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High frequency electro-optic measurement of strained silicon racetrack resonators
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The observation of the electro-optic effect in strained silicon waveguides has been considered as a
direct manifestation of an induced x® non-linearity in the material. In this work, we perform high
frequency measurements on strained silicon racetrack resonators. Strain is controlled by a mechanical
deformation of the waveguide. It is shown that any optical modulation vanishes independently of
the applied strain when the applied voltage varies much faster than the carrier effective lifetime,
and that the DC modulation is also largely independent of the applied strain. This demonstrates
that plasma carrier dispersion is responsible for the observed electro-optic effect. After normalizing

out free carrier effects, our results set an upper limit of 8 pm/V to the induced high-speed X(;f)f

tensor element at an applied stress of —0.5 GPa. This upper limit is about one order of magnitude

lower than the previously reported values for static electro-optic measurements.

In the last years, a lot of effort was spent investigating the
strain induced second order nonlinearity (x(? effect) in
Silicon by investigating the induced Pockels effect [IH5].
Strain induced x(® could be instrumental to make ultra-
fast and energy efficient electro-optic modulators for the
Silicon photonics platform which would replace present
electro-optic modulators based on the plasma dispersion
effect [6H9]. More generally, the presence of an apprecia-
ble x(? in Silicon would validate the Silicon-on-Insulator
(SOI) platform as an alternative to Lithium Niobate for
second order nonlinear optics [I0, I1]. In most of these
works, the centro-symmetry of Silicon is broken by a
stressing film of Silicon Nitride which induces strain in
the underlying Silicon waveguide and enables a () # 0 -
at least from a first principle point of view [I12]. With the
exception of refs. [10, [IT], the Pockels effect was investi-
gated by using an integrated imbalanced Mach-Zehnder
interferometer in which one or both interferometer arms
are driven by a DC or a low frequency (=~ kHz) AC elec-

tric field [IH5]. Then, an effective Xir?at value is extracted
from the measured shift of the interference fringes by
taking into account the system geometry and the magni-
tude of the applied static electric field. As expected from
theory, the relation between the effective index change
and the applied static electric field is found to be linear.
The linear relation between these two physical quanti-
ties is considered as the evidence of the observation of
a Pockels effect. Unfortunately, a linear effective index
variation of the optical mode of a waveguide can also be
induced by free carriers [I3] 4] or by trap states and
localized charges at the SiN,-Si interface [1I, 13]. A
definitive proof of the strain induced non-linearity can
be obtained by high frequency measurements in an inter-
ferometer structure since the Pockels effect and the free
carrier dispersion are characterized by two different char-

acteristic times. In this letter, we measure the separate
contributions to the effective XSﬁ)? of the Pockels effect and
of the plasma dispersion effect. We investigate the fre-
quency response of the electro-optic effect in a racetrack
resonator up to 5 GHz, i.e., well above the effective free
carrier lifetime in the waveguide. In particular, by using
a dedicated setup, we were able to tune continuously the
strain in a same device so as to verify accurately how the
applied strain modifies the system’s frequency response.

Our test structure is shown in fig[l{a). It consists of a
racetrack resonator in the Add-Drop filter configuration
[15] fabricated on a 6” SOI wafer. The resonator has a
perimeter of 415 um and a coupling coefficient with the
bus waveguide of k2 = 7%. A 140 nm thick LPCVD Sil-
icon Nitride (SizNy4) layer is conformally deposited on
the silicon waveguide. We use a 3 um thick Buried Ox-
ide Layer (BOX) and a 900 nm thick Silica layer as lower
and upper cladding materials. The residual stress on
the SizN4 layer has been measured to be —0.19 GPa.
An electric field can be applied in the z direction (see
ﬁga)) using three Aluminum electrodes along a 50 yum
straight waveguide section. With reference to the geom-
etry shown in ﬁga)7 this is achieved by grounding the
central electrode on the top of the waveguide, and by
shorting the two adjacent electrodes to a common volt-
age. This configuration is similar to the one reported in
ref. [5]. The waveguide width changes adiabatically from
400 nm outside the electrode region to 1600 nm below
them. The waveguide height is kept fixed at 250 nm. Us-
ing the adiabatic tapers, we are able to probe the electro-
optic modulation in the 1600 nm wide multimode waveg-
uide by preserving the fundamental mode excitation. As
shown in ﬁgb), the device is fixed on a sample holder
which can provide a variable stress adjusted by rotating a
250 pm pitch screw. The material strain is mechanically
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Figure 1: (a) Optical microscope image of the racetrack resonator. Electrodes appear as white rectangles. Only the three
electrodes on the bottom are used to apply an electric field in the z direction. The narrow metallic stripes connect the
electrodes to 150 um x 50 um rectangular pads (not shown), which are used as contact points for the Tungsten tips. (b)
3D model of the stressing sample holder. The sample is indicated in red. (c) Experimental setup used for the electro-optic

