
future internet

Article

Spiking Neural Network-Based Near-Sensor Computing for
Damage Detection in Structural Health Monitoring

Francesco Barchi 1,*,† , Luca Zanatta 1,† , Emanuele Parisi 1,† , Alessio Burrello 1 , Davide Brunelli 2 ,
Andrea Bartolini 1 and Andrea Acquaviva 1

����������
�������

Citation: Barchi, F.; Zanatta, L.;

Parisi, E.; Burrello, A.; Brunelli, D.;

Bartolini, A.; Acquaviva, A. Spiking

Neural Network Based Near-Sensor

Computing for Damage Detection

in Structural Health Monitoring.

Future Internet 2021, 13, 219.

https://doi.org/10.3390/fi13080219

Academic Editors: Salvatore Carta,

Roberto Saia and Olaf Bergmann

Received: 19 July 2021

Accepted: 19 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" (DEI), Università di
Bologna, 40126 Bologna, Italy; luca.zanatta3@unibo.it (L.Z.); emanuele.parisi@unibo.it (E.P.);
alessio.burrello@unibo.it (A.B.); a.bartolini@unibo.it (A.B.); andrea.acquaviva@unibo.it (A.A.)

2 Department of Industrial Engineering (DII), Università di Trento, 38122 Trento, Italy; davide.brunelli@unitn.it
* Correspondence: francesco.barchi@unibo.it
† These authors contributed equally to this work.

Abstract: In this work, we present an innovative approach for damage detection of infrastructures on-
edge devices, exploiting a brain-inspired algorithm. The proposed solution exploits recurrent spiking
neural networks (LSNNs), which are emerging for their theoretical energy efficiency and compactness,
to recognise damage conditions by processing data from low-cost accelerometers (MEMS) directly
on the sensor node. We focus on designing an efficient coding of MEMS data to optimise SNN
execution on a low-power microcontroller. We characterised and profiled LSNN performance and
energy consumption on a hardware prototype sensor node equipped with an STM32 embedded
microcontroller and a digital MEMS accelerometer. We used a hardware-in-the-loop environment
with virtual sensors generating data on an SPI interface connected to the physical microcontroller
to evaluate the system with a data stream from a real viaduct. We exploited this environment also
to study the impact of different on-sensor encoding techniques, mimicking a bio-inspired sensor
able to generate events instead of accelerations. Obtained results show that the proposed optimised
embedded LSNN (eLSNN), when using a spike-based input encoding technique, achieves 54% lower
execution time with respect to a naive LSNN algorithm implementation present in the state-of-the-art.
The optimised eLSNN requires around 47 kCycles, which is comparable with the data transfer cost
from the SPI interface. However, the spike-based encoding technique requires considerably larger
input vectors to get the same classification accuracy, resulting in a longer pre-processing and sensor
access time. Overall the event-based encoding techniques leads to a longer execution time (1.49×)
but similar energy consumption. Moving this coding on the sensor can remove this limitation leading
to an overall more energy-efficient monitoring system.

Keywords: spiking NN; SHM; cyber-physical systems; energy efficiency; MEMS

1. Introduction

The application of distributed sensors to pervasive monitoring of physical processes is
one of the most critical and relevant domains. In particular, Structural Health Monitoring
(SHM) is a key deployment scenario, where ensuring the safety of infrastructures such
as buildings and bridges can be, in principle, achieved by deploying low-cost sensors to
detect structural variations due to damages. The convergence of Artificial Intelligence
(AI) to Internet-of-Things (IoT) and edge computing in this domain can help approach
these challenges. In this context, executing AI detection algorithms directly on the IoT
sensor nodes potentially reduces data transmission overheads and improves response
time. A review of recent embedded AI approaches to detection in SHM can be found in [1].
Due to the low-cost, low-power and increasing accuracy of MEMS accelerometers, their
application to distributed SHM is becoming popular.

Future Internet 2021, 13, 219. https://doi.org/10.3390/fi13080219 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-5155-6883
https://orcid.org/0000-0002-4654-4690
https://orcid.org/0000-0001-6607-7367
https://orcid.org/0000-0002-6215-8220
https://orcid.org/0000-0001-5110-6823
https://orcid.org/0000-0002-1148-2450
https://orcid.org/0000-0002-7323-759X
https://doi.org/10.3390/fi13080219
https://doi.org/10.3390/fi13080219
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13080219
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13080219?type=check_update&version=1

Future Internet 2021, 13, 219 2 of 23

Signal compression techniques on-edge have also been proposed to compress MEMS
data gathered from several nodes and send them to the cloud storage and analytic facil-
ity [2]. Still, on MEMS data, on-sensor modal estimation was proposed by implementing
procedures to detect relevant peaks in the acquired signal spectrum [3].

Optimized machine learning algorithms on-edge have been recently proposed to
increase the intelligence of distributed detection for SHM. Considering the availability of
code and libraries to implement machine learning algorithms on low-power microcon-
trollers [4,5], it is a viable solution to execute detection algorithms on-edge and on-sensor.
In this context, hazard monitoring based on an array of event-triggered single-channel
micro-seismic sensors with advanced signal processing is proposed, exploiting a Convolu-
tional Neural Network (CNN) implemented on a low-power microcontroller, and can be
found in [6].

Applied to anomaly detection on a highway bridge, in [7] a compression technique
to identify anomalies in the structure using a semi-supervised approach is proposed
using either a fully connected or a convolutional autoencoder implemented on the sensor
node. In the present work we provide an alternative solution applied to the same case
study using a supervised algorithm for near-sensor anomaly detection based on Spiking
Neural Networks (SNNs). SNNs gained interest in the research community in various
application domains, including SHM, because of their brain-inspired, event-based nature,
which potentially allows reduced energy requirement compared to traditional ANN [8–12].
While Artificial Neural Networks (ANNs) have been successfully applied to SHM [1,13–16],
SNNs are of increasing interest in this field because of their theoretical greater information
processing efficiency achieved by exploiting a sparse computation approach. In [17] a feed
forward SNN has been applied to low-cost, MEMS-based inspection of damaged buildings.

However, the state-of-art in SNN applications to SHM misses a real implementation of
a data processing pipeline with the execution of SNN directly on the sensor node. Moreover,
embedded machine learning libraries currently lack efficient SNN implementations.

In the context of SNN, when time-series data from sensors are concerned, recurrent
neural networks have shown to be effective [18]. For this reason, instead of more simple
feed-forward architectures, we investigate recurrent SNNs for SHM data processing. In
particular we consider a state-of-art recurrent implementation of SNN called LSNN (long
short-term SNN) introduced in [19] because of its interesting signal processing features
and learning effectiveness. Moreover, a relevant aspect to be explored is the encoding
of the input signal, which impacts subsequent computation steps and associated energy
consumption. In particular, SNNs have been used with event-based input such as pixel
variations from Dynamic Vision Sensor (DVS) cameras [20], but they can also effectively
process “continuous” data streams in speech recognition applications [19]. However, in the
context of SHM in general, which encoding is the best suited for anomaly detection task
has not been studied so far.

This work presents the design, implementation, and characterisation of an LSNN
on a low-power sensor node equipped with a commercial microcontroller and an MEMS
accelerometer. The LSNN has been evaluated using real data from a highway viaduct, for
which it was able to detect structural variations associated with a degraded condition. To
the best of our knowledge, this is the first implementation of an LSNN on a low-power
microcontroller that we integrated into a complete SNN-based near-sensor computing
system. We designed and compared different input data encoding schemes in terms of
performance and energy. We designed an optimised LSNN version for microcontroller
targets, and we characterised its performance and energy consumption on silicon, including
the overhead of data transfer from the MEMS sensor and the coding. Thanks to our
hardware-in-the-loop measurement set-up, we were also able to emulate the behaviour of
a smart sensor able to send spikes directly instead of acceleration values.

