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Abstract In this work, the SIR epidemiological model is reformulated so to highlight the
important effective reproduction number, as well as to account for the generation time, the
inverse of the incidence rate, and the infectious period (or removal period), the inverse of
the removal rate. The aim is to check whether the relationships the model poses among the
various observables are actually found in the data. The study case of the second through the
third wave of the Covid-19 pandemic in Italy is taken. Given its scale invariance, initially
the model is tested with reference to the curve of swab-confirmed infectious individuals
only. It is found to match the data, if the curve of the removed (that is healed or deceased)
individuals is assumed underestimated by a factor of about 3 together with other related
curves. Contextually, the generation time and the removal period, as well as the effective
reproduction number, are obtained fitting the SIR equations to the data; the outcomes prove
to be in good agreement with those of other works. Then, using knowledge of the proportion
of Covid-19 transmissions likely occurring from individuals who didn’t develop symptoms,
thus mainly undetected, an estimate of the real numbers of the epidemic is obtained, looking
also in good agreement with results from other, completely different works. The line of this
work is new, and the procedures, computationally really inexpensive, can be applied to any
other national or regional case besides Italy’s study case here.

1 Introduction

The SIR model [1–6], developed by Kermack and McKendrick [1] in 1927, is the well-known
very simple model of infectious diseases that considers three-compartments, recalled here to
state terminology and notations:

The compartment S of susceptible individuals;
The compartment I of the infectious (or currently positive) individuals, who have been
infected and are capable of infecting susceptible individuals during the infectious period;
The compartment R of the removed individuals, who recovered from the disease or died
from the disease, the former assumed to remain immune afterwards.
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Births and non-epidemic-related deaths are neglected.
The cardinality of each of the compartments is indicated with the corresponding non bold

letters, while N denotes the involved total population at an initial time t0:

S(t0) + I (t0) + R(t0) = N . (1)

The disease incidence rate β is defined so that β S I gives the number of new infections per
unit time [5]; the removal rate γ is defined so that γ I gives the rate at which infectious
individuals “deactivate” (heal or die). Typically, β is taken constant over time, which is not
the general case, due to possible mutations of the decease carrier or social measures to counter
the spread of the infection; also, to simplify mathematics, the generation time g is neglected,
that is the infector-infected pairing time lapse; as well as the removal period r, which is the
average time between infection and recovery or death, despite the important relation

r = 1

γ
(2)

Within the removal period r, a typical infectious individual is expected to cause r β S new
infections, so defining a function of time that, normalized, is called effective reproduction
number Rt (see, for instance, [7]), namely:

Rt = r β(t)
S(t)

N
= β(t)

γ

S(t)

N
. (3)

So, the SIR equations as used here become:

dS

dt
(t + g) = − γ Rt I (t) , (4a)

dI

dt
(t + g) = γ Rt I (t) − γ I (t + g − r) , (4b)

dR

dt
(t + r) = γ I (t) . (4c)

Of course, they imply that the sum S + I + R is conserved, so that S(t) + I (t) + R(t) = N
at any time t .

2 Outlines of the work

The purpose of this work is to check whether the relations established in Eq. 4 are actu-
ally found in the data or, at least, whether “corrections”, accounting for incomplete data or
systematic errors, may or should be introduced, with the implication that consequently the
relationships are satisfied. Crucial is the fact that the model is scale-invariant, thus allowing
to conveniently choose as a reference one sub-compartmental curve whose real data can be
considered reliable, such as the swab-confirmed infectious individuals curve. This choice
is done indeed here: swab-confirmed infectious are mostly individuals who have developed
symptoms and are actually found to cover a nearly constant fraction of all the infectious peo-
ple, given the circumstances that symptomatic and asymptomatic individuals roughly are,
respectively, fractions of the age groups of over sixty and younger people ([8–11]).

The case of the second through the third pandemic wave of Covid-19 in Italy is studied.
First, it will be shown that the relation established through Eq. 4c holds true if R(t) is scaled
by a factor that is obtained, together with the removal period r , by a least-square procedure
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Fig. 1 Monthly deaths from Covid-19 in Italy during 2020, according Italy’s Department of Protezione Civile
(blue histogram); monthly excess of deaths the same year compared to the averages over the previous five
years, according Italy’s ISTAT (Istituto Nazionale di Statistica)

of matching over data. Arguments will be given for how a scaling-up over the official data
should be due indeed.