measurements. PMF = Polarization Maintaining Fibers, PD =

= Radio Frequency IN(OUT).

a) 0.5 -0.5 -1.5 -2.5 GPa

b)

0.0 L]
-0.2 4
0.4
.06 -
.08 -

-1.0 1 .

Average waveguide stress (GPa)

-1.2

T T T T
0 50 100 150 200 250
Screw displacement (um)

Figure 2: (a) Finite Element simulation of the stress distri-
bution (0. element of the stress tensor o;;) on the sample
subjected to a 62.5 um screw displacement. The discontinu-
ities near the ends are due to the line contact with the sample
holder (see fig. [[[b)), which lies 2mm from the end. The in-
set shows the stress profile along the waveguide cross section.
(b) Average stress (045 ) inside the waveguide as a function of
the screw displacement.

induced by fixing the sample ends to the holder and by
subsequently bending its center by means of the pressure

Photodiodes, VNA = Vector Network Analyzer, RF IN(OUT)

exercised by the screw. We found that it is possible to
displace the screw by approximately its complete pitch
before breaking the chip. To avoid micro fractures, we
kept screw displacements lower than 150um. It is impor-
tant to note that, with respect to other studies in which
the analysis is performed by comparing samples with dif-
ferent strain [IH5] 10, 11, in our case it is possible to
tune continuously the induced strain in the very same
sample /resonator. As indicated in fig. c), light from
a C-band infra-red laser amplified by an Erbium Doped
Fiber Amplifier (EDFA) is edge coupled to the Input port
of the resonator using a Polarization Maintaining Lensed
Fiber (PMF). The light polarization is set to Transverse
Magnetic (TM). A nanometric XYZ positioning stage is
used to minimize the coupling losses. The transmitted
light from the resonator Through port is split: 10% is
sent to a reference photodiode, while 90% feeds a high
bandwidth photoreceiver (43 GHz) connected to a Vec-
tor Network Analyzer (VNA). The VNA also provides
28 dBm (after amplification) of sinusoidal voltage modu-
lation to the electrodes using impedance matched Tung-
sten tips with a 40 GH z bandwidth.

We determined the relation between the screw displace-
ment and the stress induced inside the waveguide from
Finite Element Method (FEM) computations. The re-
sults are shown in ﬁga—b). Only the o,, element of
the stress tensor o;; is plotted, since it is found to be one
order of magnitude higher than the o,, component and
five orders of magnitude higher than the remaining ten-
sor elements. In the region where the resonator is located
(dashed rectangle in fig. [2(a)), the overall stress distribu-
tion can be approximated as compressive and uniaxial in
the x direction. In ﬁgb)7 we show a linear relation be-
tween the screw displacement and the computed average
stress in the waveguide. At our working point (displace-
ment &~ 125 um), the stress level is about —0.48 GPa in
the waveguide and —0.78 GPa in the SigNy layer. The
stress magnitude and direction is comparable to the ones
used in other experiments [IH5, 10, [11]. In the inset of fig.
[[a) we also notice that a high stress (hence strain) gra-



dient is present at the upper and lower interfaces between
Si3N, and the waveguide. This feature is essential since
it is theoretically predicted that the induced x(?) is pro-
portional to the strain gradient in the material [I0} [12].
At first, we set the screw displacement to zero, so no
stress (except the residual one due to the SizN, — Si
interface) is applied to the waveguide.

