
Automated Rare Event Simulation for Fault
Tree Analysis via Minimal Cut Sets ?

Carlos E. Budde1[0000−0001−8807−1548] and
Mariëlle Stoelinga1,2[0000−0001−6793−8165]

1 Formal Methods and Tools, University of Twente, Enschede, the Netherlands
2 Department of Software Science, Radboud University, Nijmegen, the Netherlands

{c.e.budde,m.i.a.stoelinga}@utwente.nl

Abstract. Monte Carlo simulation is a common technique to estimate
dependability metrics for fault trees. A bottleneck in this technique is the
number of samples needed, especially when the interesting events are rare
and occur with low probability. Rare Event Simulation (res) reduces the
number of samples when analysing rare events. Importance splitting is a
res method that spawns more simulation runs from promising system
states. How promising a state is, is indicated by an importance function,
which concentrates the information that makes this method efficient.
Importance functions are given by domain and res experts. This hin-
ders re-utilisation and involves decisions entailing potential human error.
Focusing in (general) fault trees, in this paper we automatically derive
importance functions based on the tree structure. For this we exploit a
common fault tree concept, namely cut sets: the more elements from a
cut set have failed, the higher the importance. We show that the cut-set-
derived importance function is an easy-to-implement and simple concept,
that can nonetheless compete against another (more involved) automatic
importance function for res.

Keywords: Minimal cut sets · Rare Event Simulation · Dynamic
Fault Trees · Importance splitting · Fault Tree Analysis

1 Introduction

Classical Monte Carlo simulation (cmc) is a common technique to evaluate
stochastic models. Its applications range from systems biology, climate models,
and social interaction, to reliability analysis, performance evaluation, network
security, and many more.

By taking a large number of random samples, cmc estimates the metric of
interest, such as the average package loss in a network. While this technique
is very flexible in the stochastic models it can handle, as well as the metrics it
can analyse, it suffers from a major drawback: to get accurate estimates, a large
? This work was partially funded by EU project 102112 (SUCCESS), and NS, ProRail,
and NWO project 15474 (SEQUOIA).

2 C.E. Budde & M. Stoelinga

number of samples is needed. This problem is exacerbated in case of rare events,
i.e. events with low probability of occurrence.

Rare event simulation (res [24]) is a scientific field dealing with simulation
techniques that efficiently handle rare events. Various methods exist, includ-
ing importance sampling [10, 21], importance splitting [15, 1], sequential Monte
Carlo [6], etc. These methods typically tweak the probabilities in the systems,
or the way samples are taken, to make the rare event less rare. The metric of
interest is then also adjusted, to account for the changes in the simulations. How-
ever, res also comes with a drawback: all these techniques depend on expert
knowledge.

This paper presents a theory to deploy automatic res for an important
class of models, namely fault trees (fts). Fault trees are a prominent model in
reliability engineering, and are widely deployed in industry, by companies like
Siemens, Honeywell, NASA and many others.

An ft is a graphical model that shows why a system fails, i.e. which failure
modes and mechanisms exist that can cause a top-level system failure. Thus, the
leaves of the tree model basic failures; while gates represent how basic failures
propagate through the system. Static gates represent Boolean combinations of
failures, such as AND and OR, while dynamic gates model dependability patters,
such as spare components management and functional dependencies.

Typical metrics for fts include system reliability (the probability that the
system does not fail during its mission time) and availability (its average uptime).

Numerical analysis of fault trees is achievable for large models, but it is not
feasible for fault trees that are complex, and model important features such as
maintenance, interdependent interactions, or non-Markovian probability distri-
butions. Such ft models are often analyzed using Monte Carlo simulation. Rare
events are an issue here [29], since fault trees are typically used to model safety-
critical systems (power plants, rockets) whose failure probability is low. Our
technique for rare event simulation is based on importance splitting. The key
idea is to generate more samples from a path that looks promising. More pre-
cisely, importance splitting relies on an importance function that assigns a higher
importance (viz. weight) to more promising states in a trace. The main contribu-
tion of this paper is to assign to each fault tree an importance function that can
be automatically derived from its structure, in a similar way to [3]. The goals is
also to deploy functions with low computation overhead and low variability, so
that the res algorithms implemented from them hare highly-performant.

To achieve this, our importance functions is based on (minimal) cut sets. Cut
sets are sets of basic events such that, if all elements in the cuts set fail, the tree
fails—we note that cut sets are defined for static fault trees; we conservatively
extend these to dynamic fault trees. Thus, the more elements in a cut set that
have failed, the higher its importance. Since a fault tree usually has multiple cut
sets, we take the maximum importance over all cut sets.

