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Abstract
In the last decades, the increasing number of new generation satellite images charac-

terized by a better spectral, spatial and temporal resolution with respect to the past has

provided unprecedented source of information for monitoring climate changes. To exploit

this wealth of data, powerful and automatic methods to analyze remote sensing images

need to be implemented. Accordingly, the objective of this thesis is to develop advanced

methods for the analysis of multitemporal multispectral remote sensing images to support

climate change applications. The thesis is divided into two main parts and provides four

novel contributions to the state-of-the-art.

In the first part of the thesis, we exploit multitemporal and multispectral remote sens-

ing data for accurately monitoring two essential climate variables. The first contribu-

tion presents a method to improve the estimation of the glacier mass balance provided by

physically-based models. Unlike most of the literature approaches, this method integrates

together physically-based models, remote sensing data and in-situ measurements to achieve

an accurate and comprehensive glacier mass balance estimation. The second contribution

addresses the land cover mapping for monitoring climate change at high spatial resolu-

tion. Within this work, we developed two processing chains: one for the production of a

recent (2019) static high resolution (10 m) land cover map at subcontinental scale, and

the other for the production of a long-term record of regional high resolution (30 m) land

cover maps.

The second part of this thesis addresses the common challenges faced while performing the

analysis of multitemporal multispectral remote sensing data. In this context, the third con-

tribution deals with the multispectral images cloud occlusions problem. Differently from the

literature, instead of performing computationally expensive cloud restoration techniques,

we study the robustness of deep learning architectures such as Long Short Term Memory

classifier to cloud cover. Finally, we address the problem of the large scale training set

definition for multispectral data classification. To this aim, we propose an approach that

leverages on available low resolution land cover maps and domain adaptation techniques

to provide representative training sets at large scale.

The proposed methods have been tested on Sentinel-2 and Landsat 5, 7, 8 multispectral

images. Qualitative and quantitative experimental results confirm the effectiveness of the

methods proposed in this thesis.

Keywords

Remote sensing, multispectral images, multitemporal images, time series, machine learn-

ing, deep learning, land cover mapping, regression models, glacier mass balance estima-

tion.
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in red. (b) Test site in the Ötztal Alps three studied glaciers: Kesselwand-

ferner, Hintereisferner and Vernagtferner. (c) Test sites on the Ortles-

Cevedale group with three considered glaciers: Langenferner – Lunga Ve-

dretta, Careser and Weissbrunnferner – Fontana Bianca. The images (b)

and (c) also represent the location of the in-situ measurements marked as

blue dots for ablation stakes and green triangle for snow pits. The red line

represents the glacier outlines. . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Overview of the meteorological stations (cyan circles) used as input to the

AMUNDSEN model for the test glaciers in the Oetztal Alps (a) and Orltes-

Cevedale group (b) (highlighted in red). . . . . . . . . . . . . . . . . . . . 33

3.4 The correlation between the RS features and in-situ measured GMB for

the two datasets: (a) DTM and Sentinel-2, and (b) DTM and Landsat. . . 38

3.5 Scatter plots of correlation between GMB in-situ measured and AMUND-

SEN modelled (a), (c), (e) and scatter plots of correlation between in-situ

measured and GMB estimated by the proposed integration approach (b),

(d), (f) in the Ortles-Cevedale group. Reference correlation line (i.e., max-

imum correlation) is highlighted in blue, while the model correlation line

is reported in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



LIST OF FIGURES

3.6 Scatter plots of correlation between GMB in-situ measured and AMUND-

SEN modelled (a), (c) and scatter plots of correlation between in-situ mea-

sured and GMB estimated by the proposed integration approach (b), (d) in

the Ortles-Cevedale group (a),(b) and Ötztal Alps (c) and (d). Reference
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Chapter 1

Introduction

In this chapter we provide the background of the thesis. Moreover, we present the moti-

vations and the objectives of this dissertation, along with the main novel contributions of

the research developed.

1.1 Background

Throughout centuries Earth’s climate has changed significantly. The most notable of these

changes is global temperature rise. According to the World Meteorological Organization

(WMO), the world temperature is about one Celsius degree warmer than before the era

of industrialization. Moreover, the Intergovernmental Panel on Climate Change (IPCC)

forecasts that the temperature will continue to rise [2]. The temperature rise is determined

mainly by the increase of emissions of carbon dioxide and other gases (known for their

heat-trapping nature [3]) in the atmosphere. Such climate change has serious implications

across the globe. For instance, the water from melting glaciers is causing the rise of the

average sea level, with an estimated increase of 3.6 mm per year (in between 2005 and

2015). Such sea level rises increased the possibility of inundation and coastal erosion,

which result in the loss of coastal wetlands and beaches [4]. Indeed, even a small variation

of the global average temperature, triggers a chain reaction of climatic change around the

world. Apart from the changes of the Earth’ surface, the climate change is impacting many

other domains, such as agricultural productivity, energy use, human health and water

quality. Therefore, climate monitoring is of paramount importance to better understand

its complexity and to adequately invest in climate mitigation and adaptation strategies,

which are necessary to limit the harmful impacts of climate change.

Remote sensing (RS) is one of the most common technologies used for Earth ob-

servation and climate change monitoring. Indeed, a lot of effort have been devoted to

understand how RS can support climate change monitoring [5]. The Global Climate
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Observing System (GCOS) operated by the Word Glacier Monitoring Service (WGMS)

defined a list of the essential climate variable, which are representing the key components

of the climate system. Indeed, out of 54 essential climate variables more than half can be

supported by the information derived from satellites. This is because RS satellites provide

data covering extensive areas, with good temporal resolution, high spatial resolution and

in a cost-efficient manner. Therefore, RS techniques play a crucial role to support and

monitor the climate dynamics [5]. In particular, RS techniques allow for a worldwide

monitoring of the sea surface temperatures (SSTs) [6], land cover (LC)[7], deforestation

[8], glacier mass balance (GMB)[9], sea level change [10], soil moisture [11] and many

others climate variables.

Due to the open data policy of high resolution (HR) and middle resolution (MR) mul-

tispectral missions (e.g., Sentinel 2 and Landsat, respectively), these data are provided

free of charge to all data users. In particular, historical data available in the archives

(e.g., Landsat data are available since 1972) represent an extremely important source

of information to better capture long term climate change dynamics. The possibility of

exploiting this large archives of multitemporal MR and HR RS multispectral data plus

high-performance computing capabilities currently available, enables the accurate map-

ping of LC changes occurred on the Earth’ surface and predict their impact on the climate

[12]. Thus, more effort has to be devoted to the definition of processing chains able to

ingest long and dense time series (TS) of MR and HR optical images. Other essential

climate variable, which monitoring benefits from the availability of the RS data is GMB.

In this context, there is the need of developing system architectures capable of accu-

rately monitoring complex environmental phenomena of glacier melting. In particular, to

properly capture their dynamic, it is necessary to define approaches able to exploit and

properly integrate complementary information provided by different data sources such as

RS data, in-situ measurements and physical-based models.

Analyzing long-term large scale RS data in an automatic and efficient way is not

trivial. Processing large archives of RS data is challenging, and requires the definition

of robust approaches, which are computationally efficient. In particular, one of the most

important challenges to be addressed when classifying multispectral data is related to

the cloud and shadow problem. In accordance with the American Meteorological Society

estimates, the mean annual global cloud cover over land is ranging from 35% up to 66%,

depending on latitude [13]. When performing large-scale mapping, the cloud cover issue

should be properly handled since it can severely affect the results obtained. Another

important challenge that strongly affects the possibility of performing LC classification

at large scale is the lack of large volumes of training data. The accuracy of the produced

LC maps largely depends on the quantity and the quality of labeled samples, which are
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equally important to the learning paradigm. On one hand, the photo-interpretation is

a very time consuming and laborious task. On the other hand, the publicly available

sample databases are limited and usually dedicated to peculiar applications, which makes

it difficult to reuse them. In this context, there is the need of investigate possible solutions

able to deal with the cloud coverage problem and the collection of reference data in a fast

and effective way.

1.2 Motivations of the Thesis

To support the monitoring of essential climate variables, and thus improve our under-

standing of climate change, many approaches leveraging on RS data have been proposed

in the literature. In this thesis, we focus the attention on two important essential climate

variables: GMB and LC.

The most common methods for the estimation of the distributed GMB are based on

exploitation of the in-situ measurements, physically based simulations and information

provided through RS sensors. Usually, this data sources are exploited separately or the

integration of two of them is considered. Indeed, on one hand the integration of physically

based simulations and RS data proved to enhance the distributed GMB estimation [14].

On the other hand the assimilation of RS data into the physically based simulations is an

effective approach for the simulations calibration [15], [16]. Although these approaches

demonstrated to be effective, they are computationally expensive and do not fully exploit

the complementary information provided by the different data sources. In particular, they

do not take advantage from high accuracy of in-situ measurements and the generalization

capabilities of physically based simulations. Moreover, the estimates provided by the

physically based simulations suffer from low resolution (i.e S3M (Snow Multidata Mapping

and Modeling)[17] at 500 meters, AMUNDSEN at 50 meters and PROSNOW at 25/50

meters [18].

By focusing the attention on the LC, GCOS has defined the list of requirements, which

are critical to properly understand the role of LC for climate modeling and climate miti-

gation studies. The requirements consider the compromise that need to be taken between

spatial, temporal resolutions and the product accuracy. It is expected that climate mod-

eling would benefit from LC maps provided at sub-continental or global scale, with high

spatial resolution between 10 and 30 meters. To answer the climate mitigation questions,

a more detailed studies should be carried out at regional or local scale (especially within

regions known as hot spot of climate change), with at least 5 years temporal sampling

starting from 1990. Even though there are several LC maps publicly available, these

products partially answer the needs of climatologists. This is because only few LC prod-
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ucts have been generated at large scale and they are typically provided at coarse spatial

resolution [19], [20]. Moreover, as they do not fully exploit the long term LC information

provided by RS data archives, to enable detailed long-term LC monitoring, these products

should be harmonized. However, it is a challenging task as this maps considers different

legend definitions and are not consistent between each other. In recent years, a Climate

Change Initiative (CCI) medium resolution map have been produced [7], representing

the first attempt of producing long-time records of LC maps. Although the results are

promising to support climate change analysis, there are still several requirements not ful-

filled. These LC maps do not provide sufficient thematic detail and their spatial resolution

should be improved. Moreover, the temporal consistency of such data need to be better

investigated.

As mentioned above, multitemporal multispectral images represent an extremely use-

ful source of information for continuously supporting studies of glaciers and LC. However,

many challenges occur when these data are used at large scale. First, their use is strongly

affected by the cloud cover and shadow, which if not properly handled strongly impacts

the quality of image analysis. Although, different cloud detection and restoration methods

have been proposed in the literature, typically the methods that obtain a high accuracy

are associated with high computational burden, and thus they cannot be used at the

operational level [21]. In this context, recent advancements of deep learning based archi-

tectures have opened new possibilities to the RS data analyses. The qualitative studies

have shown that the deep architectures are not only very promising for the long TS anal-

yses but are also robust to the cloudy images in the TS [22]. However, so far no detailed

study have been conducted to better understand its robustness and possible limitations.

Second, another important challenge related to large scale classification of RS data is

the scarcity of ground reference data to properly train the classifier. It is very well known

that the production of a proper training set is often challenging and is a time-consuming

and complex task. In the literature, there are very few annotated large training sets

available [23] [24]. However, usually they can be used in very specific applications. In-

deed, it is very challenging to produce training set that could properly represent diverse

environmental conditions given the size of our Planet. To address this problem, domain

adaptation methods have been proposed in the literature to reduce the need of collecting

training samples. This is done by adapting the classifier trained on samples coming from

source domain to classify the samples from different but related target domain. From

the operational view point, the most interesting domain adaptation methods are those

unsupervised [25], which are typically based on the exploitation of the data distribution

structure. However, the possibility of achieving accurate results depends on both the sim-

ilarity between the source and target distributions, and the peculiarities of the considered
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set of LC classes [26]. In [27], the authors demonstrated that assuming the availability of

some target labeled samples, the probability to succeed in solving complex domain adap-

tation problem sharply increases. Even though a few samples from the the target domain

are required, this constrain can be too demanding in some operational scenarios. In this

context, the availability of LC products represents valid source of information, which can

be used for the extraction of labeled units from the target domain. However, publicly

available LC maps are typically obsolete, characterized by low spatial resolution and their

legend is pre-defined. For these reasons, their used is not straightforward. In this con-

text, there is need of developing strategy able to ensure the selection of reliable samples

(correctly associated to their labels) and representative of the considered LC classes.

1.3 Objectives and Novel Contributions

In this thesis, we aim to develop automatic methods for the analysis of multitemporal and

multispectral RS data at large scale to support climate change studies. The contributions

of this dissertation considers two main direction. On one hand, we propose methods for

monitoring the following essential climate variables: i) GMB by integration of comple-

mentary data sources, and ii) long-term HR multitemporal LC mapping. On the other

hand, we propose two methods to support the large scale classification of the multitem-

poral and multispectral RS data. In particular, we propose the methods to address the

problem of: i) cloudy images in the TS, and ii) large scale training set generation. In the

following, these contributions are briefly described.

1.3.1 Integrating Models and Remote Sensing Data for Distributed Glacier

Mass Balance Estimation

The main goal of this contribution is developing an approach being able to improve the

GMB estimates provided by a physically-based model by using RS data and few GMB

in-situ measurements. Differently from state-of-the-art methods, we do not assimilate the

observations into the model [15], but combine the information provided by the different

sources to correct the model estimates. This condition allows us to preserve good gener-

alization capability of the theoretical model while improving the accuracy of its estimate.

The considered approach exploits multispectral and multitemporal images and a digital

terrain model (DTM) to define a feature space being able to characterize the glacier prop-

erties. While the DTM accurately models the topography of the scene (strictly correlated

to the amount of GMB), the multispectral data characterize the spectral properties of

ice and snow. In such an informative feature space, the approach exploits the in-situ

measurements to correct GMB estimates of the physically-based simulations. The correc-
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tion is computed according to feature-space division strategy based on a local k-Nearest

Neighbors (k-NN) estimation technique. In particular, the applied correction is the aver-

age difference between the reference samples and the model estimates. In the last step,

the correction is applied to the entire glacier area, thus producing a better GMB esti-

mates at pixel-level. The proposed approach is able to provide GMB estimates at the

higher spatial resolution with respect to the one provided by the physically-based model

(due to the better geometrical information provided by the multispectral sensors) and

can be applied to different test sites for which in-situ measurements and physically-based

simulations are available.

1.3.2 Multitemporal Land Cover Mapping at High Spatial Resolution for

Sub-Continental Monitoring of Climate Change

Within this contribution, we define a system architecture to perform LC mapping for

supporting climate change studies at high spatial resolution. In particular, two process-

ing chains have been defined and developed to answer the requirements of the climate

modeling community. The former, i.e., static processing chain, is tailored to the charac-

teristics of Sentinel-2 images and aims at generating a HR LC map at 10 meters spatial

resolution on sub-continental scale to support large scale climate modeling studies. The

latter, historic processing chain is tailored to the properties of Landsat 5, 7 and 8 images.

The LC maps are produced at 30 meters spatial resolution, and the historic processing

chain is focused on the production of the long-term record of regional HR LC maps to

support the climate mitigation and adaptation studies. The outputs from both processing

chains will be then used as an input to the climate models, which aim is to understand

the role of spatial and temporal resolution on the consistency of LC classification. Taking

into account the large scale at which such analysis need to be carried out, the developed

processing chains should be able to handle a very large amount of optical images. More-

over, going back to the past leads to different temporal sampling. The archives of MR and

HR data present high variability in data availability from the temporal view point. The

proposed static and historic processing chains are fully automatic and can be deployed

at regional and sub-continental scale. Both processing chains are based on three mains

phases: (i) images preprocessing, (ii) feature extraction, and (iii) supervised classifica-

tion of the multitemporal RS data. The static map is generated using largely available

Sentinel-2 data, as it is expected that the higher spatial and temporal resolution of the

sensor will have a positive impact of the final LC map accuracy. The historic maps are

produced every 5 years between 1990 and 2015. Due to availability of the Landsat data

in the whole considered period the maps were produced at 30 meters spatial resolution.

We test both the processing chains over the three peculiar study areas: African Sahel,
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Amazon and Siberia.

1.3.3 A Long Short Term Memory Classifier Robust to Images with Cloud

Cover

Cloud cover is a very well known problem in the RS literature. For almost all analysis

of multispectral and multitemporal RS data it is mandatory to perform a proper cloud

detection and restoration. In this contribution, we aim to investigate the robustness of

the deep Long Short Term Memory (LSTM) classifier to the cloud presence. Although

LSTM classifier has proven to be able to handle the presence of clouds [28], [29], no

work which extensively analyse the robustness of LSTM to clouds can be found in the

literature. In this study, we aim to quantitatively asses the capability of the network of

handling different amounts of cloud coverage under different lengths of the TS. In greater

detail, we analyze the effect of the cloud coverage on the classification maps produced by

the LSTM by considering: (i) simulated cloud values, (ii) detected clouds represented by

zeros values, and (iii) restored images by simple linear temporal gap filling and the effects

of the cloud positions within the TS. The experimental analysis has been carried out on

a TS of Sentinel-2 images acquired in 2019 over the Amazon. To perform a quantitative

evaluation, we compared the classification map obtained on the cloud-free TS of images

(i.e., cloud-free map) with those generated with the simulated cloudy TS (i.e., cloudy

maps).

1.3.4 An Approach Based on Low Resolution Land-Cover-Maps and Domain

Adaptation to Define Training Sets at Large Scale

The accurate classification of RS data at large scale is typically hampered by the avail-

ability of training data representative of the whole study area. The main goal of this

contribution is developing a method that aims to enlarge existing training sets leveraging

publicly available thematic products available at large scale. Indeed, such maps are typi-

cally obsolete and provided at low spatial resolution, thus cannot be directly use to enlarge

existing training databases. For this reason, the proposed approach aims to exploit these

thematic products to detect labeled samples having the highest probability to be correctly

labeled by associating them with the reliable HR spectral information provided by the

RS data. Such samples, extracted in an area geographically distant from the training

set (target domain), are jointly used with the annotated samples of the source domain

(where training set is available) to find a mapping space (called also latent space) where

the data are aligned. The alignment of target and source domains is done by using the

kernel based manifold alignment method. By projecting samples into the common latent
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space, we are able to enlarge the training set in an unsupervised (no annotated samples

from the target domain are required) but reliable way.

1.4 Structure of the Thesis

This Chapter provided a brief background and described both the objectives and the main

contributions of this thesis. The rest of the thesis is organized in two main parts. The

first part is dedicated to the application of the multitemporal multispectral RS data to

support climate change monitoring. In greater detail, in Chapter 2 we present the state

of the art related to the use of multitemporal multispectral RS data to monitor GMB and

LC at large scale. Chapter 3, describes the GMB estimation method based on integration

of RS data, physically based simulations and in-situ measurements. Chapter 4 elaborates

the proposed processing chain for the generation of the LC maps at large scale.

The second part of this thesis, focuses on the challenges in the analysis of the multi-

spectral and multitemporal RS data at the operational level. Chapter 5 describes the state

of the art regarding the cloud cover analysis and the representative training set genera-

tion. Chapter 6 reports the study on the robustness of the LSTM classifier, while Chapter

7 presents the approach for large scale training set generation using domain adaptation

methods and low resolution LC maps. Finally, in the last chapter the conclusions of the

thesis are drawn and further developments of the research activities are also discussed.

8



Part I

Multispectral and Multitemporal

Remote Sensing Data for Supporting

Climate Change Monitoring





Chapter 2

Background and basic concepts

This chapter aims at providing background and basic concepts of multitemporal multispec-

tral RS data and methods based on RS data to estimate the two climate essential variables

investigated in this thesis: GMB and LC. In particular, we introduce the importance of

GMB and LC monitoring for climate sciences. For the distributed GMB estimation, we

describe the methods based on RS data, while for LC monitoring we discuss the global LC

maps available. 1

2.1 Background on Multitemporal Multispectral Remote Sens-

ing Data

Generally, RS sensors can be divided into active (such as Synthetic-aperture radar (SAR)

and light detection and ranging (LiDAR)) and passive systems (spectrometer and ra-

diometer) and can be characterized by different spatial and temporal resolutions. Passive

systems detect energy which is naturally available (e.g., solar radiation), while active

systems provide their own energy source. Multispectral sensors are passive RS systems,

which measure the sunlight radiation reflected by the objects on the Earth’s surface in

a specific spectral interval. Passing through the atmosphere solar radiation is strongly

affected by the particles and gases. The incoming light and radiation can be scattered or

absorbed by gas molecules in a very specific part of the spectrum. The parts of spectrum

not severely influenced by these mechanism are used by existing passive remote sensors,

the so called atmospheric windows. Most of RS instruments operate in one or more of

these windows with detectors tuned to wavelengths that pass through the atmosphere.

Indeed, according to the chemical and physical properties of the target, different surface

1Part of this chapter appears in I. Podsiadlo et al., “Integrating Models and Remote Sensing Data for Dis-

tributed Glacier Mass Balance Estimation,” in IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 13, pp. 6177-6194, 2020, doi: 10.1109/JSTARS.2020.3028653.
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types (such as vegetation, water or bare areas) reflect, absorb or transmit solar radiation

differently in different portions of the electromagnetic spectrum. This relation is called the

spectral signature and describes radiation reflected as a function of the wavelength. The

spectral signature is extremely useful in identifying and discriminating between different

objects present in the RS data.

Different optical RS sensors provide different trade-off of spatial, temporal and spectral

resolution. The broader the wavelength range for a particular channel/band the higher

spatial resolution. Therefore, optical RS can be divided into the following categories:

panchromatic (PAN), multispectral and hyperspectral. Panchromatic sensors does not

distinguish the individual wavelengths of the spectrum. This is why PAN images report

only the total radiation for each pixel and are of very high spatial resolution (tens of cen-

timeters). Multispectral sensors register energy over several separate wavelength ranges

and they are available at very high (VHR) (2 to 5 meters) and moderate spatial resolution

(MS)(from 10 to hounded of meters). The VHR multispectral sensors usually records the

radiation in the following ranges of spectrum: visible (390 - 700 nm), the near-infrared

(NIR) (from 700 to 900 nm) and in the shortwave infrared (SWIR) region (from 1100 to

3000 nm). While, the MS are able to measure shorter radiation intervals in the visible

and NIR ranges as well as register the middle-infrared (MIR) and far-infrared (FIR or

thermal) parts of spectrum. Moreover, due to their usually large swaths they have short

revisit time, and thus are very attractive for the climate change monitoring. Hyperspec-

tral sensors detect hundreds of very narrow spectral bands and are of coarser resolution.

Therefore the are particularly capable to provide detailed identification of different targets

(such as distinction of different types of rocks/forests).

In 1972 NASA (National Aeronautics and Space Administration) have launched first

satellite of a highly successful Landsat program designed to monitor Earth’s surface. Dur-

ing Landsat program eight satellites have been launched (out of which two are still active

and one is under development) and till today provide large amount of MR multispectral

data. The images spatial resolution is 30 meters and 16 day temporal resolution. Landsat

8 provides nine spectral bands, visible, NIR and SWIR bands have spatial resolution of 30

meters, PAN is of 15 meters while thermal bands are of 100 meters. The Landsat program

main objectives, includes: i) acquisition and archivization of multispectral images, and

thus assurance of seasonal coverage of the global landmasses, ii) data consistency between

Landsat missions in terms of calibration, spectral and temporal characteristics, acquisi-

tion geometry, coverage characteristics and product quality, and iii) open data policies,

enabling users allover the world access to the multispectral imagery. Indeed, Landsat pro-

gram has been very helpful to accelerate various research and application developments.

Another source of HR multispectral data are SPOT (Système Pour l’Observation de la

12



2.1. BACKGROUND ON MULTITEMPORAL MULTISPECTRAL REMOTE SENSING
DATA

Terre) satellites, from which five were launched by the CNES (Centre National d’Études

Spatiales) and recent two by the Airbus Defence & Space. SPOT is a commercial provider

of Earth observation data and each of the satellites can provide data in a high spatial res-

olution panchromatic mode, or a lower spatial resolution multispectral mode. In 2015, the

European Space Agency (ESA) have launched Sentinel-2 program with an improved (with

respect to Landsat) spatial resolution of 10 meters and similarly to Landsat program an

open data policy. The Sentinel-2 mission includes the constellation of two polar-orbiting

satellites, phased at 180◦ to each other. Moreover, the sensors can be characterized by

the wide swath (290 km), and thus enable the mission to provide data with high temporal

resolution of 5 days (depending on cloud cover and latitude). The Sentinel-2 provides 13

spectral bands out of which visible and NIR bands have a spatial resolution of 10 meters,

SWIR of 20 meters while coastal/aerosol, water vapor, and cirrus bands of 60 meters. The

program is designed to ensure the continuity of ongoing multispectral observations, such

as Landsat program. The program has been already very successful resulting in the high

number of the scientific publications. Spectral resolution of Sentinel-2 and Landsat 7 and

8 are compared on the Fig. 2.1. As it can be seen on a graphic the spectral resolutions

of the satellites are very similar with exception for thermal bands for Landsat 7 and 8.

Figure 2.1: Comparison of the spectral resolution of the Sentinel-2 , Landsat 7 and 8 [1].

The colors of the graphic correspond to the electromagnetic spectrum for each sensor being

considered.
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2.2 Overall Importance of Glacier Mass Balance Estimation and

Land Cover Mapping

The GCOS recognizes glaciers and LC as key climate change indicators [30]. The GMB

represents the difference between accumulation and ablation of a glacier within a given

time period. The glacier mass changes are the response to changing meteorological condi-

tions at the snow/ice surface of the glacier in the longer term. The high levels of melting

(or diminishing) of glaciers contributes to the sea level rise. Glaciers act as naturally

storing and releasing reservoirs for water in a cyclic manner. Moreover, meltwater from

glaciers plays an important role in hydro-power generation, irrigation and drinking wa-

ter supply. Monitoring of glaciers is therefore crucial for climate sciences. Thus, glacier

monitoring follows the Global Hierarchical Observing Strategy (GHOST), which includes

better understanding of glacier and snow processes and analysis of GMB TS [31]. Al-

though, some glaciers are being permanently monitored using in-situ campaigns, this

solution is unfeasible at large scale due to its high financial and logistic cost. This is why

RS sensors mounted on satellites provide a complementary source of information (avail-

able periodically even for inaccessible areas) at large scale. Hence, several methods in the

literature exploit these sources of information for monitoring of distributed GMB.

The LC is the second essential climate variable analyzed in this thesis. LC mapping

is essential to provide information about the physical coverage of Earth’s surface. It dis-

tinguishes different coverage types (classes), such as, water, grasslands, croplands, forest,

wetlands, ice. The analyses of LC helps to quantify surface energy and the sources of

greenhouse gasses. The variations in LC are used to assess and monitor the impact on

occurrence of extreme events e.g., droughts, floods or hurricanes. Indeed, LC change can

be seen as both a cause and a consequence of climate change either if it is caused by

the human actions or by the natural events itself. Moreover, the LC changes lead to the

degradation of the Earth ecosystems, such as reduction of vegetation cover, loss of bio-

diversity or pollution. Therefore, the LC is an essential input to climate change models

to understand the global changes [32], as the evolution of LC has dramatically increased

over past decades and is expected to continue [33]. LC monitoring is made possible due

to the availability of RS data, which periodically provide information over large areas.

Although the LC classification was one of the first application of RS and several global

LC maps have been produced, new missions with better temporal and spatial resolution

require methodologies, which have to deal with big Earth observation repositories (of data

coming from different sensors).
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2.3 Methods for Glacier Mass Balance Estimation

In this chapter, we describe methods based on the analyses of the optical RS data to

estimate GMB. In greater detail, we discuss two main group of methods: i) based on the

optical RS data, and ii) based on the integration of the optical RS data with the physically-

based simulations. The first group includes methods based on the multitemporal analysis

of the multispectral RS data to identify the glacier surface characteristics as well as its

spatio-temporal changes. In particular, we focus the attention on methods based on

the analysis of the: equilibrium-line altitude (ELA), glacier-wide surface albedo, glacier

snow cover mapping and regression models that exploit in-situ measurements and RS

data. The ELA methods are based on the detection of the equilibrium-line, which is then

used to estimated the GMB. This method, which does not require in-situ measurements,

is particularly interesting for those glaciers where no ground truth is available. The

equilibrium-line is the boundary between accumulation and ablation on a glacier, where

the GMB is equal to zero. Therefore, by analyzing the ELA variations, the GMB can

be estimated. It is commonly accepted that the end-of-summer glacier snow line altitude

(SLA) (which can be detected from the RS data) is a good approximation of the ELA.