By monitoring the output signal at the reference photo-
diode (fig. [T{c)), we tune the laser wavelength near the
—3dB point of one of the resonances (fig. [3| (a) inset),
where the sensitivity to small refractive index variations
is maximized. The quality factor @} of this resonance is
~ 23200. We then apply a sinusoidal voltage to the sam-
ple electrodes (fig. [1] (a)) using the VNA and a 32dB
electrical amplifier. As a result of the bias modulation,
the resonance oscillates back and forth with respect to
the laser wavelength, inducing a periodic modulation of
the transmitted optical signal at the Through port of the
resonator, similarly to the operation of a conventional
resonant ring modulator (RRM). Assuming that this sig-
nal modulation is due to the electro-optic effect caused
by the strain induced second order nonlinearity, the os-
cillation amplitude Iy is given by:

(2)

I, = (afout) )\OLxeﬂ‘,zzz EDC (1)
0 8)\0 2Ltot”3

in which 0I5,t/90Mo is the local slope of the spectrum,
\o is one of the resonance wavelengths of the resonator,
L is the length of region where the voltage is applied,
Ly is the resonator length, n. the refractive index of the
core material of the waveguide and Epc the average elec-
tric field in the core (computed using FEM simulations
and assumed completely polarized in the z direction). In

Eq the effective X(le% . is defined as:
2 S X D )| B ) Pede
eff 22z [ n?(z,2)|E(z, z)|?dzdx

where Xi?z is the local strain induced X(Q) in the mate-

rial, n the refractive index distribution and E(z,z) the
electric field of the optical mode. In Eq2] we have as-
sumed that the optical field is mainly polarized in the
z direction, so that off-diagonal tensor elements do not
contribute to the integral. Eq[I] can be derived from
the fact that the Pockels induced effective index change

Angg = (Xé%zzzEDCng)/Qni shifts the resonance fre-

quency Ao by a quantity A\ = (AnggL)/(Ltotng). The
VNA actually records [y, from which, through Eq[l] we

extract ng)f o Figure a) shows the effective x(;f% s

values as a function of the driving bias frequency. The
latter is swept from 50 M Hz to 5GHz. As we can see,

the value of Xézﬁ)_g . is maximum in the low frequency

range, and decreases as the modulation frequency in-
(2)

value
eff, ZzZz

creases. We point out that the extracted y

close to DC regime is &~ 270 pm/V, which is compara-
ble to values reported in the literature for static electro-
optic measurements using the same electric field and
optical polarization directions [3, 4]. The cut-off fre-
(2)

eﬁ,zzz
is v, = (0.50 & 0.01) GH z, corresponding to a time con-
(2)

eﬁ,zzz
that can be detected is limited by the electrical noise floor
of the VNA and of the photoreceiver. This corresponds

quency, i.e, the frequency at which the y halves,

stant 7 = (0.554+0.01) ns. The minimum value of x

to an effective XS{% ., of & 8pm/V. From fig. (a),
one can see that this value is reached for v > 45GHz.
To exclude the possibility that the bandwidth is limited
by the photon lifetime in the cavity, we modulated the
optical input, and measured the signal at the Drop port
with the laser wavelength tuned to the cavity resonance.
The signal drops by ~ —1.3dB from 50 M Hz to 5GHz,
showing that the cavity is far from the optical cut-off.
This frequency response has been subtracted from the
curves in figJj(a).

As shown in ﬁga), we repeated the electro-optic mea-
surements after applying stress levels to the waveguide of
respectively —0.24 GPa and —0.48 GPa. Very slight dif-
ferences are observed with respect to the no-stress case.
We also tested waveguides with smaller widths, such as
400 nm and 800 nm, and found smaller transmission sig-
nal modulations compared to the 1600 nm wide one.
These results clearly show that the modulation can not
be attributed to a strain induced x(?, i.e., to the linear
electro-optic effect. In fact, if the latter were the cause
for the observed effect, one would expect the transmit-
ted signal to follow voltage variations instantaneously up
to optical frequencies. The signal modulation is rather
related to a slower dispersion mechanism, with a charac-
teristic time in the nanosecond scale. It has been recently
shown that the plasma carrier dispersion effect can result
in a linear electro-optic modulation if a charge layer is
present at the SizNy — Si interface [I3] [14]. Therefore,
we checked the effective carrier lifetime in our waveguide
to verify its consistency with the cut-off frequency in the
electro-optic experiments. We used a pump and probe
scheme, in which an intense ps laser pulse is coupled to
the waveguide and the time dependent losses of a weaker
probe beam are monitored. The short pump pulse gen-
erates free carriers due to two-photon absorption (TPA),
these free carriers in turn attenuate the probe signal due
to free-carrier absorption. After switching off the pump
laser, the probe beam transmission slowly recovers due
to free carrier recombination or diffusion away from the
spot of the pump laser. The effective free carrier lifetime
can then be extracted from the time-resolved measure-
ment of the recovering probe beam transmission. The
result is shown in fig. b). The sudden signal decrease
is due to the pulse arrival and, consequently, to TPA car-
rier generation. The following slower signal recovery is
due to the finite free carrier lifetime. From these data,
we estimated a carrier lifetime of 7. = (1.06 & 0.01) ns.
Being 7. ~ 1/v., we conclude that the observed mod-
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Figure 3: (a) Effective X((ff% as a function of the electrical modulation frequency for three different stress levels in the waveguide.