We compare with an alternative semi-supervised edge anomaly detection applied to
the same dataset [7]. Authors of [7] show that the anomaly detection of the faulty and
normal condition requires a complex pipeline. It consists of: (i) A filtering step; (ii) an

Future Internet 2021, 13, 219 3 of 23

anomaly detector; (iii) a final smoothing post-processing. They either propose principal
component analysis compression and decompression or a fully connected autoencoder
to implement the anomaly detector. The autoencoder features a single hidden layer of
32 neurons, an input layer with 500 samples, and an output layer with 500 neurons. Both
these algorithms show a complexity of 500× 32× 2 (32,000) multiply-and-accumulate
operations. The neurons, intended as the application in the hidden and output layers of a
non-linear function like sigmoid or RELU are 532 (hidden plus output neurons). Instead,
the number of MAC operations is due to the number of connections. In this way, we have
500 × 32 MAC for the input-hidden layer and 32 × 500 MAC for the hidden-output layer,
for a total of 500 × 32 × 2 MAC. We show that we can achieve similar accuracy results
with considerably fewer computational resource; to solve the same detection problem, the
proposed solution uses 15,750 sums and 750 multiplications.

While the two algorithms are not directly comparable because of the different ML
approaches, the comparison against the reference testifies that the proposed solution is
effective in solving the same detection problem. The contribution of this paper can be
summarized as follows:

• We studied the computational requirements and complexity of the LSNN, and we
provide an implementation on a low-power microcontroller-based sensor node.

• We designed and implemented an optimized LSNN version for performance con-
strained architectures, and we compared a continuous versus event-based input
encoding.

• We evaluated the benefits of the proposed optimizations both theoretically and on
real hardware, and we explored accuracy versus energy and performance trade-offs,
including the cost of sensor data transfer.

• We demonstrate that LSNNs can be effectively executed near the MEMS sensor with
a few tens of K cycles (comparable with data transfer cost) and deliver MCC levels
higher than 0.75 (corresponding to almost 90% accuracy) using data from a real case
study of damage detection in SHM.

The rest of this paper is organized as follows. Section 2 presents some background on
SHM and LSNN. Section 3 presents the LSNN architecture, training and input coding meth-
ods. Section 4 explains the introduced optimizations. Section 5 reports the experimental
test-bed and results, and Section 6 concludes the work.

2. Background

This section describes the SHM problem and the reference SoA monitoring system
composed of sensor nodes, edge-node, and cloud architecture. We then give some back-
ground about Spiking Neural Networks and their recurrent LSNN counterparts, input
coding strategy, and the training algorithm adopted. Finally, the sensor board and micro-
controller used for measurements are introduced.

As described earlier, the manuscript focuses on the feasibility analysis of using a
brain-inspired algorithm on the sensor-node MicroController Unit (MCU) and its imple-
mentation trade-offs. To experimentally validate this approach in Section 5 we describe the
experimental setup consisting of a hardware-in-the-loop (HIL) approach.

2.1. Bridge Structure & SHM Framework

The structure under study is a highway viaduct (A32 Torino-Bardonecchia-S.S.335)
built with eighteen sections, each one supported by two pairs of concrete pillars situated
at their two ends. We focus on a single section instrumented for data analysis before a
scheduled maintenance intervention in this work. Maintenance was necessary for the
strengthening of the viaduct structure.

The acquisition framework is described in Figure 1. The system contains five identical
sensor nodes. Each one features an STM32F4 microcontroller (MCU) and samples three-axis
accelerations and temperature data, and stores them in the cloud through a 4G-connected
Raspberry Pi3 gateway.

Future Internet 2021, 13, 219 4 of 23

Figure 1. Monitoring system installation.

The five nodes are connected through CAN-BUS to the gateway. Note that the acquisi-
tion system only collects the data without any local edge-side signal processing. In this
basic configuration, data analysis is executed on the cloud. The accelerometer samples the
data with a frequency of 25.6 kHz to avoid aliasing. Subsequently, the data is subsampled
to have a final output frequency (fs) of 100 Hz.

The cloud part is composed of a data-ingestion job, which receives and store data
from the gateway, and periodically scheduled analysis tasks to monitor the health status of
the bridge [2].

The MCU is an ARM 32-bit Cortex-M4 running at 168 MHz, with 192 kB of SRAM
and 1 MB of Flash memory, popular in different edge applications for its low power con-
sumption. Further, the MCU features a floating-point unit and a digital signal processing
(DSP) library. The gateway is a standard Raspberry Pi 3 module B [21] (RPi3). It includes
a Broadcom BCM2837 SoC, with 64 bit 4-core Cortex-A53 running at 1.2 GHz and 1 GB
of DDR2 RAM. The gateway runs an Ubuntu operating system, easing the scheduling of
communication tasks through common python interfaces (e.g., an MQTT broker [22]). The
cloud system is divided into a storage section and a computing node allocated on the IBM
cloud service.

In this work, we propose to replace cloud processing with a brain-inspired near-sensor
anomaly detection algorithm directly computed on the microcontroller (MCU) on the
sensor node board. We will show that the proposed algorithm can identify the normal and
faulty bridge conditions, avoiding the RAW data transmission to the cloud.

2.2. Structural Health Monitoring Data

SHM frameworks usually process acceleration data for monitoring structures’ health
status [23]. The datasets used in the study contain 3-axial accelerations data acquired
with the previously described framework. As mentioned above, the viaduct underwent
a technical intervention to strengthen its structure, with a corresponding change in the
natural frequencies of a bridge. Figure 2 shows how the power spectrum density, averaged
over 6 h, is modified before and after the intervention.

Figure 2. Mean natural frequency shift before and after scheduled maintenance.

Given these data’s uniqueness, we use them as a proxy of an aged viaduct compared
to a healthy one. In particular, in this work, we consider the signals collected after the
intervention as the normal data produced by a healthy viaduct. Analogously, the data
gathered before the maintenance intervention are considered “anomalies” since they are
sampled on a damaged and aged bridge. While the data do not represent the whole history

Future Internet 2021, 13, 219 5 of 23

of the viaduct, to the best of our knowledge, it is the only dataset containing vibrations
from the viaduct during two different structural phases of the building.

2.3. Spiking Neural Networks

This paper proposes to study a Spiking Neural Network Model to solve the SHM
supervised anomaly detection problem directly on the sensor’s node MCU. The SNN
model is a brain-inspired (so-called third-generation) type of neural network. They have a
greater computational capacity as the single neuron is modelled with a much more complex
dynamic than the neurons present in traditional Artificial Neural Networks (ANNs). This
means that SNNs can solve the same tasks as ANNs with fewer neurons [8]. Moreover,
their hardware implementation on neuromorphic architectures and accelerators can lead
to greater energy efficiency in data management and computation [24–28]. In this work,
we do not consider neuromorphic implementation because the objective is to work with
low-cost commercial MCUs, for which SNN porting is not available.

In particular, we consider a recurrent type of SNN called LSNN (Long Short-Term
SNN) because they are suitable to process temporal data streams like their artificial coun-
terparts (e.g., LSTMs). While SNN has already attracted attention for SHM applications, so
far, literature papers have focused on simple feed-forward SNN, which are less powerful
and do not exploit the potential of SNN, nor do they impose training challenges [17].

The recurrent LSNN structure is depicted in Figure 3, where the input, output and
recurrent layers are represented. The input is a signal while the output is a classification
encoded in the output neurons, meaning that each output neuron represents one of the
possible classes. For instance, the neurons generating the highest output values is the one
representing the recognised class. The time it takes to the network to process every single
input and produce a stable output is called inference time (tin f). As explained later in this
Section, the input to the network can be either of current or event type. A current input
type is a constant value over a time ∆t = tin f , while an event input type is a train of spikes,
encoding the input signal using one of the possible methods described in Section 2.4.

Figure 3. Full pipeline. The signal over time is encoded in current or events. Once transformed, it
will be given as input to the SNN which will classify the data as a healthy or damaged bridge.

This is the first work to study the feasibility of leveraging SNN inference on the sensor
node on an embedded microcontroller. Detecting the health status of the structure directly
on the node’s MCU has the clear benefit of ease the network communication requirements
of the sensors node to the edge node leading to energy reduction opportunities. The event-
driven nature of the SNN processing can lead to an optimised implementation consisting of
(i) a coding of the input sensor stream into a sequence of events depending on the intensity
of inputs and (ii) a computation workload (internal activity of the SNN) which processes
these events as spikes. Since spikes are binary signals, linear algebra operators can be
implemented with simplified arithmetic. We designed a pre-processing stage to apply
LSNN to SHM real-life dataset. The state-of-the-art of LSNN applied to a similar problem
of phonemes recognition is solved in [19], which processes the TIMIT dataset (representing
phonemes) by Mel-frequency cepstrum (MFC). The spectral coefficients are given as input
to the network as synaptic currents.

