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Abstract

In this paper we describe the mathematical model of a kinematic chain and its
use in the design and implementation of the algorithms that are necessary for
the operation and the identification of an AACMM. The mathematical model
is based on the use of quaternions for the representation of rotations. The di-
rect kinematic problem is solved by a quite straightforward application of the
model. The identification problem is solved with an iterative procedure based
on linearized equations and the application of the least squares principle. The
analytical linearization of the equations and the definition of some constraint
equations are a significant part of the paper. The model can be also used to
describe the kinematic chain of a robotic arm. The description of some experi-
ments performed with a functioning AACMM demonstrate the effectiveness of
the model and of the algorithms.
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1. Introduction

Coordinate measuring machines are widely used in many technical and sci-
entific applications. A particular kind of these instruments are the articulated
arm coordinate measuring machine (AACMM) that have a mechanical structure
similar to a robotic arm. A mechanical articulated arm is composed of a set of
rigid bodies (links) connected by joints and realizing a kinematic chain. Each
joint realizes a rotation. The similarity between an AACMM and a robotic arm
has been described by various authors (see e.g. Santolaria and Aguilar in [1],
Aguilar et al. in [2], Gao et al. in [3, 4] and Santolaria et al. in [5]). Despite
the similarity between the geometrical structure of an AACMM and a robotic
arm, important differences between the two types of device exist. The various
degrees of freedom of a robotic arm are associated with actuators, the degrees
of freedom of an AACMM are associated with measuring devices. The purpose
of a robotic arm is to move a manipulator or a tool to a specific position, while
the purpose of an AACMM is to determine the coordinates of a point reached
by a probe that is positioned by an operator. Another important difference is
the following: in an AACMM only the position of the extremal point of the
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last element of the chain (the probe) is important, in a robotic arm also the
orientation of the last element of the chain (the tool) is important.

The operation of both a robotic arm and an AACMM is governed by a
system of computer programs. The algorithms implemented are quite different
in the two cases, but they can be based on the same analytical representation
of the kinematic chain.

In the following we describe a mathematical model for the representation of
the chain, the algorithms for the operation and the identification of an AACMM
and their implementation and testing.

The problem at hand clearly belongs to the realm of mechanical metrology,
but it is quite similar to a survey problem and it is solved using methodological
expertise that are typical of the geodetic disciplines.

It is worth noticing that the algorithms and the computer programs are re-
markably simple due to the proper choice of the most convenient mathematical
tools for the representation of the system: we used quaternions for the rep-
resentation of the orientation of the various elements (links and joints) of the
kinematic chain. The advantages of the use of quaternions are explained in the
paper.

2. The main problems in the operation and the identification of an
articulated arm

The articulated arm and its pose in space can be described by three sets of
parameters:

- the geometrical parameters,
- the readings of the encoders that measure the rotations of the joints,
- the coordinates of the probe.
All these parameters must be related within a suitable analytical model that

will be described in a following Section.
The parameters are named here in a manner that refers to an AACMM.
There are three main problems that must be solved using the model: they

are the so called direct kinematic problem, the inverse kinematic problem and
identification. In each problem one of the three sets of parameters is unknown
and it must be computed or estimated from the other two.

In the direct kinematic problem the geometric parameters of the system are
known (by design and/or estimation), the rotations of the joints are known and
the coordinates of the last element of the chain must be computed. This is the
typical main problem for the operation of an AACMM where the rotation of
the joints are measured by the embedded encoders.

In the inverse kinematic problem the geometric parameters of the system
are known, the desired position of the last element of the chain is known and
the rotations of the joints must be computed. This is the typical problem for
the operation of a robotic arm where the rotation of the joints are realized by
actuators. This is an inverse problem that in general can not be solved directly
and does not have a unique solution. Furthermore, the complete trajectory
from an initial to a final pose must be determined taking into account various
constraints and some optimality criteria.

The identification is another important and not so easy inverse problem. It
is necessary to collect the readings of the encoders that measure the rotations
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when the probe is visiting known or partly known points. The geometric param-
eters of the system must be estimated. The paper by Goswami et al. [6] clearly
explains the need of evaluating the parameters of a kinematic chain by using an
estimation procedure to obtain high positional accuracy. The estimation proce-
dure that is examined in the present article is essentially the level-2-calibration
according to the classification given by Roth et al. in [7]. (The use of the words
calibration, identification and estimation is not completely uniform in the tech-
nical literature. We mainly use identification and estimation in the present
article.)

A further problem to be considered is the use of different reference frames.
In general there is a reference frame attached to the mechanism and another
reference frame attached to the object that must be measured. The two ref-
erence frames are related by the well known seven parameters transformation
also known as Helmert transformation in geodesy or absolute orientation in
photogrammetry.