Thus, the ELA method relies only on RS data and can be applied to glaciers where no

ground truth exist. In order to obtain GMB from the ELA variations, first the difference

between the theoretically ELA, which is expected when the glacier is in steady state (i.e.,

distributed GMB = 0) and the actual SLA is computed for each year. Then, the computed

ELA variation is multiplied by the mass-balance gradient across the ELA. Mean values of

the mass-balance gradient are publicly available for some glaciers or can be computed if

the ground-truth measurements exists. The ELA approach has been applied and validated

on mid-latitude glaciers showing promising results [9], [34]. Most of the methods proposed

in the literature for the detection of ELA rely on MR imagery, such as Landsat 5, 7, 8

and HR imagery, such as Sentinel-2 or SPOT. This is because the higher is the spatial

resolution of the sensor the more accurate is the detection of the ELA. However, it should

be mention that these methods can work with medium resolution data when the analyzed

glaciers are wide. In 2020 the method have been applied at a regional scale to estimate the

annual GMB of 239 glaciers in the European Alps. The authors exploited the publicly

available Landsat 5, 7, 8 and Sentinel-2 data to drive the estimates between 2000 and

2016 [35]. However, differently from the standard ELA approach (when SLA is manually

detected), in this study the authors semi-automatically identified the SLA. This was done

by detecting the steepest gradient of the ratio between the near infrared and the shortwave

infrared channels. Then, the highest transient SLA was selected as the representation of

the glacier’s annual SLA. Although the SLA is calculated on the central part of the
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glacier, due to ambiguities in the melting process and the cloud-coverage the equilibrium-

line may not always be clearly visible. This strongly limits the use of such method from

the operational view point.

The glacier-wide surface albedo and glacier snow cover mapping methods can be ap-

plied for the estimation of the annual and seasonal GMB. In particular, the albedo method

provides accurate results for the estimation of the summer GMB, since the correlation

between in-situ measurements and the albedo signal is lower during winter season [36].

In contrast, the methods based on snow mapping provide good results in winter when

high variations of seasonal altitude of snow can be observed. Albedo describes the ra-

tio between the solar radiation that is reflected and absorbed by a surface. The albedo

metric is well correlated to the GMB since it increases during accumulation period and

decreases with ablation [37]. This kind of approach converts the spectral reflectances to

albedo, and averages them over the glacier surface. Then the absorption sum (1 - aver-

aged albedo) is weighted by the solar radiation and integrated over the summer period.

Nevertheless, it should be pointed out that to properly convert the spectral reflectances

to albedo, the method relies on using in-situ data. Such method achieves more robust

results compared to the ELA approach since it does not rely only on the boundary be-

tween accumulation and ablation (which for some cases can be ambigious), but considers

on the mean surface albedo all over the glacier. The method has been widely used [38],

[39], achieving particularly good results in estimating summer GMB. Nevertheless, it re-

quires to use several cloud-free images for the considered period, which may be a critical

requirement over glacier’s areas especially during the winter season. In contrast to the

ELA method, the spatial resolution of RS data is less important for efficacy of the albedo

and snow mapping methods. However, more attention should be paid to the temporal

resolution of the sensor as these methods require a few cloud-free images. This is why, in

the literature these methods have been often used with Advanced Very High Resolution

Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS) and

PROBA-V imagery[38], [39].

Alternative approach performs snow mapping by combining a DTM and the Normal-

ized Difference Snow Index (NDSI) retrieved a from set of the multispectral images. The

NDSI is proportional to the amount of snow in the pixel and is efficient for snow monitor-

ing [40]. First, the NDSI is calculated for all available images and is averaged for winter

and summer seasons. Then, the seasonal attitudinal distribution of the NDSI is retrieved

by combining the seasonal NDSI maps with the glacier topography provided by the DTM.

The mean altitude of snow is estimated by intersecting the seasonal attitudinal distribu-

tion of the NDSI and the average NDSI. Finally, a linear regression is estimated between

the mean regional altitude of snow and the in-situ measurements of GMB. The method
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have been applied to 55 glaciers in the European Alps, achieving particularly good results

during the winter season due to high winter variation of snow [41]. However, it requires

availability of constantly updated DTM and similarly to the albedo based method several

cloud-free optical RS images for each season. Finally, in 2020, a novel approach that

combines RS data, in-situ measurements and statistical techniques to estimate GMB was

proposed [42]. In particular the method defined the regression model between in-situ

GMB measurements and the accumulation area ratio (AAR), which is computed as the

accumulation area divided by the total glacier area. Both the accumulation area and the

total glacier area are derived from the analysis of the NDSI of the multitemporal multi-

spectral RS data. The method has been successfully used for the analysis of Parvati glacier

in Himalaya from 1998 to 2016. However, this approach requires in-situ measurements,

which are unavailable or limited for many glaciers around the world.

The second group of methods is based on the integration and assimilation of opti-

cal RS and hydro-climatological simulations. Callegari et al. proposed to estimate the

GMB by integrating the AMUNDSEN (Alpine Multiscale Numerical Distributed Simula-

tion Engine) hydro-climatological simulations with binary snow cover maps derived from

Landsat data [14]. The authors proposed two correction strategies. The former, correction

on disagreement, is limited to pixels where the binary snow cover map disagrees with the

GMB computed with AMUNDSEN. The latter, spatially distributed correction, defines

a generic parametric function by maximizing the agreement between a binary snow cover

map and the snow cover map generated by the model. The method improves the GMB

estimates but does not provide spatially distributed GMB maps. The optical RS data

have been also assimilated into the physically-based models to perform model calibration.

In an attempt to improve discharge simulations, Thirel et al. (2013) assimilated the snow

cover areas of the MODIS products into the LISFLOOD physical distributed hydrological

model using a particle filter [15]. Although the method provides good results in small

basins, the results obtained in spatially heterogeneous areas are not satisfactory. In [16]

Finger at al. have investigated the value of different data sources, such as: discharge and

GMB measurements, and MODIS imagery to improve the performance of the physically-

based simulations. The analysis was carried out in between 1994 and 2007 and showed

that the combination of all three data sources leads to the best model performance. While

in [43] authors have calibrated HBV (Hydrologiska Byrans Vattenbalansavdelning) using

MODIS images over 148 glacier catchments in Austria. The obtained results demonstrate

that the assimilation helps to improve snow cover and runoff simulations. Nevertheless,

the physically-based simulations are computationally expensive and the estimates fur-

ther away from the meteorological stations become more uncertain. Finally, the obtained

results are highly dependent on the quality of the observations and the input model.
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This brief analysis of the literature points out that several methods regarding the

analysis of optical RS data for the estimation of the distributed GMB have been proposed.

This can be attributed to the comprehensive spatial representation of the glacier area

that can be achieved by the RS techniques. Nevertheless, it is noteworthy that SAR

sensor constitutes valuable source of information as it can detect the start and stop of

the melting period, due to the presence of liquid water [44]. Thus, methods based on

SAR data have been widely applied for the GMB estimation [45], [46]. It has been shown

that the analysis of the SAR interferometric data are able to demonstrate that ice–ocean

interaction have a significant impact on the acceleration of increase in ice-sheets mass loss

in the Antarctic and Greenland [47]. Moreover, the aforementioned ELA method have

been also successfully adopted with SAR imagery providing reliable results[48]. However,

main drawback of using SAR sensors for snow and glacier monitoring is the possibility to

detect just the wet snow as in the case of dry snow the reflectance comes mainly from the

underlying layers [44]. Finally, it it noteworthy that technique based on satellite altimetry

have been also successfully exploited for the estimation of mass losses [49], [45]. Among

the others, the recent study has estimated the mass losses in the Greenland from 1992 to

2018 [50]. However, looking at the literature one can notice that methods being able to

take advantage from different information sources are still not enough investigated. It is

well known that in-situ campaigns are the most accurate techniques for GMB estimation,

but as they are very laborious and time consuming, they can not be used over large

areas. On the other hand the physically-based hydrological simulations are also valid

source of information. However, they are resource intensive and the estimates further

away from the meteorological stations are associated with higher uncertainty. In this

context, the complementary information provided by the RS data, in-situ measurements

and physically based-models represent an interesting solution for the accurate estimation

of the distributed GMB.

2.4 Land Cover Mapping

To respond to the need of monitoring the Earth’s surface at a large scale, in the last

decades many global LC products have been produced. Tab. 2.1 presents an overview

of the main global LC products publicly available by comparing their temporal coverage,

spatial resolution and the number of classes present in the map legend.

IGBP-DISCover global land was created by the United States Geological Survey

(USGS), the University of Nebraska-Lincoln, and the European Commission’s Joint Re-

search Center. The 1 km spatial resolution AVHRR data acquired from April 1992 to

March 1993 were used. The majority of the LC classes were mapped by using first un-
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supervised clustering, which was then followed by a post-classification refinement applied

separately to each continent. The snow and ice and the barren were classified by thresh-

olding the maximum Normalized Difference Vegetation Index (NDVI) (of 12-months com-

posites) while the water bodies were classified by using hydrography layer of the Digital

Chart of the World. The accuracy of the IGBP-DISCover global LC was validated by

three independent photo-interpreters in accordance to two strategies: i) when decision of

all photo-interpreters agree and ii) when the majority of photo-interpreters agree. The

classification accuracy was equal to 59.4% and 73.5% for the first and the second strat-

egy, respectively. Similarly to IGBP-DISCover the University of Maryland generated the

global LC map by using the 1 km spatial resolution AVHRR data in between 1992-1993.

However, the number of LC classes has been reduced to 14 in comparison to the 17 classes

considered in IGBP LC classes. In particular, the crop-natural vegetation, wetland, and

ice / snow classes were ignored. The decision tree classifier was used for discrimination

of the majority of classes (build-up class and water class were taken from the ancillary

data). In [19] authors reported the map classification accuracy equal to 69%. The other

global LC map produced at 1 km spatial resolution (by using SPOT 4 satellite) in 2000

is the Global Land Cover 2000. This LC map is the result of international cooperation

of 30 research groups organized by the European Commission’s Joint Research Center.

The idea was to divide global mapping into 19 regions and exploiting knowledge from the

local experts. The proposed legend was based on the United Nation Land Cover Classifi-

cation System (LCCS) and had two levels: first level, which includes regionally optimized

44 LC classes, and second level which joins first level regional LC classes into 22 classes

at the global scale. For each of 19 regions the corresponding scientific group performed

classification independently using monthly and seasonal composites. Ancillary data such

as: information from Defense Meteorological Satellite Program were exploited to improve

classification accuracy of build up and swamp forest. The Overall Accuracy (OA) of the

Global Land Cover 2000 is equal to 68.6%.

Moving to higher accuracy, the GlobCover map was produced by using 300 m spatial

resolution imagery from Medium Resolution Imaging Spectrometer (MERIS) on board of

Environmental Satellite (ENVISAT) in 2009. The LC legend was based on LCCS con-

sidering 22 global and 51 regional LC classes. First, the entire globe was divided into 22

equal areas characterized by similar ecological conditions. This is done to enhance the

spectral differentiation between classes. The processing chain included standard optical

image preprocessing, where the geometric correction is done using AMORGOS (Accurate

MERIS Ortho-Rectified Geo-location Operational Software) tool [51], followed by the at-

mospheric corrections and cloud/snow pixels screening. The input to the classifier are

seasonal composites generated as the average of acquisitions over considered period. The
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unsupervised classification based on ISODATA algorithm was carried out at pixel level,

followed by the extraction of the phenological parameters for each of the identified classes.

Then the clustering is performed to identify classes with similar spectro-temporal charac-

teristics. Finally, the identified classes are labeled using referenced-based function defined

by regional LC experts [52]. The OA of the map is equal to 67.5%. The other maps avail-

able at 300 m spatial resolution were produced in 2000, 2005 and 2010 in the framework

of the CCI produced by ESA. These maps were generated by using MERIS-ENVISAT

acquired from 2003 to 2012 to produce a 10 year global LC map. Then, based on back

up-dating techniques and using SPOT Vegetation TS (acquired between 1998- 2013) the

2000, 2005 and 2010 maps were generated. The legend is hierarchically structured and

consist of 22 and 16 LC classes in the first and second level, accordingly. The images were

first radiometrically, geometrically and atmospherically corrected and pixel identification

was carried out (i.e. attribution of a status to each pixel, being “land”, “water”, “cloud/

cloud shadow”, “snow”, and invalid pixels). MERIS-ENVISAT and SPOT images are

then processed to generate averaged seasonal based composites, which are input to the

classification module. The world is first stratified into equal-reasoning areas, which are

characterize by similar ecological conditions (i.e., seasonality, cloud coverage). The classi-

fication is performed independently for each strata, and thus the processing chain can be

properly tuned to the specific conditions of considered regions. The training set leverages

the publicly available global, regional and local LC maps, which are translated in accor-

dance with CCI legend, then resampled to 300 meters spatial resolution and merged. The

classification is divided into 4 steps. In the first two steps the supervised and unsuper-

vised classification is performed, resulting in two classification maps. Next, in the third

step those maps are merged, while in the fourth step the auxiliary information (i.e., CCI

water bodies product, CCI urban product) are integrated to provide the final LC map.

The validation of the CCI LC map in 2015 was carried out using the GlobCover 2009

validation set. The OA was reported by using only certain samples labeled by experts

and it was equal to 71.1% when considering “homogeneous” (i.e. made of a single LC

class) or “heterogeneous” (i.e. made of several or mosaic LC classes) and 71.7% when

considering only “homogeneous” samples.

The Copernicus Global Land Service (CGLS) delivered Copernicus Global Land Cover

(CGLC) map for 2015, 2016, 2017, 2018 and 2019. This global LC product is a medium

spatial resolution map having pixel grid of 100 m. The map is produced by considering

the TS of multispectral PROBA-V 100 m images, a dataset of more than 140 K crowd-

sourced (Geo-WIKI) LC training points and other ancillary data. Since groundtruth

points were collected through manual visual interpretation of Google Maps and Bing im-

ages at 10 m spatial resolution, the CGLC product at 100 m derives also information
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Table 2.1: Comparison of the main publicly available global LC maps in terms of: temporal

coverage, spatial resolution and number of classes present in the map legend.

LC map name
Temporal
resolution

Spatial
resolution

Spatial
coverage # Classes

IGBP-DISCover [20] 1992 1 km Global 17

University of Maryland [19]
Land Cover 1992 1 km Global 14

Global LC 2000 [53] 2000 1 km Global 44

GlobCover 2009 [54] 2009 300 m Global 22

MODIS GLC [55]

(Collection 5)
2001 to 2013
(annually) 500 m Global 17

MODIS GLC [56]

(Collection 6)
2001 to 2019
(annually) 500 m Global 23

GLC-SHARE 2014 [57] 2014 1 km Global 11

Climate Change Initiative [7] 2005, 2010, 2015 300 m Global 38

Copernicus Global [58]
Land Cover

2015 to 2019
(annually) 100 m Global 23

FROM-GLC [59] 2017, 2010 30 m Global 10

GlobeLand30 [60] 2000, 2010 30 m Global 10
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about the fractional cover layers for the ten base LC classes: “forest”, “shrub”, “grass”,

“moss and lichen”, “bare and sparse vegetation”, “cropland”, “built-up / urban”, “snow

and ice”, “seasonal and permanent inland water bodies”. Moreover, the CGLC product

provides a forest type layer offering twelve types of forest, quality indicators for input data

(data density indicator), for the discrete map (probability) and for six of the fractional

cover layers. The CGLC map provides discrete classification at three levels according to

LCCS. While in the first level the map presents the main twelve LC classes (i.e., “for-

est”, “shrub”, “herbaceous vegetation”, “herbaceous wetland”, “moss and lichen”, “bare

/ sparse vegetation”, “cultivated and managed vegetation - cropland”,“ built-up”, “snow

and ice” and “permanent inland water bodies”), in the third level more detailed informa-

tion are available by distinguishing 23 classes. For instance, the forest classes are divided

into six types of closed and six types of open forest. The PROBA-V images were first

geometrically projected into the UTM (Universal Transverse Mercator) coordinate system

(to reduce distortions in the high north latitudes) and atmospherically corrected. Next

the median 5-days-based composites were generated and the data density indicator (DDI)

was calculated. Instead of using spectral bands as an input to the classifier the following

indices have been computed: NDVI, Enhanced Vegetation Index, Structure Intensive Pig-

ment Index, Normalized Difference Moister Index, NIR reflectance of vegetation, Angle at

NIR, HUE, and the Hue Saturation Value color system transformation, Area Under the

Curve, and Normalized Area Under the Curve. For each of the aforementioned indices

the statistical metrics (i.e., minimum, maximum, median, quantile) and textural metrics

(i.e., median variation) were computed. Moreover, external metrics retrieved from DTM

(i.e., height, slope, aspect) were considered. Due to very long TS the data were condensed

trough extraction of temporal features ( done by using harmonic model). The classifica-

tion was run independently within clusters defined using ecological information. In order

to reduce the number of the metrics, the analyses of their separability were carried out

and the metrics identified as redundant were removed. The training set plus the DDI

quality metric are used as an input to the random forest (RF) classifier to provide the

pixel based LC map and class probability. Moreover, the RF regression trained on the

photo-interpreted cover fractions was used to provide the vegetation coverage per pixel.

To generate the final CGLC map, the obtained classification, probability and regression

maps are integrated together with the auxiliary data, such as World Settlement Footprint

[61] and Global Surface Water [62]. The validation of CGLC product was performed by

using independent validation data of around 21 600 samples generated in collaboration

with experts. The OA of the CGLS 100m map is equal to 80.2 % +/-0.7 % depending

on the continent. The highest classification accuracy (> 85%) is achieved for the forest,

snow/ice, bare /sparse vegetation, and permanent water. For the herbaceous vegetation,
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croplands, urban CGLC achieve moderate accuracy, the lowest accuracy of (< 65%) is

performed for herbaceous wetland, lichen and moss and shrubs.

Only few gobal products are available at high spatial resolution, i.e., the Finer Res-

olution Observation and Monitoring of Global Land Cover (FROM-GLC) [59] and Glo-

beLand30 [60]. The FROM-GLC is the first 30 m spatial resolution global LC product

[59] available for 2010 and 2017. The map was produced by using Landsat Thematic

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data. The legend includes

the following 10 classes: “cropland”, “forest”, “grassland”, “shrubland”, “wetland”, “wa-

ter”, “tundra”, “impervious surface”, “bareland” and “snow/ice”. The authors compared

the classification accuracy by using four standard classifiers i.e., conventional maximum

likelihood classifier (MLC), J4.8 decision tree classifier, RF classifier and support vec-

tor machine (SVM). On the global validation data set the best OA equal to 64.9% was

produced by SVM, compared with 59.8% by RF, 57.9% by J4.8 and 53.9% by MLC.

However, due to the lack of temporal information used in producing the FROM-GLC, in

[63] authors have used a segmentation-based approach to introduce temporal information

from the MODIS and other auxiliary data, such as bioclimatic, DTM and world maps

on soil-water conditions. It is important to note, that temporal information are par-

ticularly necessary for proper discrimination between some vegetation cover types (e.g.

grasslands vs croplands). After introducing temporal information the OA have increased

to 67.08%. In 2017 by using all-season training and validation sets together with spatial-

temporal partition strategy the accuracy of FROM-GLC was improved to 70.17% [64]. In

2020 LC mapping at 30-meters resolution was further improved to 81.5% [65]. This was

done by integrating Landsat Operational Land Imager (OLI) and ETM+ imagery with

free and public high-resolution Google Earth images. The approach is a hybrid of three

components: convolutional neural network (CNN) to extract features from GE imagery,

SVM and RF based on Landsat spectral features and the final decision fusion module.

The other global LC product available at 30 meters resolution is the GlobeLand30, which

overall classification accuracy is 80.33% [60]. The product is available for the two base-line

years 2000 and 2010. The legend similarly to FROM-GLC includes 10 classes: “cultivated

land”, “forest”, “grassland”, “shrubland”, “wetland”, “water bodies”, “tundra, “artificial

surfaces”, “bareland” and “permanent snow and ice”. The primary images used for the

GlobeLand30 generation are the Landsat TM/ETM+ and Chinese Environmental and

Disaster satellite HJ-1 (Huan Jing-1), due to its similar spectral and spatial character-

istic to Landsat data. Moreover, to enhance the temporal resolution the MODIS-NDVI

were also included. Due to the wide swath of the HJ-1 the images are affected by the

nonlinear distortion, and thus they were first geometrically corrected. Next, Landsat and

HJ-1 images were atmospherically corrected. The topographic correction was done by
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using Continuum Removal (CR) method, which leverages spectral information of shadow

and neighboring no shadow pixels without the use of DEM [66]. The cloud cover and

missing data due to the failure of the Landsat ETM+ Scan Line Corrector (SLC) have

been restored using the neighborhood similar pixel interpolation (NSPI) approach [67].

The classification is based on pixel-object-knowledge approach, which first exploits pixel

based classification and than to minimize the “salt-and-pepper effect” the object based

classification was performed (using eCognition (v8) software). Finally, the pixel based re-

sults, the segmented objects and auxiliary data (i.e., existing LC maps, DEM, Geo-Wiki)

are integrated using decision based fusion to provide the final LC map.

Looking at the available thematic products, it can be noticed that no recent global

HR maps have been released. Moreover, differently from the medium resolution products

such maps have been produced considering only the main LC categories and only for

the specific years. However, in order to perform accurate climate change monitoring more

detailed classification scheme and more frequent LC maps are required. Furthermore, high

spatial resolution classification maps help to better resolve local climate features (which

are connected to the heterogeneity of the surface), and thus support climate modeling

research. Therefore, within this thesis we would like to address these issues, by proposing

a processing chain that can be applied at sub-continental scale to produce multitemporal

HR LC maps having a detailed classification scheme.

24



Chapter 3

Integrating Models and Remote

Sensing Data for Distributed Glacier

Mass Balance Estimation

This chapter presents an approach to improve the estimation of the GMB. based on com-

bination of three complementary data sources, hydro-climatological model, RS data and

ground measurements. The hydro-climatological model provides spatially distributed mass

balances at low resolution. RS supplies spatially distributed surface characteristics at HR.

The ground point measurements provide the mass balance at the local scale. The combina-

tion of these data sources allows us to improve the spatial resolution of the model output

and its GMB estimates. We used the AMUNDSEN model, which considers the processes

of accumulation and ablation of snow and ice for the area of an entire glacier. In the pro-

posed integration approach, we first compute the deviations between the GMB simulations

(afforded by the hydro-climatological model) and the ground measurements. Then, the

RS data are used to define a feature space in which objectively characterizing the glacier

surface properties). The method estimates the adjustment required to the model at a pixel

level. This is done by leveraging each considered sample neighborhood of labeled samples

(for which the deviation is known) in the defined feature space. Thus, we are able to apply

similar adjustment to samples sharing similar glacier surface conditions. Experimental

results confirm the effectiveness of the proposed approach. 1

1Part of this chapter appears in I. Podsiadlo et al., “Integrating Models and Remote Sensing Data for Dis-

tributed Glacier Mass Balance Estimation,” in IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 13, pp. 6177-6194, 2020, doi: 10.1109/JSTARS.2020.3028653.

and I. Podsiadlo et al. “Integration of hydro-climatological model and remote sensing for glacier mass balance

estimation.” Image and Signal Processing for Remote Sensing XXV. Vol. 11155. International Society for Optics

and Photonics, 2019.
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3.1 Introduction

Glaciers are very sensitive to climate change and this is why they have been identified

as one of the terrestrial essential climate variables. There are many glacier character-

istic (e.g., surface area, length), which can help to monitor glacier cover. The GMB is

particularly interesting for climatologist as it is driven by the atmospheric conditions.

Apart from the approaches based on optical RS data to estimate the spatial distri-

bution of GMB (see chapter 2.3) the glaciological, the geodetical and the hydrological

methods [68] have been widely used. The glaciological method is based on local obser-

vations of snow accumulation (measured with snow pits) and local ablation of glacier ice

(measured with stakes). This method is therefore time-intensive and limited to a few

glaciers. The geodetic method requires accurate topographies of the glacier surface for

the moment of minimum snow coverage. In the early days, these were provided by hand-

made terrestrial geodetic observations, whereas today mostly RS techniques, like laser

scanning, are applied. The hydrological method is usually applied by means of a (more

or less) physically-based model that describes (or estimates) the physical processes of

snow and ice mass accumulation, redistribution and ablation. For that purpose, a variety

of modelling approaches exist [69, 70]. In this chapter, we apply AMUNDSEN [71]. It

is a hydro-climatological model that has proven its reliability in many applications [72].

AMUNDSEN computes hourly balances of energy and water mass (i.e., snow and ice) at

the pixel scale, usually in resolutions of 10 to 50 m. To consider glacier motion, the ice

body geometry is re-adapted once per year following the ∆h approach [69]. The model

has been intensively validated in all dimensions of time and space, with a collection of

different data sets (including HR TS of local observations, spatially distributed satellite

data and glacier-wide mass balances) [73].

The AMUNDSEN model facilitates the simulation of all relevant fluxes of energy

which strongly depend on the topographical conditions (affecting all processes in high

mountain areas). As a result, the model computes hourly melt rates of snow, ice and firn,

and integrates the hourly computations of accumulation and ablation to annual mass

balances for the entire area of a glacier. The accuracy of physically-based models largely

depends on the forcing data [74]. Other than empirical models, physically-based models

do not require excessive tuning or parameter calibration from a theoretical point of view.

Forcing data, parameter choice, model initialization, model structure and the related

uncertainties propagate through the model chain and can affect simulation results in non-

linear ways [75]. This is especially the case when meteorological forcing data are subject

to high uncertainties (like for precipitation and its phase which are difficult to measure

in mountain regions). In these circumstances the model results can diverge from ground-
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truth observations. This can be problematic in remote regions, with only few stations,

where even nowadays simple models have to be applied. In regions like the European

Alps, meteorological forcing data are interpolated from several stations around a glacier

or derived from output of climate models. Their bias may also be corrected with proper

methods. Apart from the difficulties in obtaining accurate precipitation estimates, the

complex topography of high alpine regions complicates the prediction of wind fields and

solar radiance. The applied hydro-climatological model also needs to adjust the simulated

spatial discretization to the required resolution in order to represent a physical process

(depending on topography) in accordance with the scale of the observations. For fully

spatially distributed (gridded) simulations these considerations often lead to a grid-size

of 10s to 100s.

From the analysis of the literature one can conclude that the combination of physically-

based mass balance modeling, RS data acquired over the glacier surface, and ground mea-

surements could be a promising way of improving the quantification of a GMB, and to

overcome some of the weaknesses inherent in each of these methods. One of the weakness

of physically-based models is that the further away we are from a meteorological station,

the higher the uncertainty in the interpolation method of any model. In contrast, RS

data provide a comprehensive spatial representation of the glaciers, but are affected by

clouds occlusions and require a large number of in-situ measurements to train supervised

methods to determine the glacier surface characteristics. Finally, the collection of field

data is time-consuming and hampered by lack of access in such complex environmental

areas, so typically only few measurements are collected [76]. The aim of this contribution

is to propose a novel integration approach, which makes use of the complementary ad-

vantages afforded by model simulations, RS data and in-situ measurements. This could

help to estimate a spatially distributed annual GMB that is better than any of the classi-

cal methods can provide. Even though RS data with bias deviation correction strategies

have been proposed in the literature to improve model parameter estimation [11], this

approach has never been used to improve existing physical-models and GMB model cal-

culations. The main contributions of this work are: (i) using an existing (state-of-the-art)

distributed hydro-climatological model to compute the processes of mass accumulation

and ablation, (ii) using RS data to define an informative feature space (where samples

characterized by similar glacier surface characteristics can be easily detected) and (iii) ef-

ficiently integrating the hydro-climatological model, the RS data and in-situ observations

to accurately estimate the spatially distributed annual GMB. The method was applied to

two clusters of glaciers: one in the Austrian Alps, and another in the Italian Alps. We

used HR Sentinel-2 multispectral images for the experiments performed after 2015, while

MR Landsat-5 and Landsat-7 data were considered for the ones carried out before 2015.
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A 10 m spatial resolution DTM was used to extract the topographic parameters of all

four glaciers in HR.

The remainder of this chapter is structured as follows. Section 2 describes in details

the proposed integration method. Section 3 presents the study areas, the RS data, and

the local observations, and section 4 presents the results obtained with our integration

approach. Finally, in section 5 we draw the conclusion and propose ideas for future

developments.

3.2 Proposed GMB Estimation Method

Figure 3.1: Architecture of the proposed integration approach. The method takes advantage

of the complementary information provided by in-situ measurements, RS data and hydro-

climatological model to accurately estimate GMB.

The proposed integration method aims to correct the downscaled GMB estimates, pro-

vided by the hydro-climatological model AMUNDSEN, by efficiently integrating: in-situ

measurements, the MR and HR multispectral optical images and the DTM. In contrast

to previous studies, the proposed integration approach does not assimilate in-situ mea-

surements into a model but performs the fusion of RS data, physical model and in-situ

measurements. This fusion preserves the generalization of AMUNDSEN (to properly de-

scribe the physical processes of the whole glacier) while improving the accuracy of its

estimates. The AMUNDSEN model is run for the whole study area to generate a spa-

tially continuous GMB map. The proposed integration method assumes that the in-situ

measurements and the physical model data are available on the considered test sites over

the same time period. The joint use of these complementary data sources allows us to:

(i) improve the accuracy of the GMB estimates, and (ii) increase the spatial resolution of

the GMB maps provided by the AMUNDSEN model.