In fact, we propose several variants of this idea, where we also normalize the
cut sets by their maximum weights, or prune them based on their cardinality or
failure probability. Our experimental evaluation shows that our functions, tested

Automated res for fta via Minimal Cut Sets 3

on the standard hecs benchmark for fta for a fixed simulation time budget,
can produce estimates as accurate as more involved approaches that consider the
whole structure of the tree [3]. Moreover, the res algorithms deployed by our
functions show the highest stability in our tests. These results are a first step;
elaborate experimental evaluation are an important topic for future research.
Outline. After reviewing related work, in Sec. 2 we present the basic theoret-
ical concepts needed to understand our contribution. In Sec. 3 we introduce an
heuristic importance function for res, that uses the minimal cut sets of the fts.
Sec. 4 compares our approach—empirically—to other ways of analysing dfts.
This work concludes in Sec. 5, where we draw lines for future research.
Related work. Much effort in res has been dedicated to study highly reliable
systems, which includes fault trees [29, 30]. When the fail/repair times follow
non-Markovian distributions, importance splitting is a usual choice. As long as a
full system failure can be broken down into several smaller components failures,
an importance splitting method can be devised. Of course, its efficiency relies
heavily on the choice of importance function. This choice is typically done ad hoc
for the model under study [17, 31]. For instance, [29] defined a “state variable”
(an importance function for the restart algorithm: S(t) = maxi{ci(t)}) for
a specific system. In essence, viewing the system as a fault tree, S(t) counts
the max number of failed components in any mcs. This was generalised in [30]
using cut set analysis to define the importance function Φ(t) = cl − oc(t). Unlike
S(t), Φ(t) does not require all cut sets to have the same cardinality. However,
both functions are hindered when the branches of the fault tree have different
failure probabilities. In this work we propose to alleviate this issue via cut set
pruning and importance normalisation [3]. Regarding automation, [12, 13, 4, 5]
are among the first to attempt a heuristic derivation of all parameters required
to implement splitting. In essence, here we extended [4, 5, 2], using the cut sets
of the fault tree in conjunction with the structural function derived in [3].

2 Theoretical framework

2.1 Fault Trees

A fault tree ‘4’ is a directed acyclic graph that models how component failures
propagate and eventually cause the full system to fail. The leaves are called basic
elements (or basic events), and model the failure of elemental components. Other
nodes called intermediate events are labelled with gates, and describe how combi-
nations of lower failures propagate to upper levels. A full-system failure is called
a top level event (tle), and takes place when the root node of the tree fails.

In this work we consider the repairable dynamic fault trees (rfts) presented
in [8, 19]. Thus, each basic element (BE) b is equipped with a failure distribu-
tion Fb that governs its failure probability as a function of time, and a repair
distribution Rb that governs its repair time. Some BEs are used as spare compo-
nents: these (SBEs) replace a primary component when it fails. The dormancy

4 C.E. Budde & M. Stoelinga

BE1 BEn

(a)AND

BE1 BEn

(b)OR

k/n

BE1 BEn

(c)VOTk

BE1 BE2

(d)PAND

S1 SmP

(e)SPARE

T BE1 BEn

(f)FDEP

BE1 BEn (g) RBOX

Fig. 1: Fault tree gates and the repair box [3]

distribution Db of an SBE b describes its failure while dormant, i.e. not in use.
Only if b becomes active its failure distribution is given by Fb.

rfts have six types of gates. Their syntax is shown in Figs. 1a to 1f, and their
meaning is as follows: the AND, OR, and VOTk gates fail if respectively all, one,
or k of theirm children fail. The latter is called the voting or k out ofm gate. The
priority-and gate (PAND) is an AND gate that only fails if its children fail from
left to right (or simultaneously). SPARE gates have one primary child and one
or more spare children: spares replace the primary when it fails. The FDEP gate
has an input trigger and several dependent events: all dependent events become
unavailable when the trigger fails. Fig. 2a shows an rft without repairs.

rfts handle repairs by means of repair boxes (RBOX [22]). BEs and SBEs
can be connected to an RBOX, which determines which basic element is repaired
next according to a given policy. Note that the repair distribution (and thus, the
time-to-repair of failed components) is an attribute of the basic element.

The semantics for (repairable) dynamic fault trees is given in terms of sto-
chastic transition models, such as Markov automata, Petri nets, iosa, etc. Fol-
lowing [19] we give semantics to rft as Input/Output Stochastic Automata
(iosa), so that we can handle arbitrary probability distributions. Each state in
the iosa represents a system configuration, indicating which components are
operational and which have failed. Transitions among states describe how the
configuration changes when failures or repairs occur.