Future Internet 2021, 13, 219 6 of 23

Starting from this reference LSNN (designed for server machines), we implemented
an LSNN to process the spectral coefficient of the accelerometer waveform to detect a
structural change in a highway viaduct. Through this network, we classified two categories
of signals: Damaged or healthy (or repaired) bridge. In both cases, the bridge’s natural
frequency, detectable by oscillations due to the passage of vehicles, undergoes a shift that is
typically difficult to identify in the presence of noise caused by environmental stimuli and
variable traffic conditions. A spike neuron model is considerably more complex than an
artificial neuron model (accumulation and threshold), so its training and inference require
higher computational effort than its simplified version. To train the LSNN model, we
applied Backpropagation Through Time (BPTT) algorithm [19].

The network used in this work is described in [19]. The input layer is composed of
input neurons (I) which are connected in an all-to-all fashion through the W I matrix to the
recurrent layer, which is composed of Adaptative-Integrate and Fire neuron (ALIF). The
recurrent layer is connected recursively to itself with an all-to-all connection matrix WH ,
and it is linked to the output layer in an all-to-all fashion with the matrix WO. The ALIF
neurons are described by two state variables v and a. The first one is called membrane
potential and increase when the neuron receives a stimulus (spike or current). When the
v reach a value called vth, it emits a spike. The ALIF neurons have a changeable vth; this
behaviour is described by a the second state variable. The following equations describe an
ALIF neuron:

vt
j =

α︷ ︸︸ ︷
e−

δt
τm vt−1

j +

ALif→ALif︷ ︸︸ ︷
∑
i 6=j

WH
ji zt−1

i +

In→ALif︷ ︸︸ ︷
∑
n

W I
jnxt

i −

Reset︷ ︸︸ ︷
vthzt−1

j (1)

at
j =

ξ︷︸︸︷
e−

δt
τa at−1

j + zt−1
j

At
j = vth + ρat

j

(2)

zt
j =

1 if vt
j ≥ At

j and rt
j 6= 1

0 otherwise
(3)

Equation (1) describes the update of the membrane potential. α is the decay of the
neuron, and it depends on the tick (δt) of the network and the membrane time constant τm.
The second and the third term describe the contribution of the recurrent part and the input
layer, respectively. In the end, there is the reset of the membrane potential if this reaches
the vth, z are the spikes of the ALIF, while x can be either spikes or current. Equation (2)
describes the update of the spike threshold of the ALIF, ξ is the decay of the adaptative
threshold, and it depends on δt and τa called decay time constant, a is rescaled by a factor
ρ before being added to vth. Equation (3) describe the spike condition. The neuron can
spike (fire) only if it reaches a certain value (A) and if it is not in the refractory period (r).
The refractory period is triggered when a neuron spike, and it is a time-lapse in which the
neuron cannot fire.

The output neurons are continuous; therefore, the output is not a spike train but a
continuous waveform. The following equation describes the outputs neurons:

yt
k =

β︷︸︸︷
e−

δt
τo yt−1

k +

ALif→Out︷ ︸︸ ︷
∑

j
WO

kj zt
j +

Bias︷︸︸︷
bk (4)

where τo is the decay constant of the membrane potential of the neurons and b is the bias
of the neuron, which represents a constant current that stimulates the neuron.

2.4. Input Encoding Methods

The LSNN we used in this work can work with two types of input encodings: Current
(current-driven) or events (events-driven). In the Current-Driven LSNN, the input signal

Future Internet 2021, 13, 219 7 of 23

is constant for all the inference time, while in the Events-Driven LSNN, the signal is first
encoded as spikes and then provided as input. This section describes some of the state-of-
the-art encoding methods and details the algorithm we implemented to encode acceleration
signals coming from the MEMS sensor. Considering Figure 2, which shows the frequency
shift that we want to detect, we give as input to the network the FFT of the acceleration
signal due to the vehicle crossing the viaduct.

Literature is rich in algorithms to encode a waveform into a stream of spikes. Some
of those approaches try to minimise signal reconstruction error, while others focus on
emulating biological-plausible behaviours.

The authors of [29] propose a family of methods that minimise signal reconstruction
error. All proposed methodologies are characterised by the presence of two complemen-
tary neurons (normally referred to as positive and negative), which expose a contrasting
behaviour, that is, when one of the two fires, the other does not.

The simplest temporal encoding algorithm is called Threshold Based Representation
(TBR). In this algorithm, whenever the difference between two consecutive signal samples
is higher than a predetermined fixed threshold, then the positive neuron emits a spike.
Unfortunately, while being computationally cheap to implement, TBR is known for leading
to high reconstruction error [29], even for signals with simple dynamics.

The Step Forward (SF) method uses a baseline value (initialised as the value of the
first signal sample) and a fixed threshold. Suppose the absolute value of the difference
between two consecutive samples is higher than the sum of baseline and threshold. In
that case, the positive neuron spikes and the baseline is updated, adding the baseline. A
variation of this encoding strategy is called Moving Window (MW), where the baseline
is updated looking at a moving window of signal samples. The other encoding methods
proposed in [29] have not been considered in this work because of their inherent higher
computational complexity that is not suitable for the chosen architectural target.

In [30], the authors describe some biological methods of encoding without considering
the reconstruction error. In all these methods, the information is encoded in the reciprocal
spikes of several neurons, meaning that proper encoding of the signal depends on the
number of neurons adopted. At the time of the first spike, the information is stored in the
delay between the start of the stimulus and the neuron’s firing. In this method, the first
neuron inhibits all the others; therefore, the information is in just one spike. In latency
code, the information lies in the time between spikes of different neurons. In Rank-Order
Coding (ROC), the information is encoded in the order of the spikes. In this method, every
neuron can fire at most once for every sample (representing a single FFT in our case).

3. Brain Inspired Processing

This section describes the two main components of the brain-inspired processing
pipeline, namely input encoding and LSNN architecture. Next section will describe the
optimization performed to improve LSNN implementation for edge devices.

3.1. LSNN Input Coding

In the previous section, we discussed possible encoding methods proposed in the
literature for LSNNs. In this section, we describe the method we applied to SHM data
in our brain-inspired processing pipeline. An example of the input signal is shown in
Figure 2.

In Figure 4 the entire data flow is shown. After collecting the data from the sensor, we
extract only the z-axis values since they are more sensitive to the vehicles passages. These
data are collected with a sampling frequency of 100 Hz and successively downsampled
to 12.5 Hz. Subsequently, we get only the windows where vehicles passages have been
detected. This was done by thresholding the signal.

The FFT of these windows is computed. The number of input neurons has been
selected as two possible values: 50 or 150. This choice was made because a larger number
of inputs would have caused a matrix of input weights (W I) too large to train for such a

Future Internet 2021, 13, 219 8 of 23

small network, while a smaller number of inputs risks not extracting enough features from
the signal [31]. So each vehicle’s window can be composed of 100 or 300 coefficients that,
in time, is equal to 8 or 24 s.

Extract Vehicles
Passage

Compute
FFT

In
p

u
t

n
e
u
ro

n
s

(I
)

Extract
Z Axis

Events
EncodingI

To The
Network

cI-1

cI-2

c0

c1

tinf t

Current
Encoding I

To The
Network

tinf t

Figure 4. Data preprocessing.

FFT coefficients are then given as input to the encoding stage. In the case of Current-
Driven encoding, they are provided to the LSNN network one to each neuron for a constant
time corresponding to tin f . On the other side, in the case of Event-Driven encoding, the
ROC algorithm is applied.

Each coefficient is thus encoded as a spike time interval. The larger the coefficient, the
smaller the “time-to-spike”. As a result, the spike time interval is inversely proportional to
the value of the coefficients. As such, higher coefficients, which are more relevant for the
damage detection because they have more energy, will fire first. Lower coefficients will
fire later. Since tin f is the inference time for each sample, all neurons that have not fired
for t < tin f will no longer be able to fire. This implies that the coefficients with low energy
(no information) will not impact the network input. The applied ROC encoding algorithm
(Algorithm 1) is shown below:

Algorithm 1: Compute Time-to-Event
input :A signal S of I coefficients and a inference time tin f
output :A Time-to-Event T array of I spiking intervals
m = min(S);
M = max(S);
for i← 0 to I − 1 do

t = (S[i]−m)/(M−m);
tcheck = round(1/t);
if tcheck ≤ tinf then

T[i] = tcheck
end

end
return T;

The signal S is the sequence of FFT coefficients corresponding to the observed ac-
celeration window made of I coefficients. The inference time tin f is also an input of the
algorithm as it is a network parameter.