Fig. 3.1 represents the block diagram of the proposed integration method that can

be divided into two steps: (i) physical model deviation computation - where the hydro-

climatological model outputs and the in-situ measures (reference data) are used to com-
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pute the model residuals on a small set of available reference data; and (ii) physical model

correction - where the topographic and spectral information provided by the RS data de-

fines a feature-space to accurately model the environmental properties of the glaciers. By

representing the problem in a feature-space, for each unlabeled sample (i.e., glacier pixel

without associated in-situ measurement), we are able to detect the reference samples

sharing similar glacier conditions (i.e., located in the same feature sub-space). Finally,

by leveraging the deviations of the reference data (computed in the previous step), we

correct the model estimates. In the following subsections, each step of the proposed in-

tegration approach is described in detail. Moreover, the feature space used to perform

the deviation estimation is presented. In particular, we explain the physical meaning of

the multispectral and topographic variables employed to model the glacier environmental

conditions.

3.2.1 Feature Space Definition

Selecting a proper feature space is a crucial step in order to effectively represent the vari-

ables affecting the environmental conditions of a glacier, and thus the behaviour of GMB.

To define a representative feature space, we select the most informative spectral bands

and topographic parameters for snow and ice monitoring, in accordance with the Earth

observing system analysis [77] and experimental analysis performed. From the DTM, we

extract the altitude, slope and aspect parameters that characterize the topography of a

glacier, which is correlated to the GMB.

From the multispectral optical data we consider the blue spectral channel (450 nm –

520 nm), which provides information about potential snow pixels, and the SWIR bands

(1050 nm - 2500 nm), which are typically used for snow and ice detection. Moreover, due

to the sensitivity of the SWIR bands to moisture content, they can distinguish old snow

from fresh snow. This is due to the fact that old snow often develops a solid crust which

corresponds to a rise in moisture content, and thus it is less reflective in the SWIR than

fresh snow. In addition, we also include the Normalized Difference Water Index (NDWI),

which is correlated to the amount of water per unit area. This metric has been proven to

be correlated to the beginning of the snow melt period [78], [79].

It is important to mention that the annual GMB is reported on the September 30th.

However, in the proposed integration method we utilize multispectral images acquired at

the end of August or at the beginning of September (see Tab. 3.1a and 3.1b ). This is

because the maximum ablation of the considered glaciers can be observed in this period.

On the 30th of September glaciers are usually fully covered with fresh snow. Thus, we are

no longer able to differentiate the types of a glacier cover (such as firn, old snow, fresh snow

or ice) as the spectral signatures correspond to fresh snow only. The experimental results
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and wider literature review suggest [14], these images are a good proxy for estimating the

maximum glacier ablation. Moreover, these images are typically characterized by a low

level of cloud coverage leading to a good approximation of annual GMB.

3.2.2 Physical Model Deviation Computation

In the first step, the proposed integration method takes advantage from the availability

of a small set of in-situ GMB measurements to compute the deviation between the refer-

ence samples and the corresponding physical model estimates. Let {yref1 , yref2 , · · · , yrefN }
be the set of measured GMB and let {gref1 , gref2 , · · · , grefN } be the corresponding hydro-

climatological model estimates. Due to uncertainties associated with numerical simula-

tions, for each sample we can compute the deviation between the physical model and the

true GMB value. This can be expressed as follows:

δrefi = yrefi −grefi

where i = 1, · · · , N
(3.1)

The computed training sample deviations are then used to perform the physical model

correction. This helps to estimate the final GMB values of the unlabeled samples (i.e.,

samples for which no ground reference data are available). In order to infer the deviation

correction, the method exploits the information provided by the RS data. This enables us

to model the physical properties of different parts of the glaciers. In particular, for each

unlabeled sample we aim to detect the most similar reference ones, for which the model

deviation has been computed. Then, based on the reasonable assumption that samples

having similar physical properties are affected by similar model deviations, we estimate

the model deviation. For each unlabeled sample ( δun), we compute a correction as an

average deviation from the reference samples located in the δun’s neighborhood.

3.2.3 Physical Model Correction

The aim of this step is to estimate for each unlabeled sample its deviation δ̂unj , and thus

leading to an accurate GMB estimate ŷj. To this end, the proposed integration method

takes advantage from the spectral and topographic information provided by the MR and

HR optical data and the DTM, to define a feature space where the reference and the

unlabeled samples are re-projected. Let {xref
1 ,xref

2 , · · · ,xref
N } be the RS features associ-

ated to the reference samples, with xref
i ∈ Rd made up of d components derived from the

multispectral RS information and the DTM. Let us define with {xun
1 ,xun

2 , . . . ,xun
M } the RS

features associated to the unlabeled samples, with M >> N , and let {gun1 , gun2 , · · · , gunM }
be the corresponding hydro-climatological model estimates. By analyzing this feature
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space we can identify for each xun
j the reference samples characterized by similar environ-

mental and snow/ice conditions, i.e., those located in the same sub-space. Based on the

reasonable assumption that the physical model estimation accuracy varies in the different

portions of the feature-space, we exploited a local deviation correction strategy. There-

fore, in our proposed approach the correction is computed and applied to local feature

sub-spaces.

To partition the feature space we considered a simple and efficient non-parametric

k-NN algorithm as proposed in [11]. First, the distances (similarities) between each unla-

beled sample xun
j and the training reference samples {xref

1 ,xref
2 , · · · ,xref

N } are calculated.

The estimated correction value is computed as an average of the k nearest (most simi-

lar) samples deviations. Let us that after applying k-NN partition, the feature-space is

divided into R regions and let rz be a generic region. For each region rz we compute the

correction value as follows:

δ̂unj =
1

k

k∑
i=1

δrefi =
1

k

k∑
i=1

yrefi − grefi

where δrefi ∈ rz, and j = 1, · · · ,M

(3.2)

Where δ̂unj is the correction for the samples within rz. The tuning of the k-parameter is

performed with cross-validation. Here, the distance is computed as Euclidean distance.

However, other metrics can be applied. It is worth mentioning that this strategy parti-

tions the feature-space according to the training reference data distribution. The final

estimation of the GMB is calculated as the sum of the estimates provided by the physical

model and of the correction computed according to the local strategy, i.e.,:

ŷunj = gunj + δ̂unj

where j = 1, · · · ,M
(3.3)

This strategy allows the correction of the GMB estimates by using the average deviation of

the reference samples (located in a neighborhood of the unlabeled samples to be corrected).

3.3 Study Areas and Dataset Description

3.3.1 Study Areas

To carry out the experimental analysis, we considered two study areas located in the

Austrian and Italian Alps (see Fig. 3.2). The first one is the Rofental Valley which
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Figure 3.2: (a) Location of the study area with the outlines of the considered glaciers in red.

(b) Test site in the Ötztal Alps three studied glaciers: Kesselwandferner, Hintereisferner and

Vernagtferner. (c) Test sites on the Ortles-Cevedale group with three considered glaciers: Lan-

genferner – Lunga Vedretta, Careser and Weissbrunnferner – Fontana Bianca. The images (b)

and (c) also represent the location of the in-situ measurements marked as blue dots for ablation

stakes and green triangle for snow pits. The red line represents the glacier outlines.
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(a)

(b)

Figure 3.3: Overview of the meteorological stations (cyan circles) used as input to the AMUND-

SEN model for the test glaciers in the Oetztal Alps (a) and Orltes-Cevedale group (b) (high-

lighted in red).
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belongs to the Otzal Alps, in the Tyrol region, Austria. This valley, which is one of the

most studied in the Austrian Alps, is characterized by well-instrumented and equipped

test-sites with weather stations from which measurements are used to drive AMUNDSEN

simulations [80]. In particular, we considered the: Kesselwandferner, Hintereisferner and

Vernagtferner glaciers. The second study area is located in Ortles-Cevedale group in

South Tyrol (Italy). The Ortles-Cevedale is the largest glacierized group in the Italian

Alps. In this study we focused on the following glaciers within the group: Langenferner

(Lunga Vedretta), Careser and Weissbrunnferner (Fontana Bianca). We would like to

remark that in our study area the considered glaciers represent mainly ablation, and thus

glacier zero balance line is not present.

3.3.2 Field Reference Data

The GMB reference data were downloaded from the WGMS [81], the service of the Inter-

national Association of the Cryospheric Sciences. Since 1984, the WGMS has collected

glacier data from over 30 countries. Hintereisferner, Kesselwandferner and Langenferner

GMB measurements available at the WGMS website were collected by the Institute of At-

mospheric and Cryospheric Sciences of the University of Innsbruck. For the Vernagtferner,

the data were provided by the Commission for Geodesy and Glaciology of the Bavarian

Academy of Sciences. The GMB information for Careser were provided by the Comitato

Glaciologico Trentino of the Società degli Alpinisti Tridentini, and for Weissbrunnferner

by the Ufficio Idrografico of the Provincia Autonoma di Bolzano - Alto Adige.

The spatial distribution of the GMB in-situ point measurements are shown in Fig. 3.2

(c) for the Rofental valley and in Fig. 3.2 (b) for the Ortles-Cevedale group. Tab. 3.1a

and 3.1b present the number of GMB point measurements available for each glacier per

year.

3.3.3 RS Data

To define an informative feature space for modeling the glacier environmental conditions,

we exploited the multispectral information provided by optical satellite sensors and the

DTM acquired by the airborne laser scanner (ALS) systems. For the experimental analysis

carried out between 2006 and 2013, the multispectral data acquired by the Landsat were

used, whereas between 2015 and 2017 the most recent HR multispectral Sentinel-2 data

were considered (see Tab. 3.1a and 3.1b).
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Table 3.1: Dataset description of the glaciers located in: (a) the Tyrol (Austria), (b) south Tyrol

(Italy). For each glacier, the number of in-situ measurements (reference samples) available per

year and the considered multispectral satellite optical image employed are reported.

Tyrol (Austria)

Glacier name Year # ref. samples Sensor Acquisition date

Hintereisferner 2015 48 Sentinel-2 2015-08-26

2016 54 Sentinel-2 2016-08-27

2017 55 Sentinel-2 2017-08-30

Kesselwandferner 2015 20 Sentinel-2 2015-08-26

2016 21 Sentinel-2 2016-08-27

2017 21 Sentinel-2 2017-08-30

Vernagtferner 2012 29 Landsat-7 2012-09-16

2013 35 Landsat-7 2013-08-02

South Tyrol (Italy)

Glacier name Year # ref. samples Sensor Acquisition date

Langenferner 2010 26 Landsat-7 2010-08-26

2011 25 Landsat-7 2011-08-29

Careser 2007 19 Landsat-5 2007-07-25

2010 12 Landsat-7 2010-08-26

2011 14 Landsat-7 2011-08-29

Weissbrunnferner 2006 16 Landsat-5 2006-08-23

2007 16 Landsat-5 2007-07-25

2010 16 Landsat-7 2010-08-26

2011 17 Landsat-7 2011-08-29
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3.3.3.1 DTM Topographic Maps

The DTM is used to represent topographic parameters of the considered glaciers, such as

altitude, slope and aspect. In Tyrol (Austria) we used the DTM coming from the Land

Tirol, available at Open Data Austria [82]. In south Tyrol (Italy) the DTM was provided

by the Istituto Nazionale di Geofisica e Vulcanologia [83]. Both DTMs were acquired by

the airborne laser campaign and are characterized by 10 m spatial resolution.

3.3.3.2 Sentinel-2 Multispectral Images

Sentinel-2 is a mission of the ESA, which comprises two twin polar-orbiting satellites.

It provides multispectral images of both high spatial (10 m - 20 m) and high temporal

resolutions (5 days on the equator under cloud-free condition). In our study, the 20 m

spectral bands are resampled to 10 m with the nearest neighbor approach. The Sentinel-2

images are used over the Rofental valley for the years 2015 - 2017.

3.3.3.3 Landsat-5 and Landsat-7 Multispectral Images

Landsat-5 and Landsat-7 provide MR images at 30 m spatial resolution with temporal

resolution of 16 days. The Landsat-5 is used over the Ortles Cevedale group for the years

2006 - 2007, while the Landsat-7 is used over Rofental valley for the years 2012-2013 and

over the Ortles Cevedale between 2010 - 2011.

3.3.4 Hydro-climatological Model

The GMB estimates are derived from the hydro-climatological model AMUNDSEN [71].

This physically-based model, designed to simulate snow and ice accumulation and ablation

in high mountains areas, has been widely used and evaluated in different climatological

conditions [71], [84], [85], [86]. AMUNDSEN distinguishes four types of snow and ice,

namely: fresh snow, old snow, ice and firn. New snow is considered as the snow coming

from the recent snowfall. It is converted into old snow when settling and/or melting

processes increase the density of the new snow above 200 kg/m3. On September 30th old

snow is converted into firn by definition and firn turns into ice when the density reaches

900 kg/m3 [87]. For each grid cell AMUNDSEN computes the energy and mass balance

of these four snow and ice types, and hence, provides separate predictions of the water

equivalent of fresh snow, old snow, firn and ice at each timestep. The sum of water

equivalents of firn, old snow, fresh snow and ice represents the annual GMB, which is by

definition the difference of the GMB calculated on the September 30th of the considered

year and the GMB on October 1st of the previous year.
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As a forcing data model, AMUNDSEN uses hourly meteorological variables observed

at climate stations, such as: precipitation, wind speed, relative humidity, air temperature

and global radiation. Other variables are parameterized (e.g., longwave fluxes). The loca-

tion of the meteorological stations is presented in Fig. 3.3. The model and its particular

features are described in [88, 89, 84, 73]. All meteorological forcing variables are dis-

tributed across the simulation domain by using a topography-considering inverse distance

weighting scheme [84]. From the DTM of the considered area the following topographic

features were computed: slope, aspect, openness and sky-view factor, all in the original

resolution of 50 m, i.e., the one from DTM grid. In a post-processing step, the model

results are re-sampled with linear interpolation to 10 m resolution. The model solves

the coupled energy and mass balance of the snow-pack, and does not rely on parameter

calibration for meaningful predictions. The initialization of the glacier areas is described

in [73] which established the model in the Oetztaler Alps [72]. In this work, we extended

the simulations to include the glaciers of the Ortler group, by utilizing climate station

data provided by the Meteorological Office of Trentino, which include stations up to 2600

m a.s.l.. Initial glacier ice thickness distributions for the year 2003 were provided by

Matthias Huss and are obtained by a method based on glacier mass turnover and ice flow

mechanics. The method requires glacier outlines and a DTM [90].

3.4 Experimental Results

In this section, we present the GMB estimates obtained by applying the proposed inte-

gration method to both RS datasets (i.e., Sentinel-2 and Landsat data). First, we present

the experimental setup by analyzing the correlation between the RS features and the

GMB in-situ measurements. Then, the quantitative and qualitative results are reported.

The quantitative results are presented in terms of: i) GMB estimates evaluated over the

in-situ measurements, and ii) GMB of the whole glacier. Moreover, a sensitivity analysis

is reported to evaluate the impact of the number of in-situ measurements on the pro-

posed integration approach. Finally, to allow a visual interpretation of the results, we

also present: i) scatter plots (between in-situ measured and estimated GMB aggregated

per year), ii) altitudinal GMB profiles of in-situ measured and estimated GMB, and iii)

GMB maps.

3.4.1 Experimental Set-up

To generate the feature space used to estimate the bias deviation, we extracted the blue

and the SWIR spectral bands from the multispectral images. In greater detail, for the

Sentinel-2 we considered band 2 (490 nm), band 11 (1610 nm) and band 12 (2190 nm),
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(a) DTM and Sentinel-2 Features (b) DTM and Landsat Features

Figure 3.4: The correlation between the RS features and in-situ measured GMB for the two

datasets: (a) DTM and Sentinel-2, and (b) DTM and Landsat.

while for the Landsat Thematic Mapper we used band 1 (485 nm), band 5 (1650 nm) and

band 7 (2220 nm). We also computed the NDWI as bellow:

NDWI =
NIR− SWIR

NIR + SWIR
(3.4)

Where for the Sentinel-2, we used band 8 (842 nm) and band 11 (1610 nm), while for

the Landsat we used band 4 (840 nm) and band 5 (1650 nm). Fig. 3.4 presents the

correlation between the RS features and the in-situ measured GMB for both datasets. As

expected, the altitude is strongly correlated to the GMB since it is strictly related to the

snow distribution over glacier. Moreover, for Sentinel-2, the blue band and the NDWI

present good correlation with the GMB values. Note that even though it is interesting

to evaluate the correlation between each feature and the GMB, the whole feature space

enables accurate modeling of the complex environmental properties of the glacier thanks

to the complementary information provided by each feature.

To improve AMUNDSEN GMB estimates in the considered feature space, we exploited

the k-NN correction strategy by using Euclidean distance. A parameter selection was first

carried out to tune the k parameter which was set equal to 4 for all the experiments. Due

to the small number of reference points, we adopted a five-folds cross validation procedure

to evaluate the proposed approach. First, the reference samples were randomly divided

into five subsets. At each iteration, one subset was used for evaluating the correction (val-

idation subset), and the other subsets were used for computing the deviation correction.

After five iterations, all the samples were used four times for the deviation correction
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and once for the validation. The evaluation metrics were averaged on the five validation

subsets. This condition allows us to ensure that the obtained results are reliable from the

statistical view point. To evaluate the performance of the proposed integration method,

the resulting GMB estimates were compared with the true GMB values (i.e., reference

samples), considering the following metrics: the Mean Absolute Error (MSE), the Root

Mean Square Error (RMSE), Root-mean-square deviation (RMSD) and the Correlation

coefficient (R). The RMSD is calculated according to the formula:

RMSD =
RMSE

max−min
∗ 100% (3.5)

For comparison purposes, we also included the error metrics achieved by AMUNDSEN

model with no correction technique applied. Moreover, to assess the effectiveness of

the proposed integration method, we compared it with the standard supervised Support

Vector Regression (SVR) technique. SVR is often used for geo/bio-physical variable

estimation as this technique achieves good estimation accuracy and demonstrates strong

generalization capabilities [91], [92]. We tested both linear and Radial Basis Function

(RBF) kernels. The SVR parameters were tuned with a standard cross-validation. The

SVR was trained on the GMB in-situ measurements by using as input the same variables

as the one considered for the feature space definition.

3.4.2 Quantitative Results of the Physical Model Correction

To evaluate the proposed integration approach to GMB estimation, first we present the

results obtained using HR Sentinel-2 data, AMUNDSEN simulations and in-situ measure-

ments available over Hintereisferner and Kesselwandferner glaciers in the Rofental Valley

(Austria), for the 2015, 2016 and 2017. Tab. 3.2 and 3.3 report the results obtained by the

proposed integration approach, the original AMUNDSEN model, the linear SVR and the

RBF SVR. The results were derived on the reference points collected per year separately.

One can notice that the proposed integration method sharply reduces the estimation error

with respect to AMUNDSEN model for all the cases. For instance, for the Hintereisferner

glacier in 2016 the proposed method compared to the original AMUNDSEN achieves a

MAE of ∼382 mm vs ∼940 mm, a RMSE of ∼560 mm vs ∼1207 mm a RMSD of ∼10%

vs ∼33% and a R of 0.94 vs 0.91. Moreover, the proposed integration approach achieves

better results compared to the baseline methods for almost all the cases. By focusing the

attention on the Hintereisferner glacier in 2016, the proposed method compared to SVR

RBF achieves a MAE ∼382 mm vs ∼430 mm, a RMSE of ∼560 mm vs ∼598 mm a RMSD

of ∼10% vs ∼11% and a R of 0.94 vs 0.93. The error reduction is even more significant

with respect to the linear SVR, where for Hintereisferner glacier in 2016 we obtained a

MAE of ∼382 mm vs ∼556 mm, a RMSE of ∼560 mm vs ∼756 mm a RMSD of ∼10%
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Table 3.2: Mean Absolute Error (MAE [mm]), Root Mean Square Error (RMSE [mm]), Root-

mean-square deviation (RMSD) and correlation coefficient (R) obtained for GMB estimation

of Hintereisferner glacier in 2015, 2016 and 2017. The error metrics are computed on reference

samples using fivefold cross validation for AMUNDSEN, the proposed integration approach,

SVR linear and SVR RBF.

Glacier Name HINTEREIS F.

Year Method MAE (mm) RMSE (mm) RMSD (%) R

2015 AMUNDSEN 617.8 755.94 16 0.90

Proposed 377.52 568.72 9 0.94

SVR Linear 632.73 795.83 11 0.89

SVR RBF 429.84 532.38 8 0.95

2016 AMUNDSEN 939.72 1206.64 33 0.91

Proposed 382.25 559.90 10 0.94

SVR Linear 555.83 755.89 16 0.90

SVR RBF 429.7 598.21 11 0.93

2017 AMUNDSEN 790.87 908.57 17 0.89

Proposed 548.37 747.93 13 0.89

SVR Linear 614.64 789.31 11 0.89

SVR RBF 622.09 925.7 16 0.83
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Table 3.3: Mean Absolute Error (MAE [mm]), Root Mean Square Error (RMSE [mm]), Root-

mean-square deviation (RMSD) and correlation coefficient (R) obtained for GMB estimation of

Kesselwandferner glacier in 2015, 2016 and 2017. The error metrics are computed on reference

samples using fivefold cross validation for AMUNDSEN, the proposed integration approach,

SVR linear and SVR RBF.

Glacier Name KESSELWAND F.

Year Method MAE (mm) RMSE (mm) RMSD (%) R

2015 AMUNDSEN 824.48 981.68 85 0.73

Proposed 336.93 394.86 18 0.93

SVR Linear 338.08 417.21 15 0.96

SVR RBF 347.98 551.75 16 0.85

2016 AMUNDSEN 864.34 946.51 83 0.82

Proposed 306.88 391.55 18 0.86

SVR Linear 394.47 494.25 19 0.91

SVR RBF 335.46 429.6 22 0.86

2017 AMUNDSEN 431.62 556.12 25 0.88

Proposed 413.30 527.44 21 0.87

SVR Linear 483.28 623.02 20 0.82

SVR RBF 413.15 603.9 20 0.82
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Table 3.4: Mean Absolute Error (MAE [mm]), Root Mean Square Error (RMSE [mm]), Root-

mean-square deviation (RMSD) and correlation coefficient (R) obtained for GMB estimation of

Vernagtferner glacier in 2012 and 2013. The error metrics are computed on reference samples

using fivefold cross validation for AMUNDSEN, the proposed integration approach, SVR linear

and SVR RBF.

Glacier Name VERNAGT F.

Year Method MAE (mm) RMSE (mm) RMSD (%) R

2012 AMUNDSEN 467.48 567.97 18 0.91

Proposed 420.57 514.01 15 0.90

SVR Linear 551.66 678.47 14 0.84

SVR RBF 461.98 591.57 31 0.86

2013 AMUNDSEN 577.99 755.83 38 0.97

Proposed 244.94 321.14 10 0.96

SVR Linear 889.78 1126.93 24 0.64

SVR RBF 862.08 1112.70 31 0.64

vs ∼16% and R of 0.94 vs 0.90. However, when many in-situ samples are available, the

RMSDs obtained by the baseline methods are slightly lower than the one obtained by the

proposed method e.g. Kesselwandferner in 2015 RMSD of ∼18% for the proposed method

vs ∼15% for SVR Linear vs ∼16% for SVR RBF.

In order to further analyze the capability of the proposed integration approach of

improving the GMB estimation, we extended our analysis to historic data by considering

the Landsat-7 optical images. According to the availability of AMUNDSEN simulations

and the RS images representing maximum ablation, we analyzed Vernagtferner in the

Rofental valley (Austria) in 2012 and 2013. The results are reported in Tab. 3.4. From

the Tab., one can notice that the proposed integration approach significantly reduces the

MAE, RMSE and RMSD values compared to the original AMUNDSEN, i.e., ∼245 mm

vs ∼578 mm, ∼321 mm vs ∼ 756 mm and a RMSD of ∼10% vs ∼38%, respectively.

However, in some cases AMUNDSEN shows slightly higher correlation coefficient than

the proposed method e.g., on the Vernagtferner 2012 R of 0.91 vs 0.90. The proposed
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Table 3.5: Mean Absolute Error (MAE [mm]), Root Mean Square Error (RMSE [mm]), Root-

mean-square deviation (RMSD) and correlation coefficient (R) obtained for GMB estimation for

Careser glacier in 2007, 2010 and 2011. The error metrics are computed on reference samples

using fivefold cross validation for AMUNDSEN, the proposed integration approach, SVR linear

and SVR RBF.

Glacier Name CARESER

Year Method MAE (mm) RMSE (mm) RMSD (%) R

2007 AMUNDSEN 497.15 609.97 28 0.81

Proposed 258.18 302.93 15 0.89

SVR Linear 679.29 849.85 56 0.18

SVR RBF 457.46 647.14 39 0.45

2010 AMUNDSEN 681.22 771.68 72 0.85

Proposed 402.32 477.93 38 0.77

SVR Linear 469.30 583.16 39 0.55

SVR RBF 374.88 491.58 28 0.74

2011 AMUNDSEN 728.93 801.59 42 0.96

Proposed 267.05 347.93 19 0.94

SVR Linear 538.93 626.85 28 0.63

SVR RBF 454.96 558.92 22 0.72
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Table 3.6: Mean Absolute Error (MAE [mm]), Root Mean Square Error (RMSE [mm]), Root-

mean-square deviation (RMSD) and correlation coefficient (R) obtained for GMB estimation

for Weissbrunnferner glacier in 2006, 2007, 2010 and 2011. The error metrics are computed

on reference samples using fivefold cross validation for AMUNDSEN, the proposed integration

approach, SVR linear and SVR RBF.

Glacier Name WEISSBRUNN F.

Year Method MAE (mm) RMSE (mm) RMSD (%) R

2006 AMUNDSEN 407.73 544.91 76 0.72

Proposed 319.53 375.83 30 0.70

SVR Linear 247.69 362.40 27 0.72

SVR RBF 321.58 421.75 35 0.59

2007 AMUNDSEN 671.44 768.26 43 0.78

Proposed 338.71 410.97 22 0.75

SVR Linear 534.69 624.12 31 0.52

SVR RBF 314.39 386.96 26 0.75

2010 AMUNDSEN 324.81 410.89 36 0.73

Proposed 279.48 351.99 28 0.75

SVR Linear 449.76 514.14 19 0.66

SVR RBF 341.70 413.77 21 0.68

2011 AMUNDSEN 512.47 639.36 45 0.47

Proposed 405.65 493.04 31 0.55

SVR Linear 406.21 503.59 27 36

SVR RBF 427.07 517.60 30 0.65
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Table 3.7: Mean Absolute Error (MAE [mm]), Root Mean Square Error (RMSE [mm]), Root-

mean-square deviation (RMSD) and correlation coefficient (R) obtained for GMB estimation for

Langenferner glacier in 2010 and 2011. The error metrics are computed on reference samples

using fivefold cross validation for AMUNDSEN, the proposed integration approach, SVR linear

and SVR RBF.

Glacier Name LANGEN F.

Year Method MAE (mm) RMSE (mm) RMSD (%) R

2010 AMUNDSEN 509.63 615.93 44 0.91

Proposed 436.69 528.01 46 0.90

SVR Linear 524.67 664.43 54 0.85

SVR RBF 478.02 591.39 50 0.87

2011 AMUNDSEN 478.01 599.00 38 0.91

Proposed 408.22 517.75 31 0.91

SVR Linear 562.29 825.01 44 0.80

SVR RBF 490.84 606.05 34 0.87
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integration approach also obtained reduction of the MAE and RMSE errors and increase

of the correlation coefficient compared to the SVR. For instance, by focusing on the

Vernagtferner in 2013 the proposed method compared to the linear SVR achieves a MAE

of ∼245 mm vs ∼890 mm, a RMSE - ∼321 mm vs ∼1127 mm, a RMSD of ∼10% vs

∼24% and a R of 0.96 vs 0.64.

Similar results were obtained in the Ortles-Cevedale group in Italy, where we consid-

ered three glaciers: Careser, Weissbrunnferner and Langenferner. Tab. 3.5, 3.6 and 3.7

report the results obtained for the 2006, 2007, 2010 and 2011. Similarly to the previous

analysis, the proposed method strongly improves AMUNDSEN GMB estimates (see Tab.

3.5, 3.6 and 3.7). For instance, in Careser in 2007, the RMSE is ∼303 mm compared

to AMUNDSEN one of ∼610 mm. Nevertheless, in some cases it shows slightly smaller

linear correlation with in-situ measurements than the original AMUNDSEN model i.e.,

Weissbrunnferner 2006, R of 0.70 vs 0.72. Moreover, the proposed approach confirms its

effectiveness compared to the SVR baselines, which in few cases provides results similar to

the proposed method (e.g., Weissbrunnferner in 2006, where the RMSE of the proposed

method is ∼376 mm and the one of the linear SVR is ∼362 mm). However, for most of

the cases the baseline methods achieve poor accuracy due to the small amount of labeled

samples available (e.g., Langenferner in 2011, where the RMSE of the proposed method

is ∼518 mm and the one of the linear SVR is ∼825 mm).