3. The geometrical scheme of the mechanical system and its describ-
ing parameters

The articulated arm is a chain of rigid links that can be geometrically mod-
eled as an open polygon in space. Each side of the polygon can be described
by means of a vector and the vector can be parametrized by means of its three
Cartesian components in a proper reference frame. Each joint can be character-
ized by the unit vector that gives the direction of the rotational axis and by the
reading of its encoder. In order to describe the intrinsic geometry of the arm its
degrees of freedom are frozen in a particular pose, the basic pose. In the basic
pose the following parameters completely describe the geometry of the system:

- the components of the vectors associated to the sides of the polygon,
- the components of the unit vectors of the direction of the axes of the

joints,
- the readings of the encoders of the joints.
Any generic pose of the arm different from the basic pose is essentially de-

scribed by the actual readings of the encoders.
Now the various variables can be defined:
- n is the number of joints and of links in the arm,
- rk (k = 1..n) is the vector associated to link k in the basic pose,
- uk is the unit vector associated to the axis of joint k in the basic pose,
- α0k is the reading of the encoder k in the basic pose,
- αk is the reading of the encoder k in a generic pose,
- x is the vector of coordinates of the probe (that is the end-point of link

n).
The meaning of the defined variables is illustrated in Fig. 1.
It is worth noting that the proposed model can deal with any number of

joints and links in any configuration. Joint k connects link k with link k − 1
except for joint 1 that connects the first link to a support.

The geometric description of the arm is given, as already stated, by the
parameters rk, uk and α0k. This is a convenient description because all the
involved entities have a clear and intuitive meaning. On the other hand some
comments are necessary to completely understand their nature:
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Figure 1: Schematic view of an hypothetical kinematic arm with n = 3.

- the geometrical description of the arm is only loosely related to its physical
structure,

- the choice of the reference frame attached to the mechanism is arbitrary,
- the definition of the basic pose is quite convenient to build a simple and

flexible model,
- the choice of the basic pose is arbitrary,
- the coordinates of the probe are invariant to some transformation of the

parameters that describe the arm
All these points will be developed in Section (7).

4. Rotations and quaternions

A rotation in three dimensional space can be characterized by its rotational
axis and its angle, both highly significant geometric entities. The axis in turn
can be represented by a unit vector. In the problem at hand the rotational
axis is mechanically realized by the joint and the angle (α) is measured by
the encoder. The axis and the angle give the most natural and most significant
description of the rotation, but other sets of parameters are more appropriate to
perform computations. In fact there are many different sets of parameters and
different algebraic techniques to handle rotations in space. A general treatment
can be found in the papers by Nitschke and Knickmeyer [8], by Stuelpnagel
[9] and by Dai [10]. The same topic is treated by Waldron and Schmiedeler
[11] in the framework of kinematics of robots. Any non singular parametric
representation of rotations needs 4 parameters as a minimum, even though the
group of rotations is a three-dimensional manifold, as proved by Stuelpnagel [9].
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A convenient representation of rotations is based on the algebra of quater-
nions. Quaternions are hyper-complex numbers with four components. In this
Section some "facts" about quaternions and rotations are presented in an infor-
mal manner as an introduction to the plain formalism used in the next Sections
for the solution of the problems at hand. A complete treatment about rotations
and quaternions can be found in the books by Altmann [12] and by Kuipers
[13], but the essential elements of quaternion algebra can be exposed in a few
phrases.

The following notations will be used:
- q : bold letters are quaternionic variables,
- (q0, q1, q2, q3) : the four components of a quaternion are real numbers

designated with a subscript,
- q : underlined letters are vectors in R3,
- q = q0+iq : a quaternion is written as the "sum" of a real scalar component

and an imaginary vector component storing the last three components of the
quaternion.

The last expression resembles the notation generally used for complex num-
bers: a quaternion can be considered as a "complex number" with scalar real
part and vector imaginary part (∈ R3).

The elementary operations of ordinary real algebra can be redefined on
quaternions. The identity of two quaternions, the sum and the difference be-
tween two quaternions are defined component-wise. The product of quaternions
is defined by:

qp = (q0p0 − q · p) + i(q0p+ p0q + q ∧ p) (1)

where q · p is the dot product and q ∧ p is the cross product. The product of
quaternions is associative and not commutative. The product of a real number
and a quaternion can be performed by first "upgrading" the real number to a
real quaternion (i.e. a quaternion with null imaginary component).

Three more definitions are needed. The conjugate of the quaternion q has
the same real part of q and opposite imaginary part and it is denoted by q.
The norm of q is |q| = (qq)1/2 = (q2

0 + q2
1 + q2

2 + q2
3)1/2. The reciprocal of a

not-null quaternion is defined by:

q−1 = |q|−2q. (2)

Quaternions are specially useful for the representation of rotations in R3 as
already stated at the beginning of this Section. Each vector in space can be
associated to a purely imaginary quaternion:

x↔ x = 0 + ix. (3)

Given a unimodular quaternion q the expression:

y = qxq (4)

is a linear function of x and it is itself an imaginary quaternion. The transfor-
mation (4) preserves both the dot product and the box product in R3 (via (3)).
Therefore the transformation (4) is a rotation. If we look at quaternions as a
4-dimensional linear space we can distinguish two three-dimensional manifolds
to represent vectors and rotations in R3 respectively. Vectors in ordinary space
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are represented by imaginary quaternions, which form a three-dimensional lin-
ear subspace; rotations in ordinary space are represented by unimodular quater-
nions, which form a hypersphere. Indeed this is not a one-to-one correspondence
because q and −q represent the same rotation.