Future Internet 2021, 13, 219 9 of 23

3.2. LSNN Architecture

The proposed LSNN network is shown in Figure 5, and it is composed of 20 ALIF and
two output neurons which discriminate between the two classes of the bridge. We isolated
the most important configuration parameters of the training algorithms (hyper-parameters)
and studied their impact in terms of LSNN computational complexity and internal activity
with an exhaustive search.

WI WO

WHInput
Neurons (I)

20 ALIF
Neurons

2 Output
Neurons

Figure 5. SNN architecture.

The hyperparameters that we explored can be divided into two classes, the network
parameters and the training parameters (summarised in Table 1). The first class comprises
all the constants that strictly concern the network, while the second class is composed of
all the values used to reach better performances but that don’t feature the network. The
network parameters that we explored are:

• The input number (I) [50, 150] is the number of input neurons in the first layer. A high
number create a huge W I matrix that cannot be trained by a small network, while a
low number risks not extracting all the features of the input signal [31].

• τm [20, 30] represents the decay of the membrane potential in the recurrent layer.
With high values, the neuron will need more time to return to the resting potential,
representing the membrane potential of the neuron if any inputs have not perturbed it.

• τo [3, 10, 30] is the decay of the membrane potential of the output neurons.
• vthc [0.01, 0.03]. The spike threshold (vth) of the neurons is computing as: vth =

vthc/(1−e−δt/τm). A high value of the vthc is translated into a higher value of the threshold.
• βc [1.7, 1.8] is used to compute the increase of the adaptive threshold (ξ) in the ALIF

neurons. Higher values of this parameter are equivalent to a greater increase in the
spike threshold.

• τac [0.5, 1] is used to compute the decay of the adaptive threshold (τa). τa should have
a value comparable to the time length of the problem [19].

Table 1. LSNN parameters explored.

Parameter Description Explored Values

I Input neurons 50, 150
τm Recurrent layer membrane potential decay 20, 30
τo Output layer membrane potential decay 3, 10, 30
vthc Spike threshold coefficient 0.01, 0.03
βc Adaptive threshold coefficient 1.7, 1.8
τac Adaptive threshold decay 0.5, 1.0

tin f Inference ticks 5, 10, 20
regc Loss regularization coefficent 1, 100, 300
regr Firing rate regularization coefficent 0.01, 0.001

The training parameters that we explored are the inference time (tin f) expressed in
ticks [5, 10, 20]. A tick in an SNN represents a cycle to complete the dynamics integration
of all network neurons. The actual time depends on the implementation. The inference
time is then the number of ticks that the network uses to process the input sample. For
the regularisation coefficient we use (regc) [1, 100, 300] and for the regularisation rate we

Future Internet 2021, 13, 219 10 of 23

use (regr) [0.01, 0.001]. The two regularisation values are used to computing the loss of the
network:

L f r =
1
2 ∑

j

(
1

nT

nT

∑
t=1

zt
j − regr

)2

(5)

L = Lp + L f r ∗ regc (6)

Loss is composed of two parts (Equation (6)), the loss of the classification (Lp) that is
computing with the cross-entropy and the weighted firing-rate loss (L f r). The L f r is
computed as the difference between the firing rate activity of the network and the regr that
is the desired firing rate [19].

4. eLSNN: The Optimized Embedded LSNN

The implementation of LSNNs was performed taking into account resource constraints
and exploiting SNN properties. In particular, sparsity in neuron response (e.g., firing) was
exploited in order to skip processing cycles. The firing activity of neurons can be tuned as
described in [19] using a loss value dedicated to limit the neuron activity.

Our LSNN implementation is depicted in Figure 6 and consists of four main steps: (i)
Membrane voltage update (v), (ii) Membrane voltage threshold update (a), (iii) Evaluation
of the spike emission (z), (iv) Evaluation of the output (y). The diagram shows: x data
dependencies in green, v data dependencies in blue, a data dependencies in red, z data
dependencies in purple and y data dependencies in magenta. In the next sections we will
describe in detail the network implementation and the performed optimisations.

Figure 6. Flowchart of the LSNN update cycle. Neuron variables are represented with rectangles.
Simple mathematical operations are represented with circles. Matrix multiplication operations
with synaptic weights are represented by grids. Constants are represented with black circles. Data
movements are represented by arrows between operators and operands.

4.1. Membrane Voltage Update

The computation involved in the membrane voltage update (v), as shown in Figure 6
in the first blue ⊕ operator, is done through the following steps:

1. Membrane voltage decay: v(α) := αv
2. Contribution of inputs on membrane voltage: v(I) := W I x
3. Contribution of internal neuronal activity on membrane voltage: v(H) := WHz
4. Reduction of membrane voltage in case of previous spike emission: v(th) := −vthz
5. Update of membrane voltage: v← v + v(α) + v(I) + v(H) + v(th)

In Table 2 we report the operations (sum and multiply) of both the non optimized
(Naive) and optimised version for each component of v. Overall, the operations to be
performed are: (I + N + 2)Ntin f sum and (I + N + 2)Ntin f multiplication.

Future Internet 2021, 13, 219 11 of 23

Table 2. Operations analysis for a single neuron. These operations must be executed for each neuron
(N) and for each inference tick (tin f).

Item Naive Optimised

Sum Mul Store Sum Mul Store

v(α) - 1 - - 1 -
v(I) I-1 I - x̃ - 1 - -
v(H) N-1 N - z̃ - 1 - -
v(th) - 1 - 1 - -
v 4 - 1 4 - 1

Total I+N+2 I+N+2 1 x̃ + z̃ + 3 1 1

Because of the event-driven design of the network, it is possible to implement the
computation of the v(I) and v(H) components more efficiently. Considering the row-column
multiplication between the matrix W (with N×M elements) and the column vector x (with
M× 1 elements), the operation result will be added to the vector v. When the elements of
x can only assume binary values (xi ∈ {0, 1}) the Wx operation can be implemented using
only sums. The following pseudo-code formally describes the operation:

Let x̆ be a list containing only the index of the non-zero elements of x. By iterating
over the elements of x̆ we select the columns of W to be considered in the sum cycle (inner
cycle). The sum cycle iterates over the rows of the selected column, and for each element
accumulates its content in the result vector. The required operations will therefore be
dependent on the number of non-zero elements in the vector x. The number of non-zero
elements in the vector x will change with each inference tick. We then identify using the
symbol x̃ the average number of non-zero elements of x for each inference tick.

We then reduce the sums required for the membrane voltage update from (I + N +
2)Ntin f to (x̃ + z̃ + 3)Ntin f and the multiplications from (I + N + 2)Ntin f to Ntin f . The
value of x̃ depends on the chosen event encoding. The value of z̃ depends on the behaviour
of the network. When training the network, it is possible to minimise z̃ by introducing its
value into the loss calculation.

4.2. Threshold Update

Updating the threshold for the membrane voltage (a), as shown in Figure 6 in the first
red ⊕ operator, is broken down into the following operations:

1. Evaluation of threshold decay: a(ξ) := ξa
2. Threshold adjustment in case of previous spike: a(z) := z
3. Threshold update: a← a + a(ξ) + a(z)

4. Weighted threshold computation: a(ρ) := ρa

5. Reference threshold augmentation v(a)
th := vth + a(ρ)

In total, 3Ntin f sums and 2Ntin f multiplications are required to implement the adap-
tive threshold functionality.

4.3. Spike Emission Check

At each inference tick, the spike firing condition must be checked. For each neuron, the
membrane voltage is compared with the spike threshold. In this particular implementation,
the threshold voltage is adapted to the activity of the neuron and increases as its activity
increases. A spiking neuron is also inhibited for a period tre f called refractory time. Even
if the neuron has a membrane voltage above the threshold during this period, it will not
fire. To check this condition, each neuron stores the information about the tick of the last
spike t(z)i .