To allow a visual interpretation of the results obtained, we present the scatter plots

aggregated per year of the in-situ measured vs AMUNDSEN GMB (Fig. 3.5(a), 3.5(c),

3.5(e), 3.6(a), 3.6(c), 3.7(a), 3.7(c)), 3.7(e)) and scatter plots aggregated per year of

the in-situ measured GMB vs the predicted one with the proposed method (Fig. 3.5(b),

3.5(d), 3.5(f), 3.6(b), 3.6(d), 3.7(b), 3.7(d), 3.7(f)). The red line corresponds to the perfect

linear correlation, and the blue one represents the considered method correlation. These

scatter-plots demonstrate the capability of the proposed approach to sharply improve

the GMB estimates compared to the initial AMUNDSEN estimates, regardless of the

number of samples and the RS dataset. Consequently, good results are obtained in 2006

(see Fig.3.5(b)) even though the in-situ measurements available are much less compared

to those of 2016 (see Fig. 3.7(c)). However, one of the limitations of the proposed

approach is that, for some samples, there might not be in-situ samples representing similar

glacier condition, which will lead to poor correction accuracy. One example of this can

be seen in Fig. 3.5(e) and 3.5(f), where the measured accumulation is ∼1000 mm and

the proposed method estimates ∼100 mm (similarly to AMUNDSEN). This is due to the

few accumulation measurement points available in 2010. The closest accessible samples

are mainly ablation measurements, which leads to low correction values.

Fig. 3.8 reports the glacier-wide mass balance obtained over different glaciers for the
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different years, considering the in-situ measurements (in black), AMUNDSEN (in green),

the proposed integration approach (in blue), the SVR linear (in orange) and the SVR

RBF (in yellow). These results confirm the importance of the correction performed by the

proposed method at the glacier scale. The proposed approach obtains results very similar

to those provided by the WGMS for all the glaciers by strongly improving AMUNDSEN

estimates (see Kesselwandferner 2016 or Careser 2010). Moreover, it achieves better

glacier-wide mass balance with respect to both the baselines methods.

Finally, to investigate the impact of the number of available in-situ measurements on

the method accuracy, we performed a sensitivity analysis. As an example we considered,

the Hintereisferner in 2016, where 54 samples were available. In our experiment, we

subsampled the data into 5 sets made up of 10, 20, 30, 40, and 54 samples. Similarly to

the other experiments, we adopted a five-folds cross validation procedure. The results are

shown in Fig. 3.9. For instance, the proposed method with only 10 samples, compared

to the original AMUNDSEN, achieves a MAE of ∼440 mm vs ∼890 mm, a RMSE of

∼495 mm vs ∼981 mm and a R2 of 0.93 vs 0.93. The result obtained by considering all

54 samples is nearly the same with MAE of ∼340 mm, a RMSE of ∼428 mm and R2 of

0.94. Thus, we can conclude, that the method performs well, regardless of the number of

considered samples, as the MAE and RMSE are always improved.

3.4.3 Qualitative Results of the Physical Model Correction

Fig.3.10 presents the altitudinal GMB profiles per glacier per year obtained through in-

situ measures (in black), AMUNDSEN model (in green) and the proposed approach (in

blue). As expected for most of the profiles, the in-situ GMB increases when the altitude

increases. A similar trend is visible in both AMUNDSEN and the proposed method

GMB estimates. However, from the analysis of the obtained profiles, one can notice

that the proposed method is able to match the altitudinal GMB provided by the in-situ

measurements by sharply improving AMUNDSEN GMB values.

Finally, Fig. 3.11 presents the corrected GMB maps obtained by the proposed inte-

gration approach, the original AMUNDSEN GMB simulations and the true color compo-

sitions of the Sentinel-2 data acquired in August 2015, 2016 and 2017, respectively. The

corrected maps (see Fig. 3.11 c, g, i) are characterized by a better geometrical detail than

the original AMUNDSEN simulations (see Fig. 3.11 b, e, h), due to the higher spatial

resolution of Sentinel-2 data (10 m) compared to AMUNDSEN simulation one (50 m).

The high correlation between the Sentinel-2 images and the obtained GMB maps demon-

strates the capability of the proposed method to accurately detect pixels characterized by

similar environmental conditions when applying the deviation correction. This allows us

to generate GMB maps which are more representative of the environmental properties of
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the glacier than the original AMUNDSEN ones. We would like to remark that consistent

results are provided also for Vernagtferner glacier, for which no reference samples are

available for the 2015, 2016 and 2017.

3.5 Discussion and Conclusion

In this chapter, we presented a novel integration approach to GMB estimation. The

proposed approach takes advantage of the complementary information provided by the:

hydro-climatological AMUNDSEN simulations, multispectral RS data, DTM and in-situ

measurements to generate accurate estimation results. The novelties of the proposed

method are: (i) the definition and use of a feature space that can represent the environ-

mental properties of the glaciers, (ii) the use of a deviation correction strategy to improve

the accuracy of the GMB provided by the AMUNDSEN model and its spatial resolution,

while preserving the reliability of the hydro-climatological model, and (iii) an efficient

integration of the complementary information coming from physically-based simulations,

RS data, DTM and in-situ measurements, which overcomes their individual limitations.

To assess the performance of the proposed integration method, an extensive analysis of

the GMB correction was carried out in Tyrol (Austria) and South Tyrol (Italy), in 2006,

2007, 2010, 2011, 2012, 2013, 2015, 2016 and 2017. While for the analysis before 2015

we considered the Landsat-5 and Landsat-7 data, after 2015 we employed multispectral

data from Sentinel-2. Compared to the AMUNDSEN model, the proposed approach

demonstrates a significant reduction of the RMSE and MAE values for all the considered

cases and an increase of the correlation coefficient factor in most of the cases. Overall,

it can be noticed that the proposed approach performs better with RS data coming from

Sentinel-2 despite the relevant spectral bands of both Sentinel-2 and Landsat being very

similar (i.e., band blue 490 nm for Sentinel-2 vs 485 nm for Landsat). This can be

explained by the better spatial resolution of Sentinel-2 (10 m vs 30 m for Landsat), which

leads to better exploitation of the spectral information (i.e., pure spectral pixels). At a

spatial resolution of 30 m the probability of having a mixed spectral signature is higher

than at 10 m (e.g., both accumulation and ablation may be present in an area of 30x30

m2). Moreover, since the proposed method was applied at a pixel level, the obtained

GMB maps have a better spatial resolution compared to the original GMB simulations

(50 m). This is due to the better geometrical information provided by the multispectral

sensors.

The results obtained were compared with a standard supervised SVR regression tech-

nique, which is widely used for geo/bio-physical parameter estimation. In the analysis,

we considered both linear SVR and RBF SVR. As expected, RBF SVR achieves better
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accuracy than the linear SVR. However, the proposed approach outperforms the baselines

in most of the cases. This is because the SVR obtains accurate estimates when enough

training samples are available. However, due to the complex application scenario, the col-

lection of in-situ data is expensive and hampered by lack of access. Hence, the capability

of the proposed method to exploit the complementary information provided by the differ-

ent data sources is fundamental to obtain accurate results when few labeled samples are

available. Moreover, since the method is data driven it can be easily applied to different

test-sites by tuning only the value of the k parameter, depending on the available number

of training samples, without the need of tuning any other parameters.

We would like to remark that the definition of a representative RS feature space is

crucial to accurately model the various environmental conditions on glaciers. The feature

space was defined by exploiting the spectral and the topographic information of the RS

data. The effectiveness of the considered feature space is confirmed by the obtained GMB

maps (both from the qualitative and quantitative view point).

As future developments of this work, we would like to improve the feature space

definition by integrating also SAR data (e.g., Sentinel-1). This would be particularly

useful as SAR data are known for providing information about snow wetness, which is

crucial for the GMB monitoring. Moreover, we would like to investigate the generalization

capability of the proposed method. Thus, we plan to analyze the possibility of extending

the correction to the other neighboring glaciers (in respect to the glaciers where the

analyses was carried out), where no in-situ measurements are available. A final future

development could consist of different validation scenarios. A possible option here is the

validation of the glacier-wide mass balance by using the geodetic method or the continuous

TS of ablation (from an ultrasonic depth gauge). Both methods could be informative and

should be further analyzed.
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(a) AMUNDSEN 2006 (b) Proposed Method 2006

(c) AMUNDSEN 2007 (d) Proposed Method 2007

(e) AMUNDSEN 2010 (f) Proposed Method 2010

Figure 3.5: Scatter plots of correlation between GMB in-situ measured and AMUNDSEN mod-

elled (a), (c), (e) and scatter plots of correlation between in-situ measured and GMB estimated

by the proposed integration approach (b), (d), (f) in the Ortles-Cevedale group. Reference cor-

relation line (i.e., maximum correlation) is highlighted in blue, while the model correlation line

is reported in red.
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(a) AMUNDSEN 2011 (b) Proposed Method 2011

(c) AMUNDSEN 2013 (d) Proposed Method 2013

Figure 3.6: Scatter plots of correlation between GMB in-situ measured and AMUNDSEN mod-

elled (a), (c) and scatter plots of correlation between in-situ measured and GMB estimated by

the proposed integration approach (b), (d) in the Ortles-Cevedale group (a),(b) and Ötztal Alps

(c) and (d). Reference correlation line (i.e., maximum correlation) is highlighted in blue, while

the model correlation line is reported in red.
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(a) AMUNDSEN 2015 (b) Proposed Method 2015

(c) AMUNDSEN 2016 (d) Proposed Method 2016

(e) AMUNDSEN 2017 (f) Proposed Method 2017

Figure 3.7: Scatter plots of correlation between GMB in-situ measured and AMUNDSEN mod-

elled (a), (c), (e) and scatter plots of correlation between in-situ measured and GMB estimated

by the proposed integration approach (b), (d), (f) in the Ötztal Alps. Reference correlation line

(i.e., maximum correlation) is highlighted in blue, while the model correlation line is reported

in red.
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(a) Hintereisferner (b) Kesselwandferner

(c) Weissbrunnferner (d) Careser

Figure 3.8: Glacier-wide mass balance for (a) Hintereisferner, (b) Kesselwandferner, (c) Weiss-

brunnferner and (d) Careser. The glacier-wide mass balance was estimated by: in-situ measure-

ments (in black), AMUNDSEN (in green), the proposed integration approach (in blue), SVR

RBF (in yellow) and SVR linear (in orange).
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(a)

(b)

Figure 3.9: The sensitivity analysis of the Mean Absolute Error (a) and Root Mean Square Error

(b) obtained for GMB estimation of Hintereisferner in 2016 for different number of considered

samples (10, 20, 30, 40 and 54).

54



3.5. DISCUSSION AND CONCLUSION

(a) Hintereis F. 2015 (b) Hintereis F. 2016 (c) Hintereis F. 2017

(d) Kesselwand F. 2015 (e) Kesselwand F. 2016 (f) Kesselwand F. 2017

(g) Vernagt F. 2012 (h) Vernagt F. 2013 (i) Caresar 2010

(j) Caresar 2011 (k) Langen F. 2010 (l) Langen F. 2011

(m) Weissbrunn F. 2007 (n) Weissbrunn F. 2010 (o) Weissbrunn F. 2011

Figure 3.10: The altitudinal GMB profiles of in-situ measured (in black), modelled by AMUND-

SEN (in green) and corrected by the proposed integration approach (in blue).55
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.11: True color compositions of the Sentinel-2 bands acquired respectively on (a) 2015-

08-26, (d) 2016-08-27 and (g) 2017-08-30, and related AMUNDSEN GMB simulations (b)(e)(h),

and corrected AMUNDSEN simulations using the proposed integration approach (c)(f)(i).
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Chapter 4

Multitemporal Land Cover Mapping

at High Spatial Resolution for

Sub-Continental Monitoring of

Climate Change

This chapter presents a processing chain for the production of multitemporal high resolu-

tion land cover (HRLC) maps on a sub-continental scale for climate change monitoring.

The considered processing chain generates LC products every five years from 1990 to 2019

leveraging multitemporal multispectral optical images acquired by different sensors. In

particular, a recent static map (2019) produced at 10 m spatial resolution is produced

considering TS of Sentinel-2 images, while the historic maps (from 1990 to 2015) are

produced at 30 m spatial resolution using Landsat data. Due to the need of exploiting

these maps for refined climate change analysis, a very detailed classification scheme is

considered. The processing chain is based on three mains phases: (i) the optical images

preprocessing, (ii) the feature extraction, and (iii) the supervised classification of the mul-

titemporal RS data. The preprocessing phase aims to handle variability in data availability

as well as large amount of optical images acquired by different sensors at different spatial

resolutions. To this end, several processing steps are computed, namely, the spectral fil-

tering, cloud/shadow detection, cloud/shadow restoration, topographic shadow restoration

and monthly/seasonal or annual composite depending on the considered environmental

conditions. To enhance the spatial information, the textural features are extracted from

the multispectral images. Finally, the production of the multitemporal HRLC maps is

performed in the supervised classification phase.
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CHAPTER 4. MULTITEMPORAL LAND COVER MAPPING ON SUB-CONTINENTAL
SCALE FOR MONITORING CLIMATE CHANGE

4.1 Introduction

To perform accurate LC monitoring, it is necessary to have LC maps produced at high

spatial and temporal resolution. However, as presented in Chapter 2.4, a lot of effort

has been devoted to produce medium resolution LC maps, while the production of HR

large scale LC maps is still very limited. This is due to the fact that medium spatial

resolution RS data are typically characterized by high temporal resolution (e.g., SPOT-

Vegetation have daily based acquisitions), which allows the accurate characterization of

the temporal profiles of different LC classes. For the HRLC mapping, the RS data avail-

able are characterized by a quite limited number of acquisitions, especially going back

in the past (e.g., Landsat 5 acquires images every 16 days). Therefore, to compensate

a low temporal resolution we need to deal with images acquired by different sensors at

different spatial and temporal resolution, which requires a peculiar preprocessing phase

to properly harmonize the data. Moreover, the few HRLC products available at global

scale are focused on the most important LC categories, and cannot be used to perform

detailed environmental monitoring such as the one required for climate change analysis.

Furthermore, the climate change monitoring task requires the availability of LC maps

frequently updated. This is because from the climatological prospective the consistency

between maps is crucial to understand LC changes, and thus ongoing processes, such as,

deforestation, urbanization and arctic greening.

In this context, we proposed two automatic processing chains. First one tailored to

the characteristics of Sentinel-2 imagery, which provides a large static HRLC map at

subcontinental level (at 10 meters resolution). The second one tailored to the properties

of Landsat 5, 7 and 8 imagery, generates a long-term record of regional HRLC maps (at

30 meters) has been developed. This work has been defined in the framework of the CCI

High Resolution Land Cover project, which is the continuation of CCI medium resolution

project (with LC maps available at 300 meters spatial resolution) [7] and aims to better

understand the role of the spatial resolution of the detected LC and LC changes for the

climate modeling research. In particular, the produced HR maps aim to support both:

the sub-continental climate modeling simulations and regional climate mitigation and

adaptation studies. We consider three areas located in Amazon, Africa and Siberia. This

areas are known for the exposure to the extreme climate conditions and climate change.

The HRLC maps are generated by fusing the classification results obtained by the optical-

based and SAR-based pipelines. The high-level work-flow of the whole processing chain

is presented in Fig. 4.1, where the red and dark blue colors correspond to the modules

of the optical and SAR processing chain, respectively. The light blue color represents the

modules designed for the optical and SAR data integration and geolocation. The optical
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Figure 4.1: Block-based representation of the processing chain for the production of HRLC

maps.

processing chain exploits Sentinel-2 data while the SAR chain works with Sentinel-1 data

from 2019. To generate the 5 years LC maps in the past (from 1990 to 2015), ERS and

ASAR data are considered from the SAR processing chain and Landsat 5, Landsat 7 and

Landsat 8 from the optical one. The combination of these two data sources allows for

accurate LC mapping due to the complementary information provided by the SAR and

optical sensors. This integration is done in the final data fusion module. Therefore, we are

able to develop advanced and ad-hoc processing approaches for multisensor data, while

keeping the system scalable and modular.

In this thesis, we focused the attention on the optical-based pipeline made up of three

main parts: (i) images preprocessing, (ii) feature extraction, and (iii) the supervised clas-

sification of the multitemporal RS data. The main objective of the optical preprocessing

part is the harmonization of the multisource multitemporal optical RS data to ensure data

consistency. In particular, the optical data preprocessing, includes the following steps:

spectral filtering, cloud/shadow detection, cloud/shadow restoration, composite genera-

tion ( the composite can be monthly/seasonal or annual based depending on the consid-

ered environmental conditions and data availability) and topographic shadow restoration.

Next, in order to introduce spatial information to the classifier (and thus to improve classes

discrimination) we computed textural features. Finally, the processing chains perform the

supervised automatic classification which is crucial to produce accurate LC maps.

The remainder of this chapter is structured as follows. Section 2 presents the study

areas for which the proposed processing chain was developed. Section 3 describes in detail

the proposed optical multitemporal HRLC processing chain, while Section 4 presents

the obtained results. Finally, in Section 5 we draw the conclusion and propose further

developments.
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4.2 Study Areas and Data Set Description

Fig. 4.2 shows the location of the 3 regions selected for the study the impact of LC and

LC change on the Earth climate. In accordance with GCOS requirements (see Chapter

1.2) the static area was selected to support climate modeling simulations, while historic

area is dedicated to more detailed long-term study of climate mitigation and adaptation.

The study areas were selected in locations, where the interactions between the LC and

climate are known to climatologists. Moreover, due to the scarce availability of RS data

in the past, the location of historic areas maximizes the Landsat data availability between

1990 and 2015. The green contours delimit the area for which the static map is produced,

while the yellow contours correspond to the historic products. For each study areas, we

delimited in gray the experimental site for which the qualitative results are reported in

this thesis. Please note that the quantitative evaluation are reported within the whole

historic area (in each of the considered study areas) for both static and historic processing

chain. The historic areas includes 283 Sentinel-2 tiles in the African Sahel, 265 in the

Amazon, and 204 in the Siberia. Finally the proposed static processing chain will be also

applied to the whole static area. However, at the time of writing this thesis the maps are

not yet available.

Figure 4.2: Location of the 3 regions to study climate/LC interactions (the green contours

delimit the large regions where the static HRLC map will be produced, the yellow ones, the

restricted areas where LC will be mapped over the last 30 years).
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4.2.1 Study Areas: Climate Regions

The considered climate regions are located in three different continents and represent

different climate conditions (tropical, semi-arid and boreal). The selected areas corre-

sponds to the ones, which were already identified as a hot-spots of climate change by

the CCI medium resolution project. Indeed, due to the peculiar location, these areas

present complex surface atmosphere interactions, which affect not only regional climate

but also global climate structures. Moreover, these regions covers major biomes that are

particularly vulnerable to climate changes. At the same time, they are of paramount

importance for the global carbon cycle, as they remove human-made carbon emissions

from the atmosphere (tropical forest and permafrost).

4.2.1.1 Amazon

For several decades the Amazon basin has been deeply analyzed by climatologists. This is

because of the large deforestation that leads to losses of carbon storage and strongly affects

climate processes at the large-scale. The selected region in Amazon includes the hot spots

of deforestation, cropping, grazing and urbanization. In this context, the HRLC maps

are of particular importance for climate models to better identify the forest landscape

structure (e.g., spatial organization and gap size distribution) and landscape interplay

(e.g, croplands present in the flooded areas). The geographical coordinates of the selected

regions are as follows: static map - (24◦S -9◦N; 34◦W - 62◦W) and historic LC map -

(24◦S - 12◦S; 47◦W - 62◦W).

4.2.1.2 African Sahel

In Africa, we focused on the Sahel region including the West Africa. Within this region,

we are able to catch the whole Senegal and Awash river basins as well as the extensive

swamp area in the South Soudan, which is particularly sensitive to floods and droughts.

From the climatic point of view, it is a complex region due to the ongoing processes, such

as: land degradation, desertification, cropland extension, reforestation and urbanization

increase. These processes are often attributed to climate warming. Previous simulations

performed within this region were attributed with systematic errors related to the poor

description of surface properties. Therefore, it is expected that the higher resolution of

LC maps will help to better characterize surface heterogeneity and its properties (i.e., soil

thermal inertia, surface albedo). Moreover, the higher accuracy of LC map will help to

better identify classes that were classified as mixed in the middle resolution LC map. The

geographical coordinates of selected regions are as follows: static map - (0◦N - 18.5◦N;

18◦W - 43.5◦E) and historic LC map -(4◦N - 16◦N; 27◦E - 43.5◦E).
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4.2.1.3 Siberia

The last region is located in the Siberia and includes the whole catchment of the Lena river.

For this region, permafrost degradation is already visible and future climate changes (such

as polar amplification) are expected to be particularly evident. The selected region covers

a large diversity of frozen soil types, ranging to continuous, discontinuous and sporadic

permafrosts. The Siberia represents 10% of land surface and 30% of forested surfaces

globally. The high quality LC maps can help to better understand the greening of the

arctic region and the associated displacement of the forest-shrubs-grasslands transition

zone and snow. The geographical coordinates of selected regions are as follows: static

map - (52◦N - 79◦N; 65◦E - 142◦E) and historic LC map - (60◦N - 74◦N; 65◦E - 86◦E).

4.2.2 LC Classes: Reference Data Collection

The legend of the HRLC was defined in accordance with The Food and Agriculture Organi-

zation and LCCS [93]. Tab.4.1 reports the considered detailed classification scheme made

up of the following LC types: ”Tree Cover Evergreen Broadleaf,” ”Tree Cover Evergreen

Needleaf,” ”Tree Cover Deciduous Broadleaf,” ”Tree Cover Deciduous Needleaf,” ”Shrub

Cover Evergreen,” ”Shrub Cover Deciduous,” ”Grasslands,” ”Croplands,” ”Woody Vege-

tation Aquatic or regularly flooded,” ”Grassland Vegetation Aquatic or regularly flooded,”

”Lichens and Mosses,” ”Bare areas,” ”Built-up,” ”Open water seasonal,” ”Open water

permanent,” and ”Permanent snows and/or ice”. While in Africa and Amazon this pecu-

liar classification scheme has been considered, in Siberia for most of the year the region

is covered by snow and seasonal LC classes can not be observed. Therefore, for Siberia

we excluded the seasonal LC classes for both the static and historic processing chains.

In particular, the shrub evergreen and deciduous have been merged into unique shrub

class, grassland vegetation aquatic or regularly flooded and woody vegetation aquatic or

regularly flooded have been merged into unique vegetation aquatic while seasonal and

permanent water have been merged into water class.

The collection of the labeled samples has been carried out via photo-intepretation.

Indeed, even though publicly available thematic products (such as Copernicus Global

Land Cover [58] and Permafrost [94]) represent a valid source of information, given the

difference in temporal resolution, legend definition and spatial resolution between existing

thematic products and the proposed HRLC map, they could not be used to extract labeled

samples as done in CCI medium resolution LC mapping [7]. However, the 2015 CGLC

map was used to study the peculiar landscape of the three study areas and to estimate

the prior probabilities of the different LC classes present in the scene. In particular, a

stratified random sampling strategy has been considered [95]. The label of each sample
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was defined by the photo-interpretation of both 2019 Sentinel-2 data and HR 2019 SPOT

images for the static maps as well as the multitemporal analysis of trend of NDVI and

NDWI indices. For those areas where SPOT images were not available, we exploited

the public HR Google Satellite and ESRI images (i.e., 50 cm). The data were pixel-

wise labeled. Thus, we avoided the strong positive correlation between samples units,

which is the case for polygon-wise labeling. Due to the lack of the HR images for all the

considered years in the past, the training set extracted in 2019 was back-propagated up

to 1990. In particular, to generate a temporally consistent training set for the long-term

record maps, for each labeled sample collected in 2019 the photo-interpreter was asked

to confirm, remove or change its label. This is because, as the images available in the

past are of lower spatial and temporal resolution and the LC changes in time, it maybe

impossible to accurately understand the correct sample label for each considered year.

Moreover, it may happen that due to heavy cloud cover and corruption of Landsat-7

data, no information is available. As a consequence, the training set produced in the past

have smaller number of samples compared to the ones used to classify the static map.

Fig. 4.3 shows an example view of the photo-interpretation task, where highlighted dots

represents the samples to be labeled. The presented images comes from the HR Google

Satellite and corresponds to the Sentinel-2 tile 21KUQ in the Amazon.

Table 4.1: The legend of the HRLC classification map.

Code Class Name Definition

10 Tree Cover Evergreen

Broadleaf

A tree is a woody, perennial plant with a simple and

well-defined stem, more or less defined crown and a

minimum height of 5 m. Tree canopy cover (>50 %)

composed of trees that are broadleaf and never en-

tirely without green foliage.

20 Tree Cover Evergreen

Needleaf

Tree canopy cover (>50 %) composed of trees that

are needleaf and never entirely without green foliage.

30 Tree Cover Deciduous

Broadleaf

Tree canopy cover (>50 %) composed of trees that

are broadleaf and leafless for a certain period during

the year.

40 Tree Cover Deciduous

Needleaf

Tree canopy cover (>50 %) composed of trees that

are needleaf and leafless for a certain period during

the year.
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50 Shrub Cover Ever-

green

A shrub is a woody perennial plant with persistent

woody stems and without any defined main stem, be-

ing less than 5 m tall. Shrub canopy cover (>50 %)

composed of shrubs that are never entirely without

green foliage.

60 Shrub Cover Decidu-

ous

Shrub canopy cover (>50 %) composed of shrubs that

are leafless for a certain period during the year.

70 Grasslands Primarily vegetated areas with an herbaceous cover

of more than 50% at the time of fullest development.

Herbaceous plants are defined as plants without per-

sistent stem or shoots above ground and lacking defi-

nite firm structure.

80 Croplands Primarily vegetated areas with a herbaceous cover

of more than 50 % at the time of fullest develop-

ment. Croplands are mainly herbaceous plants are

sowed/planted and harvestable at least once within

the 12 months after the sowing/planting date. Crop-

land includes rain fed crops, irrigated crops, aquatic

crops and annual pastures. Croplands exclude perma-

nent crops like woody plantations that are part of the

tree or shrub classes.

90 Woody Vegetation

Aquatic or regularly

flooded

Primarily vegetated areas with trees, shrubs covering

more than 50 % of the area flooded by water for more

than 4 months throughout the year. The water can

be saline, fresh or brackish.

100

Grassland Vegetation

Aquatic or regularly

flooded

Primarily vegetated areas with grasslands or lichens

and mosses covering more than 50 % of the area

flooded by water for more than 4 months throughout

the year. The water can be saline, fresh or brackish.

110

Lichens and Mosses Primarily vegetated areas with a cover of more than

50% at the time of fullest development. Mosses are a

group of photo-autotrophic land plants without true

leaves, stems or roots. Lichens are composite organ-

isms formed from the symbiotic association of fungi

and algae.
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120

Bare area Areas where the sum of vegetation cover is less than

50% at the time of fullest development. Bare rock

areas, sands and deserts are classified as bare areas.

Extraction sites (open mines and quarries) and salt

flats covered by water for less than 5 months are clas-

sified as bare areas.

130

Built-up Areas where any predominant type of linear and non-

linear artificial surface covers at least 50%. Built-up

areas include buildings, roads, airports, greenhouses,

etc. but exclude temporary settlements.

140

Open water seasonal Areas where open water covers at least 50% of the

surface and remains between 5 and 9 months a year,

except in special circumstances (particularly dry year,

construction of dams, etc.). Water bodies can be nat-

ural or artificial. Water can be saline, fresh or brack-

ish.

150

Open water perma-

nent

Areas where open water covers at least 50% of the

surface and remains for more than 9 months a year,

except in special circumstances (particularly dry year,

construction of dams, etc.). Water bodies can be nat-

ural or artificial. Water can be saline, fresh or brack-

ish.

160

Permanent snows

and/or ice

Areas where snow and/or ice cover at least 50% of the

surface for more than 9 months a year. Built-up areas

and open water cover less than 50% of the surface.

4.2.3 RS Data

4.2.3.1 Sentinel-2 Images

The input data of the processing chain that generates the 2019 static map at 10 m spatial

resolution are the atmospherically corrected Sentinel-2 data (i.e., L2A products). In

particular, we considered the following Sentinel-2 spectral bands: blue (B2 - 490 nm),

green (B3 - 560 nm), red (B4 - 665 nm), the four vegetation red edge (B5 - 705 nm, B6

- 740 nm, B7 - 0.783 nm and B8A - 865 nm), NIR (B8 - 842 nm) and the two SWIR
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Figure 4.3: Example view of the photo-interpretation task in the Amazon over the Sentinel-2,

21KUQ tile. The presented HR images come from the Google Satellite.

bands (B11 - 1610 nm and B12 - 2190 nm). A nearest neighbor interpolation technique

was used to match the 20 m bands to the 10 m bands. All the images considered in the

experiments have cloud coverage smaller than 40%. The number of images per tile varies

between 13-84 in the Amazon, 5-100 in the African Sahel and 60-103 in the Siberia.

