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Abstract

Motivation: Controlling for tumor purity in molecular analyses is essential to allow for reliable

genomic aberration calls, for inter-sample comparison and to monitor heterogeneity of cancer cell

populations. In genome wide screening studies, the assessment of tumor purity is typically per-

formed by means of computational methods that exploit somatic copy number aberrations.

Results: We present a strategy, called Purity Assessment from clonal MEthylation Sites (PAMES),

which uses the methylation level of a few dozen, highly clonal, tumor type specific CpG sites to

estimate the purity of tumor samples, without the need of a matched benign control. We trained

and validated our method in more than 6000 samples from different datasets. Purity estimates by

PAMES were highly concordant with other state-of-the-art tools and its evaluation in a cancer cell

line dataset highlights its reliability to accurately estimate tumor admixtures. We extended

the capability of PAMES to the analysis of CpG islands instead of the more platform-specific CpG

sites and demonstrated its accuracy in a set of advanced tumors profiled by high throughput DNA

methylation sequencing. These analyses show that PAMES is a valuable tool to assess the purity of

tumor samples in the settings of clinical research and diagnostics.

Availability and implementation: https://github.com/cgplab/PAMES

Contact: matteo.benelli@uslcentro.toscana.it or f.demichelis@unitn.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is an essential player of gene regulation and one of

the most studied epigenetics mechanism. Its role in cancer initiation

and progression has been extensively investigated during the last years

(Esteller, 2008; Hansen et al., 2011; Lister et al., 2009). Hyper-

methylation may occur in the regulatory regions of tumor suppressor

genes, leading to inactivation of genes suppressing the cancer initiation

or progression; alternatively demethylation may cause the formation

of euchromatin states making oncogenes available to transcription fac-

tors (Esteller, 2007; Kundaje et al., 2015). Through a pan-cancer anal-

ysis of DNA methylation profiles of thousands of tumor samples

available through The Cancer Genome Atlas Consortium (TCGA), we

observed high-degree of methylation concordance within each tumor

type. In prostate cancer patients, GSTP1 is hyper-methylated in nearly

all tumors and the methylation signal suggests that such event is clonal

(Lee et al., 1994); similarly, RUNX3 and RASSF1A are consistently

methylated in bladder cancer (Kim et al., 2005) and in head and neck

squamous cell carcinoma (Fan, 2004), respectively. While the role of

these highly recurrent events in tumor initiation and progression is not

completely clear, we reasoned that differential methylation, if clonal,

can be considered as excellent proxy to estimate the cellularity (i.e.

tumor purity) of each tumor sample.

Computational tumor purity estimation has been widely per-

formed in most recent genomic studies including those from TCGA

genomic landscape analyses. Tumor purity adjustment allows for

uniform inter-sample and inter-patients comparisons of genomic
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profiles and helps unmask subclonal events (Yadav and De, 2015).

Most commonly, purity assessment approaches exploit somatic

copy number aberration (SCNA) profiles where the core of the com-

putations is based on deviations of observed from expected values of

tumor to normal ratios in aberrant genomic segments. SCNA-based

methods (Carter et al., 2012; Prandi et al., 2014) have been demon-

strated to be accurate; however, they rely on the availability of

matched normal samples data and are limited in use in the presence

of tumor genomes that do not demonstrate marked genomic changes

(i.e. flat genomes, dominant somatic aberration mechanism differs

from structural variants). DNA methylation-based strategies for

purity assessment have also been used (Wang et al., 2016), including

MethylPurify (Zheng et al., 2014), LUMP (Aran et al., 2015) and

InfiniumPurify (Zhang et al., 2015), which showed purity estimates

concordant with SCNAs based methods values (Carter et al., 2012;

Prandi et al., 2014). MethylPurify uses differentially methylated

regions to infer the purity of tumor samples in bisulfite sequencing

data. Leukocytes Unmethylation for Purity (LUMP) predicts the

purity by averaging the methylation level (b values) of 44 non-

methylated immune-specific CpG sites. InfiniumPurify, the only

DNA methylation-based method implemented as a tool and specifi-

cally developed for the most used DNA methylation platform

(Infinium HumanMethylation450 (HM450) BeadChip, Illumina

inc, http://www.illumina.com), calculates the purity by exploiting

the statistical features of the distribution of the b values of differen-

tial DNA methylation sites requiring hundreds to thousands of can-

cer specific sites to obtain robust measures.