The quaternion associated with a rotation is related to the geometric entities
of the same rotation by the following relations:

- the real part is q0 = cos(α/2),
- the imaginary part is a vector with the same orientation of the rotational

axis and the modulus equal to sin(α/2).
The geometrical meaning of the quaternion that represents a rotation in

expression (4) is now clear.
Now we consider a rotation represented by a quaternion qa and a second

rotation represented by a quaternion qb applied to the result of the first rotation.
The repeated application of (4) and the associativity of the quaternionic product
easily shows that the resulting rotation is represented by qbqa.

The use of quaternions to represent rotations by means of (4) presents several
advantages over the choice of other parametrizations and other expressions. Two
peculiar properties of the chosen representation play an important role in the
realization of the analytical model of an articulated arm, namely:

- the quaternion that represents a rotation has a clear geometrical meaning,
- the composition of two (or more) rotations is represented by the product

of the corresponding quaternions.
Another important advantage of the use of quaternions is the possibility to

solve the absolute orientation problem in a direct way for any configuration
(Sansò [14]).

5. The analytical model of the articulated arm and the solution of
the direct kinematic problem

The joint k imposes a rotation of angle αk − α0k around an axis oriented
as uk to all the subsequent links i.e. to links from k to n. This rotation is
represented by the quaternion:

qk = cos((αk − α0k)/2) + i sin((αk − α0k)/2)uk. (5)

The link k is rotated by the combined action of all the joints that precede it i.e.
the joints from 1 to k. The quaternion that represents the total rotation acting
on link k is therefore:

pk =
k∏

l=1
ql. (6)

Each link k is described in the basic pose by the vector rk that is considered the
imaginary part of the quaternion: rk = 0 + irk. Now the quaternion associated
to the same link in a generic pose is:

pkrkpk (7)

where the due rotation pk has been applied. The imaginary quaternion associ-
ated to the position of the probe is simply obtained by:

x = x0 +
n∑

k=1
pkrkpk (8)
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where the constant term x0 accounts for the arbitrary position of the origin. The
set of equations (5, 6, 7, 8) form the kinematic model of the chain. Equations
(6), (7) and (8) can be combined to express the model in a single equation:

x = x0 +
n∑

k=1

( k∏
l=1

ql

)
rk

(
k∏

l=1
ql

) . (9)

The Eq. (9) immediately solves the direct kinematic problem, i.e. the compu-
tation of the coordinates of the probe. The same equation can be properly
elaborated to solve the identification problem as will be shown in Section (8).

The model represented by (9) describes the kinematic of the arm that is
ideally composed of rigid links, a rigid ground support and perfect joints. This
assumption coincides with the conditions required by Roth et al. in [7] for a
purely kinematic model.

6. Kinematic redundancy of the structure of the arm

In this work, Kinematic redundancy of the structure of the arm refers to two
different aspects of the structure of a kinematic arm.

At first, an arm with just the minimum number of degrees of freedom (DoF)
is considered. In this situation a certain position of the probe can be generally
attained with more than one pose of the arm. The different poses that corre-
spond to a certain position of the probe are a discrete limited set. This is a first
kind of redundancy that is always present.

If the arm has more than the minimum number of degrees of freedom, posi-
tion of the probe can be generally attained with an infinite number of different
poses, that form an infinite continuous set. This is a second kind of redundancy.

In a robotic arm, where the orientation of the last element of the chain is
also of interest, the situation is almost identical. Only the count of minimal
DoF must be changed.

The kinematic redundancy of the structure of the arm has no relevant conse-
quences in the solution of the direct kinematic problem. The redundancy makes
an AACMM easier to handle in the measuring process. The computation of x
by means of Eq. (9) obviously includes the proper value n of the DoF. The
kinematic redundancy of the structure of the arm is extremely relevant, on the
contrary, when the inverse kinematic problem must be solved in the operation
of a robotic arm.

The kinematic redundancy is also important in the identification because it
allows the collection of a richer set of data.

7. Arbitrariness and redundancy of the parametric model of the arm

The model of the articulated arm described in Sections (3) and (5) contains
some arbitrariness that has already been mentioned in the last part of Section
(3). Furthermore the model is redundant, as it is evident from the invariance
of the coordinates of the probe with respect to some change of the parameters.
A proper knowledge of the various forms of arbitrariness and of redundancy is
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necessary to properly understand all the aspects of the model and to properly
select the parameters that can be estimated in the identification procedure.

The use of coordinates, that numerically represent position of points, and
the use of Cartesian components, that numerically represent vectors, require
the choice of a reference frame, i.e. to fix in a more or less arbitrary manner the
degrees of freedom of a rigid body. The reference frame used in the description
of the model of the articulated arm is in fact all arbitrary because the coordi-
nates generated by the AACMM must eventually be transformed into a more
significant environment-related or object-related reference frame. Furthermore
there are no special elements in the AACMM that can be used to identify a
privileged frame.

The use of a basic pose is quite convenient to describe the geometric features
of the arm in a simple, intuitive and computationally convenient manner, but it
is quite evident that from a physical and geometrical point of view no privileged
pose exists. The choice of the basic pose is therefore arbitrary.