4.2.3.2 Landsat Images

The input data of the processing chain that generates long-term record of regional HRLC

maps in 1990, 1995, 2000, 2005, 2010 and 2015 are the atmospherically corrected Landsat

5, 7 and 8 images (i.e., L2 products). Tab. 4.2 specifies the Landsat sensor used for

the different years and areas. The following spectral bands are considered for Landsat 8:

band blue (B2 - 480 nm), band green (B3 - 560 nm), band red (B4 - 650 nm), band NIR

(B5 - 865 nm), band SWIR 1 (B6 - 1610 nm) and band SWIR 2 (B7 - 2200 nm), while

for Landsat 5/7 we used: band blue (B1 - 485 nm), band green (B2 - 560 nm), band red

(B3 - 660 nm), band NIR (B4 - 835 nm), band SWIR 1 (B6 - 1145 nm) and band SWIR

2 (B7 - 2200 nm). Also in this case the images considered in the experiments have cloud

coverage smaller than 40%. The number of images per tile varies between 17-72 in the

Amazon, 18-63 in the African Sahel and 7-14 in the Siberia.
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Table 4.2: The specification of the imagery considered for the historic maps generation.

Area 1990 1995 2000 2005 2010 2015

Siberia Landsat 5 Landsat 5 Landsat 5 -7 Landsat 5 -7 Landsat 5 -7 Landsat 7 -8

Amazon Landsat 5 Landsat 5 Landsat 5 -7 Landsat 5 -7 Landsat 5 -7 Landsat 7 -8

African Sahel Landsat 5 Landsat 5 Landsat 5 -7 Landsat 5 -7 Landsat 5 -7 Landsat 7 -8

4.2.3.3 DTM Topographic Maps

The DTM has been used to represent topographic characteristics of the considered areas,

such as altitude, slope and aspect. As DTM we have considered the Shuttle Radar

Topography Mission (SRTM) digital elevation data provided by NASA JPL. The SRTM

is the result of international research effort to produce the near-global set of elevation

models. The SRTM is available at 30 meters spatial resolution, and it was produced by

using interferometric synthetic-aperture radar technique [96].

4.3 Multitemporal HRLC Mapping

To answer the requirements regarding LC monitoring defined by GCOS, we defined two

processing chains static and historical one. At the best of the author’s knowledge, this

work is the first that address both: LC monitoring at high spatial resolution (10 meters)

on a subcontinental scale and to provide a long-term record of regional HRLC maps at 30

meters every 5 years from 1990 in the context of climate studies. Both processing chains

includes a set of standard modules for image preprocessing and classification presented in

Fig. 4.4. The input to the static processing chain includes 10 meters spatial resolution

Sentinel-2 data, while to the historic processing chain 30 meters spatial resolution Landsat

5, 7, 8 data. The specific differences for Sentinel-2 and Landsat image processing are

reported in the following.

4.3.1 Preprocessing Phase

The purpose of the preprocessing is to provide TS of spatially, temporally and spectrally

harmonized RS data. This is necessary to achieve accurate classification results, in partic-

ular when dealing with the detailed considered classification scheme, which includes many

seasonal classes. The details about each preprocessing steps are given in the following.
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Figure 4.4: Block-based representation of the optical processing chain for the production of

HRLC maps.

4.3.1.1 Cloud and Cloud Shadow Detection

The detection of both clouds and the related shadows is one of the most important

challenges when processing optical RS data. This is because there are many clouds types

and they can be characterize with different transparency [97]. Moreover, clouds can be

easily confused with bright landscapes, while clouds shadows are often confused with

topographic shadows, water and burnt areas. Since cloud and cloud shadow detection

algorithms are computationally expensive, we decided to rely on the cloud and cloud

shadow information provided with the L2A product (for Sentinel-2) and L2 product (for

Landsat). The ESA distribution of the Sentinel-2 cloud mask is based on Sen2Cor tool

while the USGS distribution of Landsat on Fmask (Function of mask). The details about

Sen2Cor tool and Fmask are provided in Section 5.1. However, the OA of cloud and

shadow mask provided by the Sen2Cor (84%) is on average lower than the one provided

by Fmask (90%) [97]. Therefore, the Sen2cor masks should be further enhanced to achieve

the required accuracy.

Fig. 4.5 presents the overview of the block-based representation of the cloud detection

method used to improve the Sentinel-2 mask. The main goal of the proposed method is

to identify the clouds present in each optical image (of the considered TS) by comparing

it with a cloudless background image. This is a standard approach widely used in the

literature [98]. In the considered implementation of the method, we work at seasonal

level to reduce the computational burden. For each season, the cloudless background

is computed as the quarter quantile of the blue band. Let {X1, X2, . . . , XS} be the
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Figure 4.5: Block-based representation of the implemented cloud detection for Sentinel-2.

considered TS, which includes optical images acquired over a season. The multitemporal

pattern of band blue associated to the jth pixel of {X1, X2, . . . , XS} can be defined as

[x1
j,Blue, x

2
j,Blue, . . . , x

S
j,Blue]. The jth pixel of the background image xB

j is generated by

computing quarter quantile of the blue band of the cloud-free multispectral pixels of the

images present in {X1, X2, . . . , XS} as follows:

xB
j = quantile0.25{x1

j,BBlue
, x2

j,BBlue
, . . . , xS

j,BBlue
} (4.1)

After the background image is computed, we use it as a cloudless reference image

and the problem of cloud detection is treated as a change detection problem. Thus,

we calculate the difference between the blue bands of each image from the TS and the

background image (a standard procedure in the change detection domain). However,

instead of performing thresholding on the diffrence image, we cluster it in order to find

homogeneous areas of surface and clouds. To understand which from the obtained clusters

belong to cloud cover, the mean of each cluster is compared with the blue band mean of

the cloudy pixels overall image. Finally, we perform logical disjunction of the obtained

cloud mask with the original Sen2cor mask.

To enhance the cloud shadow mask, we exploited the cloud shadow index (CSI) pro-

posed in [99]. The CSI index is based on the physical reflective characteristic of cloud
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shadow. The CSI index is computed by combining information provided by the NIR and

SWIR bands. In this way CSI index exploits the reflective characteristics of cloud shadows

in the longer wavelengths. The CSI index is computed as:

CSI =
1

2
∗ (BNIR +BSWIR) (4.2)

Nevertheless, due to the spectral similarity between shadows and water in the con-

sidered bands, an additional condition including shorter wavelengths, i.e., the blue band

reflectance, should also be analyzed. Thus, the cloud shadow is identified in areas where

the following conditions are fulfilled:

CSI < min(CSI) + t1 ∗ (mean(CSI)−min(CSI)) (4.3)

BBlue < min(BBlue) + t2 ∗ (mean(BBlue)−min(CSI)) (4.4)

. Where the adjusting coefficients t1 and t2 are fine-tuned according to [99]. Finally,

the obtained shadow mask is merged together with the original Sen2Cor shadow mask.

4.3.1.2 Multitemporal Composite Generation

When working at large scale, it is necessary to harmonize the TS of images acquired

over different tiles. This is because TS of each tile are characterized by different lengths

and can be acquired at different times. To solve this problem, in the preprocessing step

we generate monthly, seasonal and annual composites in accordance with the sensor, the

considered study area and the amount of RS data available. Details and examples of

different choices are given in the experimental result session. This condition allows us to

mitigate cloud occlusions problem and minimize the processing resources. To this end,

we consider a statistic-based approach that computes the median value for each pixel.

This approach is able to generate consistent results at large scale in an automatic way by

sharply reducing the spatial noise. Let {X1, X2, . . . , XQ} be the considered TS, which

includes the optical images acquired over a month, a season or the whole year. The

multitemporal pattern associated to the jth pixel of {X1, X2, . . . , XQ} can be defined as

[x1
j , x

2
j , . . . , x

Q
j ], where x1

j = [x1
j,B1

, x1
j,B2

, . . . , x1
j,BB

] represents the B spectral values of the

jth pixel in the first image of the TS. The jth pixel of the composite xCom
j is generated

by computing the band-wise median of the cloud-free multispectral pixels of the images

present in {X1, X2, . . . , XQ}, as follows:

xCom
j,B1

= Med{x1
j,B1

, x2
j,B1

, . . . , xQ
j,B1

} (4.5)
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xCom
j,B2

= Med{x1
j,B2

, x2
j,B2

, . . . , xQ
j,B2

} (4.6)

xCom
j,BB

= Med{x1
j,BB

, x2
j,BB

, . . . , xQ
j,BB

} (4.7)

In accordance with the availability of RS data, in the Amazon and African Sahel , we

considered 12 monthly composites for the static products and 4 seasonal composites for

the historic products. In the Siberia, due to the heavy cloud and snow cover, we generated

only one annual composite for both static and historic products.

4.3.1.3 Multitemporal Cloud and Shadow Restoration

Cloud restoration is an important step in the optical images preprocessing part. Although

we are considering the composites instead of original TS of images, missing information

due to poor atmospheric conditions (e.g., thick clouds and related shadows) or defective

sensors may be present in the composites. In the literature, a large effort has been devoted

to solve this problem. However, to properly recover missing information, sophisticated

and usually computationally intensive techniques should be used, and thus increasing sig-

nificantly the computational complexity of the preprocessing part. Instead of considering

computationally demanding approaches we used a simple and effective linear temporal

gap filling. In this method the missing information for the jth pixel of the composite

xComT
j,B1

at time T is restored as the band-wise average of the spectral values acquired in

the previous x
ComT−1

j,B1
and the following x

ComT+1

j,B1
composites in the TS as follows:

xComT
j,B1

= Avg(x
ComT−1

j,B1
, x

ComT+1

j,B1
) (4.8)

xComT
j,B2

= Avg(x
ComT−1

j,B2
, x

ComT+1

j,B2
) (4.9)

xComT
j,BB

= Avg(x
ComT−1

j,BB
, x

ComT+1

j,BB
) (4.10)

If clouds are present in the first or last composite in TS, the second or the one before

last composite are considered, respectively.

4.3.1.4 Topographical Shadow Reconstruction

The final step of optical images preprocessing is the topographical shadow reconstruction.

Here, similarly to the shadow detection, we identified topographic shadow by using thresh-

olding of the CSI index. Moreover, in the detected topographic shadow areas we further

check the topographical slope. This is done in order to avoid confusion between shadow
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and water bodies as they both have very similar spectral signatures associated with their

low reflectances. To enhance the detected topographic shadow areas, we perform simple

image dilatation.

In order to restore the detected topographic shadow, we considered the method pre-

sented in [100]. This approach is based on the assumption that the signal registered in

the shadow areas is weak but can be exploited for shadow reconstruction. The shadow

region can be retrieved according to the following equation:

yj = Sf/Ss(xj −Ms) +Mf (4.11)

. Where xj = [xj,B1 , xj,B2 , . . . , xj,BB
] represents the B spectral values of the jth pixel

in the shadow area, yj = [yj,B1 , yj,B2 , . . . , yj,BB
] represents the B restored spectral values

of the jth pixel in the shadow area, and Ss and Sf are the standard deviation of the

shadow and shadow free areas, respectively. Ms and Mf are the statistical mean value

of the shadow and shadow free areas, respectively. To harmonize the obtained shadows

restoration results and the surrounding spectral signatures of the original data, we used

the inpainting technique based on the fast marching method presented in [101]. This

condition allows us to avoid noticeable distortions on the shadow’s boundaries,

4.3.2 Feature Extraction

Texture allows the accurate characterization of the contextual information of a pixel in the

image. It is well known in the literature that the use of textural features can significantly

improve the classification results, as they can be more distinctive than spectral features

for some LC classes. Instead of considering complex textural features, we considered local

standard deviation and morphological gradient. Both features are effective for the consid-

ered LC classification [102]. Local standard deviation is a widely used difference statistic

measure. The morphological gradient allows the estimation of the partial derivatives in

each surrounding direction of the considered pixel. The morphological gradient is defined

as the difference between dilation and erosion. The dilatation and erosion for the jth pixel

of the composite xComT
j by structuring element B with its origin at xComT

j are computed

as follows:

dilatation(xComT
j ) = max

β∈B
(xComT

j (j + β)) (4.12)

erosion(xComT
j ) = min

β∈B
(xComT

j (j + β)) (4.13)

Both the textural features were computed in a local neighborhood of 3x3 pixels.
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4.3.3 SVM Classification

In the last phase of the considered processing chain, we performed the supervised au-

tomatic classification to produce accurate LC maps. Due to the need of processing a

huge amount of data, the classification algorithm must achieve a good trade-off between

classification accuracy and computational burden. The classical approaches to LC map-

ping are based on machine learning and statistical methods. In the category of the most

recent methods, deep architectures are taking off, achieving state of the art performances

[103], [104]. This is because deep architectures are able to automatically extract both,

low-level and high-level features and extensively exploit temporal dependencies of the RS

data. Nevertheless, shallow approaches such as SVM remain competitive to deep based

methods in many applications since they do not require very large training-set, are usu-

ally faster and have high generalization capability, which lead to accurate classification

results [104]. Indeed, the SVM is one of the most effective methods in pattern and texture

classification for the LC mapping [105]. Thus, taking into account the limited number of

samples available, we selected the SVM as a classifier.

In particular, to generate the high-resolution LC maps, the SVM classifier is trained on

the TS of optical composites generated in the preprocessing step. To accurately represents

the spatial information together with the temporal one, an optical feature extraction step

is performed to extract textural features from the first composite. In order to perform

the supervised training of the classifier, a lot of effort has been devoted to generating a

training set by photo-interpretation. The training is performed once for each year in each

considered area independently (Amazon, African Sahel and Siberia). The SVM parameter

tuning was performed with the standard cross-validation approach.

4.4 Experimental Results

In this section, we present the results of the proposed optical processing chain obtained

for both the static map (Sentinel-2) and the historic maps (Landsat 5, 7, 8). The quan-

titative and qualitative results are reported. To perform the quantitative analysis the

labeled samples were divided into independent training and validation sets. The results

are presented in terms of: i) OA, ii) user accuracy and iii) producer accuracy. Moreover,

to allow a visual interpretation of the results, we also present: i) composites, ii) classifica-

tion maps, iii) comparison of the obtained classification maps with the medium resolution

product of the CCI LC maps produced at 300 m spatial resolutions, and (iv) comparison

of the obtained classification maps with the CGLC 2019 maps produced at 100 m spatial

resolutions.
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Table 4.3: Characteristics of composites generated for the different study areas according to the

availability of cloud-free optical images.

Area Sentinel-2 Landsat 5 - 7 - 8

Siberia
1 yearly composite
(July - August)

1 yearly composite
(April - September)

Amazon 12 monthly composites 4 seasonal composites

African Sahel 12 monthly composites 4 seasonal composites

4.4.1 Generation of Image Composites

Tab. 4.3 summarizes the kinds of composites generated per study area according to differ-

ent optical sensors. Due to the increased revisit time of Sentinel-2 (5 days) with respect

to Landsat (16 days), denser TS are available in 2019, and thus we are able to gener-

ate monthly based composites. In the case of Sentinel-2 data over the Amazon and the

African Sahel, we computed 12 monthly composites. Considering that the cloud coverage

over some regions can be quite intense, each monthly composite is systematically com-

puted using the considered and the following month images (e.g., January and February

are used for January composite generation, the only exception is December, where only

December images are considered). This conservative choice allows us to sharply reduce

the probability of having cloudy pixels in the TS. For Sentinel-2 data over the Siberia,

we generated yearly composites due to the heavy cloud and snow coverage problem that

hampered the use of images acquired for most of the year. The Siberia yearly composite is

computed as the median of data acquired between July and August. In the case of Land-

sat data, we similarly considered yearly composite for the Siberia, which is computed as

the median of data acquired between April and September. Finally, for Landsat data over

the Amazon and the African Sahel, we computed four seasonal composites considering

the optical data acquired in the following months: (i) January – March, (ii) April – June,

(iii) July- September, and (iv) October – December.

Fig. 4.6 (a)(e)(i)(m) shows the results obtained when only original Sen2Cor cloud

and shadow detection was applied to the composite; after the proposed cloud mask de-

tection enhancement was applied (b)(f)(j)(n); after the proposed cloud shadow detection

enhancement (c)(g)(k)(o) and after the proposed topographical shadow reconstruction

(d)(h)(l)(p). It can be noticed that the original Sen2Cor mask did not detect all the

clouds and shadows present on the image. However, the improvement given by the pro-
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Table 4.4: Producer Accuracy (PA), User Accuracy (UA), Fscore (F1) and Overall Accuracy

(OA) of the proposed processing chain for the Sentinel-2 images acquired over the Amazon,

2019.

Quality
metrics

Ever.
Brod.

Decid.
Brod.

Shrub
Ever.

Shrub
Deci. Grass Crop

Grass
Aqua. Bare

Build
up

Water
Ses.

Water
Per.

UA [%] 80.00 76.92 75.00 56.25 57.89 84.61 84.61 90.90 77.78 80.00 66.67

PA [%] 85.71 71.42 42.85 64.28 78.57 78.57 78.57 71.42 100 57.14 85.71

F1 [%] 82.75 74.07 54.54 60.00 66.67 81.48 81.48 80.00 87.50 66.67 75.00

OA [%] 74.03

posed enhanced cloud and shadow detection can be clearly seen. Although for some cases

the shadow is not perfectly removed (see Fig. 4.6 (f) and (g)), the results present a sig-

nificant improvement with respect to the original Sen2cor results. Moreover, one can also

note that the topographic shadow reconstruction correctly identified and reconstructed

the shadow regions.

4.4.2 Static HRLC Map

The SVM models have been trained independently for each area (i.e., Amazon, African

Sahel and Siberia) and for each considered year. To validate the obtained HRLC maps,

the available labeled datasets have been divided into training and validation sets. The

training sets are composed of 10150 samples for the Amazon, 5694 for the African Sahel

and 13139 for the Siberia. The validation sets are composed of 154 samples for the

Amazon, 140 for the African Sahel and 126 for the Siberia.

Tables 4.4, 4.5 and 4.6 report the user, producer and OA obtained in 2019 for the

Amazon, the African Sahel and the Siberia, respectively. The validation set consists of

14 photo-interpreted samples for each considered class. It can be noticed that in the

Amazon OA is equal to 74.03%, with a particularly good F1 score for tree cover evergreen

broadleaf 82.75%, cropland 81.48%, grassland vegetation aquatic or regularly flooded

81.48%, bare areas 80.00% and build up 87.50%. Nevertheless, one can note that the F1

score of water permanent is quite low 75.00%, which can be attributed to the confusion

with water seasonal and the grassland vegetation aquatic or regularly flooded (due to

the similarity in the class definition). The OA obtained in the African Sahel is higher

78.57%. On the one hand, half of the classes (i.e., grassland vegetation aquatic or regularly

flooded, bare areas, build up, water seasonal and water permanent) have F1 score higher
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Figure 4.6: The January 2019 composite of tile 21KXT, over the Amazon obtained by

(a)(e)(i)(m) the original composite; (b)(f)(j)(n) after cloud mask detection; (c)(g)(k)(o) after

cloud shadow detection and (d)(h)(l)(p) after topographical shadow reconstruction.
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Table 4.5: Producer Accuracy (PA), User Accuracy (UA), Fscore (F1) and Overall Accuracy

(OA) of the proposed processing chain for the Sentinel-2 images acquired over the African Sahel,

2019.

Quality
metrics

Ever.
Brod.

Decid.
Brod.

Shrub
Ever. Grass Crop

Grass
Aqua. Bare

Build
up

Water
Ses.

Water
Per.

UA [%] 83.33 60.00 47.36 71.42 100 100 73.68 100 92.31 87.50

PA [%] 71.43 85.71 64.29 35.71 64.29 78.57 100 100 85.71 100

F1 [%] 76.92 70.59 54.54 47.62 78.26 88.00 84.84 100 88.89 93.33

OA [%] 78.57

Table 4.6: Producer Accuracy (PA), User Accuracy (UA), Fscore (F1) and Overall Accuracy

(OA) of the proposed processing chain for the Sentinel-2 images acquired over Siberia, 2019.

Quality
metrics

Ever.
Brod.

Ever.
Need. Shrub Grass

Veget.
Aqua.

Lichens
Mosses Bare

Build
up Water

UA [%] 92.30 70.00 55.00 57.90 64.71 62.50 45.45 100 93.34

PA [%] 85.71 50.00 78.57 78.57 78.57 35.71 35.71 92.86 100

F1 [%] 88.89 58.33 64.70 66.67 70.97 45.45 40.00 96.29 96.55

OA [%] 70.64

than 80.00%. On the other hand, some classes (i.e., shrub evergreen and grassland) have

particularly low accuracy. The lowest OA accuracy 70.64% is obtained in the Siberia.

This can be attributed to the poorer temporal information as only one annual composite

is available. The obtained F1 score is very high for the build up 96.29% and water

96.55% classes. The lichens and mosses 45.45% as well as bare class 40.00% suffer from

the lowest accuracy.

Fig. 4.7 shows classification maps of Sentinel-2 21KXT tile in the Amazon, obtained

by: (a)(d)(g) the CCI middle resolution 2015, (b)(e)(h) the proposed static processing

chain, while (c)(f)(i) represents the corresponding HR Google images. The CCI middle

resolution 2015 product have been translated into HRLC legend, with exception for three

MR classes which does not have corresponding class definition in HRLC legend. Although

medium resolution product is able to correctly identify build up areas, it can be noticed

that it has many problems. On one hand these classification errors can be attributed to
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Figure 4.7: Classification maps of Sentinel-2 21KXT tile in the Amazon, obtained by: (a)(d)(g)

the CCI middle resolution 2015, (b)(e)(h) the proposed static processing chain, and (c)(f)(i) the

corresponding HR Google images. The MR LC legend considers only the classes which could

not be translated into the HRLC legend.
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Figure 4.8: Classification maps obtained by: (a)(c)(f) the proposed processing chain 2019;

(b)(d)(g) the CGLC 2019; and (e) (h) the corresponding HR Google images.
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Table 4.7: The number of considered training samples for the historic maps generation.

Area 1990 1995 2000 2005 2010 2015

Siberia 6837 7167 9355 10390 12618 13010

Amazon 9507 9513 9536 9607 9615 9632

African Sahel 3535 3937 4794 4504 4644 4712

the lower spatial resolution. For instance, the medium resolution map is not able to detect

river and bare areas (see Fig. 4.7 (a) and (b)). On the other hand, the map is wrong

even for objects of adequate resolution 300 meters, i.e., the aquatic vegetation class is

misclassified with mosaic natural vegetation (see Fig. 4.7 (d) and (e)) and the deciduous

broadleaf tree are misclassified with shrubland (see Fig. 4.7 (g) and (h)). Overall, it can

be concluded that the HRLC map provides not only greater spatial details but also a

better quality LC maps.

Finally, in the Fig. 4.8 we have also compared the obtained classifications maps with

the CGLC 2019 product, which OA accuracy is equal to 80.3% [58]. The CGLS 2019

product have been translated into HRLC legend, with exception for the two classes: closed

forest, not matching any of the other definitions and open forest, not matching any of the

other definitions. It can be noticed that the overall agreement between maps is high. In

particular, the two maps agree in the classification of classes: build up, permanent and

seasonal water, and herbaceous vegetation aquatic or regularly flooded. While quite good

correspondence between tree classes is observed, the CGLS 2019 assigns most of them as

mixed forest, and HRLC map provides more detailed class identification. As expected,

the confusion between grassland and cropland can be observed which can be explained

by the very similar class definition.

4.4.3 Historic HRLC Maps Production

Tab. 4.7 shows the number of considered training samples for the historic maps generation,

while the validation set for each of the considered cases includes 126 photo-interpreted

samples.

Tables 4.8 and 4.9 and 4.10 show the producer accuracy, user accuracy, F1 score and

OA of the proposed processing chain for the Landsat images acquired in 1990, 1995, 2000,

2005, 2010 and 2015 over the Amazon, the African Sahel and the Siberia, respectively.

For the Amazon the OA varies between 61.11% in 1995, 2000 and 78.57% in 2005.
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For all the considered years the classifier achieved the lowest accuracy for the cropland,

whereas good and stable results were obtained for shrub, build up and water. On the

other hand, in the African Sahel OA is lower than in the Amazon, ranging from 46.03%

up to 62.98%. For most of the years, the classifier performs well for the water and tree

evergreen broadleaf. Similarly to the Amazon, the lowest accuracy is achieved for cropland

and grassland, which are very similar, and thus very challenging to distinguish. One can

also notice, that the better OA accuracy achieved in 2000 (62.98%) can be attributed

to higher number of training samples available for this year. Thus, suggesting that the

number of training samples in the African Sahel is overall insufficient. The OA in the

Siberia varies between 57.93% in 1990 and 65.07% in 2005 and 2015. The best F1 score

is obtained for water and build up, whereas for the lichens and mosses the accuracy is

the lowest. This can be attributed to the lichens and mosses similarity to the aquatic

vegetation, which at 30 m spatial resolution can be very challenging to differentiate.

Figures 4.9 and 4.10 show the classification maps of the 21 KXT tile in the Amazon

and the 42 WXS tile in the Siberia, respectively. The obtained maps were produced by

the proposed processing chain in: (a) 2015; (b) 2010; (c) 2005; (d) 2000; (e) 1995 and

(f) 1990. Although the classification maps in diverse years present quite good correspon-

dence, it can be noticed that the accuracy of the grassland aquatic vegetation class varies

quite significantly in the Amazon between 1990 and 2015. Similarly in the Siberia some

confusion in the grassland aquatic vegetation with grassland class can be observed. More-

over, the spatial distribution of the lichens and mosses varies significantly in diverse years,

which depends on the low accuracy in this class identification.

4.5 Discussion and Conclusion

In this chapter, we have presented a processing chain for the classification of the high

spatial resolution multitemporal and multispectral images at the large scale with an ob-

jective to support climate change studies. Both processing chains includes preprocessing,

which aims to harmonize the images, textural features extraction and classification based

on spectral, temporal and textural features. Due to the variability in the data availability

for static and historic products, the main difference between the two processing chains lies

in the composites generation. For the static product, we consider 12 monthly composites,

while for the historic 4 seasonal composites.

Please note, that the proposed static processing chain is designed to work at sub-

continental scale. However, at the time of writing this thesis, the proposed static and

the historic processing chains have been applied over the considered historic area, in

particular in the Amazon, the African Sahel and the Siberia. The Sentinel-2 images have
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Figure 4.9: Classification maps of the 21 KXT tile in the Amazon obtained by the proposed

processing chain in: (a) 1990; (b) 1995; (c) 2000; (d) 2005; (e) 2010 and (f) 2015.
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Figure 4.10: Classification maps of the 42WXS tile in the Siberia obtained by the proposed

processing chain in: (a) 1990; (b) 1995;b (c) 2000; (d) 2005; (e) 2010 and (f) 2015.
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been used for the static processing chain in 2019, while Landsat 5, 7 and 8 images have

been used in the 1990, 1995, 2000, 2005, 2010 and 2015. The generated composites have

been qualitatively analyzed and demonstrated the effectiveness of the cloud, cloud shadow

and topographical shadow detection and reconstruction. Moreover, the obtained thematic

products demonstrate the effectiveness of the proposed processing chain. The OA of the

static thematic products is equal to 74.03%, 78.57% and 70.64% for the Amazon, the

African Sahel and the Siberia, respectively. The obtained OA is comparable to the other

thematic products available at that scale (i.e., FROM-GLC). For the historic thematic

products the obtained accuracy is as expected lower than for the static products (ranging

from 61.11% - 78.57% for the Amazon, 46.03% - 62.98% in the African Sahel and 57.93%

- 65.07% in the Siberia). The better OA for the historic analysis in the Amazon can be

associated to the higher number of training samples and images available in this area in

respect to the African Sahel and Siberia. It should be noted, that the particularly low

accuracy for the historic products in the African Sahel and in the Siberia, require further

analysis and improvement. It is expected that this kind of low accuracy maybe attributed

to the cloudy acquisitions, low number of images available in the past, insufficient number

of training samples and the quality of training samples. Therefore, we plan to further

investigate this accuracy drops and to enlarge the number of samples in the training

set. Finally, the obtained HRLC maps have been qualitatively compared with the CCI

medium resolution LC maps. The analysis carried out over one Sentinel-2 tile in the

Amazon, showed that apart from significant increase of spatial details the produced maps

are also more reliable.

The requirement of the HR photo-interpreted training set can be considered as a

possible limitation of the proposed method. This, however, can be possibly solved by

applying domain adaptation techniques. Moreover, we plan to investigate more sophisti-

cated textural features (Gabor filter) as well as the topographical features (DTM, slope

and aspect).
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Table 4.8: Producer Accuracy (PA), User Accuracy (UA), Fscore (F1) and Overall Accuracy

(OA) of the proposed processing chain for the Sentinel-2 images acquired over the Amazon in

1990, 1995, 2000, 2005, 2010 and 2015.

Year
Quality
metrics

Ever.
Brod.