Here, we present a new tool for purity estimation of cancer sam-

ples from their DNA methylation profile, named Purity Assessment

from clonal MEthylation Sites (PAMES). The method relies on the

selection of up to 20 highly clonal cancer specific sites. We first

tested PAMES on more than 6000 cancer and normal TCGA sam-

ples including 14 tumor types and next applied it to additional can-

cer datasets. The comparison with state-of-the-art methods showed

high concordance. We then extended PAMES to the analysis of CpG

islands (as opposed to platform specific methylation sites) to favor a

platform independent approach and successfully tested it on

enhanced reduced representation bisulfite sequencing (eRRBS) pro-

files (Garrett-Bakelman et al., 2015). PAMES is available as R pack-

age under GPLv3 license at https://github.com/cgplab/PAMES.

2 Materials and methods

2.1 DNA methylation data
We downloaded DNA methylation data of 14 tumor types of

The Cancer Genome Atlas from the GDC Legacy Archive (https://

portal.gdc.cancer.gov/legacy-archive/search/f); specifically, bladder

urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA),

colon adenocarcinoma (COAD), esophageal carcinoma (ESCA),

head and neck squamous cell carcinoma (HNSC), kidney renal

clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma

(KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), pancreatic adenocar-

cinoma (PAAD), prostate adenocarcinoma (PRAD), thyroid carci-

noma (THCA) and uterine corpus endometrial carcinoma (UCEC).

DNA methylation values were originally generated using Illumina

HumanMethylation450 BeadChip (http://www.illumina.com). Upon

exclusion of metastatic tumors and of duplicated experimental data,

our study dataset comprises a total of 5623 tumor samples and 712

normal samples (see Supplementary Table S1). The cancer cell line

dataset (Iorio et al., 2016) was downloaded from the Gene

Expression Omnibus (GEO) portal (GSE68379); it includes 374 sam-

ples corresponding to cell lines from 13 tumor types profiled with

Illumina HumanMethylation450 BeadChip. DNA methylation data

of 100 normal, cancer-free breast tissues profiled by Illumina

HumanMethylation450 BeadChip (Johnson et al., 2017) were down-

loaded from GEO portal (GSE88883). eRBBS data of a set of 28

advanced metastatic prostate cancer samples from our previous study

(Beltran et al., 2016) was also analyzed to test the CpG islands

implementation.

2.2 Selection of informative CpG sites and purity

prediction
DNA methylation status is usually reported as the fraction of alleles

that are methylated (b value, ranging from 0 (unmethylated) to 1

(fully methylated)). At a CpG site that is completely methylated in

tumor cells and completely unmethylated in non-tumor cells, tumor

sample b values below 1 reflect admixture of normal cells. The same

applies for unmethylated sites in tumor cells and methylated sites in

normal cells. Therefore, b values of differentially methylated sites can

be used as a direct estimation of the purity of a tumor sample (or 1-b

of unmethylated loci). A schematic of the method is represented in

Figure 1. To pinpoint tumor-specific CpG loci that could better dis-

criminate between tumor samples and normal samples we exploited

TCGA data and computed the area under curve (AUC) of a receiver

operating characteristic (ROC) curve for each site in each cancer type.

ROC curves therefore display the accuracy of a binary classification,

which assumes hyper-methylation in tumor samples. Thus, AUC

scores close to 1 identify optimal segregations between tumor and nor-

mal samples with tumor samples on average showing b values greater

than normal samples (hyper-methylation). On the contrary, AUC

scores close to 0 correspond to sites in which tumor samples demon-

strate on average lower b values than normal samples (hypo-methyla-

tion). For each tumor type, we considered significant those probes

that demonstrate an AUC score either lower than or equal to 0.2 or

higher than or equal to 0.8. To enrich for clonal events, we imposed

the following criteria on b range: either min(b) < 0.1 AND max(b) >

0.6 (hypo-methylated), or min(b) < 0.4 AND max(b) > 0.9 (hyper-

methylated) (see Supplementary Material for total number of informa-

tive CpGs retrieved). The established range of b values reflects the

expected diversity of TGCA tumor samples in terms of purity

(range>0.5). We opted for pre-defined over data-driven threshold

values to avoid technology biased selection of sites. Next, we ranked

them according to the AUC scores and selected the top and bottom

ranking N sites, thus retaining a total of 2 N loci. To avoid redun-

dancy in the selection of top ranking CpG sites, we retained the top-

ranking one in case CpG sites mapping within 1 Mb from each other.