The set of vectors associated to the elements of the arm (i.e the rk) are
generic three-dimensional vectors. The choice to represent each link of the arm
with a three-dimensional vector is quite natural in many respects and it is com-
putationally convenient, but it implies some redundancy and some arbitrariness.
The redundancy of some parametric models and the relation between a mathe-
matical model of the chain and its physical structure are well known problems.
The problems related to model redundancy and model minimality are the main
concern of several authors, see e.g. the papers by Schröer et al. [15] and by He et
al. [16]. The same problems are mentioned by many others including Goswami
and Bosnik [17], Santolaria and Aguilar [1] and Hollerbach et al. [18].

In our model the coordinates of the probe (x) are invariant to the following
transformation of the vectors that describe the links:

r(k−1),2 = r(k−1),1 − auk

rk,2 = rk,1 + auk

(10)

where the values of the second index 1, 2 mean before transformation, after
transformation and a is any real number. In fact x is independent of uk · (rk −
r(k−1)). The described invariance does not affect the choice of the components
of the rk, but special care is required in the selection of the components of
the rk that have to be estimated in the identification process. For the sake
of completeness we note that the case of r1 is quite peculiar. The quantity
(u1 · r1)u1 enters in the computation of x as an additive quantity independent
of the pose of the arm. Its variation is therefore equivalent to a change in the
position of the origin of the reference frame which is in turn arbitrary.

In practice we have a model, expressed by Eq. (9), that contains more than
the minimal number of parameters, but only some of them will be estimated
in the identification process. More precisely: the estimation process will take
place in a properly chosen linear subspace of the space of parameters. The use
of a redundant model is convenient for many reasons:

- it allows the use of parameters that are connected to a physical description
of the arm,

- it is easy to treat numerically,
- the selection of the proper subspace where the estimation takes place is

defined analytically in a very general manner (see Section (8)) and it allows a
quite flexible and efficient computational procedure.
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8. The linearization of the analytical model and the solution of the
identification problem

The identification is the computation of the geometrical parameters of the
mechanical system from a set of data. The data used for these operation are the
readings of the encoders and complete or partial information on the position of
the probe. The data must be collected for a suitable set of points. The identi-
fication is a kind of inverse problem. Our solution is based on the least squares
estimation principle and on the already defined mathematical model. The least
squares principle gives optimal estimations of the parameters when redundant
measurements are available. The mathematical model must be manipulated to
isolate the various unknowns and it must be linearized to enter in the iterative
procedure for the solution of the estimation problem.

The Eq. (8) can be easily transformed into:

x = x0 +
k−1∑
j=1

pjrjpj + pkrkpk +
n∑

j=k+1
pjrjpj (11)

where the term rk has been isolated. (We stipulate that in Eq. (11) the summa-
tions with starting index larger than final index are null. With this convention a
separated treatment of first and last arm links is unnecessary). From Eq. (6) it
follows: pjpi = qj+1qj+2 . . .qi and pj = pj−1qj , therefore Eq. (11) becomes:

x = x0 +
k−1∑
j=1

pjrjpj + pk−1qk

rk +
n∑

j=k+1

(
j∏

l=k+1
ql

)
rj

(
j∏

l=k+1
ql

)qkpk−1

(12)
where the term qk has also been isolated. In order to obtain a more compact
notation in the following developments the quaternions sk are defined by:

sk = rk +
n∑

j=k+1

(
j∏

l=k+1
ql

)
rj

(
j∏

l=k+1
ql

)
(13)

and the Eq. (12) is rewritten as:

x = x0 +
k−1∑
j=1

pjrjpj + pk−1qkskqkpk−1. (14)

The first steps toward the construction of a linearized model suitable for iden-
tification are the choice of the parameters that have to be estimated and the
linearization of Eq. (14) with respect to the same parameters. The parameters
that describe the geometry of the articulated arm are rk, uk and α0k. The
simplest way to define the basic pose is to fix the α0k. The values of the α0k,
or of some other parameter related to the zero-offset of the encoders, are gener-
ally considered as the most important parameters that need to be estimated in
the identification process. As a consequence their arbitrariness may seem a bit
strange, but they can be arbitrarily fixed just because this is the very definition
of the so called basic pose and because the parameters that remain free (uk

and rk) are able to fully represent the geometrical identification. The choice
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of the values of the α0k is therefore a matter of convenience. It is advisable to
chose a set of values that allows to obtain the approximate values of the other
parameters in an easy way.

Any unknown variable can be represented as the sum of a known value
denoted by �̃ plus an unknown small variation denoted by δ� as in uk = ũk +δuk.
Small variation means that the variations of the functions that will appear in
any equation can be approximated by linear functions of the variations of the
unknowns.

