted from a Fourier transform of the field amplitudes
ã± in each direction for the same ramp in γS. In the
oscillatory regime the two amplitudes oscillate with two
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FIG. 8. Ring resonator with g= 2 and backscattering given by |h| = γA and n = 0. (a) Intensity in each mode |ã±|2 as a
function of time t. The pump rate is fixed at P0 = 4.5γA. (b) Amplitude ∆N± of the oscillations of the intensity in each mode
as a function of the pump rate P0 (pink circles). The amplitude is the same in the two directions. The dashed line corresponds
to the usual dependence in the absence of backscattering. (c) Frequencies ωFT of the two emission components (whose beating
leads to the intensity oscillations visible in panel (a)) as a function of the Hermitian backscattering coefficient |h|. The pump
rate is fixed at P0 = 4.5γA. The frequencies are the same in the two directions.

frequency components given by the Hermitian backscat-
tering coefficient ±|h|. For

√
γS/γA & 0.5 the cou-

pling strength with the S waveguide increases beyond the
backscattering couplings given by |h| = γA and the oscil-
lations disappear (see panel (b)). This regime is equiva-
lent to the situation studied in Sec. IV C. Panel (a) shows
that the S-shaped waveguide imposes a definite chirality
in the laser emission, as the CCW mode becomes the fa-
vored mode when γS is increased. Once again, the even-
tual decrease of the intensity in the two directions that is
visible at larger γS is due the growth of the total loss rate
γT. Interestingly, this effect mainly affects the unfavored
CW mode, whose emission becomes rapidly negligible.
For instance, already at

√
γS/γA = 2.5 the intensity ra-

tio between both directions is |ã(0)− |2 ' 17|ã(0)+ |2.

VI. EFFECT OF THE NONLINEARITIES

In this Section we show that the local Kerr nonlinearity
indigenous to the waveguide material reinforces the uni-
directionality of the ring laser emission. This effect can
be combined with the action of the S-waveguide in or-
der to further reinforce unidirectional lasing even in the
large backscattering regime. The nonlinearity modifies

the resonance frequency of each mode ω
(0)
± according to

ω
(0)
± = ω0

[
1− nNL

nL
(|ã(0)± |2 + g|ã(0)∓ |2)

]
. (30)

In the backscattering-free ring resonator and unidirec-
tional TJR lasers the nonlinearity has no effects beyond
the shift of the resonance frequency. The behavior is
therefore the same as the one described in Sec. III for

the linear regime. The same is true for a pure thermo-
optic nonlinearity with g = 1 even in the presence of
backscattering. In this case the resonance frequency of
the two modes is in fact shifted by equal amounts and
therefore the coupling between them is not perturbed by
the nonlinearity. On the other hand, if one has g > 1
and finite and unequal intensities in the two modes, as
is possible for a sufficiently large backscattering in a ring
resonator, the resonance frequency in the two directions
will be different. This fact further suppresses the inter-
modal coupling as it reduces the probability of light to
scatter from one mode to another.

Fig. 10a shows the mean value between the intensity
maxima and minima N± as the nonlinear refractive index
nNL is varied. In the nonoscillatory regime this quantity

reduces to the steady-state intensity |ã(0)± |2. Panel (b)
of the same figure shows the field oscillation frequencies
ωFT in the two directions for the same nNL ramp, as
extracted from a Fourier transform of the field ampli-
tudes. Once again we chose a rotating reference frame at
the linear resonance frequency ω0. The calculation was
made for a ring resonator featuring a g = 2 nonlinear-
ity and the backscattering parameters n = 0, |h| = γA,
which fall into the large backscattering regime described
in Sec. V. The pump rate is fixed at P0 = 4.5γA. Sim-
ilarly to Fig. 9, as nNL increases oscillations disappear,
leading to a regime in which the laser emission is con-
centrated in a randomly chosen direction (the CW one
in the figure), each with 50% of probability. This effect
is reinforced as nNL grows, ultimately achieving a pure
unidirectional emission for nNLnSω0/nLγA & 10. For the
largest value of nNL calculated, the intensity ratio gives

|ã(0)+ |2 ' 104|ã(0)− |2.
As shown in panel (b), for negligible values of nNL both

modes oscillate with two frequency components given by
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FIG. 9. Ramp in S-waveguide coupling from γS = 0 (ring

resonator) to
√
γS/γA = 2.5 for a ring resonator with g =

2 in the presence of a backscattering given by n = 0 and
|h| = γA for a fixed pump rate P ' 20γA. (a) Mean value
between intensity maxima and minima in each direction N±
as a function of the square root of the S-coupling losses

√
γS.

Data corresponding to
√
γS/γA . 0.5 falls into the oscillation

regime. (b) Frequency of the field amplitudes in the two
directions ωFT as a function of

√
γS.

the Hermitian backscattering coefficient ±|h|, as demon-
strated in Sec. V. For the purpose of using a logarith-
mic scale, the absolute values |ωFT| are displayed. As
nNL increases, the frequencies blue shift until a transi-
tion takes place at nNLnSω0/nLγA & 1 back to a regime
with stationary intensity values, in which the two field
amplitudes oscillate at a single frequency given by the
nonlinear displacement of the resonance frequency of the
resonator (Eq. (30)) for the preferred lasing direction.
This is telling us that the unfavored CCW direction does
no longer feature laser oscillations at its own resonance
frequency but that all the light that populates it is being
backscattered from the preferential CW direction.