Once r, and thus γ , is obtained, the effective reproduction number is evaluated through
Eq. 4b , reliably, despite using the swab-confirmed infection cases only, for that equation is
scale-invariant on its own.

The transition to real numbers is finally done, correcting the swab-confirmed infectious
cases for the proportion factor of transmissions that likely occur from asymptomatic subjects.
The results are compared with those obtained at the MRC Centre for Global Infectious Disease
Analysis, Imperial College London (ICL, [12]), where a completely independent approach
is used.

3 The data set

The data set is from Italy’s Department of Protezione Civile [13], lasting from 1 June 2020
to 31 May 2021. Since every weekend there was a postponement in cases recording to a
few days later, according to common practice the data are smoothed via a multi-day moving
average; the choice is 9 days, to systematically include a couple of days after each weekend.

4 The swab-confirmed infectious towards the daily removed

Verifying that the relationship given by Eq. 4c is indeed found in the data is not so trivial.
For example, there is evidence that the monthly deaths from Covid-19 in 2020, as given
by Italy’s Department of Protezione Civile, are largely underestimated: this is shown by
an ISTAT study on the monthly excess of deaths in 2020, compared to the corresponding
averages over the previous five years (see [14] and [15]). ISTAT is Italy’s Istituto Nazionale
di Statistica. The matter is illustrated in Fig. 1. In addition to this, it is to be expected that
R(t) does not include most of the cases that had an asymptomatic or mild course. Also,
asymptomatic infected people are probably not reported among the infectious, whereas by
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Table 1 k-factor and r

krel r χ2 Ndf red.χ2

Likelihood on raw data 2.99 ± 0.82 10.31 ± 2.74 93185 360 266

Likelihood on smoothed 3.14 ± 0.82 10.32 ± 2.68 32823 360 91

Gaussian fit 9.78 ± 2.28 1.15 32 0.04

Skew sigm. derivative 10.14 ± 2.37 2.48 66 0.04

far most of the reported infectious are those who had swabs confirmation, whose number will

be called Isc. Let’s indicate with
∨
R the curve of the actually registered healed and deaths: it

is found that its derivative, the daily variation, shifted forward in time, is indeed proportional
to Isc(t). To methodically verify Eq. 4b, the correction factor krel is introduced so as to give
maximum generality to a least-square search over the positive definite form

χ2(krel , r) =
∑

b

[
Isc(b) − krel r

d
∨
R

dt
(b + r)

]2

, (5)

with varying krel and the removal period r. It is worth remarking the notation krel , intended

to emphasize that any correction on
∨
R(t), possibly required by the SIR model at this stage,

is relative to the swab-confirmed infectious population only. The sum is over the days of the
pandemic period considered, with the choice of weighing equally all daily data. In principle
two functions of the kind 5 should be used, one for deaths and one for recoveries; however,
deaths are well known to be only at most some 4–5% of the whole removed compartment,
so that a probably negligible error is made by simplifying as in Eq. 5 because of the huge
statistical and systematic uncertainties in the data. The minimization is performed using a
C++ object of the class Minimizer of the CERN package ROOT, typically used by high
energy physicist in their data analysis ([16,17]): its statistical methodology is described in
[18]. Since the surface defined from the data through Eq. 5 is rather rough, the minimization
algorithm is run 150,000 times to maximize the chance of hitting an optimal minimum: the
initial values of krel and r are drawn at random in the intervals [1.0, 5.0] and [5.0, 18.0]
respectively. Execution on raw and smoothed data takes about one minute time altogether.
The final issue for krel and r and their uncertainties δkrel and δr are taken as the mean
and the standard deviation of the distributions of the respective outcomes at each iterated
minimization, weighted with the normalized inverse of the χ2.

The results are shown on the first and the second lines of Table 1, for the raw and the
smoothed data respectively.

Since the value of the removal period r is critical in determining krel , it is sought from the
data in two further independent ways, as explained in the next two subsections.