The vectors uk must be estimated taking into account that they are unit
vectors. The constraint uk · uk = 1 in first order approximation becomes ũk ·
δuk = 0. This linearized constraint bounds δuk into a two-dimensional subspace.
The variation of rk is just confined in the same subspace to avoid the singularity
that would derive by the invariance of x with respect to transformation (10).
To handle the variations of uk and rk it is convenient to use a basis (vk, wk)
of the two-dimensional subspace orthogonal to uk. The two vectors vk and wk

are chosen orthogonal to ũk, orthogonal to each other and with unitary norm.
These last two conditions are not mandatory, but they are quite convenient.
The variations of uk and rk are expressed as δuk = akvk + bkwk and δrk =
ckvk + dkwk respectively. Therefore we have:

uk = ũk + akvk + bkwk (15)

and
rk = r̃k + ckvk + dkwk. (16)

Equation (8) can now be linearized with respect to all the unknown variables
and the result is:

x̃ + δx = x̃0 + δx0 +
n∑

k=1
p̃kr̃kp̃k+

+
n∑

k=1
(aksin((αk − α0k)/2)p̃k−1

(
vks̃kq̃k + q̃ks̃kvk

)
p̃k−1+

+bksin((αk − α0k)/2)p̃k−1
(
wks̃kq̃k + q̃ks̃kwk

)
p̃k−1+

+ckp̃kvkp̃k + dkp̃kwkp̃k).
(17)

The decomposition of x as x̃ + δx is necessary because x appears in non linear
expression in other equations that will be stated in the sequel. The similar
decomposition applied to x0 is just to handle all the variables in the same
manner, but it is not mandatory.

The practical use of Eq. (17) in the estimation process requires an analysis
of the measurements that can be performed to that purpose.

It is necessary to consider some different situations that can arise when
collecting the measurements to be used for the identification:

(i) measuring of points with already known coordinates referred to a unique
reference frame,

(ii) measuring of several points with already known coordinates referred
to a set of reference frames,

(iii) repeated measuring of points with unknown coordinates with different
poses of the arm,
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(iv) measuring of points that belong to a partially known surface.
In case (i) the most complete possible information about points are available.

This is also the simplest case. Case (ii) can arise by the use of a complex
calibrated reference object that is moved in different positions in space. This
situation requires the use of additional parameters to account for the different
positions and orientations of the reference object. This aspect is not treated
analitically. In case (iii) the useful information comes from the measurement
of the same point with different poses of the arm. Case (iv) is quite common.
Points can be measured on the surface of a sphere. The sphere generally has
unknown center and can have known or unknown radius. A quite common
reference object is a dumbbell composed of two spheres with the centers at a
fixed distance. Another possibility is the use of a reference object composed of
many spheres connected in a more complex structure. The use of other surfaces,
like cylinders, is less common.

In cases (i), (ii) and (iii) there are three significant scalar equations arising
from Eq. (17). In fact the two sides of the Eq. (17) are imaginary quater-
nions and therefore they are equivalent to usual vectors in R3. Furthermore
the measurements involve points that are individually identified. The linearized
observation equation for a point on a sphere (case iv) can be obtained by the
combination of Eq. (17) with the implicit equation of the sphere. It is necessary
to introduce new parameters for the center of the sphere (xs) and for its radius
(ρ). The equation of the sphere is:

ρ =
√

(x− xs) · (x− xs) (18)

which in linearized form becomes:√
(x̃− x̃s) · (x̃− x̃s)− ρ̃ = −1

ρ̃
(x̃− x̃s) · (δx− δxs) + δρ. (19)

The unknown coordinates of the point can be treated as nuisance parameters.
Their elimination from Eq. (17) and Eq. (19) leaves just one scalar equation.

The presence of spheres with known distance between the centers require
the use of pseudo-observation equations. They have the form:

D =
√

(xsi − xsl) · (xsi − xsl) (20)

where D is the known distance while xsi and xsl are the coordinates of the
centers of the two spheres. Equation (20) can be linearized in the form:

D−
√

(x̃si − x̃sl) · (x̃si − x̃sl) = 1√
(x̃si − x̃sl) · (x̃si − x̃sl)

(x̃si−x̃sl)·(δxsi−δxsl)

(21)
and then it is used in the estimation process with a suitable overweighting.

All the considered observation equations involve coordinates and therefore a
reference frame must be fixed. This can be done in many different manners. In
case (i) the simplest choice is to use the reference frame that must be already
defined to describe the set of known points. With this choice the reference
frame is directly related to the environment and all the 3 + 4n parameters (x0
and {ak, bk, ck, dk}) must be estimated. Case (ii) is similar, but one of the
positions and orientations of the reference object must be chosen to fix the
reference frame, and a set of parameters must be considered to describe the
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other positions and orientations. An alternative, which is mandatory in cases
(iii) and (iv), is to fix the reference frame by means of the arbitrary choice of the
values of some parameters. The origin is fixed by an arbitrary value imposed to
x0. The orientation can be fixed by the choice of the direction of one of the axes
of the joints and the direction of one of the vectors of the links of the arm. In
practice this can be done by setting a1 = 0, b1 = 0, c1 = 0 (or d1 = 0, depending
on the component that is more significant for the orientation). If there are no
dimensional information (as in case iii) one more parameter must be fixed. In
practice this can be done fixing both c1 = 0 and d1 = 0. This is obviously just
one possible choice: fixing other parameters can be more appropriate in some
situations.

The set of observation equations and pseudo-observation equations form a
redundant linear system, i.e. a system with more equations than unknowns. The
system of equations is treated in a weighted least-squares (WLS) estimation
procedure.