Decid.
Brod. Shrub Grass Crop

Grass.
Aqua. Bare

Build
up Water

UA [%] 50.00 50.00 88.89 47.05 75.00 85.71 64.70 100 87.50

1990 PA [%] 64.28 71.42 57.14 57.14 42.85 85.71 78.57 50.00 100

F1 [%] 56.25 58.82 69.56 51.61 54.54 85.71 70.96 66.67 93.33

OA [%] 67.46

UA [%] 42.85 47.36 100 39.28 66.67 83.33 87.5 83.33 80.00

1995 PA [%] 71.42 64.28 78.57 78.57 14.28 35.71 50.00 71.42 85.71

F1 [%] 52.38 54.54 88.00 52.38 23.52 50.00 63.63 76.92 82.75

OA [%] 61.11

UA [%] 64.58 42.85 100 52.63 60.00 72.72 42.85 82.75 85.71

2000 PA [%] 77.78 71.42 42.85 77.78 21.42 77.78 57.14 35.71 85.71

F1 [%] 71.42 52.63 60.00 63.63 32.25 76.47 50.00 50.00 85.71

OA [%] 61.11

UA [%] 80.00 54.16 100 75.00 100 88.89 77.78 100 76.47

2005 PA [%] 85.71 92.85 100 85.71 35.71 57.14 100 57.14 92.85

F1 [%] 82.75 68.442 100 80.00 52.63 69.56 87.50 72.72 83.87

OA [%] 78.57

UA [%] 53.84 60.00 100 46.15 77.78 77.78 72.73 84.62 85.71

2010 PA [%] 50.00 85.71 78.57 85.71 50.00 50.00 57.14 78.57 85.71

F1 [%] 51.85 70.58 88.00 60.00 60.87 60.87 64.00 81.48 85.71

OA [%] 69.04

UA [%] 70.58 76.47 83.33 50.00 55.56 100 75.00 92.30 66.67

2015 PA [%] 85.71 92.85 71.43 78.57 35.71 50.00 42.85 85.71 100

F1 [%] 77.41 83.87 76.92 61.11 43.47 66.67 54.54 88.89 80.00

OA [%] 71.43
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Table 4.9: Producer Accuracy (PA), User Accuracy (UA), Fscore (F1) and Overall Accuracy

(OA) of the proposed processing chain for the Sentinel-2 images acquired over the African Sahel

in 1990, 1995, 2000, 2005, 2010 and 2015.

Year
Quality
metrics

Ever.
Brod.

Decid.
Brod. Shrub Grass Crop

Grass.
Aqua. Bare

Build
up Water

UA [%] 58.82 35.00 41.17 27.27 53.84 83.33 58.33 75.00 100

1990 PA [%] 71.42 50.00 50.00 21.42 50.00 35.71 100 21.43 100

F1 [%] 64.51 41.17 45.16 24.00 51.85 50.00 73.68 33.33 100

OA [%] 55.56

UA [%] 73.33 52.38 36.00 29.41 50.00 100 41.67 0.00 100

1995 PA [%] 78.57 78.57 64.28 35.71 14.28 42.85 71.42 0.00 100

F1 [%] 75.86 62.85 46.15 32.25 22.22 60.00 52.63 0.00 100

OA [%] 53.97

UA [%] 85.71 58.82 40.00 35.92 75.00 100 50.00 100 100

2000 PA [%] 85.74 71.42 71.42 42.85 42.85 64.28 42.85 60.00 100

F1 [%] 85.74 64.51 51.28 38.70 54.54 78.26 46.15 75.00 100

OA [%] 62.98

UA [%] 64.28 26.67 18.51 15.00 60.00 100 52.17 100 100

2005 PA [%] 64.28 28.57 35.71 21.42 21.42 35.71 85.71 21.42 100

F1 [%] 64.28 27.58 24.39 17.64 31.57 52.63 64.86 35.29 100

OA [%] 46.03

UA [%] 75.00 41.67 26.31 100 100 69.23 61.53 88.89 93.33

2010 PA [%] 64.28 71.42 71.42 7.14 7.14 62.28 57.14 57.14 100

F1 [%] 69.23 52.63 38.46 13.33 13.33 66.67 59.25 69.56 96.55

OA [%] 55.56

UA [%] 90.90 35.71 35.00 46.15 100 100 54.54 57.14 100

2015 PA [%] 71.42 71.42 64.51 35.29 35.29 28.57 78.57 28.57 100

F1 [%] 80.00 47.62 46.15 40.00 52.63 42.85 64.51 38.46 100

OA [%] 57.43
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Table 4.10: Producer Accuracy (PA), User Accuracy (UA), Fscore (F1) and Overall Accuracy

(OA) of the proposed processing chain for the Sentinel-2 images acquired over the Siberia in

1990, 1995, 2000, 2005, 2010 and 2015.

Year
Quality
metrics

Ever.
Brod.

Decid.
Brod. Shrub Grass

Veget.
Aqua.

Lichens
moses Bare

Build
up Water

UA [%] 47.36 58.33 72.72 29.03 64.28 0.00 57.14 87.5 86.67

1990 PA [%] 64.28 50.00 57.14 64.28 64.28 0.00 28.57 100 92.85

F1 [%] 54.54 53.84 64.00 40.00 64.28 0.00 38.09 93.33 89.65

OA [%] 57.93

UA [%] 57.14 100 57.89 34.61 50.00 0.00 61.53 100 100

1995 PA [%] 85.71 57.14 78.57 64.28 50.00 0.00 57.14 78.57 100

F1 [%] 68.57 72.72 66.67 45.00 50.00 0.00 59.25 88.00 100

OA [%] 63.49

UA [%] 55.00 100 60.00 45.45 62.50 0.00 62.50 86.67 80.00

2000 PA [%] 78.57 64.28 85.71 71.42 71.42 0.00 35.71 92.85 85.71

F1 [%] 64.70 78.26 70.58 55.56 66.67 0 45.45 89.65 82.75

OA [%] 65.07

UA [%] 60.00 80.00 43.75 41.37 66.67 0.00 53.84 100 81.25

2005 PA [%] 64.28 57.14 50.00 85.71 71.42 0.00 50.00 85.71 92.85

F1 [%] 62.06 66.67 46.67 55.81 68.96 0.00 51.85 92.30 86.67

OA [%] 61.90

UA [%] 55.00 87.50 45.45 35.71 55.56 100 50.00 100 87.50

2010 PA [%] 78.57 50.00 71.42 71.42 35.71 14.28 28.57 92.85 100

F1 [%] 64.70 63.63 55.56 47.61 43.47 25.00 36.36 96.29 93.33

OA [%] 60.31

UA [%] 75.00 80.00 44.44 30.00 84.61 100 62.50 86.67 87.50

2015 PA [%] 85.71 57.14 85.71 42.85 78.57 7.14 35.71 92.85 100

F1 [%] 80.00 66.67 58.53 35.29 81.48 13.33 45.45 89.65 93.33

OA [%] 65.07
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Chapter 5

Background

This chapter aims at providing an overview of the state-of-the-arts methods that cope with

some of the main challenges related to the classification of multitemporal multispectral

RS data at operational level. In particular, we focus on: i) mitigating the effects of

the cloud coverage, and ii) addressing the definition of large-scale training sets. For the

first challenge, we describe the cloud detection methods widely used to generate cloud and

shadow masks for the high spatial resolution systems considered in this thesis, i.e., Sentinel

2 and Landsat. Moreover, a brief overview of the main cloud restoration approaches used

to recover the missing spectral information is presented. With regard to the problem of the

large-scale training set generation, we focus the attention on the supervised, unsupervised

and semi-supervised domain adaptation techniques typically employed to address this issue.

5.1 Multitemporal Multispectral Data: Cloud Cover Problem

ESA’s Sentinel-2 and NASA’s Landsat satellites provide huge amount of optical images

with high spatial and temporal resolution every year. These dense TS of multispectral data

are used for a wide range of applications enabling multitemporal monitoring of physical

phenomena. Nevertheless, one of the main challenges in their use is related to missing

information caused by cloud occlusions. Cloud cover impedes optical RS sensors from

acquiring a clear image of the Earth’s surface. Therefore, to properly use multitemporal

optical data, one needs to first automatically detect the clouds and then reconstruct the

missing spectral information. This is particularly true for operational applications, when

large-scale datasets are considered and the cloud coverage issue is unavoidable. However,

as already mentioned in Section 4.3.1.1 cloud detection is a complex task. This is because

there are many cloud types that can be characterized by different transparency. Thus,

depending on the underneath landscape, the resulting signal can be a diverse mixture of

land and cloud spectral signature.
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In the literature, many cloud detection algorithms have been proposed for Landsat

data [106, 107]. In [106], the authors present the Automated Cloud Cover Assessment

method, which aims to automatically detect the clouds present in Landsat images by using

the information provided by the thermal infrared band. Another way to address the cloud

detection problem is by considering a multispectral method, which takes advantage from

the information in different bands. The Haze Optimized Transformation approach exploits

the correlation between the red and blue bands that occurs when the pixel is cloud-free

[108]. In [107], the cloud masks for Landsat 8 data are derived by using spectral and

statistical properties. In [109], authors proposed a linear model, which uses the near-

infrared to detect the haze in the visible bands. In [110], an empirical radiative transfer

model was proposed for Landsat 8. In particular, to model cloud effects, the method

assumes the linear relation between the Landsat 8 cirrus band and the rest of the bands.

However, this group of methods works properly only with thin-cloud cover, as the thicker

clouds are impacting all the spectral bands. The USGS distribution of the Landsat L2

products is based on the FMask method for cloud and shadow detection [111]. The method

uses the information from the surface reflectances and the brightness temperatures of the

Thermal InfraRed (TIR) band. The TIR band is particularly useful since the temperature

of cloud-free surfaces is usually much higher than the cloud top temperature. In the

first step, by using a pre-defined threshold in the TIR band, the Fmask method detects

potential cloud and shadow pixels. In the second step, the method computes the cloud

probability for all the pixels not identified as potentially cloudy. The ones having the

highest probability are included into the group of potential cloud pixels. Finally, the

potential cloud pixels are segmented, and by iterating on the cloud altitude the method

tries to match the clouds with shadows. If the match with a shadow is found the cloudy

pixel if confirmed.

Few cloud detection methods have been defined for Sentinel-2, due to the recent ac-

quisition of these images that started in 2015. The ESA distribution of the Sentinel-2

cloud mask is based on Sen2Cor [112], which uses the four thresholds (in the visible range,

near infra-red range, NDSI and threshold on the reflectance in the SWIR-Cirrus band)

and each of them produces a probability map of cloud presence. Next, the global prob-

ability mask is generated by multiplying all the probability masks. Finally, by applying

various thresholds to the global probability mask the following masks are obtained: a low

probability cloud mask (recently renamed “unclassified”), a medium probability cloud

mask and a high probability cloud mask. The cloud shadows detection is based on the

fact that shadows are darker and their positions have to be correlated to the clouds.

Recently, a new version of the Fmask algorithm has been released, i.e., Fmask 4 [113].

This version does not require the thermal band to be applied, and thus can be applied
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to both Landsat and Sentinel-2 data. Indeed, the USGS distribution of the Sentinel-2

products is based on Fmask 4. In particular, the method is based on the view angle

parallax of the NIR bands. To minimize the confusion with the snow and build-up class,

Fmask 4 uses contextual and spectral information. Moreover, it relies on a global surface

water map to avoid confusion with water pixels. The cloud shadows are detected on the

base of cloud and clouds shadows similarity. The drawback of the Fmask 4 applied to

Sentinel-2 data is its 20 m spatial resolution. As the use of deep learning techniques

is taking off in the RS literature, advanced deep methods to cloud and shadow detec-

tion have been also introduced. Based on residual learning and semantic segmentation,

CloudNet proves to provide robust results for cloud and haze classification for Sentinel-2

[114]. The authors have compared its results to other state-of-the-art architectures, such

as Deeplab v3+. CloudNet proves to overcome other architectures especially for the cir-

rus cloud recognition. In [21], authors compare the classification accuracy of a fully CNN

architecture trained on Landsat 8 to detect cloudy pixels on Landsat-8 and Sentinel-2 im-

ages. The obtained results show that their architecture outperforms standard operational

threshold-based algorithms when tested on the same Landsat-8 dataset. However, the re-

sults are similar to standard operational algorithms when validated on datasets different

from Sentinel-2 or Landsat-8. Although these methods achieve higher detection accuracy

they are computationally expensive and require large collection of statistically significant

training data. Therefore, the computational burden hampers their use at the operational

level.

Both Sen2Cor and FMask are mono-temporal methods, which means that they use

only the information provided by the image to analyze for detecting clouds and shadows.

On the contrary, the recently released MACCS-ATCOR Joint Algorithm (MAJA) is based

on the analysis of the multitemporal information to detect clouds and shadows [115], [97].

MAJA is a recurrent method, and thus it needs to be initialized when analyzing the first

image in a TS. This is done by applying a set of thresholds in the blue, red, NIR and

SWIR bands in order to define a mono-temporal cloud mask. For a given image, the

corresponding cloud mask is generated by using a reference cloud-free image previously

acquired. If no recent cloud-free images are available, a composite reference image is

created by using the last cloud-free observation per pixel. Please note that every time a

new image is acquired, its reference image has to be defined. The reflectance values of

the blue band belonging to the cloud-free reference image are compared with the ones

present in the image to be analyzed. If a rapid increase of reflectance values is detected,

the pixel is labeled as cloudy. However, as ground surface reflectances may change in

time, the method also takes into account the difference in time between the acquisition

of the analyzed and the reference images. The longer the time difference is, the higher is
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the threshold used to evaluate the reflectance increase. The pixel is confirmed as cloudy

if none of the following condition is true: i) the reflectance variation in the red band is

higher than the reflectance variation in the blue band, and ii) a similar correlation of

the pixel with its neighboring pixels can be observed for the last 10 acquisitions (this is

because it is very improbable that the cloud will be observed in 10 last acquisitions in

the same place and shape). Also MAJA shadow detection is based on a multitemporal

approach. The approach provides information about two kinds of masks, the geometric

and the radiometric shadow masks. The geometric cloud detection is an intersection of

regions where there is a high probability of cloud shadow to occur (due to presence of

a cloud) and regions where the darkening in the red band can be observed. Then, by

considering cloud altitude, MAJA detects the cloud shadow. This is done by computing

a geometric projection, which uses solar and viewing directions. Then, within detected

possible shadow region, MAJA thresholds the variation of the reflection in the red band,

and thus confirms or discards the cloud shadow pixels. The goal of the radiometric mask

is to identify the shadow of clouds, which may lye outside the analyzed image. This is

done by applying the detected threshold in the red band (done in the geometric step) for

the whole image. Finally, similarly to the cloud detection, in the last step the correlation

between different acquisitions is also checked to discard false shadows. Few studies have

been carried out to compare the accuracy of the Fmask, Sen2Cor and MAJA on Sentinel

2 images. In [97], the OA of cloud and shadow mask provided by the Sen2Cor is equal

to 84%, much lower than the one provided by Fmask 4 (OA equal to 90%), and MAJA

(OA equal to 91%). In [116], authors compared the cloud cover detection algorithms

using Sentinel-2 images over the Amazon rain forest, which is known for its dense cloud

coverage. The reported accuracy indicated the best OA for FMask (90%), followed by

Sen2cor’s (79%) and MAJA (69%). However, in [117], the authors clarified that such

low accuracy achived by the MAJA was due to the small number of images in the TS

since only Sentinel-2A were considered [117], thus neglecting the main assumptions of this

approach.

In addition to the accurate cloud and shadow detection task, a large effort has been

devoted in the RS literature to perform cloud restoration. Several multitemporal ap-

proaches have been defined to reconstruct the spectral signature covered by the clouds

leveraging the temporal cloud-free information available in previously acquired optical

images. In particular, such a goal can be achieved cloning information from multitempo-

ral satellite images [118], by using dictionary learning [119] or multitemporal dictionary

learning [120] as well as by considering approaches based on deep architectures [121].

Although multitemporal methods perform well, they need a cloud-free reference image,

which in some cases can be challenging. Moreover, they are usually computationally
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intensive, increasing significantly the preprocessing complexity. To mitigate this issue,

several mono-temporal spatial-based methods have been proposed. Such methods rely on

the spatial autocorrelations between local and non-local regions of the image. The spatial

based methods assume that the missing regions have similar statistical or geometrical

properties to the rest of the image. If cloudy pixels constitute small portion of the image,

the interpolation methods (such as nearest-neighbor [122] and kriging [123]) proved to be

effective. For the larger gap filling of textured region the exemplar-based method [124] or

the bandelet-based inpainting [125] have been proposed. Nevertheless, these techniques

proves to perform poorer then mutlitemporal or spectral ones when dealing with large

cloud cover or complex texture.

This analysis of the literature points out that a large effort has been devoted to cloud

detection and restoration techniques in the past. This is because it is a necessary prepro-

cessing step especially for shallow classifiers. Although many successful cloud detection

and cloud restoration techniques have been proposed in the literature, the ones that

achieve the highest performance are usually sophisticated and computationally intensive.

By including them in the image pre-processing phase of a standard processing chain for

the classification of multitemporal data, the computational complexity significantly in-

creases. Therefore, their use becomes unfeasible from the operational view point. On

the other hand, the recent advances of sophisticated multitemporal deep learning models

changed the perspective. Indeed, nowadays instead of running accurate cloud detection

and restoring methods, new deep architectures (e.g. Recurrent neural networks (RNN),

LSTM) have been proposed. These methods are able to extensively exploit dense TS and

in accordance with recent qualitative studies they prove to be robust to cloud cover [28],

[29]. This is why in this thesis, we aim to quantitatively evaluate what is the impact of

the cloud coverage on the classification performances of a deep LSTM when the clouds

are restored, neglected or kept.

5.2 Generation of the Representative Training Set at Large

Scale

The supervised classification of RS data at the large scale represents a challenging task

from the operational view point. To achieve accurate classification results, the quality

and the quantity of training samples, as well as sampling strategy are equally important

to the learning paradigm. Let us consider a domain D, where P (x, y) is the distribution

of the analyzed data, x ∈ X represents a vector of features of the considered RS image

and y ∈ Ω corresponds to set of class labels. In the classical supervised classification

problem, the algorithm will try to estimate the distribution P̂ (x, y) given the training set
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T = (xi, yi)i, where xi ∈ X, yi ∈ Ω. Thus, the more representative is the training set of

the underlying distribution of the considered study area, the better is the classification

result. However, the statistical distribution of the LC classes may change across the

study area because of the spatial variability of the spectral signature. Indeed, the same

LC class may present different spectral behavior in satellite images acquired in different

regions due to many variables, including atmospheric conditions, acquisition dates or

topographic condition [126]. Moreover, at the large scale, a proper sampling strategy

is needed to capture labeled samples representative of the spectral behavior of the LC

classes for the whole study area. However, gathering large amount of labeled samples

is costly, time consuming, and thus often unfeasible. Therefore, in many operational

applications, the quality of available training set is too poor to appropriately estimate the

data distribution P̂ (x, y) [127].

A way to reduce the need and effort of collecting reference samples is adapting the

classifier trained on the source domain (i.e., images for which the training set is available)

to classify the target domain (i.e., images for which no labeled samples are available).

To properly handle this issue, transfer learning methods have been introduced in the RS

literature [128]. These methods aim to reduce the discrepancy across domains to re-use

the information available in the source to classify the target domain, assuming that the

two domains have different, but related, distributions [127]. In this literature review,

we will focus on a special kind of transfer learning called domain adaptation. Let us

consider two domains: target and source, which distribution can be described as PT (x, y)

and PS(x, y), respectively. The goal of domain adaptation methods is to approximate

well PT (x, y) by using information provided in PS(x, y). In general, domain adaptation

methods can be divided into four main categories: (i) invariant feature selection, (ii)

representation matching, (iii) adaptation of classifiers, and (iv) selective sampling. In

this thesis, we focus attention on the case of the representation matching. The aim of

the representation matching is to adapt the source and target domain distribution to

the common latent space, where a single classier can be applied. Most of the domain

adaptation methods available in the literature, assumes that target and source domain

consider the same set of classes [128]. Depending on the availability of the labeled units in

the domains, representation matching can be further subdivided into three subcategories:

supervised, semi-supervised and unsupervised.

The unsupervised methods are usually based on the exploitation of the data geomet-

rical structure. Looking back in time, a common approach to the unsupervised domain

adaptation was the Canonical Correlational Analysis (CCA) [129], proposed by Hotelling

in 1936 [130]. This approach has been widely used for finding a common latent space

across different applications, e.g., computer vision [131]. The method aims to find linear
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projections of two multidimensional variables that are maximally correlated. The exten-

sion of this method is the Kernel canonical correlation analysis (KCCA), which increases

the flexibility of the feature selection kernelized CCA [132]. Nevertheless, both methods

require that the points are pair-wise between the two domains, which can be challeng-

ing in many applications. Another important group of unsupervised domain adaptation

methods, such as Transfer Component Analysis (TCA), is based on the idea of finding a

projection that minimizes the discrepancy between two domains data distributions [133].

However, in this case the same features have to be considered in the source and target

domains. Finally, the geodesic distances along domains have been studied in [134] and

then extended to Geodesic Flow Kernel (GFK) [135], but both methods requires the same

data dimensionality. In the category of the most recent approaches, the domain adapta-

tion based on adversarial learning is a popular direction. The idea is to train a feature

generator to produce domain invariant features for target and source domains to fool a

domain discriminator, which is trained to identify domain labels for features produced by

generator [136], [137]. [138]. However, it might happen that the discriminative distribu-

tion of the target domain samples may be lost, and thus result in the low classification

accuracy [139]. To solve this problem in [140], authors proposed dual-adversarial network,

which performs a domain specific feature adaptation and classification.

Semi-supervised methods try to cope with a more relaxed problem, where the labeled

samples are available only in the source domain and for the target domain only the un-

labeled sampled are considered. It is important to note that this group of methods are

based on the assumption that the distributions of source and target domains are different,

but still close enough. Otherwise, source domain samples would be of no help for solving

problem in the target domain. An example of the semi-supervised method is the above-

mentioned GFK approach, which can be also used with labeled data in the source domain

when the source domain eigenvectors are found with a discriminative feature extractor

(e.g. partial least squares [135]). TCA can be extended to a semi-supervised setting by

maximizing the dependence (measured by Hilbert-Schmidt Independence Criterion) be-

tween kernel of labels and features [133]. Alternative methods, called Optimal Transport,

are looking for the transportation plan of the probability distribution function between

the source and the target domain. In this way the methods estimate the invertible and

non-linear transformation. In [141], authors proposed a regularized unsupervised optimal

transportation model, which put the constrain on the source domain samples belong-

ing to the same class to remain close each other during transportation. Therefore, the

method is able to exploit the domain distributions and the source domain labeled samples.

Domain-adversarial neural networks (DANN)[137] can be applied to semi-supervised and

unsupervised application. DANN learns domain independent labels by training CNN with
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loss function, which minimizes class specific component while maximizing domain specific

component. This way, the model improves the classification accuracy, while losing the

ability to identify from which domain the sample is coming from. In [142], authors have

proposed Sourcerer, which first trains the CNN classifier on source domain samples, then

continues the training on the target domain samples using novel Bayesian-inspired regu-

larizer. The approach has been tested on LC mapping providing state-of-the-art accuracy.

Minimax entropy (MME) is another recent method proposed in the literature [143]. For

each class from the considered labeled samples MME aims to learn a representative data-

point (prototype) and than minimizes its distance with unlabeled samples. As the labeled

samples are coming mainly from the source domain, MMA uses adversarial method to

align prototype samples to the target domain distribution. However, both DANN and

MME requires very large number of labeled samples.

Supervised domain adaptation assumes to have labeled sampled in both the target

and source domains. However, the number of labeled sampled in the target domain is

usually much smaller with respect to the one available in the source domain. The above-

mentioned GFK and TCA methods can also be used when both domains include labeled

samples. In [144], authors proposed Max-Margin Domain Transforms method. By using

the classification loss, the method optimizes both the projection of target features into the

source domain and the classifier parameters. The method is able to cope with different

feature dimensionalities and is scalable to large training sets. Manifold alignment is a

special group of supervised methods, which aims to find unified representation of multiple

domains. In other words, this group of methods reduces to finding a projection to the

common latent space, where the classes separability is enhanced. In 2014 Tuia et al.

[145] proposed semi-supervised manifold alignment (SSMA). SSMA projects data from

different domains into a common latent space, where the geometry of each manifold is

preserved, while the same class samples are placed close to each other and different class

samples are placed far apart. In [27], the authors proposed kernelized version of SSMA,

called kernel based manifold alignment method (KEMA), which performs better with a

high-dimensional data and with strong nonlinear deformations. Nevertheless, the method

requires labeled samples for each domain. In [146], this requirement has been relaxed, by

exploiting semantic ties, i.e. samples coming from the same object, which are in common

between domains. However, in this case KEMA requires partial spatial overlap between

the domains.

Even though some supervised domain adaptation techniques, such as KEMA requires

only a few training set samples for source and target domains, this condition can be

challenging in some operational applications. On the other hand, the unsupervised domain

adaptation techniques do not requires any labeled data but if the statistical distributions of
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the two domains are too different they fail. In this thesis we propose a novel unsupervised

domain adaptation technique, which leverages on the publicly available low resolution

thematic products for the target domain and on a small set of labeled samples for the

source domain. The use of the low resolution thematic product of the target domain

allows us to sharply increasing the reliability of the results obtained without the need

of collecting ground reference data. The proposed solution is thus effective from the

operational view point, especially when there is the need of defining training sets at large

scale.
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Chapter 6

A Long Short Term Memory

Classifier Robust to Images with

Cloud Cover

LSTM has not only proven to be one of the most promising approaches to the processing of

the TS but qualitative analysis has also shown its robustness to the cloudy images within

the TS. In this chapter we aim to quantitatively assess the capability of the LSTM to

handle different amounts of cloud coverage present in the images of TS having different

lengths. In particular, we study the impact of diverse clouds representation on the classifier

accuracy, by assigning cloudy pixels values of: (i) simulated cloud values, (ii) zeros values,

and (iii) restored values by simple linear temporal gap filling (i.e., average of the spectral

values acquired in the previous and following cloud-free images in the TS). Moreover, we

study the effects of the cloud positions within the TS. 1

6.1 Introduction

Each year the increasing number of multispectral multitemporal images is available. The

possibility to define TS of multispectral images enables the development of many applica-

tions ranging from hazard assessment to agricultural monitoring. However, as mentioned

in the previous chapter, their usage is hampered by the the cloud coverage that occludes

the ground cover that has to be monitored. To address this issue in some applications

only cloud-free images are considered, thus reducing significantly the number of items

1Part of this chapter appears in I. Podsiadlo, C. Paris, L. Bruzzone, “A study of the robustness of the long

short-term memory classifier to cloudy time series of multispectral images.” Image and Signal Processing for

Remote Sensing XXVI. Vol. 11533. International Society for Optics and Photonics, 2020.
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available in the TS. For this reason (as mentioned in Chapter 5.1) many cloud restora-

tion techniques have been proposed in the literature. By properly recovering missing

information, almost all the images in the TS can be used. However, to obtain reliable

cloud restoration results, sophisticated and usually computationally intensive techniques

should be used [147] [148]. Significantly increases the computational complexity of the

preprocessing part. Frequently, the final goal of the TS processing chain is the production

of LC maps, and thus by performing restoration approach the classifier is able to cor-

rectly identify the LC class of each pixel. Therefore, a cloud restoration step is typically

implemented to support the analysis of the multitemporal data.

Recent studies pointed out that multitemporal deep learning architectures, such as the

LSTM classifier, are able to handle the presence of clouds. In the [29] authors proposed

a convolutional recurrent layers for multitemporal LC classification of TSs of Sentinel-

2 images [22]. By performing the visual interpretation of the internal gate activations

(over a sequence of cloudy and cloud-free data), the authors verified that LSTM is able

to discriminate clouds as a noise, without the need of any preprocessing step. However,

the authors provided only a qualitative evaluation, and no quantitative analysis of LSTM

robustness to cloud coverage was given. Sharma et al proposed a patch based LSTM for

LC classification [28]. The authors first detected cloud/shadow pixels by using the Fmask

algorithm. Then, they mitigated the cloud/shadow effects on the classification results by

masking cloudy pixels with zero values. This choice allowed them to regulate the input

gates of the LSTM, in order to dismiss the cloud information [28]. However, similarly to

[22], no quantitative analysis has been carried out to assess the capability of the network

to handle different amounts of cloud coverage. Moreover, none of the above mentioned

work, investigate the role of the clouds position within the TS as the final results.

In this chapter, we focus the attention on the robustness of the LSTM classifier to

cloud coverage since it is one of the most promising deep learning architectures for clas-

sification of dense TS of images [149]. This is investigated by quantitatively assessing its

effectiveness in handling different amounts of cloud coverage under different TS lengths

(in the framework of the LC mapping). In greater detail, we analyze the effect of the

cloud coverage on the classification maps produced by LSTM considering: (i) different

amounts of clouds in the TS, (ii) the use of zeros values to represent the detected clouds,

and (iii) the use of restored images obtained by simple linear temporal gap filling (i.e.,

average of the spectral values acquired in the previous and following cloud-free images

in the TS). It is worth noting that by representing cloud values as zeros, we investigate

the possibility to regulate the input gates of the LSTM in order to dismiss the cloud

information. Moreover, as the temporal profile plays a key role in TS classification, we

study the role of cloud positions within the TS.