When checking the emission of a spike, as shown in Figure 6 in the first purple ♦
operator, two conditions must therefore be checked for each neuron:

Future Internet 2021, 13, 219 12 of 23

1. The membrane voltage must be above the adaptive threshold: vi ≥ v(a)
th

2. The neuron must not be inhibited by an earlier spike: t ≥ t(z)i + tre f

If the above conditions are satisfied, the vector z will take the value 1 at position i,
otherwise the value 0.

In our implementation, instead of directly handling the vector z, we use the list of
events z̆. Using the list of events, we can replace matrix multiplications WHz and WOz
with sums. At the beginning of the spike emission check phase, the list z̆ of previous events
are cleared. In the presence of a spike emission, the identifier of the spiking neuron will be
added into the z̆ list.

4.4. Output Update

Output neurons receive spikes generated by network neurons in the recurrent layer at
the same tick as they are emitted. As shown in Figure 6 in the first magenta ⊕ operator, the
output neurons have a similar update cycle to the recurrent neurons:

1. Output decay: y(β) := βy
2. Contribution of internal neuronal activity on output: y(H) := WOz
3. Bias contribution: y(b) := b
4. Update of output: y← y + y(β) + y(H) + y(b)

Again, the calculation of y(H) requires a multiplication between the matrix WO and
the vector z. The procedure described in 4.1 helps to lower the number of operations.
Using the list z̆ it is possible to solve the operation WOz using sums only. The number of
operations is then lowered from (N − 1)Otin f sums and NOtin f multiplications to z̃Otin f
sums.

4.5. Current-Driven Input

In this work, we consider also an alternative to input events, using continuous (e.g.,
real) values in the vector x [19]. While in this case it is not possible to perform the
optimisations described in Algorithm 2 for solving v(I) := W I x, we provide an optimised
version of the LSNN using this type of input to evaluate the trade-offs lead by the two
encoding methods and reported in Section 5. We note that in this case the contribution of
internal neuronal activity v(H) (hidden/recursive layer) is still spike-based, however in the
input-layer it is not possible to remove multiply operations as it is possible using input
spike events.

In the literature, networks using continuous input typically observe a sample for a
period called the exposure time texp. Within the network exposure time, the same values of
x are always presented. This leads to the formation of three time domains (although it is
common for the time domains of input and output to coincide) represented in Figure 7:

• Temporal domain of the input, where the input varies over time.
• Temporal domain of the network, for each tick in the input-time-domain the network

performs texp iterations always observing the same value of x
• Temporal domain of output, where output varies over time.

Figure 7. Flowchart modified to handle current-driven input. In this application scenario the input
and output have two different time domains from the network. vin and ẑ vectors are used to pass
information from the input to the network and from the network to the output.

Future Internet 2021, 13, 219 13 of 23

Algorithm 2: Optimized implementation of v←Wx when x is a boolean vector.

i← 0;
while i < events do

offset← x̆[i];
while n ≤ neurons do

v[n]← v[n] + W[offset];
offset← offset + neurons;

end
i← i+1;

end

In order to efficiently handle this LSNN variant, the time domains are decoupled by
vectors vin and ẑ. The first vector decouples the input from the network; it is computed
by a row-column multiplication between the matrix W I and the vector x each time the
input changes. Then, the vector vin will be used to increment v at each tick of the network.
The number of operations to compute v(I) then becomes (1/texp(I − 1)N + N)tin f sums and
tin f/texp IN multiplications.

The second vector decouples the network from the output. The output will no longer
process the spikes coming from the network but will use the average activity of the network
within the exposure time as information. At each tick, the network must accumulate the
emitted spikes inside the vector ẑ. In the time domain of the output the content of the
vector will be averaged (z̄) and used for the calculation of y(H) := WOz̄.

The number of operations for calculating y(H) then becomes (1/texp(N − 1)O + z̃)tin f
sums and tin f/texp NO multiplications.

In the following, we will refer to this LSNN version as current-driven eLSNN, since
the continuous and constant input over the exposure time can be interpreted as a constant
current stimulus. The version working with input spikes (e.g., binary values) will be
referred to as event-driven eLSNN instead.

5. Experimental Result

This section first describes the experimental setup used to test the LSNN implementa-
tion presented in the previous sections. Then, it reports the results of the design trade-off
characterisation for the proposed eLSNN. In particular:

• Section 5.1 describes the hardware-in-the-loop system we implemented to profile the
runtime and energy performance of the SHM application.

• In Section 5.2, we study the accuracy of the trained eLSNNs (current-driven and event-
driven). We evaluated the MCC on the test dataset for the first order hyper-parameters,
which impact the energy and computational efficiency of the eLSNN implementation.
The first-order hyper-parameters are the input number (I) and inference ticks (t_in f)
of the networks.

• In Section 5.3, we study the impact of the eLSNN performance (#execution cycles)
considering the most accurate networks for each eLSNN version (current-driven and
event-driven). We also considered different combinations of the first-order parameters
as a function of the activity factors of the eLSNNs (number of non-zero elements
(spikes), both in the input (x) and hidden/recurrent layer z).

• In Section 5.4, we perform a complete characterisation of the SHM sensing node
firmware for a network implementation having median activity-factors. This corre-
sponds to a typical behaviour of the sensor node for a real SHM application in terms
of execution time and energy-consumption.

5.1. Testbed

We prepared a hardware-in-the-loop setup to characterise the performance and energy
of the data acquisition and processing board. As shown in Figure 8, the testbed we

Future Internet 2021, 13, 219 14 of 23

implemented is composed of three actors: i) A development board hosting the STM32 MCU
(System-on-Chip) on the left; ii) A data acquisition system to monitor the consumption
of the STM32 development board (Analog Input) on the right and iii) A FPGA emulation
module able to feed the processing unit in the system-on-chip with data coming from the
real-world SHM application described in Section 2 in real-time (Virtual Sensor). (based on
PXIe systems from NI [32]).

Figure 8. Architecture of the hardware-in-the-loop test system. The PXI system comprises a PXIe-4309
Analog Input module to monitor current consumption in each stage of the pipeline. The PXIe7858R
FPGA, along with the PXIe-8880 Windows 7 controller, implements the Virtual Sensor and allow
loading MEMS readings from a CSV file in real-time, emulating a real buffered digital MEMS node
in hardware. The whole application runs on a STM32F4 development board featuring a Cortex-M4
ARM core.

Both the Analog Input and the Virtual Sensor are part of a PXIe systems from NI [32]).
This is a modular, LabVIEW controlled environment able to perform fast measurements re-
quiring high-performance digital and analog I/O. The following three subsections provide
further details about the PXI modules used in the experimental setup and their role in the
pipeline characterisation.

5.1.1. System-on-Chip

We implemented and deployed the entire SHM pipeline on an STM32F407VG6 MCU.
It is a system-on-chip manufactured by STMicroelectronics, which features an ARM Cortex-
M4 with a floating-point unit. The core comes with 192 KB RAM and 1 MB FLASH memory
and supports a maximum clock frequency of 168 MHz. The STM32F407VG6 supports
multiple low-power modes and various clock frequency configurations, which allow a
fine-grained tuning of the system performance depending on the application needs. For
the sake of this work, we apply the following policies:

• When the system is in RUN mode, the system-on-chip is always clocked at the
maximum allowed clock frequency, equal to 168 MHz.

• When the system fetches data from the MEMS sensor over SPI, the transfer is per-
formed via DMA with the core in SLEEP mode. Before entering SLEEP mode, the
MCU core is clocked down to 16 MHz to minimize SLEEP current consumption.

• When the system-on-chip is not working, it is put in STANDBY mode, switching off
the voltage regulator to achieve the lowest consumption possible. Notice that we can
apply such an aggressive power-saving policy since we assume our SHM application
does not need to retain any state before one LSNN inference and the next inference.

Considering the software stack employed to implement the SHM application, we
interfaced the on-board peripherals using the Hardware Abstraction Layer provided by
STMicroelectronics. Instead, the mathematical processing (e.g., FFT computation, FFT-to-
spike conversion) is implemented using the CMSIS-DSP library primitives. It is a set of
routines developed by ARM to deliver DSP-like functions optimized to run on Cortex cores.