Dynamic fault trees may exhibit nondeterministic behaviour [7, 14], for in-
stance when two SPAREs have a single shared SBE: if all elements are failed, and
the SBE is repaired first, the failure behaviour depends on which SPARE gets
the SBE. Monte Carlo simulation cannot cope with nondeterminism. The theory
from [8, 19] overcomes this by imposing some mild syntactic conditions, to ensure
that the iosa semantics of an rft is weakly deterministic. This means that
all resolutions of nondeterministic choices lead to the same probability value. In
particular (1) each BE must be connected to at most one SPARE gate, (2) BEs
and SBEs connected to SPAREs are must not be connected to FDEPs, and (3)
policies should be provided for RBOX and spare assignments. For full technical
details the interested reader is referred to [19].

Fault Tree Analysis. An important goal in fta is to compute relevant de-
pendability metrics. A popular metrics is system reliability, which is the proba-
bility of observing no top level event before some mission time T > 0. This can be
defined as relT = Prob

(
∀t∈[0,T] . Xt = 0

)
, where Xt denotes the random vari-

Automated res for fta via Minimal Cut Sets 5

able that represents the state of the top event at time t, which takes the value 1
if there is a tle, and 0 otherwise. System unreliability is unrelT = 1−relT .
Minimal cut sets. Cut sets are a well known qualitative technique in fta
for static fts. A cut set is a set of BEs whose joint failure will cause a tle.

Fig. 2: Fault trees & minimal cut sets

G2
3/4

BE3 BE6BE4 BE5 BE7BE1 BE2

G1

BE9BE8

G3

TLE

(a) An rft without PANDs

Familiy Minimal cut sets included

{mcsj}
{BE1} {BE2} {BE7} {BE8,BE9}
{BE3,BE4,BE5} {BE3,BE5,BE6}
{BE3,BE4,BE6} {BE4,BE5,BE6}

{mcsj}<3 {BE1} {BE2} {BE7} {BE8,BE9}

{mcsj}> 1
4

{BE2} {BE3,BE4,BE5} {BE3,BE4,BE6}
{BE3,BE5,BE6} {BE4,BE5,BE6}

(b) Minimal cut sets of Fig. 2a

A minimal cut set (mcs) is a cut
set of which no subset is a cut
set. These concepts can be lifted
to dynamic fault trees (and rfts)
in general, but this requires intro-
ducing an order to capture tem-
poral dependencies, plus several
other subtleties [25, 14]. Neverthe-
less, rfts as defined above rule out
several issues raised by cut sets in
dfts, such as event simultaneity
[14]. Furthermore, in this work we
exclude order dependence by con-
sidering rfts without PAND gates.
This enables a conservative treat-
ment of cut sets in rfts, of which
we give more details in Sec. 3.1.

For an illustration, Fig. 2b lists
all minimal cut sets of the tree
from Fig. 2a. We use the notation:
{mcsj} for the family of all min-
imal cut sets; {mcsj}<N for the

subset of {mcsj} that excludes cut sets with N or more BEs (called prun-
ing of order N); {mcsj}>λ for the subset of {mcsj} that excludes cut sets
where the product of the failure rate of the BEs is 6 λ ∈ R>0. The latter is well
defined iff all BEs and SBEs in the rft have Markovian failure and dormancy
distributions. To obtain {mcsj}> 1

4
in Fig. 2b, we make this the case with failure

rates: 1
4 for BE1 and BE7, 6

20 for BE2, 2
3 for {BEi}6

i=3, and 1
2 for BE8 and BE9.

Cut set pruning as in {mcsj}<N and {mcsj}>λ is a standard way to speed
up ft analyses [28]. The goal is to ignore the most unlikely (and hard to com-
pute) cut sets: pruning of order N assumes that the tle will most likely occur
by cut sets with less than N BEs; pruning by rate 6 λ assumes that the tle will
occur first by cut sets where BEs have higher rates and thus fail faster. Choosing
such N and λ to prune irrelevant mcs of a given tree depends on its structure
and the BEs failure/dormancy/repair distributions.

2.2 Fault tree analysis via (rare event) simulation
In this work, we analyse dependability metrics of rfts using methods based on
Monte Carlo simulation. This involves taking random samples from the (stochas-
tic) iosa model that underlies the rft. More specifically, Monte Carlo simu-
lation means the discrete-event simulation process used to generate failures and

6 C.E. Budde & M. Stoelinga

repairs of the (iosa components that model the) BEs of the tree. As described
in [16, 3], this process begins at simulation time 0 when all basic elements are op-
erational. The next failure time of all these BEs and SBEs is randomly sampled,
according to their failure/dormancy distributions, and stored in a heap with the
smallest time T1 at the top. Then, simulation time advances until time T1, sim-
ulating a failure of the corresponding component. As soon as this happens, the
repair time of that component is sampled and stored in the events-time heap.
Next, simulation time advances until the smallest next-event time at the top of
the heap, T2, simulating either another failure, or a repair of the broken compo-
nent. This process continues until the predefined end-of-simulation time T . The
resulting sequence of fail/repair events in times T1 < T2 < · · · < TN < T is called
a simulation trace. The mathematical definition of a compositional semantics for
repairable dfts that allows this approach is introduced in [20]; moreover, [3]
formally defines simulation traces in such iosa semantics.