The tumor purity of each sample is then estimated by averaging

(median) b (for hyper-methylated sites) and 1-b (for hypo-methylated

sites) of the selected informative sites, as summarized in Figure 1.

2.3 Estimation of clonal level of informative sites
To investigate the clonality of the sites selected through our strategy,

we forced PAMES to consider random selections of differentially

methylated sites (n¼10 for hyper-methylation and n¼10 for hypo-

methylation) and then compared the original predictions and the

averaged predictions of 10 PAMES-random models in the cancer

cell line dataset (Iorio et al., 2016).

2.4 Selection of informative CpG islands
To allow for platform independent purity estimate approach, we

aggregated the b values of CpG sites to corresponding CpG islands.
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The b value of each CpG island is estimated by the median of the

b values of CpG sites mapping to it. Only CpG islands with at least

three sites were considered for downstream analysis. We then

applied our selection criteria (see Fig. 1) to select top-ranking CpG

islands. The list of annotated CpG islands was downloaded from the

UCSC genome browser (hg19, March 2016).

2.5 Estimation of genomic and DNA methylation

alteration recurrence
Common cancer specific genomic events (mutations, SCNAs and

gene translocations) were retrieved from cBio Portal (http://www.

cbioportal.org) (Cerami et al., 2012; Gao et al., 2013). To estimate

the recurrence of DNA methylation events, we used the following

strategy. For each tumor type, the AUC of each methylation site i

was computed. We classified as hyper- or hypo-methylated events

with AUC<0.2 or AUC>0.8, respectively, indicating as nhyper and

nhypo the total number of differential methylation sites identified.

The mean bi;normal and standard deviation ri;normal of b values were

calculated for each site in normal samples. We then compared the b

value of each differentially methylated site in tumor samples j to the

corresponding mean and standard deviation calculated in the set of

normal samples (see Supplementary Table S3). Per sample fraction

of supporting events (PFSE) were calculated as follows:

PFSEj;hyper ¼
P

i H bij � bi;normal � 2ri;normal

� �

nhyper
;

PFSEj;hypo ¼
P

i H �bij þ bi;normal � 2ri;normal

� �

nhypo
;

(1)

where H is the Heaviside function.

2.6 Comparison of purity estimates
For each sample, we computed the purity estimate using

InfiniumPurify version 3.0 (Zhang et al., 2015). In addition, we

considered purity estimates from the study of Aran et al., 2015, that

includes purity predictions of TCGA samples from ESTIMATE

(Yoshihara et al., 2013) (n¼4952), ABSOLUTE (Carter et al.,

2012) (n¼2215), LUMP (Aran et al., 2015) (n¼4930),

Immunohistochemistry (IHC (Aran et al., 2015)) (n¼5257) and

Consensus Purity Estimate (CPE (Aran et al., 2015)) (n¼5239). In

addition, purity predictions of 333 PRAD samples by ABSOLUTE

were also considered. Purity levels of eRBBS data samples were com-

puted with CLONET (Prandi et al., 2014).

2.7 Suitability of the selection of informative sites
To verify the power of our strategy to select informative sites, we

both verified the effect of increasing the 2 N number of sites used to

estimate purity and the outcome of a random selection of sites on

PAMES predictions. Random sites were selected as follows: first, we

split the set of sites into hypo-methylated and hyper-methylated

depending on their AUC score ([0, 0.5) for hypo-methylation; (0.5,

1] for hyper-methylation), then, we selected an increasing number of

sites from each set and we reported the Pearson’s correlation coeffi-

cient R and the Root Mean Square Deviation (RMSD) of our predic-

tions compared with those estimated by InfiniumPurify.

2.8 Functional analysis of informative sites
Genomic regions of the 15-state model defined by ENCODE

Consortium (Kundaje et al., 2015) through ChromHMM segmenta-

tion (Ernst and Kellis, 2012) were downloaded from http://egg2.

wustl.edu/roadmap/data/ byFileType/chromhmmSegmentations/

ChmmModels/coreMarks/ jointModel/final/STATEBYLINE/. For

each 200 bp bin, we calculated the frequency of each of the 15 states

across the epigenomes. State-specific genomic regions were identi-

fied as 200 bp genomic bins showing frequency greater than or equal

to 0.5. Enrichment of informative sites were calculated by Fisher

Exact Test considering the overlap between informative sites and

each of the 15 states genomic regions by the command “fisher” of

bedtools (Quinlan and Hall, 2010). Functional annotation of infor-

mative sites was performed by GREAT version 3.0.0 (McLean et al.,

2010).