4.1 The removal period from a Gaussian fit

At any new “wave” of epidemic, the rise in number of the infectious individuals follows
with good approximation a sigmoidal shape, i.e. it is roughly exponential at the very begin-
ning, up to an inflection point, after which it bends towards a plateau; consequently, its daily
variation (the time derivative) exhibits a maximum at the inflection point, around which it is
approximately Gaussian. If Eq. 4c correctly described the data, an analogous shape should
be had in the second derivative of the removal curve. Very remarkably, this is in fact the case,
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Fig. 2 The two fitting Gaussian functions in cyan and green

as shown in Fig. 2 , where fitting Gaussians are plotted over the first derivative of the infec-
tious curve and the second derivative of the removal curve: the distance in time between the
vertexes of the two Gaussians gives a new independent measurement of the removal period
r, reported in the third line of Table 1 with associated uncertainty and fit χ2. The uncertainty
is the sum in quadrature of the uncertainty on the position in time of the vertexes of the two
fitting Gaussians; the χ2, with its reduced, is their worse. The fit algorithm is from the already
mentioned ROOT package (CERN, [19]).

4.2 The removal period from the “asymmetric sigmoid derivative” fit

Given the almost sigmoidal initial growth of an epidemic wave, as already mentioned in
the last subsection, an alternative fit function turns to be an asymmetric modification of the
derivative of a sigmoid, which will be called skew sigmoid derivative, namely:

⎧
⎨

⎩
s(x; μ, σ, ε) = 1

ε + (1 − ε) e−(x−μ)/σ
, with 0 ≤ ε < 1 ,

A (x; μ, σ, ε) = A s(x; μ, σ, ε) [2 − s(x; μ, σ, ε)] .

(6)

This function has absolute maximum in x = μ, with A (μ; μ, σ, ε) = A. It is plotted
in Fig. 3 for μ = 1, σ = 1 and A = 1, and various values of the skewness parameter ε :
for ε = 0.5 one has the derivative of a very sigmoid. The fits of the skew sigmoid derivative
to the first derivative of the swab-confirmed infectious curve and to the second derivative of
the removal curve, respectively, are shown in Fig. 4: again, the distance in time between the
vertexes of the fitting functions gives a new measurement of the removal period r, reported
in the fourth line of Table 1.

4.3 The removal curve corrected relatively to the swab-confirmed infectious only

From Table 1 the removal period r is assumed to be 10 ± 2 days, bearing in mind that the
data have just one day resolution; also, comparing the χ2 on the first and second lines of the
table, the correction factor krel is taken equal to 3.14 ± 0.82. So, we have the curve of the
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Fig. 3 The skew sigmoid derivative for μ = 1., σ = 1., A = 1. ; ε = 0.45, 0.47, 0.49, 0.50, 0.53
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Fig. 4 The two fitting “asymmetric sigmoid derivative” functions in cyan and green

removed individuals, corrected relatively to the swab-confirmed infectious only, given by:

Rrel(t) = krel

∨
R(t) � ′ dRrel

dt
(t + r) = γ Isc(t) . (7)

Figure 5 does illustrate this: the cyan error bars are generated by the propagation of three
times the ±0.82 uncertainty over krel .

5 Getting the generation time and the effective reproduction number

There are several algorithms to estimate the effective reproduction number from the data: a
simplified one is given in [20], where also an extensive bibliography on the subject can be
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Fig. 5 Relation 7 in the data. The derivative of Rrel (t) (blue marks) is time-shifted by the removal period r .
The cyan error bars are given by propagation from three times ±0.82 uncertainty over krel

found. The simplest yet effective estimate that very directly interprets the meaning of the
function (see, for instance, [21]) is given by

Rt = I (t + g)

I (t)
. (8)

As far as the SIR model is concerned, from Eq. 4b one has

Rt = r
I (t)

I (t + g + 1) − I (t + g − 1)

2
+ I (t + g − r)

I (t)
. (9)

So, the derivative is implemented by the symmetric difference quotient, to have the cancel-
lation of the first-order error in the numerical discretization.

While only the generation time g appears in Eq. 8, both g and the removal period r
are present in Eq. 9; consequently, the validity test of the SIR model through the effective
reproduction number Rt it manages to provide, is to be considered quite stringent.

In the previous section, the removal period r was obtained from the data using the SIR
model; the question is how to get the generation time as well.