A main advantage of this approach when compared to purely combinatorial
analyses is the capability to deal with non-Markovian distributions. Sampling
discrete (random) events is a straightforward and efficient process with today’s
scientific libraries and computer power. For instance, to estimate the unreliability
of an rft one can sample N independent traces from its iosa semantics as
described above. Then, an unbiased statistical estimator for p = unrelT is the
proportion of traces observing a tle, p̂ [16]. The statistical error of p̂ can be
quantified with two numbers δ and ε s.t. p̂ ∈ [p − ε, p + ε] with probability at
least δ. The interval p̂ ± ε is called a confidence interval (ci) with coefficient δ
and precision 2ε. Such procedures scale linearly with the number of tree nodes
and can handle non-Markovian failure and repair pdfs. However, they find a
bottleneck to estimate rare events: i.e. if p ≈ 0, then very few traces observe the
tle. Increasing the number of traces alleviates this problem, but even standard
ci settings—where ε is relative to p—require sampling an unacceptable number
of traces [23]. Rare event simulation techniques solve this specific problem.

res techniques [23] increase the amount of traces that observe the rare
event. In particular, importance splitting res [17] is very flexible w.r.t. the
probability distributions it can handle, which makes it a perfect candidate to
analyse rfts. Importance splitting can be efficiently deployed as long as the
rare event γ can be described as a nested sequence of less-rare events γ =
γM (γM−1 (· · · (γ0. This decomposition allows to study the conditional
probabilities pk = Prob(γk+1 | γk) separately, to then compute p = Prob(γ) =∏M-1
k=0 Prob(γk+1 | γk). Moreover, importance splitting requires all conditional

probabilities pk to be much greater than p, so that estimating each pk can be
done efficiently with classical Monte Carlo (cmc).

For this, importance splitting defines the γk via an importance function
I : S → N, that assigns an importance to each state in the system. For us, a
state s ∈ S is a configuration of failed/operational BEs in a tree, where the
state space S includes all possible combinations of BE failures. The higher the
importance of a state s, the closer it is to the rare event γM . Event γk col-

Automated res for fta via Minimal Cut Sets 7

lects states with importance at least `k, for certain sequence of threshold levels
0 = `0 < `1 < · · · < `M . Formally: γk = {s ∈ S | I (s) > `k}

Importance splitting samples more (partial) traces from states with higher
importance. Two well-known methods are Fixed Effort and restart. Fixed
Effort [9] samples a predefined amount of traces in each region Sk = γk \γk+1 =
{s ∈ S | `k+1 > I(s) > `k}. If the amount of sampled traces is the same in all
regions, the effort e ∈ N, we call this method fee. Thus, starting at γ0, fee first
estimates the proportion of traces that reach γ1: p0 = Prob(γ1 | γ0) = Prob(S0).
Next, from the states that reached γ1 new traces are generated to estimate p1 =
Prob(S1), and so on until pM . RESTART (rst [33, 32]) is another algorithm

✔

✘

✗

✘

✗

Fig. 3: rst2 for unrelT

that starts one trace in γ0 and monitors the
importance of the states visited. If the impor-
tance of the trace up-crosses threshold `1, the
first state visited in S1 is saved and the trace is
cloned, aka split—see Fig. 3. This mechanism
rewards traces that get closer to the rare event.
Each clone then evolves independently, and if
one up-crosses threshold `2 the splitting mecha-
nism is repeated. Instead, if a state with impor-
tance below `1 is visited, the trace is truncated.

This penalises traces that move away from the rare event. To avoid truncating
all traces, the one that spawned the clones in region Sk can go below importance
`k. To deploy an unbiased estimator for p, restart measures how much split
was required to visit a rare state [32]. If the same amount of splitting is used
throughout, we call this method rste, to mean that e − 1 clones are spawned
when a simulation up-crosses a threshold `i.

3 RES using minimal cut sets

The effectiveness of importance splitting relies heavily on the choice of the impor-
tance function [17]. Traditionally, this function is given by domain and/or res
experts, requiring domain knowledge both in the application and in the simu-
lation techniques. In this section we introduce a series of importance functions
that can be automatically derived from systems described as fault trees.

3.1 MCS re-writing of trees

The initial observation is that a fault tree—without temporal requirements such
as PAND gates—can be re-written as a disjunction of its minimal cut sets. This
is a well-known fact: the key insight is that the structure of the resulting tree
can be readily exploited to derive importance functions automatically.