2.9 Accuracy evaluation of PAMES and InfiniumPurify
To compare the accuracy of PAMES and InfiniumPurify, we

exploited the normal samples from TCGA and cell lines data to

compute the AUC of a ROC curve for each cancer type. Here, ROC

curves display the accuracy of a binary classification which assumes

tumor samples purity always higher than normal samples purity,

thus AUC scores close to 1 identify optimal segregations between

tumor samples and normal samples.

2.10 Selection of flat genome cancer samples
We evaluated PAMES purity estimates of the TCGA PRAD samples

for which neither CLONET nor ABSOLUTE could compute a score,

due either to a lack of sufficient number of SCNAs or to noisy

genomic profiles and selected 11 samples. We then further selected

the six samples with aberrant genomic segments of at least 1 Mb in

size and with an absolute Log2 Ratio greater than 0.1.

3 Results

3.1 DNA methylation across cancer types
We studied the differential DNA methylation profiles of a total of

5623 cancer samples across 14 tumor types by means of AUC, a

Hyper-methylated
min(β) < .40 AND 
max(β) > .90 AND
AUC* > .8

AUC ranking

Selection of informative sites

Avoid sites within 1Mb from each other

List of sites:
- top n probes
- bottom n probes

*Area Under Curve of ROC curve

List of CpG islands*

Median

Estimated purity

Hypo-methylated
1 - β

Hyper-methylated
β

*Median beta values

Purity prediction

Hypo-methylated
min(β) < .10 AND
max(β) > .60 AND
AUC* < .2

AUC ranking

List of sites

Unmethylated
Fully

methylated

0 1
Normal cells admixture

β = fraction of methylated alleles
Normal

Tumor

SELECTION OF INFORMATIVE SITES

Methylated CpG Unmethylated CpG

Fig. 1. Schematic of PAMES workflow. PAMES identifies a set of tumor spe-

cific, highly clonal, CpG sites or islands (informative sites) through the differ-

ential analysis of DNA methylation levels in tumor versus normal samples

(using b difference and the AUC). The b values of the selected sites are con-

sidered as optimal estimators of the admixture of tumor cells in each sample

(tumor purity)
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proxy of average b differences of tumor versus normal samples (see

Fig. 2A for BLCA and Supplementary Fig. S1 for the other tumor

types). The box plots of Figure 2B report the distributions of the

fraction of tumor-type specific differentially methylated events (by

considering AUC<0.2 or AUC>0.8) that are supported by each

tumor sample (PFSE, see Methods). We observed that > 50% of dif-

ferential methylation signal is shared among all samples of a specific

tumor type with values ranging from 0.10 (THCA) to 0.97 (LUSC)

for hyper-methylation events and from 0.006 (THCA, n¼889 sites)

to 0.91 (COAD) for hypo-methylation events (Supplementary Table

S2 lists relevant cancer-specific differential methylation events per

tumor type). As an example, in the PRAD dataset, we observed that

more than 50% of data points are above PFSE¼0.5 both for hyper-

and for hypo-methylation events. In other words, more than the half

of PRAD samples (data in the box plots) supports the majority of

differentially methylated events. Figure 2C reports the frequencies of

the two most common somatic point mutations (SNVs) and SCNAs

per tumor type (see also Supplementary Table S3); as for SNVs,

TP53 and KRAS genes are the only ones that demonstrate high level

of recurrence (> 90%) in LUSC and PAAD, respectively, while sec-

ond ranking SNVs range from about 7% (PRAD) to 70% (PAAD)

frequencies. In terms of recurrence, SCNAs show a more diverse sce-

nario in which most recurrent events ranges from 1% (THCA) to

about 50% (PRAD). These observations support DNA methylation

as a potential better estimation source of tumor purity. We can now

compare the information reported in Figure 2B with the frequency

of alteration of tumor-type specific genomic alterations. As for

PRAD, in the best possible situation, we observe that about 40% of

samples support one genomic event (T2-ERG rearrangement). Even

assuming that it would be possible to estimate samples purity based

on only one genomic event, we would able to assess the purity of

less than half of the samples. Altogether this comparison highlights

that alterations in DNA methylation may represent a more powerful

proxy for the estimation of the purity of cancer samples.

We next performed a pan-cancer comparative analysis of dif-

ferentially methylated sites. Figure 2D summarizes the Pearson’s

correlation coefficients of the AUC values calculated for each

tumor type (only sites with AUC<0.2 or AUC>0.8 were consid-

ered). Surprisingly, we observed that a set of nine tumor types

(BLCA, LUAD, HNSC, LUSC, ESCA, COAD, LIHC, BRCA and

UCEC) shows similar differential methylation patterns, suggesting

that, in principle, a single pan-cancer methylation signature

could be built to estimate the purity of samples from multiple

tumor types.