(a)

(b)

FIG. 10. (a) Mean value between intensity maxima and
minima N± as a function of the nonlinear refractive index
nNL for a ring resonator featuring a Kerr-like nonlinearity
(g = 2) and backscattering given by n = 0, |h| = γA. The
pump rate is fixed at P0 = 4.5γA. Data corresponding to
nNLnSω0/nLγA . 1 fall into the oscillatory regime. (b) Ab-
solute values of the oscillation frequencies ωFT of the field
amplitudes ã± as a function of nNL. Squares and circles are
the values extracted from the Fourier transform (FT) of the
data presented in panel (a). Dashed lines represent the ex-
pected oscillation frequency in the linear regime |h| and the
nonlinear frequency shifts for each mode.

Finally, Fig. 11 displays the steady-state intensities

|ã(0)± |2 and the corresponding imaginary part of the eigen-
values of matrix A (Eq. (4)) for a pump rate ramp in a

TJR featuring an S-waveguide coupling
√
γS/γA = 2.5, a

g = 2 Kerr nonlinearity of strength nNLnSω0/nLγA = 50,
and large backscattering parameters n = 0 and |h| = γA.
In the absence of the S-waveguide and the nonlinearity,
the corresponding ring resonator would feature intensity
oscillations at a frequency given by 2|h|. Instead, the
nonlinear TJR capitalizing on these two crucial elements
shows unidirectional lasing with a preferred CCW chi-
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(a)

(b)

FIG. 11. Pump rate ramp in a TJR featuring an S-waveguide
coupling

√
γS/γA = 2.5, a g = 2 nonlinearity given by

nNLnSω0/nLγA = 50 and backscattering parameters n = 0

and |h| = γA. (a) Steady-state intensity |ã(0)± |2 in each
mode as a function of the pump rate P0. The dashed line
is the backscattering-free intensity. (b) Imaginary part of
the fluctuation dynamics eigenvalues λ as a function of P0.
The dashed lines correspond to the imaginary parts of the
backscattering-free eigenvalues given by Eqs. (5-10). The
black circles are not visible as they lay below the light blue
ones.

rality with 100% probability. The intensity in the CW
direction is four orders of magnitude smaller than that
in the CCW one and can therefore be safely neglected.
The Bogoliubov analysis of the small perturbations to
this steady state reveals that the eigenvalues of the lin-
earized fluctuation dynamics matrix A are identical to
those calculated in the backscattering-free case, ensuring
the stability of the unidirectional emission.

VII. CONCLUSIONS

In this work we demonstrated that an active “Taiji”
micro-ring resonator (TJR) formed by a standard ring
resonator supplemented by an S-shaped element unidi-
rectionally coupling the two counterpropagating modes
show a preferential chirality in the laser oscillation even
in the presence of a large backscattering. The presence of
the S-shaped element implies robust unidirectional lasing
in the favored direction and restricts the emission in the
other direction to negligible values.

Our theoretical investigation is based on the most gen-
eral version of the coupled-mode equations of motion
for the field amplitudes in the two counter-propagating
modes. These equations are first solved for the steady-
states. The dynamical stability of these latter against
small perturbations is then assessed within a linearized
theory by looking at the imaginary part of the eigenval-
ues of the linearized fluctuations dynamics matrix.

In the absence of backscattering, one of the two coun-
terpropagating lasing solutions of the ring resonator
disappears for a sufficiently strong coupling by the S-
element, leaving a single stable solution with laser emis-
sion only in the mode which is favored by the S-shaped el-
ement. This unidirectional emission remains stable even
in the presence of backscattering effects due, e.g., to the
roughness of the resonator surface, as long as the coupling
by the S-element exceeds the backscattering strength.
The robustness of the unidirectional laser emission is fur-
ther reinforced by a Kerr nonlinearity shifting the reso-
nance of the two counterpropagating modes by different
amounts.

While unidirectional laser emission in a random di-
rection in ring resonators can be seen as a spontaneous
breaking of the time-reversal T -symmetry in the las-
ing state above threshold, the explicit breaking of P-
symmetry in the geometrical shape of our Taiji resonator
leads to a preferred chirality of the laser emission. This
can be understood as an explicit dynamical breaking of
T -symmetry induced by the broken P-symmetry in an
otherwise T -symmetric device.

This novel mechanism for breaking T -reversal appears
of great interest in view of realizing optical isolators and
other non-reciprocal devices based on wave-mixing phe-
nomena without the need for magnetic elements. In the
context of topological photonics [25, 26], this will allow to
dynamically generate a topological Chern insulator using
structures based on non-magnetic active dielectric mate-
rials. These exciting topics are the subject of on-going
work.
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