More in detail, given a fault tree4 one can build a tree4∗ which is equivalent
w.r.t. the mcs of 4. Essentially, 4∗ is a re-writing in disjunctive normal form
(dnf) of the logical formula represented by 4. The tle of 4∗ is an OR gate,

8 C.E. Budde & M. Stoelinga

BE3 BE4 BE5

G2
A

BE6BE4 BE5

G2
B

BE3 BE6BE4

G2
C

BE3 BE6BE5

G2
D

BE7BE1 BE2

BE9BE8

G3

TLE

Fig. 4: mcs re-write of Fig. 2a

the children of that OR are AND gates (or
BEs), and the children of the ANDs are BEs.
The first-level nodes of 4∗, i.e. the direct chil-
dren of the OR, are the conjunctions of the
dnf. If a conjunction has a single literal, the
AND is omitted and the corresponding BE is
a direct input of the OR. Thus, each AND (or
first-level BE) in 4∗ stands for an mcs of 4.

Fig. 4 shows the result of applying this re-
writing to the dft from Fig. 2a. Although it
is represented as a tree, note that the G∗2 gates
in Fig. 4 share children: e.g. BE4 and BE5 are
both children of GA

2 and GB
2 .

For general fta the scope of this technique is limited. First and foremost,
the set {mcsj} can be exponential in the size of the fault tree, e.g. when 4
has a conjunctive normal form structure. This is a general limitation of cut set
analysis: in such cases the computation of all mcs can be very time/memory
consuming, and pruning helps to alleviate the issue. Moreover, minimal cut sets
are standard for the analysis of static fault trees. In dynamic fault trees, PAND
gates introduce order dependencies that cannot be captured with mcs. Also,
notions of simultaneity and causality of events must be considered to properly
lift mcs for the general analysis of dfts [14]. Note however that repairs do
not affect mcs. Thus, in this work we consider the class of repairable fault trees
(rft) described in [20]—but excluding PAND gates.

In essence, rfts are dfts enriched with RBOX elements, where the prop-
agation of events from children to parents is instantaneous. Potential sources
of nondeterminism (e.g. an SBE claimed by two SPAREs) are proven weakly-
deterministic, as long as the rft adheres to the syntactic rules described in
Sec. 2. Thus, SPARE gates are essentially ANDs. Moreover, FDEPs in rfts are
non-destructive: if a failed trigger is repaired, the BEs affected by the gate become
available (not necessarily operational) once again [20]. This can be modelled with
OR gates: in Fig. 2a, the FDEP and gate G3 are equivalent to OR(BE7,G3). There-
fore, an rft without PANDs can be seen as a static fault tree whose BEs can
be repaired. This means that the mcs re-write of an rft as 4∗, gives a faithful
description of the sources of top-level failures in the original tree 4.

To exploit this for the automation of res analysis of fault trees, we combine
this fact with the theory deployed in [3]. As explained in Sec. 2.2, the key ingre-
dient to implement importance splitting is the importance function I . [3] intro-
duces a recursive construction for I based on the structure of the rft 4, which
begins from its BEs and ends in the top level gate. The essential contribution of
the current work is to apply this same construction to the mcs re-write 4∗.

3.2 Importance functions from minimal cut sets

The compositional importance function of [3] is defined per gate (and BE) type.
The key concept is that, in general, importance should reflect proximity to the

Automated res for fta via Minimal Cut Sets 9

rare event. For fault trees this means that the importance of a gate should in-
crease as the gate approaches its own failure. Note that the type of a gate defines
how, as its children fail, the gate approaches its own failure. This is used in [3]
to define a local importance function for each gate, which assigns an importance
to the gate based on its type and on the state of its children.

For instance, AND gates fail when all its children fail, so the importance of an
AND should increase with the failure of every child. Thus, the local importance
function of ANDs is a summation of the importance of its children. By the same
argument, the importance of an OR is the max importance among its children.
Basic events are the base case of this recursion: BEs and SBEs essentially have
a binary state, failed or not,† which are assigned importance 1 and 0 resp.

In [3] this recursive construction starts from the leaves of the tree and ends
in the top gate, thus deriving a function IFT that considers every single gate in
the original ft 4. Instead, here we work on the mcs re-write 4∗, for which the
three cases described above suffice. 4∗ consists of the top OR, potentially some
ANDs, and the base BEs and SBEs: the importance function assigned to such
tree is a max (OR) over the summation (ANDs) of every basic event in an mcs.

Table 1 gives the mathematical expression of this formula, which we denote
IMCS. Note that each AND of the mcs re-write 4∗ represents a minimal cut set
of the original tree, viz. an element of {mcsj}. In the mathematical expressions
of Table 1, BEi stands for the elementary importance function described above,
which takes the value 1 if the BE is failed and 0 otherwise.