3.2 Evaluation of informative sites
To verify the relationship between the number of sites in the signa-

ture and the purity prediction, we varied the number of sites and

A B

C D

Fig. 2. DNA Methylation is shared within and between cancer types. (A) Scatter plot of AUC values versus b-differences for the TCGA BLCA dataset. b-differences

are computed as differences between b values in tumor samples and averaged (mean) b-values in normal samples. The local regression analysis with LOESS is

reported (red line). Pearson’s correlation coefficient is significant (P<0.05). (B) Box plots report the distributions of the per sample fraction of supporting events

(PFSE) for both hyper- (red) and hypo- (green) methylation in each cancer type. (C) Bar plots show the frequencies of the most recurrent (n¼2) genomic altera-

tions for both single nucleotide variants (SNVs, green) and somatic copy number alterations (SCNAs, purple). For each tumor type, altered genes or genomic

regions are reported above the corresponding bar; top to bottom terms correspond to left to right bars. (D) heat map and Ward’s hierarchical clustering using

Euclidean as distance measure of the Pearson’s correlation coefficients of AUC scores of the differential methylation sites among the 14 tumor types
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compared purity results against multiple sets of randomly selected

sites for each cancer set. Figure 4A reports the trend of the Pearson’s

correlation coefficient R and root mean square deviation (RMSD) of

the predictions compared with InfiniumPurify for one dataset

(BLCA; all tumor types in Supplementary Fig. S2). We observed

overall stability of both measures, speaking toward a robust selec-

tion strategy. We therefore reasoned that a fair balance between

number of sites and high level of information for further tests would

correspond to about 20 sites, equally divided between hypo- and

hyper-methylated sites. We selected a 10 hyper- and 10 hypo-

methylation sites for each cancer type (N¼280 in total, see

Supplementary Table S4 for the list of cancer specific sites).

Interestingly, in line with the clustering analysis from Figure 2D, 13

sites were selected as informative in two tumor types (six hyper-

methylated and seven hypo-methylated sites), involving LUAD,

LUSC, COAD, ESCA, HNSC, BLCA, BRCA and UCEC. We then

studied the functional meaning of informative sites in the context of

the 15 functional genome states defined by the ENCODE consor-

tium (Ernst and Kellis, 2012; Kundaje et al., 2015) (Fig. 3B). The

most significant states (log2 of odds ratio (OR)>6) were ‘repressed

polycom’ and ‘Transcription at gene 50 and 30’ for hyper- and hypo-

methylation sites, respectively, while both set of differential methyl-

ation sites were found significantly enriched in “Enhancers” regions

(log 2 ORð Þ > 3). In addition, we found that informative hypo-

methylation events strongly enrich regions annotated as ‘weak

repressed PolyComb’ (log 2 ORð Þ > 1:5; P-value<10�4).

Of note, all these terms remain significant when a larger selection of

informative sites (N¼200, 100 for hyper and 100 for hypo, corre-

sponding to a total of 2800 sites) is considered (Supplementary

Table S5). Functional annotation of informative hyper-methylated

sites reveals robust enrichment for transcription regulation related

terms (i.e. FDR < 10�13 for GO:0003700 and GO:0006355), while

no significant enrichment was obtained from the set of hypo-

methylated sites. These data suggest common functional mecha-

nisms for informative hyper-methylated sites, while informative

hypo-methylated sites might be preferentially related to cancer-spe-

cific events.

3.3 Purity prediction of TCGA datasets samples
We applied PAMES to 6335 TCGA samples and computed the

Pearson’s correlation coefficient R between its predictions and

other seven states-of-the-art methods (Supplementary Table S6,

Supplementary Fig. S3). We observed overall concordant prediction

between our method and the methylation-based InfiniumPurify

method (Rmean¼0.83; Rmin¼0.46; Rmax¼0.98; see Fig. 4C for

BLCA dataset and Supplementary Fig. S3 for the other datasets). In

addition, PAMES gives concordant prediction with SCNA based

methods. Similarly, to the other tested methods, PAMES showed

the greatest deviation from IHC (Rmean¼0.70; Rmin¼0.40;