The linearized kinematic model can be used both for the identification of
an AACMM and of a robotic arm. On the other hand all the information
about the different kind of data that can be collected and about their use in the
identification process can not be directly applied to a robotic arm.

9. Comments about the least squares criterion and the solution strat-
egy

There are several different optimization criteria and solution methods that
are mentioned in the literature for the identification of an AACMM or of a
robotic arm. They include least squares based techniques as mentioned by
Hollerbach et al. in [18], by Goswami et al. in [6] and by other authors; Simulated
Annealing as mentioned by Gao et al. in [3]; Particle Swarm Optimization as
mentioned by Gao et al. in [4] and Levenberg-Marquardt method as mentioned
by Aguilar et al. in [2] and by many other authors. Good practical results are
reported for all the mentioned techniques.

We believe that the use of weighted least-squares presents several theoretical
advantages and that it is practically quite effective. The WLS can be described
as an optimization criterion for the approximation of the measurement data with
a geometrically based parametric model. The WLS can be rigorously treated
in the framework of the probabilistic estimation theory. The WLS produce
the best (minimum variance) unbiased linear estimation (BLUE). A complete
treatment can be found e.g. in the book by Karl-Rudolf Koch [19].

From a practical point of view the computation of the least squares solution
presents no difficulty as far as an appropriate non singular model has been
defined and linearized. In the present application the iteration process itself is
quite fast because the design of the instrument and a proper choice of the basic
pose give a quite good set of starting values of the parameters.

The critical aspect of the application of WLS is the choice of the variance-
covariance matrix of the quantities that appear as known term in the observation
equations. We have not developed a general stochastic model to this purpose,
but the requested variance-covariance matrix can be reasonably built by some
rules that worked in all the practical situations we have met so far. We assume
that there are no correlations and that the equations that arise from the same
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operational procedure must have the same weight. In many situations all the
measurements are of the same kind and they are collected in similar conditions.
In this case the computation of WLS reduces to the computation of ordinary
LS, apart from the overweighting of Eq. (21).

Our careful selection of the parameter sub-space in which the optimization
is carried out guarantees that the normal matrix is non-singular and no regu-
larization is needed.

Our solution procedure is based on the analytical expression of the deriva-
tives of the observation equation with respect to all the unknowns and on a
Newton-like iteration that takes care of the non linearity. This choice is quite
more effective than the use of numerical derivatives and of the use of different
minimum searching algorithms.

Lastly it is important to recognize the role of the linearized model. The un-
knowns of the linearized equations are variations to be applied to the preliminary
values of the unknowns of the original non linear equations. The procedure must
therefore be iterated until it reaches the convergence. The use of the linearized
equations is necessary for the numerical iterative computation of the solution,
but the final result is the solution of the original non linear problem. The use
of the linearized equations in the WLS estimation process does not imply any
approximation of the final result.

10. More about the kinematic model of the arm

We present some more comments about the most important aspects of our
model and we outline some differences with respect to other models that are
presented in scientific literature and are probably well known to the readers.
The comments are not meant to evaluate different merits, but just to better
clarify the peculiarities of our proposal.

We have found just one model with some similarity to ours. It is described
in an unpublished paper by Horn [20] in a purely theoretical manner.

The two models more often mentioned are the model proposed by Denavit
and Hartenberg [21] and the model proposed by Sheth and Uicker [22]. The
model proposed by Denavit and Hartenberg [21] is by far the most frequently
used. Many papers and textbooks present the DH model as the de-facto stan-
dard. This is the choice of Spong, Hutchinson and Vidyasagar [23], of Hollerbach
et al. [18], of Santolaria and Aguilar [1] and of many others. Some authors also
notice the main drawback of the DH model, i.e. the singularity (or instability) of
the model for parallel (or almost parallel) consecutive rotary axes, and mention
some improved versions of the DH model; see e.g. Roth et al. [7], Hollerbach et
al. [18] and Ozgoren [24]. Many other authors use the Steth-Uicker model; see
e.g. the papers by Goswami et al. [6] and by Bongardt [25].

All the mentioned models describe the kinematic chain using a sequence of
reference frames attached to the different parts of the mechanism. We prefer to
use just one reference frame attached to (some selected part of) the mechanism
and one reference frame attached to the object. The paper by Chen-Gang el
al. ([26]) in fact distinguishes between models based on local-link coordinate
systems and models based on global coordinate systems.

Most of the models, and specially the Denavit-Hartenberg model and its
variations, make extensive use of so called homogeneous coordinates and ho-
mogeneous matrices that are the algebraic tools of projective geometry. The
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use of homogeneous transformations allows a unified notation to represent both
translations and rotations. We prefer to stay with the more classical and ele-
mentary set-up of analytical geometry, linear algebra and vector calculus mainly
because we think that our set-up is simpler. Most of the models, including the
Denavit-Hartenberg model, can also treat prismatic joints. Our model can be
also generalized in order to include prismatic joints.

Most of the models described in literature present some redundancy in the
set of parameters. This problem is treated in various manners that include:

- the application of the Levenberg-Marquardt method that is essentially a
numerical regularization of the normal system,

- the selection of some parameters to be eliminated from the identification
(see e.g. Zhuang et al. [27]),

- the regularization from the spectral decomposition of the normal matrix
(see e.g. Goswami and Bosnik [17]).