102



6.2. STUDY ON THE ROBUSTNESS OF LSTM TO CLOUD COVERAGE

The rest of this chapter is organized as follows. Section 2 describes the theoretical bases

of the LSTM classifier followed by the description of the proposed methods to investigate

the robustness of LSTM to cloud coverage. Section 3 describes the dataset used, while in

Section 4 the obtained results are presented. Finally, Section 5 draws the conclusion of

the chapter.

6.2 Study on the Robustness of LSTM to Cloud Coverage

6.2.1 Long Short-Term Memory Network

RNN have been used with a great success for many applications dealing with sequential

data, such as speech recognition, robot control and video tagging [150]. LSTM is a special

type of RNN, which has been proposed to overcome the problem of the vanishing gradient

on long data sequences [151]. In particular, by using a forget gate’s vector, LSTM has a

better control of the gradients values at each time step, and thus avoiding the gradient

vanishing in a long TS. LSTM is able to catch the temporal dependency of sequential

data, since the network is using feedback loops connected to their past decisions. Thus,

the network has a state and makes decisions on the basis of the network output from the

previous input (xt−1), the current input (xt) and the previous hidden state (ht−1).

The scheme of the LSTM cell is presented in Fig. 6.1. The cell state is marked as a

straight line on top with letter C. The data which flow into the LSTM are regulated by

the input, forget and output gates. Let Wi, Wf , and Wo be the learnable weights and bi,

bf , and bo the biases for the input, forget and output gate, respectively. The three gates

of the LSTM can be described as follows:

� forget gate (f) - It controls the information coming from the previous cell state

Ct−1 and the one provided by the current input (xt). The output of this gate ranges

from 0 (discard information) to 1 (keep the information). This gate is described by

the following equation:

ft = σ(Wf · [ht−1, xt] + bf ) (6.1)

where σ is the sigmoid function.

� input gate (i) - It updates the cell state. First, the sigmoid function decides which

values from previous cell state Ct−1 and current input (xt) have to be updated. Then,

the tanh function determines the rescaling factor. The computed value is added to

the LSTM cell state. The input gate can be described by the following equations:

it = σ(Wi · [ht−1, xt] + bi) (6.2)

Ĉt = tanh(WC · [ht−1, xt] + bC) (6.3)
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� output gate (o) - It decides the new hidden state. The previous hidden state and

the current input are passed through the sigmoid function. Then, the output is

multiplied by the current cell state passed through the tanh function to decide the

information kept by the hidden state. The gate can be described by the following

two equations:

ot = σ(Wo[ht−1, xt] + bo) (6.4)

ht = ot ∗ tanh(Ct) (6.5)

The weights associated with each gate are trained by a recurrent learning process.

Figure 6.1: Illustration of the LSTM cell. The internal structure of the LSTM cell is represented,

which contains the input gate, the forget gate, and the output gate.

In this work, we are considering a sequence-to-label classification task. The LSTM

is trained on a TS of optical multispectral images to generate LC maps. In particular,

the considered multi-layer LSTM network provides the classification result at pixel level.

After testing different LSTM architectures, we decided to use LSTM network made up

of two layers, each of 400 hidden units, a fully connected layer and a softmax function,

which generates the probability distribution. Please note that the aim of the work is to

evaluate the impact of the clouds in the classification results by comparing cloud-free and

cloudy TS of optical images. Hence, more sophisticated models can be used to generate

the LC map.

6.2.2 Assessment to Cloud Robustness

In this work, we aim to analyze the effects of the cloud coverage on the LSTM classifier

accuracy. In greater details, we first investigate the role of the TS length on the LSTM

classification accuracy. This is done by considering TSs made up of 10 and 30 Sentinel-2

104



6.2. STUDY ON THE ROBUSTNESS OF LSTM TO CLOUD COVERAGE

images (see Fig. 2b). Then, we analyze the robustness of the classifier to cloud coverage

by comparing the classification maps obtained using the cloud-free TS and the TS where

cloudy images are introduced. We considered different rates of fully cloudy images within

the TSs ranging from 10% to 40% of the TS’ length. For each cloudy image, we analyzed

different representations of the cloudy pixels: i) simulated clouds, ii) zeros values and iii)

restored values (linear temporal gap filling). The details about each representation are

given in the following. Please note, that when clouds are represented by zeros or restored

values a cloud detection step is required as the cloudy pixels have to be detected. This

increases the computational complexity of the preprocessing part and can be affected

by the quality of the cloud detection accuracy. However, in our experiments we used

simulated data, thus neglecting the effects of possible cloud detection errors.

6.2.2.1 Simulated Clouds

In the first scenario, we introduced an artificial cloud with the spectral values correspond-

ing to the real cloudy pixels retrieved from the Sentinel-2 images. In this way, we are

able to investigate the robustness of LSTM classifier to cloud cover when no clouds filter-

ing is applied. Let {X1, X2, . . . , XS} be the considered TS. The multitemporal pattern

associated to the jth pixel of the considered TS can be defined as [x1
j , x

2
j , . . . , x

S
j ], where

x1
j = [x1

j,B1
, x1

j,B2
, . . . , x1

j,BB
] represents the B spectral values of the jth pixel in the first

image of the TS. The cloudy image is randomly introduced in the TS. Thus, the missing

data for the jth pixel for each band B of the randomly selected image of the TS xR
j,B1,...,B

are as follows:

xR
j,B1,...,B

= [3621, 3654, 3541, 4354, 4996, 5118, 5201, 5348, 4635, 3745] (6.6)

, where [3621, 3654, 3541, 4354, 4996, 5118, 5201, 5348, 4635, 3745] represent an qualitative

example of a cloudy pixel in corresponding 10 bands of the Seninel-2 image.

6.2.2.2 Zeros Values

In the second case, we investigated the LSTM classifier robustness to cloud cover when

the artificially introduced cloudy pixels are band-wise equal to zero values. Thus, we are

able to investigate the possibility to regulate the LSTM input gates in order to ignore the

cloud information. The missing data for the jth pixel for each band B of the randomly

selected image of the TS xR
j,B1,...,B

are equal to zeros:

xR
j,B1,...,B

= [0, ..., 0] (6.7)
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6.2.2.3 Restored Values - Linear Temporal Gap Filling

In the last considered scenario, we considered a very simple and efficient cloud restoration

method based on linear temporal gap filling. The missing data for the jth pixel of the

image xT
j,B1

at time T are restored as the band-wise average of the spectral values acquired

in the previous xT−1
j,B1

and the following xT+1
j,B1

images in the TS as follows:

xT
j,B1

= Avg(xT−1
j,B1

, xT+1
j,B1

) (6.8)

xT
j,B2

= Avg(xT−1
j,B2

, xT+1
j,B2

) (6.9)

xT
j,BB

= Avg(xT−1
j,BB

, xT+1
j,BB

) (6.10)

If clouds are present in the first or last composite in TS, the second or the one before

last composite are considered, respectively.

6.2.3 Assessment of Cloudy Image Position in Time-Series

In this step, we analyze the impact of cloudy image position in the TS on the obtained LC

map since the temporal profile plays an important role in the LC classification task. Also

in this case we considered the three clouds representations values. It is worth noting that in

order to mitigate any possible effect of clouds and shadows already present in the TSs, we

detected them and excluded from our analysis. We classify only the TS with simulated

clouds, and thus we are able to control the experimental set-up. In greater detail, we

inserted in the cloud-free TS the different representations of fully cloudy images.

6.3 Data Set Description

In order to test the capability of the LSTM to handle cloud coverage, we classified a

TS of Sentinel-2 images acquired over Aquidauana, Brasil in 2019. The area is located

140 km from the state capital, Campo Grande and it can be characterize by the hot,

muggy and cloudy summers, while winters are warm and mostly clear. The Aquidauana

belongs to Pantanal natural region, which is the world’s largest tropical wetland and

flooded grassland area. In particular, we considered the Sentinel-2 21KXT tile. Fig. 6.2a

shows the Sentinel-2 image acquired on the 30th March 2019 over the considered study

area, while Fig. 6.2b presents the considered TS made up of 10 and 30 images. Both TSs

approximately represent whole year. Although, due to quite heavy cloud cover in January

and February the number of available images is smaller, and thus we have excluded this

months from TS made up of 10 images. The input to the LSTM is a TS of Sentinel-2

images, which were first atmospherically corrected by using ESA’s Sen2Cor tool [112].
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The following Sentinel-2 spectral bands were considered as features in input of the LSTM

classifier: blue (B2 - 490 nm), green (B3 - 560 nm), red (B4 - 665 nm), the four vegetation

red edge (B5 - 705nm, B6 - 740 nm, B7 - 0.783 nm and B8A - 865 nm), NIR (B8 - 842

nm) and the two SWIR bands (B11 - 1610 nm and B12 - 2190 nm). A nearest neighbor

interpolation technique was used to match the 20 m bands to the 10 m bands. The

spectral outlier detection and removal was performed by discarding the reflectance values

higher than the 0.999 quantile and lower than the 0.001 quantile of each spectral band.

All the images considered in the experiments have cloud coverage smaller than 15%.

The considered classification task aims to detect 8 LC types, namely: “Evergreen

broadleaves,” “Deciduous broadleaves,” “Shrub cover,” “Cropland,” “Herbaceous Vege-

tation Aquatic,” “Bare areas,” “Built-up areas” and “Open water permanent”. In our

analysis, we are considering a training set composed of 8105 samples selected by photo-

interpretation. The results are evaluated as the agreement between the classification

maps obtained by using the cloud-free TS of images (i.e., cloud-free map) with the maps

obtained when simulated clouds are introduced in the TSs.

The LSTM model was trained with the following hyperparameters: (a) 5 epochs; (b)

Adam optimizer with an initial learning rate set equal to 0.001 and the weight decay

of 0.0001; and (c) mini-batch size of 128. The cross-entropy loss function calculated by

comparing the predicted and the ground truth class probabilities [152] is used at each

training step to adjust the model weights. The considered training set is composed of

8105 samples, while the maps agreement is evaluated on 312409 samples.

(a) (b)

Figure 6.2: The considered study area: (a) Sentinel-2 RGB image on 30.03.2019; (b) the con-

sidered TSs made up of 10 and 30 images.
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6.4 Experimental Results

In this section, we present first the results obtained when assessing the robustness of the

LSTM to cloud coverage by considering different rates of cloud images (10% - 40%) in TSs

characterized by different lengths (10 and 30 images). The results are evaluated both from

the quantitative and qualitatively view point. Then, we present the analysis performed

to assess the impact of the cloudy image position in the TS on the classification results

obtained.

6.4.1 Analysis of the Robustness of the LSTM to the Amount of Clouds in

the TS

Tab. 6.1 and Tab. 6.2 present the % of the LC map agreement and standard deviation (σ)

obtained by comparing the result achieved on the cloud-free TS and those by considering

cloudy TS characterized by different cloud percentages (10 - 40%) on the TS made up of 10

images and 30 images, respectively. For each experiment different clouds representations

have been considered: (i) simulated cloud, (ii) represented with zero values, and (iii)

restored cloud by linear interpolation. Since the cloud position in the TS has an impact

on the LSTM accuracy, the results reported in the table are the average of five independent

experiments where the posterior of the clouds has been randomly determined.

From the obtained LC map agreement, one can conclude that the LSTM is able to

generate a LC map very similar to the one obtained with a cloud-free TS when simple

linear interpolation cloud restoration step is applied. In this case, the LC map agreement

is very high for all the considered cases, e.g., 94% even when the 40% of images in the TS of

30 images are covered with clouds (i.e., 12 cloudy images out of 30) and standard deviation

is relatively low ( 2.21). As expected, when restored clouds have been considered it can be

noticed that the longer TS is, the LSTM obtains better and more stable results. Indeed,

for the TS composed of 10 images with 30% of cloudy images (i.e., 3 cloudy images) the

obtained agreement is 89.24% with σ = 8.22, whereas for the TS composed of 30 images

considering the same amount of cloudy images (i.e., 9 cloudy images) the agreement is

equal to 94.34% with σ = 1.31. One can also conclude that when clouds are represented

with zeros values, on average the LSTM performs better than when the simulated clouds

values are kept. For example, when cloudy images are the 10% of the TS, the agreement

between the cloud-free and the cloudy maps is 77% and 44% when clouds are detected and

represented with zeros and with their original values (no detection), respectively. This

indicates that by assigning zero value to clouds, LSTM is able to mitigate the effect of

the input cloud information.

This quantitative evaluation is confirmed by the qualitative analysis which can be
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Table 6.1: LC map agreement ([%]) and standard deviation (σ) between the cloud-free classifi-

cation map and the one obtained with the cloudy TS by considering 10%, 20%, 30% and 40%

of cloudy images in the TS of images made up of 10 images. Reported results are the average

of five independent experiments.

LC Map Agreement

% cloudy images 10% 20% 30% 40%

Quality metrics [%] σ [%] σ [%] σ [%] σ

Simulated Clouds 47.20 15.62 20.22 19.62 16.76 9.53 8.77 7.63

Zero Value Clouds 70.66 3.69 48.50 10.20 21.79 0.38 12.19 0.48

Restored Clouds 95.31 7.66 89.47 6.24 89.24 8.22 86.41 2.82

Table 6.2: LC map agreement ([%]) and standard deviation (σ) between the cloud-free classifi-

cation map and the one obtained with the cloudy TS by considering 10%, 20%, 30% and 40%

of cloudy images in the TS of images made up of 30 images. Reported results are the average

of five independent experiments.

LC Map Agreement

% cloudy images 10% 20% 30% 40%

Quality metrics [%] σ [%] σ [%] σ [%] σ

Simulated Clouds 43.64 26.10 10.77 1.84 5.49 0.98 4.62 0.06

Zero Value Clouds 77.09 3.00 51.51 14.17 29.09 8.94 16.87 5.75

Restored Clouds 96.82 1.52 94.95 0.81 94.34 1.31 93.75 2.21
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performed by checking the LC maps reported in Fig. 6.3. The reported analysis represents

two regions: vegetated area (images from a to f) and build up area (images from g to

l). The results presented are the ones obtained by inserting the 20% of cloud coverage

in the TS of 30 images. Fig. 6.3a, g, Fig. 6.3b, h, Fig. 6.3d, j and Fig. 6.3e, k

present: (i) the cloud-free map, (ii) the map obtained with restored clouds, (iii) the map

obtained with simulated clouds and (iv) the map obtained with zero clouds, respectively.

Moreover, for better comparison images (c)(i) corresponds to RGB Sentinel-2 image from

and 30.03.2019, while (f)(l) represents corresponding Google Satellite HR image. Both

the zeros and the simulated clouds LC maps are heavily affected by the presence of

clouds. In particular, even if only 6 images out of 30 present cloud coverage, the obtained

classification map for simulated clouds is strongly corrupted. Hence the high values of

spectral reflectance for clouds lead to the classification of most of the image pixels as

the “Built-up areas” class (see Fig. 6.3d and j). This is because “Built-up areas” class

has a spectral signature very similar to the clouds. By masking the clouds as zeros, the

results obtained are improved (see Fig. 6.3e and k). However, the phenological trend

of the “Cropland” class is confused with the multitemporal trend of the “Deciduous

broadleaves” vegetation. In contrast, the LC map obtained with the considered simple

cloud restoration achieves very strong agreement with the original cloud-free map.

6.4.2 Analysis of the Robustness of LSTM Classifier to the Position of the

Cloudy Images in the TS

Fig. 6.4 and Fig. 6.5 show the LC map agreement accuracy obtained between the cloud-

free map and the one obtained when one fully cloudy image is introduced at different

positions in TS of 10 and 30 images, respectively. Also in this experiment, we considered

the three cloud representations. Similarly to the previous analysis, the results show that

the network is very stable (for both TSs with 10 and 30 images) when the simple clouds

restoration technique is applied. Moreover, also in this case, the use of zero values with

respect to the high reflectance values of the simulated clouds strongly mitigates the effect

of the cloud coverage in the TS. As expected, LSTM is more robust to the presence of

cloud noise when longer TSs of images are considered. However, from the results obtained,

one can observe that the network is more sensitive to the clouds occlusions when they are

present at the beginning (see Fig. 6.4 for all the clouds representation) or at the end of

the TS (see Fig. 6.4 and 6.5 for both the zeros and the simulated clouds). This can be

attributed to the temporal profiles of classes (e.g., grassland vs bare soil or vegetation),

which play a crucial role in the TS classification.
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Figure 6.3: Classification maps obtained for two study areas (a-f corresponds to vegetated area

and g-l build up area) considering the TSs made up of 30 images where the 20% of cloud coverage

has been inserted. The classification maps have been generated by using the: (a)(g) cloud-free

TS; (b)(h) restored clouds TS; (d)(j) TS with simulated clouds values; (e)(k) TS with clouds

set as zeros. While, (c)(i) corresponds to RGB Sentinel-2 image from and 30.03.2019 and (f)(l)

Google Satellite HR image.

111



CHAPTER 6. THE LSTM PROMISING TS CLASSIFIER ROBUST TO CLOUDY
MULTISPECTRAL IMAGES

Figure 6.4: LSTM accuracy for a three considered cases, when a fully cloudy image is included

in the TSs. The x-axis indicates the position (date) of the cloudy image (from 1st up to the 10th

position of the TS).

Figure 6.5: LSTM accuracy for a three considered cases, when a fully cloudy image is included

in the TSs. The x-axis indicates the position (date) of the cloudy image ( from 1st up to the

30th position of the TS).
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6.5 Discussion and Conclusion

In this chapter a quantitative and qualitative evaluation of the impact of the cloud cov-

erage on the classification accuracy obtained by the multitemporal deep learning LSTM

method has been presented. In particular, the experimental analysis has been carried out

to evaluate the capability of the LSTM to handle the cloud coverage considering different:

(i) the length of the TS, (ii) the position of the cloudy images in the TS, and (iii) the cloud

representation values. In the experiments, we considered TSs of 10, 20 and 30 images, by

inserting a percentage of cloudy images ranging from 10% to 40% of the TS length.

From the results obtained one can conclude that when clouds are restored with very

simple and fast linear temporal gap filling, the map agreement between the cloud-free

and the cloudy map is very high and stable regardless of the percentage of cloud coverage

in the considered range. Moreover, when clouds are represented as zero the classifier

performs better than when the simulated clouds values are used. This indicates that by

assigning zero value to clouds, LSTM is able to mitigate the effect of the input cloud

information. However, one should also notice that when clouds are represented by zeros

or restored values, first cloud detection algorithm should be applied. Hence, increasing the

computational complexity of the preprocessing part. In contrast, by representing clouds

with their original values no preprocessing step is needed, and thus computational cost of

this solution is comparably low. Finally, the impact of the position of the cloudy image

in the classification result depends on the TS length. As expected the longer the TS is,

the smaller is the impact of the position in the TS.

The obtained results area extremely important to demonstrate that the computa-

tional effort of more complex deep learning models may be compensated by a simpler

preprocessing phase compared to the one required by shallow machine learning models.

Moreover, such multitemporal deep learning model does not require any hand-crafted

feature selection and is able to accurately capture the multitemporal trend of the land

cover classes. Nevertheless, it should be mentioned that one known limitation of the deep

based architectures is the need of very large training sets, which can be challenging for

many applications. As a future development, we plan to investigate the effectiveness of

the LSTM with respect to standard machine learning models typically employed for LC

mapping such as RF and CNN. Moreover, we would like to better analyze the impact of

the cloud coverage on the different LC classes.
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Chapter 7

An Approach Based on Low

Resolution Maps and Domain

Adaptation to Define Training Sets

at Large Scale

In this chapter, we present an approach that aims to enlarge existing training sets lever-

aging global thematic products and domain adaptation techniques. The method assumes

available a small amount of reference data collected in a portion of the study area (source

domain), which is not sufficient to be representative of the whole region. Global scale

thematic images can be used to mitigate this problem. However, these maps are in many

areas at low resolution and typically unreliable. To address this issue, the proposed ap-

proach relies on a domain adaptation strategy to detect the labeled units in the map having

the highest probability to be correctly associated to their labels according to the information

provided by the initial training set. In particular, the method performs: i) a preliminary

sample selection from the low resolution thematic product (in the target domain), ii) the

identification of a mapping features space where source and a target samples are aligned,

and iii) the definition of the final enlarged training set. Experimental results obtained

using the CGLS-LC map demonstrate the effectiveness of the method. 1

1Part of this chapter appears in I. Podsiadlo, C. Paris, L. Bruzzone, “An approach based on low resolution

land-cover-maps and domain adaptation to define representative training sets at large scale.” IGARSS 2021 IEEE

International Geoscience and Remote Sensing Symposium. IEEE, 2021.
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7.1 Introduction

As discussed in previous chapters LC mapping is of high importance for many applica-

tions in land management and climate change monitoring. Large scale LC classification is

possible due to the large amount of RS data currently available. Nevertheless, frequently

producing accurate and up-to-date LC maps is a challenging task from the operational

view point. This is because the landscape is constantly changing, and thus it requires up

to date labeled samples, which is very laborious and time-expensive. Moreover, the quan-

tity and the quality of training samples play a crucial role on the classification accuracy.

On the one hand, when dealing with large scale LC mapping, collecting labeled samples

in the whole study area is unfeasible. On the other hand, when training samples used to

train the classifier are related to regions spatially distant to the region to be classified,

then the classifier may produce poor results. This is due to possible different statistical

distributions of classes in spatially disjoint regions, a well-known problem from the oper-

ational view point, the so-called sample selection bias. Sample selection bias occurs when

test and training data are coming from the same domain D. However, the estimated dis-

tribution P̂ (x, y) = P̂ (x)P̂ (y|x) does not correctly approximates the real distribution of

the data P (x, y). This problem usually occurs when the training set is not representative

of the whole study area or the number of training samples is not sufficient. This results

in the bias estimation of class prior distribution P̂ (y) ̸= P (y) and the poor estimation of

prior distribution P̂ (x) ̸= P (x). A special case of sample selection bias is the covariate

shift problem, which is referred to cases when estimated and the real distributions differ

only in the prior distribution P̂ (x) ̸= P (x). To mitigate this problem, several domain

adaptation methods able to handle to the shifts in data distributions, have been proposed

in the RS literature (see Chapter 5.2). These methods are able to use information from

one domain (source domain) and apply it to the other domain (target domain) under the

assumption that the two domains have different but still correlated distributions.

In this chapter, we propose a novel strategy to define a representative training set,

which can be used to handle large scale classification problem. The method assumes

the availability of a training set for at least one RS image of the study area (i.e., source

domain). The main goal of the method is adding labeled units of RS data geographically

distant from the available reference data (i.e., target domain). To solve the problem in

an unsupervised way, we rely on publicly available thematic products, used to extract few

map-labeled samples of the target domain. The small set of map-labeled samples is used

together with the annotated samples to align the statistical distributions of the source

and target domains in a common latent space. This mapping space allows us to assign

reliable labels to a set of target samples. Thus, those target samples can be added to
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the initial training set to better represent the whole study area. The proposed approach

can be applied to any RS data and adopted without geographical constrains due to the

current availability of many global LC maps.

The remaining of the chapter is organized as follows. Section 2 presents the pro-

posed method to define representative training sets at large scale. Section 3 describes the

dataset and Section 4 presents the obtained experimental results. Finally, in section 5 the

conclusions of this chapter are drawn.

7.2 Proposed Method

The proposed method assumes the availability of a training set for at least one RS data of

the study area (i.e., only for the source domain) and an existing LC product for the target

domain (RS data of the study area where no labeled samples are available). Please note

that the latter assumption is reasonable from the operational view point, since many LC

maps are available at global scale (see Sec. 2.4). Fig. 7.1 shows the architecture of the

proposed approach made up of three main parts: (1) target map samples selection, (2)

obsolete low resolution LC-Map-based domain adaptation strategy, and (3) representative

training set generation.

Figure 7.1: Architecture of the proposed LC-Map-Based domain adaptation strategy.

7.2.1 Target Map Samples Selection

Continental or global thematic products contain a large amount of information about the

LC classes present in the scene. However, they can be obsolete and sometimes have low

spatial resolution (e.g., 100 m). For these reasons, their usage is not straightforward. By

directly including labeled samples extracted from the map in the initial training set, there
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is a high possibility to add poor quality labeled units. To address this issue, the goal of

this step is to select few map target units (having the highest probability to be correctly

labeled) that can be used to learn the shift of the LC distributions between source and

target domains [27].

First, the thematic product is re-scaled to the spatial resolution of the RS images to

classify. Then, its legend is revised to select only the classes present in the source domain

training set. This is done in accordance with [153]. Let us define the set of considered LC

classes as Ω = {ωc}c. The thematic product is used to generateN statistically independent

noisy training sets, which are then employed to train an ensemble of N classifiers. In order

to ensure proper LC classes representation in each training set, the samples were selected

according to the stratified random sampling strategy [95]. In this chapter we use ensemble

of three neural networks but any other classifier could be used. To detect the most reliable

target units we select the samples: (i) where the original thematic product agrees with the

N noisy classification maps, (ii) having the highest confidence score of the classifier. At

the end of this step, we collect few labeled target units of the target domain {xW
Dt,i

, yWDt,i
}i,

where xW
Dt,i

represents the RS features (spectral bands) of the i-th sample of the target

domain and yWDt,i
the associated map label. This set of target domain selected samples

will be used in the next step in order to align target and source domains.

7.2.2 LC-Map based Domain Adaptation strategy

The second step is the core of the proposed approach. Let {xA
Ds,j

, yADs,j
}j be the set of

annotated samples of the source domain. Let xu
Dt

be the pool of unlabeled samples of the

target domain. The distribution of the source domain can be written as:

pDs(x) =
∑
ωc∈Ω

PDs(ωc)PDs(x|ωc) (7.1)

and the distribution of the target domain:

pDt(x) =
∑
ωc∈Ω

PDt(ωc)PDt(x|ωc) (7.2)

where PDs(ωc) is the prior probability of class ωc and PDs(x|ωc) is its conditional probabil-

ity. We assume that PDs(ωc) ̸= PDt(ωc). To learn the shift of the probability distributions

of the source and target domains (i.e., pDs(x) ̸= pDt(x)), we use the few map-labeled tar-

get samples {xW
Dt,i

, yWDt
}i and the source annotated samples {xA

Ds,j
, yADs,j

}j. To this end, we

considered KEMA proposed in [27] (see Sec. 7.2.4), which projects the source and target

samples into a common latent space, where units belonging to the same LC classes are

close to each other. The common projection matrix ϕ, which keeps the original geometry
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of each manifold preserved, contains the domain specific projection function, i.e.,∑
ωc∈Ω

PDs(ϕDs(x)|ωc) ≈
∑
ωc∈Ω

PDt(ϕDt(x)|ωc) (7.3)

In the latent space, we train a classifier by using only the projected source domain

samples {ϕDs(x
A
Ds,j

), yADs,j
}i to classify a set of unlabeled samples of the target domain

projected onto the latent space xu
Dt
. Therefore, the manifold alignment allows us to

provide source samples that approximate the target distribution. Please note that by

using manually annotated labeled samples sharply increases the probability to obtain

reliable classification results.

The classification is performed using a simple linear discriminant analysis (LDA) since

the data were subject to a non-linear projection to detect the latent space, where the

classes can be linearly discriminated. The more reliable units, classified with higher

confidence by LDA, are added to enlarge the initial training set, i.e., {ϕDt(x)Dt,z, ŷDt,z}z.

7.2.3 Representative Training Set Generation

At the end of the proposed method, we merge the two training sets: the original photo-

interpreted sampled from the source domain and the target domain samples added in the

previous step. First, the added target samples {ϕDt(x)Dt,z, ŷDt,z}z are re-projected into the

original feature space {xDt,z, ŷDt,z}z. To validate the quality of the training set, we perform
the pixel-based classification of the target domain image by using united training set (in

the original feature space). In the proposed implementation, we used a SVM classifier,

which has proven good generalization capability even if a small training set is available

[154]. Moreover, the Gaussian kernel demonstrates low computational performance. The

SVM parameters were tuned using the standard cross-validation procedure.

7.2.4 Kernel Manifold Alignment

Let us consider two domains Ds and Dt, where Ds ∈ R{xDs,j}j×dimDs and Dt ∈
R{xDt,i}i×dimDt . The Ds contains set of annotated examples {xA

Ds,j
, yADs,j

}j and Dt contains

set of samples with label extracted from the thematic product {xW
Dt,i

, yWDt,i
}i. The SSMA

method aligns data from both domains by projecting them to a common latent space

so that samples belonging to the same class are placed close to each other and samples

of different classes are pushed away, while the geometry of the manifolds is preserved.