We further consider pruned variants of IMCS, that discard cut sets based on
their cardinality (IMCS-P) or, if BE failures are exponentially distributed, based
on the product of the failure rates of the BEs in the cut set (IMCS-PR). The
only difference between these functions and IMCS is the range of the max, which
reflects the pruning of some minimal cut sets.

Another concept introduced in [3] is importance normalisation. The intention
is to level the importance values that a parent gate reads from its children. This
has the following motivation: take a binary AND gate whose left child is an AND
of 2 BEs, and whose right child is an AND of 6 BEs. The top AND fails iff both
AND children fail. Thus, having one BE of the left AND fail, is just as important
as having three BEs of the right AND fail, because in both cases one child of the
top AND is half-failed. To achieve this, [3] divides the importance of the children
of a gate by its maximum possible value—which corresponds to a failed child. In
this way, the importance of a gate uses the “percentage of failure” of its children.

We also experiment with this concept: in Table 1, IMCS-N stands for the nor-
malised version if IMCS. Note that jn is the number of children of an AND that
represents an mcs in the original tree. The importance function of this AND
is the summation if its children, all of which are BEs whose max importance is
1. By dividing this summation by its max possible value, jn, we compute the
percentage of failure of the AND. The scaling factor lcm ensures that the result-
ing value is an integer, as required by our tooling framework. Finally, although

†This is given more thorough semantics in [3] via an output function zi.

10 C.E. Budde & M. Stoelinga

Name Expression Description

IFT [3, Table 2]

Based on the full ft structure, this im-
portance function considers all nodes
recursively, defining local functions for
BEs and moving up until the tle.

IMCS max
{BE1,...,BEjn}∈{mcsj}

{
jn∑

i=1

BEi

} For each mcs of the tree, IMCS counts
the number of BEs that have failed.
The importance of the current state of
the tree is the max among these counts.

IMCS-P max
{BE1,...,BEjn}∈{mcsj}<N

{
jn∑

i=1

BEi

} IMCS-P operates similarly to function
IMCS above, but here the max ranges
over a pruned set of mcs, discarding
cut sets with N or more BEs.

IMCS-PR max
{BE1,...,BEjn}∈{mcsj}>λ

{
jn∑

i=1

BEi

} Similar to IMCS-P but using the fail-
ure rates for pruning, IMCS-PR consid-
ers only mcs where the product of the
failure rate of all BEs is greater than λ.

IMCS-N max
{BE1,...,BEjn}∈{mcsj}

{
lcm ·

jn∑
i=1

BEi

jn

} IMCS-N is a normalised version of IMCS
(see normalisation of the importance
functions in [3]) based on the number
of BEs of each cut set in {mcsj}.

• BEi = 1 if the i-th BE is in a failed state, and BEi = 0 otherwise.
• lcm is the least common multiple of the cardinality of every mcs in range.

Table 1: Importance functions for automatic res in fault trees

omitted in Table 1, we further define the functions IMCS-P-N and IMCS-PR-N as
the normalised versions of the functions IMCS-P and IMCS-PR.
Tool automation. The theory described in this section is piggybacked in the
tool chain of [3], where rfts are input in an extended version of the Galileo
textual format [26, 27]. A Java converter builds its iosa semantics following
[20], as well as the compositional importance function of [3]. Model and function
are then fed to the FIG tool, which implements various flavours of (importance
splitting) res. FIG output is a confidence interval that estimates the answer to
a quantitative user query, such as system reliability for a given time horizon.
Minimal cut sets, required to implement the importance functions in Table 1
other than IFT, can be computed using the classical top-down algorithms; more
efficient methods employ Binary Decision Diagrams [18, 25].

4 Empirical evaluation

To assess the efficiency of our approach, we analyse the reliability of a classic
benchmark in fta: the Hypothetical Example Computer System (hecs [28]).

Automated res for fta via Minimal Cut Sets 11

4.1 Case study and experimental setting

We study a parameterised version of hecs deployed in [3]. The parameter p in
hecsp determines the number of spare processors and parallel buses: hecsp fea-
tures p spare processors (PSi) and 2p buses (Bj). Moreover, the system analysed
in [3] is repairable and defines one independent RBOX per subsystem (Memory,
Interface, Bus, and Processor). Fig. 5 shows hecs3. The full dft described in
(extended) Galileo can be found in Appendix A.

Note that the repair times of BEs are given by pdfs with non-Markovian
distributions, but their failure (and dormant-failure) times are all exponential.
This allows us to experiment with the pruned importance functions IMCS-P and
IMCS-PR. Furthermore hecs has cold spares: the SBEs PSi must not fail while
inactive. To encode this and analyse relT in our tool chain, we select a dormant-
failure time beyond T for the PSi, e.g. the dormancy distribution Dirac(T + ε).