A B

C D

Fig. 3. Purity estimates in TCGA datasets. (A) Correlation coefficient R and RMSD of purity estimates computed with different number of informative and random

sites. Lines represent local regression (LOESS). (B) Functional enrichment analysis of the top informative sites (N¼ 140) from all tumor types, using the 15-state

ENCODE model of the functional genome. (C) Heat map and Ward’s hierarchical clustering using Euclidean as distance measure of the Pearson’s correlation coef-

ficients of purity estimates of the seven state-of-the-art methods in BLCA. The row annotation refers to the different strategy to estimate purity. (D) Correlation of

PAMES and InfiniumPurify purity estimates on the TCGA tumor samples. R and RMSD refer to the Pearson’ s correlation coefficient and root mean square devia-

tion averaged (mean) across the 14 tumor types
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Rmax¼0.95). We then focused the comparative analysis on

InfiniumPurify, as it is the only DNA methylation based tool pub-

lished so far and predictions were easily computable for all data

included in our work. As reported in Figure 4D, the comparison

between the purity estimates from our method and those from

InfiniumPurify highlights a general concordance (R¼0.83,

RMSD¼0.11) in the full TCGA dataset (see Supplementary Fig. S4,

for single tumor type plots). We then studied the effect of

threshold selection approach on informative CpG sites identification

and PAMES estimations, testing two data-driven approaches (a)

selection based on pan-cancer analysis and (b) selection based on

tumor-type specific analysis. In both cases, thresholds were selected

as the b values representing the 90% (related to high purity samples)

and 10% (related to low purity samples) of the distribution of hyper

and hypo methylated sites. No marked differences emerge from the

comparative analyses between standard PAMES, PAMES with ’pan-

cancer thresholds’ and PAMES with ’tumor-type specific thresholds’

(see Supplementary Table S7 for the resulting thresholds) as demon-

strated by correlation coefficients and root mean square deviations

of inferred purities (see Supplementary Fig. S6 and Supplementary

Table S6), although data-driven approaches tend to mitigate the dis-

crepancies with respect to InfiniumPurify (Supplementary Fig. S7)

Relevant to computations on large datasets using precomputed sites,

analysis on 6335 samples by PAMES takes about 5 min on a

machine with 32 Gb RAM. A new selection of informative sites

takes at most 2 h, with the most computational intensive step repre-

sented by AUC calculation.

3.4 Effect of tumor microenvironment on purity

estimates
Given that the microenvironment of cancer tissues can be markedly

different than the microenvironment of normal tissues, we verified

the possibility that informative sites selected by PAMES are differen-

tially methylated in cancer cells and in the associated microenviron-

ment (tumor adjacent normal samples). To do that, we first

compared the PAMES estimates in tumor samples and normal sam-

ples across the 14 TCGA datasets. Results are reported in

Supplementary Figure S8 and show that for 12 out of 14 tumor

types normal samples PAMES estimates were below 0.5 (median

values), and for 7 out of 14 purity estimates were below or about

0.25. Also, we applied PAMES to a set of 100, cancer-free, normal

breast tissues (Johnson et al., 2017) and compared the purity esti-

mates with those made in tumor-adjacent and tumor tissues (BRCA

from TCGA). Results are reported in Supplementary Figure S9 and

show that for normal and adjacent tissues, purity estimates were

comparable and both were significantly lower than those in tumor

tissues (Wilcoxon-Mann-Whitney P-value < 10–50 for both normal

versus tumor samples and adjacent versus tumor samples). This

analysis shows that PAMES estimates are not affected by microen-

vironment of tumor cells.

3.5 Purity prediction of cancer cell line dataset samples
We evaluated the purity predictions from methylation data of a set

of independent samples, the cancer cell line set from Iorio et al.,

2016. Figure 4A (top) shows the distributions of the purity predic-

tions for each cancer type obtained by PAMES and InfiniumPurify.