This is done by using a domain specific projection function vDs . The projection functions

are grouped in a projection matrix V := [vDs , vDt ]
T . The SSMA finds a data projection

matrix V that minimizes the cost function:
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Θ =
µGEO + SIM

DIS
(7.4)

where GEO is a similarity matrix, which represents the topology of the considered do-

main W, e.g., it can be constructed using a k-nearest neighbor graph (k-NNG); SIM is a

similarity matrix between {xA
Ds,j

, yADs,j
}j samples belonging to Ds and {xW

Dt,i
, yWDt,i

}i sam-

ples belonging to Dt, if samples belong to the same class is equal to 1, or 0 otherwise; and

DIS is a dissimilarity matrix of {xA
Ds,j

, yADs,j
}j samples belonging to Ds and {xW

Dt,i
, yWDt,i

}i
samples belonging to Dt, if samples belong to the same class is equal to 0 or 1 otherwise.

This three matrices lead to three graph Laplacians: L, Ls and Ld, respectively. After

solving equation 7.4 the problem comes down to finding eigenvalues of the generalized

eigenproblem:

Z(L+ µLs)Z
TV = λZLdZ

TV (7.5)

,where µ is the weight parameter, Z is the block diagonal matrix containing the data

to be aligned, V is the researched common projection matrix, organized in rows for

the particular domain. After the projection V is found, each sample {xA
Ds,j

, yADs,j
} from

domain Ds can be projected into the common latent space by using dimDs × d, where

d = dimDs + dimDt blocks of eigenvectors vDs :

P (xDs,j) = vTDs
{xA

Ds,j, y
A
Ds,j} (7.6)

In order to better cope with the high dimensional data, the kernelized version of SSMA

was proposed. Thus, first the data are projected to the higher dimensional Hilbert Space,

where the linearly based classifier can be performed. Kernalization of SSMA is done by

mapping data from Ds and Dt to a Hilbert feature space φ : D → H. We replace all the

samples with their mapped feature vectors φ = ({φDs(x
A
Ds,j

), yADs,j
}j, {φDt(x

W
Dt,i

), yWDt,i
}i)T .

However, as this data live in high dimensional spaces, the computational complexity

increases dramatically. Therefore, we use the Riesz representation theorem, according

to which eigenvectors defined in Hilbert space U = [uDs , uDt ]
T can be expressed as a

linear combination of mapped samples U = φΛ. Than after replacing dot products with

corresponding kernel matrices K = φTφ, we get:

K(L+ µLs)KΛ = λKLdKΛ (7.7)

where K is the block diagonal matrix containing the Kernel matrices. Thus, the

projection of sample {xA
Ds,j

, yADs,j
} from domain Ds to the latent space, requires first

mapping to the corresponding Hilbert space {φDs(x
A
Ds,j

), yADs,j
} and then applying the

corresponding projection vector uDs .
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{ϕDs(x
A
Ds,j), y

A
Ds,j} = uT

Ds
{φDs(x

A
Ds,j), y

A
Ds,j} (7.8)

7.3 Dataset Description

7.3.1 Study Areas

The proposed approach was tested over a study area located in the Amazon. In particular,

target domain was identified in the State of Mato Grosso do Sul, Brasil, while the source

domain in the Presidente Hayes Dept, Paraguay. The distance between two domains is

around 400 km. The area of the target and the source domain is equal around 10000 km2.

The corresponding geographical coordinates of the selected regions are following: 21KXT

(19◦53’4.26”S - 20◦53’6.85”S; 54◦59’0.02”W - 56◦ 2’41.27”W) and 21KUQ (22◦36’14.88”S

- 23◦34’45.38”S; 57◦53’19.61”W - 58◦56’55.88”W). Both areas have similar environmen-

tal characteristics, they are mostly covered by grassland, aquatic vegetation and forest.

However, it can be noticed that the target domain is more urbanized (within this area

there are few towns, such as Aquidauana) than the source domain.

7.3.2 RS Data

The RS data employed to transfer the knowledge from the source to the target domain

are optical atmospherically corrected Sentinel-2 data (i.e., L2A products). In particular,

we considered the following Sentinel-2 spectral bands: blue (B2 - 490 nm), green (B3

- 560 nm), red (B4 - 665 nm), the four vegetation red edge (B5 - 705 nm, B6 - 740

nm, B7 - 0.783 nm and B8A - 865 nm), NIR (B8 - 842 nm) and the two SWIR bands

(B11 - 1610 nm and B12 - 2190 nm). We considered two Sentinel-2 tiles, namely the

21KXT (target domain) and the 21KUQ (source domain) in 2019. For each domain, we

generate a TS of 12 monthly composites retrieved from the Sentinel-2 images acquired

in 2019. The Sentinel-2 20 m bands were re-sampled at 10 m spatial resolution using a

nearest neighbor interpolation technique. The spectral outlier detection and removal was

performed by discarding the reflectance values higher than the 0.999 quantile and lower

than the 0.001 quantile of each spectral band. To generate the monthly composites all

the images having cloud coverage smaller than 40% were considered. For each month,

we computed the pixel-based median value of all the images acquired within the month.

Clouds and shadow have been detected by using Sen2cor mask and discarded from the

composite generation. For the generation of the target domain composites we used 53

Sentinel-2 images, while for the the source domain 41 Sentinel-2 images.
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7.3.3 Thematic Product

In order to assess the effectiveness of the proposed method, we considered the CGLS-LC

map, which aims to monitor the LC surface status and evolution at the global scale. The

map was generated by considering the TS of multispectral PROBA-V 100 m images. The

training set includes a dataset of more than 140 K crowd-sourced (Geo-WIKI) LC points

and other ancillary data. The CGLS-LC map is an yearly based (2015 - 2019) moderate-

resolution map having a classification accuracy of almost 80%. The map spatial resolution

is equal to 100 m. In this chapter we have considered the CGLS-LC map from 2019.

The CGLC map provides discrete classification at three levels according to LCCS. In

this chapter in accordance to photo-interpreted samples available the following LC classes

were considered: “Evergreen broadleaf”,“Deciduous broadleaf”, “Grassland”, “Herba-

ceous Vegetation Aquatic”, “Built-up areas” and “Open water permanent”.

7.4 Experimental Results

To properly validate the proposed domain adaptation approach to define representative

training sets at large scale, we performed the quantitative and the qualitative analysis

reported in the following.

7.4.1 Experimental Set-up

To quantitatively evaluate the proposed approach, we collected manually annotated sam-

ples in both the source and the target domains for the considered study area. The manu-

ally annotated samples of the target domain were divided into training and test sets. In

this way, we were able to compare the results obtained by the proposed method with the

SVM RBF classifier trained on the reference target samples (SVM Dt), which provides

an upperbound of the achievable accuracy. While the lowerbound of the achievable ac-

curacy is provided by training the SVM model on the manually annotated samples from

the source domain (SVM Ds). Moreover, in order to provide a good understanding of

the added value of this work, we report the results obtained at each step of the proposed

method. In particular, we present the classification results obtained by training the: SVM

model on the target domain samples retrieved from the LC map (output of the step 1

of the proposed method), LDA classifier using the KEMA aligned (manually annotated)

samples from the source domain (output of the step 2 of the proposed method), and fi-

nally the SVM using the enlarged training set made up of the manually annotated samples

from the source domain and the unsupervised target samples labeled in the latent space

(output of the proposed method).
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The obtained results have been also compared to the GFK [135] method mentioned

in the section 5.2. GFK is the domain adaptation method widely applied in the RS. The

source domain samples were used for training the GFK to perform the classification of

the target domain. Finally, to prove that the target domain samples extracted from the

low-resolution thematic product add value, we have labeled them by using SVM trained

on the Ds samples. Then, we used them together with the original Ds samples to align

in the latent space (Step 2 CGLS).

All the classification results refer to pixel-based classification and were evaluated on

the manually annotated samples of the target domain, in terms of OA and Fscore (F1).

Moreover, for each class, we have reported the Bhattacharyya distance [155] between

samples coming from the target and the source domain. Bhattacharyya distance measures

the similarity of the probability distributions, and thus is a helpful metrics to understand

how much shifted are the two considered domains probability distributions. We would like

to remark that the proposed method is totally unsupervised and no annotated samples

from the target domain are required. For the source domain, we considered a training set

composed of 678 photo-interpreted samples. For the target domain, the proposed method

added 614 samples. In the target map samples selection step, the N parameter (number

of classifiers in the ensemble) have been set to 3.

7.4.2 Results

Fig. 7.2 and 7.3 present the classification maps obtained in the two areas of the target

domain by considering different steps of the proposed method. It can be noticed that

the map produced by the output of the first step of the proposed processing chain (see

Fig. 7.2a, 7.3a) provides reasonable classification of grassland and evergreen broadleaf

classes. However, it seems to misclassify the open water permanent class and overestimate

the built-up and the herbaceous vegetation aquatic or regularly flooded classes. The

classification map provided in the second step of the proposed approach (see Fig. 7.2b,

7.3b) properly classifies the open water permanent class and the herbaceous vegetation

aquatic or regularly flooded, while it seems to overestimate the deciduous broadleaf class.

Even though the proposed approach seems to slightly overestimate the grassland class

the obtained classification map provides the most reliable results (see Fig. 7.2c, 7.3c).

Although the map produced by the SVM trained on the manually annotated sampled

from the source domain provides already reasonable result (see Fig. 7.2d, 7.3d) the

map provided by the proposed approach provides better classification of build-up class

as well as the deciduous broadleaf class (see Fig. 7.2c, 7.3c). Whereas, the classification

map provided by the GFK overestimates the deciduous broadleaf class and significantly

underestimates build-up and grassland classes (see Fig. 7.2e, 7.3e).
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Table 7.1: Bhattacharyya distance (Bhat. Dist.) between samples coming from the target Dt

and the source domain Ds and the classification results obtained on the manually annotated

samples of the Dt by training the: (i) SVM Dt - SVM model on the manually annotated samples

from theDt (upperbound of the achievable accuracy), (ii) SVMDs - SVMmodel on the manually

annotated samples from the Ds, (iii) Step 1 - SVM model on the Dt samples retrieved from the

LC map, (iv) Step 2 - LDA classifier using the KEMA aligned (manually annotated) samples

from the Ds, (v) Step 2 (CGLS) - LDA classifier using the KEMA aligned (manually annotated)

samples from the Ds (KEMA alignment done by using the Ds manually annotated samples and

the Dt samples labeled by using SVM Ds ), (vi) PM - SVM using the enlarged training set

made up of the manually annotated samples from the Ds and the unsupervised Dt labeled in

the latent space, and (vii) the GFK trained on the Ds samples. The F scores and the OA metrics

per method are reported.

Class
Bhat.
Dist.

SVM Dt SVM Ds Step 1 Step 2
Step 2
(CGLS) PM GFK

F1 [%] F1 [%] F1 [%] F1 [%] F1 [%] F1 [%] F1 [%]

Everg. brod. 2.21 0.93 0.85 0.66 0.86 0.82 0.88 0.88

Decid. brod. 4.64 0.90 0.62 0.05 0.78 0.69 0.83 0.76

Grassland 2.41 0.94 0.77 0.84 0.76 0.71 0.83 0.80

Herb. Veg. A. 1.32 0.93 0.71 0.36 0.70 0.74 0.85 0.84

Build-up 6.98 0.95 0.80 0.78 0.84 0.81 0.83 0.63

Water pern. 2.38 0.98 0.92 0.64 0.89 0.93 0.94 0.93

OA 0.94 0.80 0.58 0.82 0.80 0.87 0.83
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Tab. 7.1 shows the results obtained by training the: (i) SVM model on the manually

annotated samples from the target domain (SVM Dt), (ii) SVM model on the manually

annotated samples from the source domain (SVM Ds), (iii) SVM model on the samples

selected from the LC map in the target domain (Step 1), (iv) LDA classifier using the

KEMA aligned (manually annotated) samples from the source domain (Step 2), (v) LDA

classifier using the KEMA aligned (manually annotated) samples from the source domain

(KEMA alignment done by using the source domain manually annotated samples and the

target domain samples labeled by using SVM trained on source domain) (Step 2 (CGLS)),

(vi) SVM using the enlarged training set made up of the manually annotated samples from

the source domain and the unsupervised target samples labeled in the latent space (PM),

and (vii) by the GFK trained on source domain samples. All the results are provided on

the test set of manually annotated samples of the target domain.

It can be observed that the OA obtained by the proposed method is relatively high

0.87 in comparison to the upperbound 0.94 and the lowerbound 0.80 produced by the

manually labeled samples from the target and source domain, respectively. Although the

OA provided by the CGLS samples is the lowest 0.58, it can be noticed that it represents

the reliable source of information. This can be proved by looking at the Step 2-CGLS

results, where the label provided by the CGLS samples was changed to the result of

the SVM classifier trained on only source domain samples. Indeed, the OA accuracy

obtained in the latent space in this scenario is lower 0.80 than the one obtained when the

CGLS labels were considered 0.82. Moreover, one can notice that by projecting the data

onto the latent space (Step 2) the classification accuracy improve with respect to the SVM

model trained in the original domain (SVM Ds). For instance, for the deciduous broadleaf

class, the LDA classifier (in the latent space) compared to the baseline SVM achieves an F

score of 0.78 vs 0.62. However, the possibility of exploiting the enlarged training set in the

original features space (after the re-projection) further increases the accuracy obtained

for some classes (PM). By focusing the attention on the grassland, the SVM classifier

achieves 0.83 accuracy vs 0.76 by LDA in the latent space. Overall, it can be noticed

that the significant improvement of the classification accuracy is obtained for most of the

classes. When comparing with other domain adaptation method, the proposed method

achieves higher or equal F1 score for each considered class and the higher OA. Finally, one

can notice that the proposed method improves the F1 score, even if the Bhattacharyya

distance is relatively high. For instance, the build up class the Bhattacharyya distance

is equal to 6.98, the F1 score is equal to 0.80 when classifier is trained with the source

domain samples and with 0.83 when the proposed method is applied.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Classification results obtained in the target domain by training: (a) SVM on the

output of the step 1, (b) LDA classifier on the output of the step 2, (c) proposed method, (d)

SVM on reference samples from source domain, (e) the GFK, and (f) presents ESRI image of

the corresponding area.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Classification results obtained in the target domain by training: (a) SVM on the

output of the step 1, (b) LDA classifier on the output of the step 2, (c) proposed method, (d)

SVM on reference samples from source domain, (e) the GFK, and (f) presents ESRI image of

the corresponding area.
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7.5 Conclusion

In this chapter, we presented an approach based on obsolete LC-maps and domain adapta-

tion to define representative training sets at large scale. The method assumes availability

of a training set for at least one RS image of the study area (the source domain), and the

thematic product for the RS data where no labeled data are available (target domains).

The thematic product is used to extract few weak labeled target samples that are used

together with the annotated source samples to detect a common latent space, where the

LC distributions are aligned. This allows us to to assign the labels to several target units

in an unsupervised but reliable way. Then, this target domain units are re-projected into

original feature space and are united with the source domain samples. Finally, to validate

the quality of the training samples, we run the pixel-based classification using the united

training set.

The proposed method have been applied to two Sentinel-2 tiles in the Amazon study

area, namely: 21KXT and 21KUQ in 2019. The results obtained by the proposed method

have been validated by qualitatively and quantitatively comparing its accuracy to each

step of the proposed architecture. Moreover, we have analyzed the value of the informa-

tion provided by the low resolution LC map. This was done by classifying the samples

extracted from the low resolution LC map with the SVM trained on the source domain

samples. The analysis carried out proves that the proposed method effectively aligns the

two domains and take advantage from the small amount of manually labeled source do-

main samples as well as the low resolution LC map. Finally, the method outperforms the

widely used GFK domain adaptation method (0.87 vs 0.83).

The proposed method is able to: i) perform well even if the small set of manually

labeled sampled is available (for the source domain), and ii) add labeled units for RS data

geographically distant from the available reference data. Moreover, we plan to test this

strategy on different RS data, and with more complex classification schemes. Finally, we

would like to test the proposed method on more challenging assumptions regarding the

shift of domain distributions.
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Chapter 8

Conclusion

This chapter draws the conclusions of the research activities presented in the thesis. It

summaries and discusses the results presented in this dissertation and proposes future

research directions of the presented work.

8.1 Novel Contributions

In this thesis, we have presented four novel contributions to the field of multitemporal

multispectral automatic RS data analyses. In the following, the novel contribution of

this dissertation are discussed considering advantages and disadvantages of the proposed

methods.

In Chapter 3, we have addressed the estimation of the GMB at detailed spatial

scale. The proposed contribution accurately improves the GMB estimation provided by a

physically-based model. Differently from the methods in the literature, which are based

on assimilation of RS data into physically-based simulations, the proposed methods inte-

grates the complementary information afforded by the physically-based models, RS data

and a few in-situ measurements. This allows us to overcome some of the weaknesses inher-

ent in each of these data sources. In particular, physically-based simulations provide good

generalization capability but simulations further away from a meteorological station are

more uncertain. Moreover, the spatial resolution of such products is typically relatively

low. On the other hand, in-situ measurements are very precise but also time-consuming

and laborious. Whereas, the RS data provide a comprehensive spatial representation of

glacier by their usage is hampered by cloud occlusions. The proposed approach was tested

on glaciers in the Rofental Valley in Otzal Alps, Austria and Ortles-Cevedale group in

South Tyrol, Italy. Sentinel-2 data were employed for analysis in 2015, 2016 and 2017,

while Landsat 5 and 7 were used in 2006, 2007, 2010, 2011, 2012 and 2013. Both quali-

tative and quantitative results prove the effectiveness of integrating complementary data
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sources, obtaining an average root-mean-square error of 460 mm compared to 732 and 661

mm obtained by the physically-based model and the standard regression models, typically

used for parameters estimation. Moreover, due to spatial details provided by the RS im-

agery (10 and 30 m) the estimated GMB maps have a high spatial resolution with respect

to the maps produced by the considered physically-based model (50 m). The proposed

method is data-driven and can be applied to different glaciers by tuning the parameter

k in accordance with the number of in-situ measurements available. A limitation of the

proposed method is the requirement of in-situ measurements.

In Chapter 4, we have addressed the problem of multitemporal high spatial resolution

LC monitoring to support climate change analysis. In contrast to the LC maps currently

available, the proposed processing chains aim at performing a detailed LC mapping con-

sidering a classification scheme tailored to the specific needs of large scale climate change

analysis. The proposed system architecture is general and is used for generating specific

products: the 2019 HR land cover maps at 10 m spatial resolution at subcontinental scale

to address the needs of climate modeling community and a long-term record (1990 - 2015)

of regional HRLC (30 m) maps to support climate mitigation and adaptation analysis.

The produced LC maps enable climate community to understand the role of spatial and

temporal resolution on the LC maps consistency. The proposed system processes TS of

high spatial resolution Sentinel-2 in 2019 and Landsat 5, 7 and 8 images in 1990, 1995,

2000, 2005, 2010 and 2015. The work presented in this chapter is part of the CCI HRLC

project, which is the continuation of the CCI middle resolution project. We have qualita-

tively compared both products. The analysis carried out over few areas, showed that the

the HRLC maps provide not only a higher spatial detail but are also more accurate than

the CCI middle resolution. Although, the proposed static processing chain is designed to

work at large scale, at the time of writing this thesis the quantitative analysis of both

processing chains have been performed at regional scale (over 283, 265 and 204 Sentinel-2

tiles in the African Sahel, the Amazon, and the Siberia, respectively.). The obtained OA

in accordance with the considered study areas is equal to 74.03%, 78.57%, 70.64% for the

static map in the Amazon, the African Sahel and the Siberia, respectively. While, for the

historic LC maps, the OA varies for all the considered years between 61.11% - 78.57% for

the Amazon, 46.03% - 62.98% in the African Sahel and 57.93% - 65.07% in the Siberia. As

expected the OA of the historic products is lower than that of the static ones, especially

for the Siberia and the African Sahel areas. This can be associated to the small number

of images available in these areas (especially in the Siberia) and the insufficient number

of training samples (in the African Sahel). This is one of the main motivations for the

development of the work of Chapter 7. Both processing chains have modular structure,

and can be easily modified and adapted. Moreover, they are able to deal with the large
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volumes of RS images coming from different sensors and characterized by different spatial,

spectral and temporal resolution in a computationally efficient manner.

In Chapter 6, we have addressed the cloud coverage issue in TS of optical images,

which is an extremely important problem from the operational point of view. Our work

highlights the possibility of exploiting the capability of the deep learning based algorithms

to provide accurate multitemporal classification results having lighter pre-processing steps

compared to standard classifiers. We quantitatively studied the robustness of the mul-

titemporal LSTM deep learning architecture under different cloud cover conditions. In

particular, we analyzed the agreement between the classification maps obtained by using

an LSTM classifier trained on a cloud-free TS and a TS with artificially introduced clouds.

The analysis was carried out using Sentinel-2 imagery in the Amazon, which is known

for its heavy cloud cover. The obtained results show that the LSTM is able to preserve

very high agreement of maps when the clouds are detected using Sen2cor tool and a fast

linear temporal gap filling is applied. The obtained results show that the classifier pre-

serves an agreement of 93.75% even when 40% of a TSs made up of 30 images is cloudy.

Moreover, when cloud are represented as zeros the maps agreement is better than when

the clouds value are not removed. This because assigning zero values to the cloudy pixels

remove this information from the input gates of the LSTM. As expected the longer is the

considered TS the better is the classification result obtained and LSTM is more robust

to the presence of cloud cover. For instance, when 40% of images in the TS are restored

using linear temporal gap filling, the agreement of maps is equal to 86.41% and 93.75%

for TS of 10 and 30 images, respectively. Finally, the obtained results show that the cloud

position within TS plays a significant role for the classifier accuracy, especially for short

TSs. This can be explained by the temporal variability of spectral signatures, which is

crucial for the proper class identification.

In Chapter 7, we have address the issue of the definition of a reliable training set

when working on large study areas. The proposed method highlights the importance of

exploiting the available thematic products, which represent a valid source of information

at global scale. Qualitative and quantitative analyses have been carried out over two

Sentinel-2 tiles acquired in the Amazon in 2019. For the source domain a small set of

photo-interpreted samples have been considered (20 samples per class), while for the target

domain samples have been extracted from the CGLC 2019 map, available at 100 meters

spatial resolution. The obtained results show the effectiveness of the proposed approach,

which obtained OA of 87% compared to 80% obtained with the source domain photo-

interpreted training set. Whereas the accuracy of the original target domain training set

extracted from the CGLS map was equal to 58%. We would like to mention that given

the current availability of the LC products, the proposed method can be applied to other
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RS data without geographical constraint. Although the proposed method is promising

further analysis should be carried out in order to understand when the classes dissimilarity

makes the method fail.

8.2 Future Developments

In the following, we present some future developments to enhance the presented works

and expand its use to more applications.

Regarding the estimation of the GMB spatial maps, three main areas should be further

investigated. First, we would like to test the transferability of corrections across years,

which from an operational viewpoint is an extremely interesting open research question.

To answer it, it might prove helpful to analyze the correlation between the: (i) physically

based simulations across years, and (ii) environmental conditions of the study areas (e.g.,

possible changes on the ground). If the hydro-climatological processes strongly vary from

year to year, the deviations estimated by the proposed method cannot be simply inherited,

but require an automatic adaptation step that should be properly defined. Second, we

plan to investigate the possibility of extending the correction to other glaciers where no

in-situ data are available. This can be assessed for glaciers that are close each other and

have similar properties. Third, we would like to analyze a possible integration of SAR data

(e.g., Sentinel-1) for feature-space definition. This is expected to be particularly helpful to

better characterize different snow and ice types as SAR data provides information about

snow and ice roughness, water content, grain size, and impurities [44].

Regarding the multitemporal large scale LC mapping, there are several future devel-

opments to be analyzed. An important research direction is the use of a multitemporal

strategy to enhance the temporal consistency of the produced historic LC maps. This is

because from the climate change perspective the maps consistency plays a crucial role to

monitor and understand the impact of the LC changes on the climate. In this context,

the use of cascade classifiers can obtain more temporally consistent classification maps.

On the other hand, taking into consideration still not satisfying the OA obtained, one

possible option would be to further enlarge the training set. This can be addressed or

by reinforcement of the photo-interpretation activities or by applying domain adaptation

strategies. To this end, we would like to test the proposed approach that leverages low

resolution LC maps and domain adaptation methods to define a representative train-

ing set at large scale. So far, the proposed domain adaptation technique has been only

tested under the covariate shift assumption. However, looking at the low OA obtained in

the African Sahel, one may expect more challenging classification assumptions regarding

training set distribution shifts, such as sample selection bias or other problems related to
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the training set definition such as missing representation of some subclasses e.g., different

kind of bare areas (deserts, volcanoes). Moreover, within this thesis, the domain adapta-

tion method was tested with quite simple classification scheme (only six LC classes have

been considered). Therefore, we would like to test its accuracy when applied to more

complex classification scenarios, such as the one considered for the large scale HR LC

mapping. In the context of the image classification, we plan to further analyze the LSTM

classifier robustness to cloudy images. In particular, we aim to study the temporal vari-

ability of the spectral signature of different classes to better understand the land covers,

which recognition is more impacted by cloud occlusions.
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[43] J. Parajka and G. Blöschl, “The value of modis snow cover data in validating and

calibrating conceptual hydrologic models,” Journal of hydrology, vol. 358, no. 3-4,

pp. 240–258, 2008.

[44] J. Shi and J. Dozier, “Inferring snow wetness using c-band data from sir-c’s po-

larimetric synthetic aperture radar,” IEEE transactions on geoscience and remote

sensing, vol. 33, no. 4, pp. 905–914, 1995.

[45] J. L. Bamber and A. Rivera, “A review of remote sensing methods for glacier mass

balance determination,” Global and Planetary Change, vol. 59, no. 1-4, pp. 138–148,

2007.

[46] F. Rau, M. Braun, M. Friedrich, F. Weber, and H. Goßmann, “Radar glacier zones

and their boundaries as indicators of glacier mass balance and climatic variability,”

in Proceedings of the 2nd EARSeL Workshop-Special Interest Group Land Ice and

Snow, pp. 317–327, 2000.

[47] E. R. et al., “Accelerated ice discharge from the antarctic peninsula following the

collapse of larsen b ice shelf,” GEOPHYSICAL RESEARCH LETTERS, vol. 31,

no. 18, 2004.

[48] M. Demuth and A. Pietroniro, “Inferring glacier mass balance using radarsat: results

from peyto glacier, canada,” Geografiska Annaler: Series A, Physical Geography,

vol. 81, no. 4, pp. 521–540, 1999.

147



BIBLIOGRAPHY

[49] H. D. Pritchard, S. Luthcke, and A. H. Fleming, “Understanding ice-sheet mass bal-

ance: progress in satellite altimetry and gravimetry,” Journal of Glaciology, vol. 56,

no. 200, pp. 1151–1161, 2010.

[50] A. Shepherd, E. Ivins, E. Rignot, B. Smith, M. van Den Broeke, I. Velicogna,

P. Whitehouse, K. Briggs, I. Joughin, G. Krinner, et al., “Mass balance of the

greenland ice sheet from 1992 to 2018,” Nature, vol. 579, no. 7798, pp. 233–239,

2020.

[51] F. E. ACRI-ST, “The amorgos meris cfi (accurate meris ortho-rectified geo-location

operational software) software user manual & interface control document,” 2007.

[52] O. Arino, D. Gross, F. Ranera, M. Leroy, P. Bicheron, C. Brockman, P. Defourny,

C. Vancutsem, F. Achard, L. Durieux, et al., “Globcover: Esa service for global

land cover from meris,” in 2007 IEEE international geoscience and remote sensing

symposium, pp. 2412–2415, IEEE, 2007.

[53] E. B. C. author and A. S. Belward, “Glc2000: a new approach to global land cover

mapping from earth observation data,” International Journal of Remote Sensing,

vol. 26, no. 9, pp. 1959–1977, 2005.

[54] S. Bontemps, P. Defourny, E. V. Bogaert, O. Arino, V. Kalogirou, and J. R. Perez,

“Globcover 2009-products description and validation report,” 2011.

[55] M. A. Friedl, D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley,

and X. Huang, “Modis collection 5 global land cover: Algorithm refinements and

characterization of new datasets,” Remote sensing of Environment, vol. 114, no. 1,

pp. 168–182, 2010.

[56] S. P. A. M. A. F. Damien Sulla-Menashe, Josh M. Gray, “Hierarchical mapping

of annual global land cover 2001 to present: The modis collection 6 land cover

product,” Remote sensing of Environment, vol. 222, no. 1, pp. 183–194, 2019.

[57] I. R. John Latham, Renato Cumani and M. Bloise, “Fao global land cover (glc-share)

beta-release 1.0 database,” Land and Water Division, 2014.

[58] M. B. et al., “Copernicus global land service: Land cover 100m: epoch 2015: Globe.

dataset of the global component of the copernicus land monitoring service.,” 2019.

[59] P. G. et al., “Finer resolution observation and monitoring of global land cover: first

mapping results with landsat tm and etm+ data,” International Journal of Remote

Sensing, vol. 34, p. 2607–2654, 2013.

148



BIBLIOGRAPHY

[60] L. S. Jun Chen, Ban Yifang, “Open access to earth land-cover map,” Nature,

vol. 514, no. 434, pp. 1476–4687, 2014.

[61] M. Marconcini, A. Metz-Marconcini, S. Üreyen, D. Palacios-Lopez, W. Hanke,
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