HECS

SW HW

IF BUS

B1 B6

MI2MI1

MEM 3/5

MI3

M1 M4 M5M2 M3

PROC

PROC1 PROC2

P1 P2

PS1 PS2 PS3

Fig. 5: Repairable dft for the hecs3 case study

As in [3] we estimate unrel1000, hereby called ϕ. We analyse the systems
{hecsp}5

p=3 to measure how, as p grows and the corresponding value of ϕ
decreases, res analysis can yield increasingly narrower cis for a fixed simulation
time budget of 25 minutes. We also consider variants of hecs without repairs
for which we estimate unrel750, hereby called ψ.

On the one hand we compare res vs. cmc, and show that classical Monte
Carlo simulation cannot yield useful results when ϕ < 2.0×10-6. On the other
hand we compare the efficiency of the functions presented in Table 1. For this,
on each model hecsp and for different res algorithms, we estimate ϕ,ψ with
FIG running res for 25 minutes. The best importance functions are those with
which FIG can implement res and produce the narrowest confidence intervals.
Thus, the goal is to identify whether any importance function can consistently
produce the narrowest cis, with most res algorithms, in all hecsp models.

12 C.E. Budde & M. Stoelinga

Importance functions IMCS-P and IMCS-PR (and their normalised versions) re-
quire a pruning criterion. We selected N = 4 for the former and λ = 1×10-18 for
the latter. Thus, for all models, IMCS-P discards the cut sets corresponding to
the Bus and Processor subsystems. Instead, IMCS-PR discards all cut sets corre-
sponding to the Memory subsystem (with the sole exception of {MI1,MI2}) for
hecs3 and hecs4. For hecs5, IMCS-PR also discards the cut set of Processors.
All functions for hecs3 are shown in Appendix B.

4.2 Results and discussion

Fig. 7 shows the results of our experiments on hecs without repairs, where we
estimated ψ = unrel750. Fig. 8 shows the results for hecs with repairs, where
we estimated ϕ = unrel1000. We ran FIG on a computer with a CPU Intel®
Xeon® E7-8890 v4 @ 2.20GHz and 2TB of RAM DDR4 @ 1866MHz, running
Linux x64 (Ubuntu, kernel 3.13.0-168).

CMC
FT

MCS
MCS-PR
MCS-N

MCS-PR-N

Fig. 6: Color leg-
end of bar plots

We use whisker-bar plots to show the width of the 95%
cis estimated for each instance. An instance is a combination
of a res algorithm, a model, and an importance function—
e.g. fee=8, hecs3, and IMCS—represented in Figs. 7 and 8
by one bar in one plot. Each instance was repeated 13 times.
The height of a bar represents the resulting average ci width:
achieved by that algorithm, in that model, via that importance
function (we removed outliers using a Z-scorem=2 [11]). The
whiskers on top of the bar represent the variance of these

widths. The number at the base of a bar indicates how many out of the 13
repetitions of that instance yielded valid results—if no rare event is observed,
FIG outputs the “null ci” [0, 0] to indicate an invalid estimation.

We use the same colour of bar-instance to identify the importance functions
across plots. The colour legend is shown in Fig. 6, where CMC stands for classical
Monte Carlo (i.e. not an importance function), FT stands for the IFT importance
function from [3], MCS stands for IMCS from Table 1, and so on. Therefore,
to assess an importance function, we must see how each colour fared in the
following orthogonal criteria: bar height, where shorter means narrower cis and
is thus better, whisker length, where shorter means less variance and is thus
better, and validity count, where 13 is best and 0 (or absence of a bar) is worst.

Functions IMCS-P and IMCS-P-N are not shown in Figs. 7 and 8 because they
only yielded null cis. This was expected: the Processors cut set is a main cause
of tles due to the failure rates involved—see Code 1 in Appendix A. Pruning
that cut set makes importance insensitive to the relevant failures of the system.
Thus, cloning and truncating simulation traces is a futile overhead, which makes
res fare even worse than cmc. This also explains why IMCS-PR is competitive
for hecs3,4 but never for hecs5, where it prunes the Processors cut sets.

Regarding cmc, Fig. 7 shows that res does not pay off in general to estimate
metrics like ψ when these are above 2×10-6. This changes in Fig. 8, where cmc
lost to almost every res implementation for hecs4, and for hecs5 (where
ϕ ≈ 3×10-7) it could not produce cis narrower than 3×10-6, thus including 0.