In our conventions, I (t) denotes the total of all the infectious people, swab-confirmed or
not. If tM is a day when I (t) presents a maximum, then correspondingly, but g days earlier,
i.e. at day tM − g , the effective reproduction number Rt should be equal to 1, because an
increase in the number of the people becoming infectious requires Rt > 1 and a decrease
requires Rt < 1 . Of course, every variation of Rt has impact on I (t) with a delay of g days,
so also for Isc(t), assuming this to be proportional to I (t) . With r fixed at 9.71 ± 2 days, as
set out in the previous section, let’s say tg a day when, for any given choice of g, Rt is equal
to 1: in general, checking over the data, it doesn’t happen that the nearest next day tM , on
which Isc(t) has a maximum, is such that tM − tg = g, as it should; indeed it happens only
for a specific choice of g, namely, for the case being studied, with g = 6, an integer value
just in view of the one-day resolution of the data. A convenient double check is done on the
maximum of Isc(t) falling on 2 December 2020 (see Fig. 5). Very remarkable is the fact that
the height of the peaks of Rt does depend on the value one wants to give to g, the same way
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Fig. 6 Rt according to the SIR model, compared with the used simplest formula, Eq. 8. In cyan are the error
bars for Eq. 9; the other are in black. g = 6 ± 2 ; r = 10 ± 2

as the days when Rt is equal to 1 do: so, all of these things are bounded by the SIR model,
a fact that must be considered truly important in evaluating the validity of the model.

The estimate g = 6 days is in total agreement with the average 6.7 ± 1.9 days given
for Italy in Ref. [22]: this is a success of Eq. 9 that strengthens the agreement, within the
uncertainties, of the resulting Rt with that from other algorithms, as those reported in Ref.
[20] , with references therein. Figure 6 shows this SIR generated Rt , together with the one
from Eq. 8; for either, error bars corresponding to a ± 2 days uncertainty on both g and r are
also shown.

6 The “corrected” cumulative and daily-new infections relatively to the
swab-confirmed infectious people

To avoid confusion, it is worth remarking that infections at day t is meant as the cumulative
number of infections up to and including that day, while the number of infectious people
at some day t refers to those people who were infected possibly earlier and are still able to
transmit infection at that day. Thus, the (daily new) infections curve is different from the
infectious curve.

Since N in Eq. 1 is conserved, Eq. 4a can be written as

d(N − S)

dt
(t + g) = γ Rt I (t) , (10)

expressing the daily new infections, gross of removed people (while the infectious numbers
are net of removals). Indeed,

T (t) = N − S(t) = I (t) + R(t) (11)

is nothing but the total cases of infections at time t .
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Fig. 7 Italy, Covid-19 second through the third waves: estimates of removal (dark blue curve) and total (green
curve) cases as from correction relative to the swab-confirmed infectious (red) curve. Also shown data in dark
green (total cases) and blue (removals)

For what has been done so far, Eq. 10 must be replaced by

d Trel

dt
(t) = γ Rt Isc(t) , (12a)

Trel(t) = Isc(t) + Rrel(t) , (12b)

giving the corrected cumulative number of infections relatively to the swab-confirmed infec-
tious people only. Figure 7 illustrates Eq. 12.

7 Infections from asymptomatic and symptomatic infectious people: estimate of the
“real” numbers

There are several studies on the relevance of SARS-CoV-2 transmission from asymptomatic
people, like [8,23–25] and references therein. Quite recent and complete is ref. [25], where
a decision analytical model is used to assess the proportion of SARS-CoV-2 transmissions
in the community likely occurring from subjects who did not develop any symptom. In that
work data from a meta-analysis were used to set the generation time at a median of 5 days and
infectious period at 10 days, in good agreement, respectively, with the 6 and 10 days stated
in the present work. The reported conclusion is that, across a range of plausible scenarios, a
59% of infection transmission occurs from persons without symptoms: no clear uncertainty
is given, but the statement that the figure should be at least 50%, suggests an uncertainty of
±10 %. Also it is stated that the infected individuals who never develop symptoms are 75%
as infectious as those who do develop symptoms.