Future Internet 2021, 13, 219 15 of 23

5.1.2. Analog Input

The power and performance monitoring activity of the pipeline has two requirements:
(i) Measure the current sunk by the system-on-chip at any time of the data acquisition
and processing and (ii) precisely split the current waveform into each pipeline stage, to
detect the analysis stages that are the more power hungry or require most MCU cycles to
be accomplished. Both requirements are met by using a PXIe-4309 ADC device reading 2
M Samples per second and featuring 32 channels 18 bit wide. We used two of the available
input channels to perform the following synchronous activities:

• Sample the current sunk by the MCU using a 1 Ohm shunt resistor. Such measurement
exploits a jumper available on the development board to monitor current consumption
on the VDD of the system-on-chip.

• Read the logic level of a debug GPIO (DBG pin, Figure 8) that is toggled by the appli-
cation software each time a processing stage is started or completed, to associate each
phase (e.g., SPI transfer, FFT computation, SNN inference) to its current consumption
waveform (with negligible overhead on the application performance).

5.1.3. Virtual Sensor

The Virtual Sensor is an FPGA-based emulation system that allows feeding the SPI
interface of the MCU with data taken from a trace. The trace was obtained from a real
sensor deployment on the field. For characterisation and profiling purposes, the virtual
sensor was connected to the MCU replacing the MEMS present in the sensor node board.
The Virtual Sensor is completely implemented within the PXI system and is made of two
modules sharing data through a DMA-controlled hardware FIFO:

• PXIe-8880: The PXI system controller, which is a general-purpose CPU-based host
running Windows 7 and LabVIEW. It loads the accelerations measured on the bridge
from a CSV file and pushes them into a FIFO at the boundary of the FPGA system.

• PXIe-7858R: The PXI FPGA module, which loads the measurements the DMA move
from the controller to its FIFO. It acts as a digital MEMS that samples structural
accelerations at a constant rate and stores them in an on-board buffer which can be
accessed in-order through an SPI interface.

5.2. Accuracy vs. First-Order Hyper-Parameters

As introduced in Section 2, to study the impact of the eLSNNs hyper-parameters and
flavours on the accuracy, we conducted an exhaustive search. We evaluated the accuracy as
the Matthews Correlation Coefficient (MCC) on the test set, which includes all the samples
related to vehicle passages on the bride section during a randomly chosen day before and
after the scheduled maintenance intervention.

In Figure 9, we report on the y-axis the network accuracy measured as MCC. We
limited the plot to those hyper-parameters configurations leading to eLSNNs with an MCC
≥ 0.6. This corresponds to an accuracy of 0.77. Moreover, in the same figure, we draw the
line at the MCC = 0.75. We consider all the eLSNNs configurations achieving an MCC
higher than 0.75 as acceptable or “good” configurations. This threshold corresponds to
accuracy above 0.88.

On the x-axis, we report three sets of plots. Each set corresponds to different inference
ticks (tin f = 5, 10, 20). Inside each set, the left plot refers to the current-driven eLSNN, and
the right plot refers to the event-driven eLSNN. Inside each of these plots, we report the
eLSNN configurations achieving a MCC > 0.6. The percentage of these configurations
on the total evaluated (1728 for each eLSNN flavour) is reported in the text on each plot’s
bottom. The MCC accuracy of each configuration is reported with red bins for an input
number of 50 and with blue bins for an input number of 150 bins. In the SHM application,
the input number (I) corresponds to the magnitude of the spectral components of the FFT.
It thus is equal to the double of the accelerations samples, which needs to be read by the
sensor to compute an eLSNN inference.

Future Internet 2021, 13, 219 16 of 23

Figure 9. Inference ticks and number of inputs impact on MCC using the Current Input and the
Event Input. Each point is a configuration of LSNN, which is characterised by its hyperparameters.

The combination of these parameters (tin f &I) constitutes the first-order hyper-parameter
that, as we will see in the next section, impact the inference execution time of the eLSNNs and
then their energy consumption. From the figure, we can notice that for the current-driven
eLSNNs, the largest number of acceptable configurations is achieved for an input number
(I) of 50. Which also corresponds to the lower complexity of the eLSNN computations
(see Section 4). Differently, for the event-driven eLSNNs, acceptable configurations can
be achieved only with an input number (I) of 150. As we will see in Section 5.4, this has
a severe drawback on the pre-processing cost for this eLSNN flavour. It is also worth to
note that for the current-driven eLSNNs the accuracy improves with larger inference ticks,
having any acceptable configurations with I = 50 and tin f = 5 but several with I = 50 and
tin f = 10, 20. However, this is not the case for the event-driven eLSNNs for which their
MCC does not improve significantly with progressive tin f increases. It is now interesting
to evaluate these parameters’ impact in terms of eLSNN inference execution cycles.

5.3. Execution Time vs. Activity-Factors

As described in Section 4, the optimised eLSNN algorithm we propose in this paper
leverages the sparse nature of the spikes for saving computations. If a neuron does not
receive a spike, it does not trigger accumulation in the membrane potential. This means
that the computational burden of the eLSNN algorithm depends on the average number
of non-zero elements for each inference tick in the recursive/hidden layers. This is true
for both current-driven and event-driven eLSNNs. For the event-driven eLSNN only, also
the input layer must be considered in this computation. To understand the relevance of
these effects on the total eLSNN inference time, we have to analyse different input samples.
Each sample corresponds to the FFT coefficients of the accelerations read by the MCU
during a passage of a vehicle. More specifically, the number of spikes corresponding to
non-zero elements in the recurrent layer during an eLSNN inference (denoted with z)
depends on the specific input sample and network hyper-parameters. Differently from
the recurrent/hidden layer activity (z), the input activity factors vary between the eLSNN
flavour. For the current-driven eLSNNs, the input activity depends only on the input
number (I). In contrast, for the event-driven eLSNNs, the input layer activity depends on
the input spikes and non-zero elements in the coded inputs for all the ticks (x). x depends
on the input sample and input number (I) as it is a property of the spiking input encoding.

Figure 10B reports on the y-axis the total number of cycles needed by the eLSNN
to complete one inference computation on a given input sample. This number of cycles
accounts only for the eLSNN computation after the pre-processing step. On the x-axis,
we report the value of z, which corresponds to the number of spikes/events/non-zero
elements in the recurrent/hidden layer integrated into all the inference ticks (tin f).

Future Internet 2021, 13, 219 17 of 23

Figure 10. (A) Cycle count for the event-driven eLSNN for the best configurations (input number
with different colours, and inference ticks with different markers) computed on minimal, median
and maximal spike activities on the input-layer (x). (B) Cycle count for the current-driven eLSNN
computed on minimal, median and maximal spike activities on the recurrent/hidden-layer (z).
Different colour represent different number of inputs configuration for the eLSNN. All networks
have an 10 inference ticks.

The different colours refer to the two different networks selected among the many
with acceptable performance. For each type of network, we selected the ones with a number
of inputs (I) leading to the largest (z) variation among the input samples in the test set.

Then, we plot three values of z chosen for each network corresponding to the min-
imum, the maximum, and the median sample. From the plot, we can notice that the
impact of the z is negligible with respect to the total execution time of the eLSNN inference.
Differently, the inference time for current-driven eLSNN halves when reducing the input
number I from 150 to 50. As the impact of z is negligible, we can ignore its effect in the
following plots.

Figure 11B reports on the y-axis the distribution of the non-zero elements in the input
layer for each input sample in the test set for event-driven eLSNNs. The distribution
depends on the input element and the encoding, which depends on the first-order hyper-
parameters, namely the inference ticks (tin f) and the number of inputs (I). In the y-
axis, we report the different configurations of the first-order hyper-parameters. From
the plot, we can see that the number of events/spikes/non-zero elements in the input
layer (x) is more significant and has higher variability than the same quantity in the
recurrent/hidden layer (Figure 10B). Moreover, the number of input events/spikes/not-
zero elements increases both in average and standard deviation with the increase of the
input number and inference ticks.

Figure 11. (A) cycle count breakdown for the event-driven (event) and current-driven (current)
eLSNN best configurations (input number - inference ticks) computed on median activity conditions.
(B) Distribution of the spikes in input for the event-driven eLSNN with different configurations
(input number-inference ticks).

Future Internet 2021, 13, 219 18 of 23

Figure 10A reports for each of the different configurations of the first-order hyper-
parameters and for the input sample corresponding to the minimum, maximum and
median values of x the execution time of the event-driven eLSNN. We can see that both the
first-order hyper-parameters vary the execution time. The execution time increases linearly
with the inference ticks and with x. It is interesting to notice that for the event-driven
eLSNNs, the input number (I) does not increase the execution time directly as with the
current-driven eLSNNs but indirectly. Indeed, a larger input number (I) increases the
execution time proportionally to the increase of x. Which eLSNN flavour and configuration
should thus be preferred?