As expected, both methods provide high levels of purity estimates

for the majority of cancer types (PAMES: purity>0.87 in 95% of

samples; InfiniumPurify: purity>0.89 in 95% of samples; collec-

tively: purity>0.88 in 95% of samples), with the exception of

PRAD, KIRC and THCA. Inspection of the prostate cancer cell

lines revealed the presence of one benign cell line (PWR-1E) and

and one adenocarcinoma prostate cancer cell line (DU-145) char-

acterized by uncommon independence from Androgen Receptor

signalling potentially confounding for purity predictions by both

methods. As for KIRC and THCA, we obtained low purity esti-

mates by InfiniumPurify for one and nine cell lines, respectively,

but not by our method. Other modest purity predictions include

LUSC, PRAD, LUAD, ESCA, PAAD by PAMES (purity¼0.765–

0.620) (Fig. 4B bottom, Supplementary Table S8). To evaluate the

clonality of informative sites, we compared the purity estimates by

PAMES and averaged estimations of 10 PAMES-random models

A

B

C

Fig. 4. Accuracy evaluation of the purity estimates. (A) Box plots of PAMES

and InfiniumPurify purity estimates on the cancer cell line dataset from Iorio

et al., 2016. (B) Scatter plot of PAMES and InfiniumPurify purity estimates on

cancer cell line dataset from Iorio et al., 2016. (C) AUC values of PAMES (blue)

and InfiniumPurify (red) across the 14 tumor types, using cancer cell lines as

positive events and normal samples from TCGA and benign cell lines as neg-

ative events
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(see Methods for more details). We observed that purity estimates

by standard PAMES are significantly greater (Wilcoxon-Mann-

Whitney P-value < 10�90, Supplementary Fig. S10) than those

using the random selection of differentially methylated sites. This

analysis demonstrates that informative sites selected by PAMES

are significantly more clonal than PAMES-random, supporting our

definition of informative sites as “clonal” events. To statistically

assess the accuracy of PAMES and InfiniumPurify, we exploited

cell lines data and normal samples from TCGA (n¼712). Even

though this approach can be considered too lenient to truly assess

accuracy in the absence of real gold standard, this analysis

attempts to estimate the performance of PAMES through a com-

parison with InfiniumPurify that relies on much larger informative

sites. The results reported in Figure 4C demonstrated high accu-

racy for both methods (AUCmean>0.99 for PAMES and

AUCmean¼0.94 for InfiumiumPurify). Due to the low purity esti-

mates made on THCA, InfiumiumPurify performs worse for this

tumor type (AUC¼0.44).

3.6 Purity prediction on flat genomic samples
We tested the capability of our method to predict the purity of

cancer samples with epigenetic changes and flat genomic profiles.

These instances are of relevance as SCNA-based methods such as

ABSOLUTE and CLONET cannot provide reliable estimates,

as their copy number information is inappropriate. To this end,

we run PAMES on six TCGA PRAD cases for which both

ABSOLUTE and CLONET were not able to estimate the purity (see

Supplementary Fig. S11) and for which we identified few putative

SCNAs via ad-hoc data investigation (see Methods for details). The

analysis shows that, especially for very low purity samples, PAMES

estimates are compatible with the log2-ratios of the rare sample spe-

cific SCNAs that we reviewed manually. This analysis suggests that

PAMES can be applied on SCNA poor tumor types.

3.7 CpG island generalization
To test the capability of PAMES to infer the purity across different

platforms, we implemented a CpG island version that considers

methylation regions and is therefore independent from the experi-

mental platform (see Supplementary Table S9 for the list of informa-

tive CpG islands). First, we studied the effect of summarizing CpG

islands by the median of b values. Supplementary Figure S12 shows

that the distribution of the summarized b values using the first quar-

tile, the median, and the fourth quartile are very similar. We com-

pared purity predictions by CpG sites and CpG islands in the TCGA

dataset. Results are reported in Figure 5A (see Supplementary Fig.

S13, for single tumor type plot) and show that the two strategies

estimate concordant predictions (R¼0.95, RMSD¼0.08). We then

tested the CpG island version of PAMES on 28 advanced metastatic

prostate cancer profiled with eRBBS (Garrett-Bakelman et al., 2015)

generated in a previous study (Beltran et al., 2016). Figure 5B

reports the comparison between the PAMES methylation-based

approach results and purity inferred by a SCNA-based approach,

CLONET (Prandi et al., 2014). Results highlight the suitability of

the CpG island-based method in predicting the purity of samples

data generated by high throughput sequencing assay.

3.8 Effect of dynamic range of data on

PAMES estimates
In cancer cell line data, we observed that most cell lines present 80–

90% purity estimates (Fig. 4A) but systematically less than 100%.

This effect can be accounted to limited dynamic range of

microarrays. To verify this, we applied PAMES to a set of N¼7

normal matched benign prostate samples profiled with eRRBS (Lin

et al., 2013) and compared results with N¼50 matched normal

prostate samples profiles through arrays (TCGA). Results of this

comparison are reported in the box plots of Supplementary Figure

S14 and show that PAMES performs better when a technique with

higher dynamic range is considered, such as eRRBS (purity estimates

are reported in and Supplementary Table S10).