We have described a different procedure that is based on an invariance analy-
sis and direct construction of a base of the subspace of the estimable parameters
(see Sections 7 and 8). The resulting algorithm is both flexible and effective.
All the elements of our analytical model have a clear geometrical interpretation,
and this property is of great value when the redundancy must be analyzed and
the singularities must be avoided.

11. Ideas for a more complete model

The kinematic model described in this article has been conceived for a spe-
cific application, i.e. the operation and the identification of an AACMM with
rotary joints.

Here after we give some ideas for possible generalizations and extensions that
can be useful for the application of the model to a robotic arm, for the presence
of prismatic joints and to account for some deviations from the geometric and
mechanical assumptions.

In an AACMM only the three coordinates of the extremal point are relevant
as final output. The pose of the various links determine the end-point coordi-
nates, but the pose itself is of no interest in the operations. On the contrary a
robotic arm ends with a tool that in some cases must be considered as a rigid
body to be properly placed with all its 6 DoF. This can be easily done with
the described model. The tool can be considered as the last element of the
chain and the expression (6) with k = n gives the quaternion that describes its
orientation in space.

A prismatic joins can be described using a unit vector to represent the direc-
tion of the displacement and a scalar variable to describe the amplitude of the
displacement. When a prismatic joint is present the parameters to be estimated
must be selected with a further analysis, which is indeed very simple.

The model can be improved with developments in three other directions: by
taking into account elastic deformation under gravity, thermal deformation and
by including a black box compensation of residual errors.

12. Computer programs

We have developed several computer programs based on the described math-
ematical model. The two main operations realized by the software system are
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the computation of the coordinates and the estimation of the geometric pa-
rameters. Therefore the programs solve two of the three problems described in
Section (2), namely the direct kinematic problem, and the identification.

The programs are strictly based on the theory exposed in the previous Sec-
tions. Rotations are represented in three different ways:

- axis-and-angle representation is the most significant one: the angles come
from the readings of the encoders and the unit vectors of the axes are part of
the parameters of the AACMM;

- quaternions are used for various computations, notably to combine the
sequence of rotations;

- matrix-vector multiplication is used to practically apply rotations to vec-
tors (rotation matrices are generated on the fly from quaternions when needed).

We also implemented a purely static version of the inverse kinematic prob-
lem, but it is not a general solution and we used it only for simulation purposes.

Other programs take care of the absolute orientation and of some data anal-
ysis for the assessment of the results.

The program that computes the estimates is obviously the most complex.
It can accept data collected in various situations that correspond to cases (i),
(iii) and (iv) described in Section (8). In case (iv) we can have points on single
spheres or on the spheres of a dumbbell.

We tested the programs with a large variety of simulated data before the
application to real data that is reported in the next Section. Simulations include
cases (i), (iii) and (iv), applications to real measurements only include cases (iii)
and (iv).

13. Practical results

We applied the software system summarily described in the previous Section
for the operation and the identification of an AACMM intended for use in the
automotive industry.

The arm contains five rotary joints. The probe can terminate with different
kind of ends, but in the main experiments we only used a spherical end. The
probe is passive (hard probe). The manufacturer supplied two samples of the
AACMM for the tests.

We performed the identification of the two measuring machines and the as-
sessment of the attainable precision and accuracy. It must be stressed, however,
that the true purpose of the tests is a demonstration of the effectiveness of the
procedure and of the operational capabilities of the software.

The data necessary to perform the identification and to assess the obtained
performance have been collected by measuring some points on a conic seat that
allows repeated measurements of the same point and points on two reference
objects: a sphere with a diameter of two inches and a dumbbell consisting of
two spheres with a diameter of one inch and distance between the centers of 800
millimeters.

The values of the parameters available before the identification are obtained
from the instrument design and from a reading of the encoders. The reading is
performed after placing the mechanism in a particular pose with all the links
aligned. The alignment is roughly evaluated by visual inspection. The chosen
pose allows an easy evaluation of the direction of all the vectors. The obtained
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readings of the encoders are then assumed as the definition of the already men-
tioned basic pose.

The extremely low accuracy of the alligment obtained by visual inspection
does not affect the final result for two reasons:

- the basic pose is in fact defined by frozing the values of the readings of
the rotarional encoders,

- any other outcome of the alignment generates the approximate values of
some parameters that are estimater later on.

The identification is computed as a least squares estimation, therefore its
overall quality is represented by the ratio σ̂2

0/σ
2
0 where the parameter σ2

0 is the
a-priori value of the so called variance of unit weight and σ̂2

0 is the estimated
value of the same quantity. The ratio is important because it is an indicator
of anomalous situations (when it is large) and to perform quick comparisons
between different identification tests. In the present case we have a reasonable
yet not fully rigorous stochastic model of the data, therefore we do not perform
any acceptance test based on the mentioned ratio.

A naturally appealing assessment of the quality of the identification is ob-
tained by a test performed with data different from the data used in the iden-
tification.