5.4. Event-Driven vs. Current-Driven

This section concludes the eLSNN study by comparing the performance of the most
performing and energy-efficient current-driven, and event-driven eLSNN averaged on the
test set. This is obtained by evaluating the candidate eLSNNs in the median sample with
respect to both x and z.

Figure 11A reports on the same plot the breakdown of the total number of cycles taken
by the median inference time of both the current-driven and event-driven eLSNNs. For the
current-driven networks, all the first-order hyper-parameters combinations are reported,
while for the event-driven eLSNNs, we report only the configurations with inference ticks
equal to 5, which corresponds to the most energy-efficient networks. By comparing the
different networks, we can notice that the two most performing eLSNNs which achieves
MCC ≥ 0.75 are the configuration I = 150, tin f = 5 for the event-driven eLSNN and
I = 50, tin f = 5 for the current-driven eLSNN. The event-driven eLSNN requires less than
half of the cycles of the current-driven eLSNN. We can conclude that event-driven eLSNN
is significantly more efficient (> 50%) than the current-driven eLSNN. It must be noted
that this conclusion does not account for the pre-processing of the input sample (affecting
the input number) which is more significant for the selected event-driven eLSNN. It is
interesting to notice that the event-driven eLSNN configured with I = 50, tin f = 5 is the
most efficient one, but its MCC is lower (0.72) than the accuracy threshold of MCC ≥ 0.75.
Moreover, in the Figure 11A we report with different patterns the number of cycles needed
to perform the computational steps described in Section 4.

• Phase 0: Compute of v(α)

• Phase 1: Compute of v(I)

• Phase 2: Compute of v(H)

• Phase 3: Compute of a(ξ)

• Phase 4: Compute of a(th) and a(z)

• Phase 5: Compute of z and insert items in z̆
• Phase 6: Compute of y
• Phase 7: Insert items in x̆ for next iteration.

For the current-driven eLSNN the Phase 1 dominates the computational time since it
must compute the vin vector by means of a complete matrix-vector multiplication. Phase 0
and Phase 3 involves N multiplications, and at increasing tin f their execution times become
increasingly evident.

Figure 12 shows the MCU’s current consumption when executing the entire processing
steps needed to read the sensor values through the SPI interface, pre-process the sample
(FFT + ABS), and compute the eLSNN kernel. We report the current-driven eLSNN in
its most efficient configuration on the left plot, and on the right plot, we report the event-
driven eLSNN in its most efficient configuration. Even if the event-driven eLSNN kernel
costs halves of the cycles than the current-driven eLSNN, it requires three times more
sensor’s readings to compute an inference for an input sample. This increases the cycles
needed to read the sensor’s data in SPI and compute the FFT and abs. Moreover, the
event-driven eLSNN requires an additional pre-processing step consisting of the coding of
the spectral components in spikes/events described in Section 3.

Future Internet 2021, 13, 219 19 of 23

Figure 12. SHM application current consumption patterns for the best eLSNN networks working
with current (top) and event (bottom) inputs. To better highlight the different stages of the application,
the waveforms were obtained with the MCU clock slowed down to 16 MHz, while the SPI clock was
2 MHz.

As described in Section 4.5 the version of the network with current input needs a
matrix-vector multiplication for each input tick tinp = tin f /texp. In this use case, we have
only one input tick and only one matmul is executed, but it is enough to increase the
number of cycles considerably. In Figure 12A it is possible to appreciate this phase because
it is visible for a long period (around milliseconds 2 and 3) not present in Figure 12B.

Tables 3 and 4 summarises all these effects. We can notice that even if the event-driven
eLSNN kernel takes 54% fewer cycles than the current-driven eLSNN network, the total
computation time is 1.51× longer for the event-driven eLSNN. This is primarily due to
the SPI transfer, which is 2× longer than for the current-driven eLSNN. Even with this
extra execution time, the total time for computing the network matches the real-time
requirements of the SHM application. Due to the lower power cost of the SPI transfer
(w. DMA), however, the energy-consumption for the eLSNN flavours (event-driven and
current-driven inputs) is comparable and in the range of 46–49 µJ.

In future works, we will explore temporal coding techniques and migrate the coding
task directly in the MEMS sensor and in the time domain. These on-sensor coding tech-
niques will remove the FFT cost and the amount of data to be read from the MEMS sensors,
achieving further energy reduction in the sensor node.

Table 3. Power report of the SHM application featuring the best eLSNNs tested. The SPI master
transfers data with a serial clock of 8 MHz. The SPI stage includes: (i) The SPI data transfer, (ii) the
time required by the system-on-chip to reconfigure the clock to 168 MHz when it wakes-up from
SLEEP mode and (iii) the conversion of sensor data from raw integers to floating-point.

Stage
Current-Driven

Time Cycles Current Power Energy
[µs] [#] [mA] [mW] [µJ]

SPI 542 - 5.01 16.53 8.96
FFT 41 6971 38.76 127.91 5.24
ABS 26 4284 36.58 120.71 3.14
Encoding - - - - -
eLSNN 215 36,036 40.26 132.86 28.56

Total 824 47,291 - - 45.90
Mean - - 16.88 55.70 -

Future Internet 2021, 13, 219 20 of 23

Table 4. Power report of the SHM application featuring the best eLSNNs tested. The SPI master
transfers data with a serial clock of 8 MHz. The SPI stage includes: (i) The SPI data transfer, (ii) the
time required by the system-on-chip to reconfigure the clock to 168 MHz when it wakes-up from
SLEEP mode and (iii) the conversion of sensor data from raw integers to floating-point.

Stage
Event-Driven

Time Cycles Current Power Energy
[µs] [#] [mA] [mW] [µJ]

SPI 949 - 4.33 14.29 13.56
FFT 101 16968 38.17 125.96 12.72
ABS 50 8316 35.97 118.70 5.94
Encoding 32 5459 42.65 140.75 4.50
eLSNN 99 16,631 38.20 126.06 12.48

Total 1231 47,374 - - 49.20
Mean - - 12.11 39.97 -

6. Conclusions

In this paper, we presented an optimised implementation of a recurrent Spiking Neural
Network on embedded microcontrollers for damage detection in Structural Health Monitor-
ing applications. We studied the feasibility of spiking based processing and the trade-offs
involved in using an event-based input. Thanks to this implementation, called eLSNN, we
were able to design, implement and characterise an SNN-based monitoring system, where
the computation is performed near to the sensor node. We described the optimisations we
performed with respect to a naive LSNN algorithm present in the state-of-art to reduce
computation cycles and improve energy efficiency. We also studied two alternative encod-
ings of the input, showing how they impact performance and energy. We highlight the
trade-offs between eLSNN execution and data transfer costs that have to be explored to
select the best energy/performance configurations. Results of accuracy obtained on a real
use case demonstrated that LSNN is a viable solution for damage detection in SHM, having
high accuracy (MCC ≥ 0.75) and low cycle and energy overheads if compared with the
data transfer costs. Moreover, the results highlight that moving the spike-coding directly
in the sensor can lead to even more energy-efficient implementation. The eLSNN working
with input spikes is more energy-efficient than the one using real (continuous) values.
The promising results in this work open the way to the implementation of SNN-based
processing on-edge. Moreover, when compared with a state-of-art work leveraging an
autoencoder (ANN) on the same dataset [7], the proposed eLSSN approach shows lower
complexity (from 32,000 MAC operations to 15,750 sums and 750 multiplications).

Future work will be devoted to evaluating and comparing event-based SNN ap-
proaches against other SHM datasets and comparing extensively with ANN algorithms.

Author Contributions: Conceptualization, F.B., L.Z., E.P., A.B. (Andrea Bartolini) and A.A.; Method-
ology, F.B., L.Z. and E.P.; Software, F.B., L.Z. and E.P.; Supervision, A.B. (Andrea Bartolini) and A.A.;
Writing—original draft, F.B., L.Z., E.P., D.B., A.B. (Andrea Bartolini) and A.A.; Writing—review &
editing, F.B., L.Z., E.P., A.B. (Alessio Burrello), A.B. (Andrea Bartolini) and A.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by INSIST Project (PON Ricerca e Innovazione 2014–2020) -
Sistema di monitoraggio INtelligente per la Sicurezza delle InfraStrutture urbane grant number
ARS01-00913.