4 Discussion

A reliable estimation of the proportion of cancer cells in the admixture

of cells constituting tumor microenvironment is essential to perform

inter-sample analyses. Confounding effects of tumor purity on several

genomic analyses have been demonstrated to be a major issue in can-

cer genomics studies (Aran et al., 2015). In the clinical settings, the

evaluation of tumor purity allows for controlling false negative events,

especially for tumor samples with low cellularity (Yoshihara et al.,

2013). Through the study of thousands of tumor samples, we observed

that DNA methylation alterations are markedly shared within each

tumor type (Fig. 2B), suggesting that, conversely to SNVs and SCNAs,

matched benign samples are not necessary to estimate the majority of

DNA methylation alterations (with the exception of those sufficient to

perform differential analysis). Therefore, tissue purity estimation from

DNA methylation data represents a good alternative to genomics

based method. The tool presented in this work, named PAMES, is able

to quantify the purity of a tumor sample using few dozens of CpG

informative sites. By exploiting the DNA methylation profile of thou-

sands of tumor samples from TCGA and independent cancer sets, we

demonstrated that PAMES purity estimates are largely concordant

with other state-of-the-art tools. We also exploited cancer cell line

dataset to investigate the clonality of selected informative sites. Even

though cell lines sub-clonal events are less represented than in human

tumor tissue samples, this analysis supports our definition of informa-

tive sites as ‘clonal’ events. However, for certain tumor types including

KIRC, KIRP and THCA, we obtained purity estimates that signifi-

cantly deviate from InfiniumPurify ones. Interestingly, these datasets

show ‘anomalous’ distributions of purity estimates from both PAMES

and InfiniumPurify, characterized by overall higher values and by

lower dispersion when compared to the other datasets considered in

this study (Supplementary Fig. S5 and Supplementary Table S6).

Similarly, the clustering results of Figure 2D show dissimilar and more

pronounced tumor type specific methylation profiles for four datasets,

including KIRP, KIRC, and THCA. Altogether, we speculate that the
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Fig. 5. Platform independent version of PAMES. (A) Density plot of sample

purities for all cancer types estimated using b values from informative sites

and beta values obtained through CpG island transformation. (B) Plot of the

purity estimates from PAMES (y-axis) versus CLONET (x-axis) on the eRRBS

data of metastatic prostate cancer from Beltran et al., 2016
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selected informative sites are suboptimal for these datasets, possibly

due to little availability of clonal DNA methylation alterations.

To widen its applicability, we also extended the capability of

PAMES to the analysis CpG islands instead of sites; when applied to

a set of advanced metastatic tumors profiled by eRRBS technique

(Beltran et al., 2016), the CpG island version showed high concord-

ance with SCNA based estimates. Also, the comparison between

PAMES estimates in normal prostate sample profiled by arrays and

eRRBS (Supplementary Fig. S14) suggest that PAMES performs well

in the presence of higher dynamic range as provided by currently uti-

lized DNA methylation sequencing techniques. Relevant to the clini-

cal and the research setting, PAMES can assess tumor purity both

from low throughput platforms data, such as targeted analysis

(PCR, ddPCR) and from high-throughput techniques, such as micro-

arrays and high-throughput sequencing platforms, in a platform

independent manner. As a shared resource we also provide the

ranked list of tumor specific CpG sites and islands, which averaged

b values can be used to estimate the purity of tumor samples without

the need of a matched benign control. Importantly, this could enable

the evaluation of hundreds to thousands of tumor samples at low

cost and the cautious selection of samples for downstream, more

expensive, investigations. The informative CpG sites/islands used by

PAMES to estimate samples purity were selected based on mainly

untreated cancer samples from TCGA and successfully used on a

limited set of advanced/treated tumor samples (see Fig. 5B). Given

that in principle DNA methylation status of certain sites might

change during cancer progression, the selection might result subopti-

mal for specific disease states in a clinical setting and should be fine-

tuned by adapting the parameters (i.e., threshold values to select

informative sites).

Circulating tumor DNA methylation in serum and plasma has

been shown to be effective for diagnostic or prognostic biomarkers

detection in different tumor types (Board et al., 2008; Diaz and

Bardelli, 2014; Kawakami, 2000; Laird, 2003; Lecomte et al., 2002;

Lee et al., 2002). Exploitation of clonal, tumor-type specific methyl-

ation CpG sites/islands and the methodology from this study could

represent a valuable resource to trace clone dynamics in association

with the use of the new targeted therapies.
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