Let’s call f(asy) the percentage fraction of the asymptomatic infectious subjects over all
the infectious people and i(asy) their relative infectiousness, that is the percentage fraction
of the infectiousness of those who had developed symptoms: then, according to the best
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Fig. 8 Italy, Covid-19 second through the third waves. Estimates of daily new infections in this work are in
blue and uncertainty belt in yellow; ICL is in dark red

available figures, it would be f(asy) = 59 ± 10 % and i(asy) = 75%, the latter with a trial, very
conservative, uncertainty of ±20%.

Denoting by I(asy)(t) the number of the asymptomatic infectious individuals and recalling
that Isc(t) indicates the number of the swab-confirmed infectious subjects, it should be

I (t) − I(sc)(t) = I(asy)(t) = f(asy)

100

i(asy)

100
I (t) ,

whence

I (t) ∼=
(

1 + f(asy)

100

i(asy)

100

)
I(sc)(t) =: k(ai) I(sc)(t) , (13a)

R(t) = k(ai) Rrel(t) , (13b)

k(ai) =: 1 + f(asy)

100

i(asy)

100
≈ 1.44 ± 0.22 . (13c)

Then, in view of Eq. 11, Eq. 10 becomes

d T
dt

(t + g) = γ Rt kai Isc(t) , (14)

with T (t) the “real” cumulative number of infections at day t , while its derivative represents
the “real” daily new infections.

Figure 8 shows the daily new infections curve, compared with the Imperial College’s (ICL)
model estimate, as published in [12]. The model in question is a stochastic SEIR variant that
adopts multiple infectious states, which in turn reflect different COVID-19 severities. It uses
an estimate of the infectious fatality rate (IFR), assuming that the number of confirmed deaths
from Covid-19 is equal to the real Covid-19 deaths number; it also uses an estimate of the
effective reproduction number, based on the changes of the virus transmission rate caused by
the average mobility trends.

So, the ICL model’s approach is totally different from the one followed in the present
work; nevertheless the respective “real” daily new infections estimates appear to be in quite
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Fig. 9 This work estimates of the “real” total cases (light green) and correspondent data form Italy’s Depart-
ment of Protezione Civile (dark green) with scale on the left; this work “real” daily new infections (blue) and
corresponding official data (dark blue) with scale on the right

good agreement, except on a time interval around 1 January 2021 (day 220 in plots of this
paper), where the ICL curve shows a deep local minimum instead of a local maximum as in
the data of Italy’s Department of Protezione Civile. The uncertainty belt of the ICL estimates
is surprisingly narrow. In Fig. 9 the present work’s estimates of the “real” total cases of
infections are shown, together with the estimated “real” daily new infections, the latter with
their own scale on the right; also, the data as from Italy’s Department of Protezione Civile
are plotted.

Incidentally, the ripple visible in Figs. 8 and 9 on the data from Italy’s Department of
Civil Protection has the typical 7-day periodicity that arises from the weekend reduced data
recording.

8 Conclusions

Taking as case study the second to the third waves of SARS-CoV-2 in Italy, the SIR model
is confronted with data, after reformulating its equations by the explicit introduction of
the important effective reproduction number Rt , as well as the generation time and the
infectious period, usually, erroneously, neglected. The relationships it sets among the main
observables are actually found in the data, in particular between the curve of the swab-
confirmed infectious individuals and the curve of the removed (healed or deceased) subjects.
Indeed, taking advantage of its scale invariance and choosing the curve of the swab-confirmed
infectious people as a reference, the model suggests a correction on the number of removed
individuals for just a factor which would take into account: (a) infected people who have
not developed relevant symptoms and, therefore, were not detected; (b) deaths erroneously
not attributed to Covid-19. Generation time, infectious period and effective reproduction
number have been sought from the data through the model. At the very end, the curve of the
swab-confirmed infectious individuals has been completed for the proportion of infection
transmissions likely occurred from individuals with no symptoms, using figures published
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in important works ([8,23–25]). Thus, an estimate of the real numbers of the pandemic in
Italy is obtained for the considered period of time. All the results are in good agreement
with those of other studies, in particular of the ICL group ([12]), whose approach is totally
different from the present. The vision on and use of the SIR model of this work are new; the
C++ code, computationally really inexpensive and available under request to the author, can
be applied to any other national or regional case besides Italy’s study case here.
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