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2021, 13, 219 21 of 23

References
1. Smarsly, K.; Dragos, K.; Wiggenbrock, J. Machine learning techniques for structural health monitoring. In Proceedings of the 8th

European workshop on structural health monitoring (EWSHM 2016), Bilbao, Spain, 5–8 July 2016; pp. 5–8.
2. Burrello, A.; Marchioni, A.; Brunelli, D. Embedded Streaming Principal Components Analysis for Network Load Reduction in

Structural Health Monitoring. IEEE Internet Things J. 2021, 8, 4433–4447. doi:10.1109/jiot.2020.3027102.
3. Riziotis, C.; Testoni, N.; Aguzzi, C. A Sensor Network with Embedded Data Processing and Data-to-Cloud Capabilities for

Vibration-Based Real-Time SHM. J. Sens. 2018, 2018, 2107679. doi:10.1155/2018/2107679.
4. Foundation, T. TinyML. 2021. Available online: https://www.tinyml.org (accessed on 20 August 2021).
5. Microelectronics, S. STM32 Solutions for Artificial Neural Networks. 2021. Available online: https://www.st.com/content/st_

com/en/ecosystems/stm32-ann.html (accessed on 20 August 2021).
6. Meyer, M.; Farei-Campagna, T.; Pasztor, A. Event-Triggered Natural Hazard Monitoring with Convolutional Neural Net-

works on the Edge. In Proceedings of the 18th International Conference on Information Processing in Sensor Networks,
Montreal, QC, Canada, 16–18 April 2019; Association for Computing Machinery: New York, NY, USA, 2019; Ipsn ’19, pp. 73–84.
doi:10.1145/3302506.3310390.

7. Moallemi, A.; Burrello, A.; Brunelli, D. Model-based vs. Data-driven Approaches for Anomaly Detection in Structural Health
Monitoring: A Case Study. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), Glasgow, UK, 17–20 May 2021, pp. 1–6.

8. Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.
doi:10.1016/S0893-6080(97)00011-7.

9. Indiveri, G.; Horiuchi, T. Frontiers in Neuromorphic Engineering. Front. Neurosci. 2011, 5, 118. doi:10.3389/fnins.2011.00118.
10. Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607–617.

doi:10.1038/s41586-019-1677-2.
11. Deng, L.; Wu, Y.; Hu, X. Rethinking the performance comparison between SNNS and ANNS. Neural Netw. 2020, 121, 294–307.

doi:10.1016/j.neunet.2019.09.005.
12. Lamba, S.; Lamba, R. Spiking Neural Networks Vs Convolutional Neural Networks for Supervised Learning. In Proceedings of

the 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19
October 2019; pp. 15–19.

13. Neves, A.C.; González, I.; Leander, J. Structural health monitoring of bridges: a model-free ANN-based approach to damage
detection. J. Civ. Struct. Health Monit. 2017, 7, 689–702. doi:10.1007/s13349-017-0252-5.

14. Seventekidis, P.; Giagopoulos, D.; Arailopoulos, A. Structural Health Monitoring using deep learning with optimal finite element
model generated data. Mech. Syst. Signal Process. 2020, 145, 106972.

15. Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Inman, D. Structural damage detection in real time: Implementation of 1D convolutional
neural networks for SHM applications. In Structural Health Monitoring & Damage Detection; Springer: Berlin, Germany, 2017;
Volume 7; pp. 49–54.

16. Yang, L.; Fu, C.; Li, Y. Survey and study on intelligent monitoring and health management for large civil structure. Int. J. Intell.
Robot. Appl. 2019, 3, 239–254. doi:10.1007/s41315-019-00079-2.

17. Pang, L.; Liu, J.; Harkin, J. Case Study‚ Spiking Neural Network Hardware System for Structural Health Monitoring. Sensors
2020, 20, 5126, doi:10.3390/s20185126.

18. Madrenas, J.; Zapata, M.; Fernández, D. Towards Efficient and Adaptive Cyber Physical Spiking Neural Integrated Systems. In
Proceedings of the 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 23–25
November 2020; pp. 1–4. doi:10.1109/icecs49266.2020.9294982.

19. Bellec, G.; Scherr, F.; Subramoney, A. A solution to the learning dilemma for recurrent networks of spiking neurons. Nat. Commun.
2020, 11, 1–15.

20. Stromatias, E.; Soto, M.; Serrano-Gotarredona, T. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or
Dynamic Vision Sensor Data. Front. Neurosci. 2017, 11, 350. doi:10.3389/fnins.2017.00350.

21. Ltd., R.P.T. Raspberry Pi Compute Module 3+ DATASHEET. 2019. Available online: https://www.raspberrypi.org/
documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf (accessed on 20 August 2021).

22. HiveMQ. HiveMQ Documentation V4.5. 2019. Available online: https://www.hivemq.com/docs/hivemq/4.5/user-guide/
introduction.html (accessed on 20 August 2021).

23. Tokognon, C.A.; Gao, B.; Tian, G.Y. Structural health monitoring framework based on Internet of Things: A survey. IEEE Internet
Things J. 2017, 4, 619–635.

24. Moradi, S.; Qiao, N.; Stefanini, F. A scalable multicore architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 2017, 12, 106–122.

25. Schemmel, J.; Fieres, J.; Meier, K. Wafer-scale integration of analog neural networks. In Proceedings of the 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008;
pp. 431–438.

26. Benjamin, B.V.; Gao, P.; McQuinn, E. Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations.
Proc. IEEE 2014, 102, 699–716.

27. Davies, M.; Srinivasa, N.; Lin, T.H. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99.

https://doi.org/10.1109/jiot.2020.3027102
https://doi.org/10.1155/2018/2107679
https://www.tinyml.org
https://www.st.com/content/st_com/en/ecosystems/stm32-ann.html
https://www.st.com/content/st_com/en/ecosystems/stm32-ann.html
https://doi.org/10.1145/3302506.3310390
https://doi.org/https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fnins.2011.00118
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1007/s13349-017-0252-5
https://doi.org/10.1007/s41315-019-00079-2
https://doi.org/10.3390/s20185126
https://doi.org/10.1109/icecs49266.2020.9294982
https://doi.org/10.3389/fnins.2017.00350
https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf
https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf
https://www.hivemq.com/docs/hivemq/4.5/user-guide/introduction.html
https://www.hivemq.com/docs/hivemq/4.5/user-guide/introduction.html

Future Internet 2021, 13, 219 22 of 23

28. DeBole, M.V.; Taba, B.; Amir, A. TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years. Computer 2019, 52, 20–29.
doi:10.1109/mc.2019.2903009.

29. Kim, J.; Caire, G.; Molisch, A.F. Quality-aware streaming and scheduling for device-to-device video delivery. IEEE/ACM Trans.
Netw. 2015, 24, 2319–2331.

30. Ponulak, F.; Kasinski, A. Introduction to spiking neural networks: Information processing, learning and applications. Acta
Neurobiol. Exp. 2011, 71, 409–433.

31. Barchi, F.; Zanatta, L.; Parisi, E. An Automatic Battery Recharge and Condition Monitoring System for Autonomous Drones. In
Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 IoT, Virtual Conference, 7–9 June 2021.

32. Instruments, N. PXI Systems. 2021. Available online: https://www.ni.com/it-it/shop/pxi.html (accessed on 20 August 2021).

https://doi.org/10.1109/mc.2019.2903009
https://www.ni.com/it-it/shop/pxi.html

	Introduction
	Background
	Bridge Structure & SHM Framework
	Structural Health Monitoring Data
	Spiking Neural Networks
	Input Encoding Methods

	Brain Inspired Processing
	LSNN Input Coding
	LSNN Architecture

	eLSNN: The Optimized Embedded LSNN
	Membrane Voltage Update
	Threshold Update
	Spike Emission Check
	Output Update
	Current-Driven Input

	Experimental Result
	Testbed
	System-on-Chip
	Analog Input
	Virtual Sensor

	Accuracy vs. First-Order Hyper-Parameters
	Execution Time vs. Activity-Factors
	Event-Driven vs. Current-Driven

	Conclusions
	References