For clarity, the errors are reported only for certain points of the curves. The inset shows the working point of the electro-optic
measurement. The black line denotes the Through transmission while the vertical blue dashed line represents the wavelength
of the laser. (b) Measurement of the carrier lifetime. The black line is the Drop signal (in normalized units) in time while the

red dotted line is an exponential fit of the rising edge.

ulation can be attributed to plasma carrier dispersion.
As further support to our conclusions, we applied static
DC voltages to the electrodes of the racetrack resonator.
We swept from 0V to 70V and measured the spectral
response at the Drop port as a function of the bias. We
found that the maximum dropped signal monotonically
decreases with voltage. At 70V, the signal decreases
by 1dB with respect to the zero bias condition. This
behaviour confirms that the electro-optic modulation is
actually induced by free carriers since it also introduces
additional round trip lossess that would be unexpected in
the case of strain induced Pockels effect. Furthermore, it
is interesting to observe that the modulation frequency
response is limited by the carrier lifetime. A plausible
explanation of our observations is the accumulation and
release of carriers at the SigINy — S interfaces as a con-
sequence of the applied voltages [13], [16], [17].

In addition, we set an upper limit to the strain induced

Xfff% . of 8pm/V at —0.5 GPa of applied stress. This

value is about an order of magnitude lower than those
extracted from DC measurements, as reported here and
in the literature [215]. At DC, we believe x(?) induced
modulation to be completely masked by free carrier ef-
fects. We remark here that our results do not exclude
the presence of a strain induced x(® in Silicon. Indeed,
there exist proofs of Second Harmonic Generation (SHG)
in strained Silicon that intrinsically can not have an ex-
planation purely relying on free carrier [10} 11}, [18]. These
experiments revealed a x(?) value of up to 40 pm/V for
—1.2GPa applied stress. Differences can be due to the
fact that the x(?) tensor is dispersive, so its value at opti-
cal frequencies can be significantly different from the one
measured at DC [I0]. In addition, it has recently been

shown that electrostatic fields at the Si3 N4 — S7 interface
can couple with the optical fields through x(®) nonlinear-
ities, resulting in a Electric Field Second Harmonic Con-
tribution (EFISH) [I1]. This may have altered and con-
sequently increased the extracted values of the x(2). To
summarize the results, in this work we demonstrate that
a strong linear electro-optic effect is present in strained
Silicon waveguides due to free carrier dispersion. A dedi-
cated experimental set-up allows us to continuously tune
the applied stress on a very same racetrack resonator.
By performing high frequency measurements of the op-
tical transmission under an AC electric field variation,
we found that the electro-optic modulation vanishes as
the modulation speed exceeds the free carrier lifetime.
Thus, we evidenced a time response in the nanosecond
range and, consequently, ruled out the potential strain

induced x(? as the origin of the modulation. We extract
(2) :

eﬁ,zzz m
Silicon waveguides, which corresponds to our minimum

detectable signal. This value is more than one order of
magnitude lower than the one reported in the low fre-
quency regime in the literature, which allows us to con-
clude that free carriers are responsible for the observed
behavior. Larger stress or different stressing materials
than Si3N, are needed to definitely prove the presence
of the electro-optic effect in strained Silicon waveguides.
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