In the description of the measurements and of the computations we will
simply denote the two measuring machines as "instrument A" and "instrument
B". The instrument A was used to collect data in 8 different sessions. The
data was divided into two sets simply named dataset 1 and dataset 2. The
instrument B was used to collect data in 13 different sessions and the data
was again partitioned into two sets. The spatial distribution of the measured
objects within the measuring volume is shown in Figs. (2), (3), (4) and (5).
The measuring volume is ideally enclosed in an upright cylinder. The measured
objects are projected both on the base of the cylinder and on the side surface
of the cylinder. In each figure the circular scheme is a view of the base of the
cylinder, while the rectangular scheme represents the unwrapped side surface of
the cylinder where the up direction in the measuring space is along the short
side of the rectangle and the azimuth is along the long side.

Repeated point Sphere Dumbbell

Figure 2: Dataset 1 of instrument A

The usual quality index of an estimation process is σ̂0 as we have already
stated. The values of σ̂0 are reported in Table (1) for all the treated datasets
along with the corresponding number of Degree of Freedom. Degree of Freedom
(DoF) is intended here in the statistical meaning, i.e. the number of measures
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Repeated point Sphere Dumbbell

Figure 3: Dataset 2 of instrument A

Repeated point Sphere Dumbbell

Figure 4: Dataset 1 of instrument B

Repeated point Sphere Dumbbell

Figure 5: Dataset 2 of instrument B
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in a dataset that exceed the theoretical minimum. The result seems satisfac-
tory. The last column of Table (1) contains the dispersion index of the coor-
dinates that can be obtained using the a-priory parameters of the measuring
machines. These numbers are representative of the modest performance that
can be achieved with the parameters obtained from the design and from some
empirical identification.

Data Set Value of σ̂0 (DoF) with Value of σ̂0 (DoF) with
estimated parameters preliminary parameters

Instrument A, dataset 1 0.48 mm (771) 38.93 mm (855)
Instrument A, dataset 2 0.55 mm (1030) 43.32 mm (1162)
Instrument A, all the data 0.54 mm (1819) 41.52 mm (2017)
Instrument B, dataset 1 0.33 mm (525) 185.49 mm (756)
Instrument B, dataset 2 0.75 mm (560) 209.37 mm (782)
Instrument B, all the data 0.63 mm (1103) 197.99 mm (1538)

Table 1: Values of σ̂0 for various data set and coddesponding number of Degree of Freedom.

A further assessment of the attained accuracy can be obtained with some
tests loosely inspired by the ASME standard [28]. We determined the diameter
of a sphere from the coordinates of some points measured on the surface of the
sphere itself. The obtained values are compared with the nominal value of the
diameter (2 inch). In a different test we determined the distance between the
center of two spheres of a dumbbell. Again the obtained values are compared
with the nominal value of the distance (800 mm). The datasets 1 and 2 of each
instrument are combined to obtain a kind of crosscheck. The mean and the ex-
tremal values of the differences between the determined and the nominal values
are reported in Tables (2) and (3). The most significant and reliable results are
obtained when different data sets are used for the parameter identification and
for accuracy accesment by comparison aginst nominal values. (See cases A1-A2,
A2-A1, B1-B2 and B2-B1 in Tables (2) and (3).)

Dataset used Dataset used Number of Mean Max abs
for identification in the test measured objects difference difference

(mm) (mm)
A 1 A 1 4 0.087 0.310
A 1 A 2 9 0.170 0.760
A 2 A 1 4 0.100 0.300
A 2 A 2 9 0.130 0.620
B 1 B 1 33 0.007 0.613
B 1 B 2 29 0.120 0.825
B 2 B 1 33 0.120 1.167
B 2 B 2 29 0.294 1.060

Table 2: Mean value and maximun absolute value of the differences between the determined
and the nominal diameter of a 2 inch sphere.
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Dataset used Dataset used Number of Mean Max abs
for identification in the test measured objects difference difference

(mm) (mm)
A 1 A 1 7 0.080 0.630
A 1 A 2 11 -0.084 1.340
A 2 A 1 7 0.330 0.980
A 2 A 2 11 -0.120 1.244
B 1 B 1 17 -0.019 0.807
B 1 B 2 16 -0.191 1.110
B 2 B 1 17 0.698 2.740
B 2 B 2 16 -0.068 1.860

Table 3: Mean value and maximun absolute value of the differences between the determined
and the nominal distance of the centers of the spheres of a dumbbell.

14. Final remarks, conclusions and perspectives

We have presented an analytical model of a kinematic chain that is, to our
knowledge, quite original. In the identification and estimation process we used
some knowledge and some mathematical tools that are typical (although not
exclusive) of geodesy: application of the least-squares criterion, direct lineariza-
tion, Newton-like iterations to account for the non-linearity and proper selection
of the estimable parameters to avoid any singularity.

The practical results obtained in the identification of two measuring ma-
chines are completely satisfactory, because they show the validity of the math-
ematical model and of the designed procedures and the operational capabilities
of the software.

The work described in this paper can be completed and developed in many
directions. On the theoretical side our model of the kinematic chain deserves
a more in-depth comparison with other available models. On the practical side
we plan to test the procedure with different reference objects and with different
measuring machines. The overall procedure can be improved by the joint use of
our model and a black-box model of the residual errors.
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