Automated res for fta via Minimal Cut Sets 13

Fig. 7: ci precision for unrel750 of hecs without repairs: four res algorithms

1e
-4

1e
-3

HECS3 HECS4 HECS5

13 13 1313 13 1313 13 1313 13 113 13 1313 13 0

(a) Fixed Effort with e = 8

1e
-4

1e
-3

HECS3 HECS4 HECS5

13 13 1313 13 1313 13 1313 13 213 13 1313 13 0

(b) restart with e = 3

1e
-4

1e
-3

HECS3 HECS4 HECS5

13 13 1313 13 1313 13 1313 13 113 13 1313 13 0

(c) Fixed Effort with e = 16

1e
-4

1e
-3

HECS3 HECS4 HECS5

13 13 1313 13 1313 13 1313 13 113 13 1313 13 0

(d) restart with e = 4

Going back to the results for hecs without repairs (Fig. 7) we see that
cmc consistently outperforms res. Here we estimated ψ = unrel750 instead
of unrel1000. Our importance functions are oblivious to the simulation time,
and therefore a smaller time horizon hinders importance splitting w.r.t. cmc.
This is because simulation runs are cloned closer to the (truncating) time limit,
incurring computation overhead that may yield no rare event observations. Au-
tomatic importance functions sensitive to simulation time are an interesting line
of research: we addressed this again in the conclusions. On the other hand, our
method performs best when operating with large time horizons, such that the
rarity of unrelT is only lightly influenced by T ‡.

Also remarkable is the fact that IFT and IMCS-N performed very bad for rst3
and rst4 in hecs5 without repairs—Figs. 7b and 7d. We repeated our exper-
iments and the same behaviour was observed. For these two cases, it was found
that the expression of the importance functions had large scaling factors (lcm in
Table 1) due to importance normalisation, namely 210. For other functions this
factor ranges from 2 to 30. We suspect that the variability of importance dur-
ing res resulted in over-splitting and truncation, to which restart is more
sensitive than Fixed Effort. This is also observed (to a lesser degree) in hecs3,
where again IFT and IMCS-N have the largest scaling factor (30)—see Table 2.

Focusing now in Fig. 8 and to our surprise, we see that IMCS fared quite well,
many times even outperforming IFT—see e.g. Fig. 8b and Fig. 8d, in particular
for hecs5. We had expected that the absence of importance normalisation would
unbalance importance computations, making res implementations from IMCS
loose on performance, which was clearly not the case. This however could be

‡This complements standard model checking, where time-bounded properties with
large time bounds entail memory problems [25].

14 C.E. Budde & M. Stoelinga

Fig. 8: ci precision for unrel1000 of hecs with repairs: six res algorithms

1e
-7

1e
-6

1e
-5

HECS3 HECS4 HECS5

13 13 713 13 1113 13 1213 9 013 13 1213 10 0

(a) Fixed Effort with e = 8

1e
-7

1e
-6

1e
-5

HECS3 HECS4 HECS5

13 13 713 13 713 13 1313 13 013 13 1313 13 1

(b) restart with e = 3

1e
-7

1e
-6

1e
-5

HECS3 HECS4 HECS5

13 13 713 13 1313 13 1313 8 013 13 1313 7 0

(c) Fixed Effort with e = 16

1e
-7

1e
-6

1e
-5

HECS3 HECS4 HECS5

13 13 712 13 1013 13 1313 11 013 13 1313 11 1

(d) restart with e = 4

1e
-7

1e
-6

1e
-5

HECS3 HECS4 HECS5

13 13 713 13 1313 13 1313 11 013 13 1313 9 1

(e) Fixed Effort with e = 32

1e
-7

1e
-6

1e
-5

HECS3 HECS4 HECS5

13 13 713 12 613 13 1313 12 013 13 1113 11 0

(f) restart with e = 5

a result that most system failures originate in the Processors subsystem, so
considering other cut sets in hecs may not pay off. In any case, the normalised
version of this function, viz. IMCS-N, almost always performed as well as IMCS,
and similarly with IFT. For rfts with several (three or more) mcs that can
equally likely lead to a tle, functions such as IMCS-N and IFT should outperform
un-normalised variants like IMCS and IMCS-PR.

As mentioned in Sec. 1, IMCS is equivalent to the importance function Φ(t)
from [30], essentially counting the number of failed BEs in the mcs with the
largest such number. A simpler approach would be to count the number of failed
elements in the tree, i.e. disregarding cut sets. This function was named AC1
in [5], and applied to a small tree representing a database system. There, the
function AC4 represents what we here call IMCS. Both functions AC1 and AC4
performed similarly, which was explained by the balanced nature of the rft:
the failure of any one branch (cut set) was similar to the rest. This was further
corroborated in [2] with another system representing an oil-refinery pipeline.

A final insight is given by the near absence of valid results by IMCS-PR-N for
hecs5, most likely due to its pruning of the Processors cut set. This suggests
that cut set pruning is non-trivial for relatively complex repairable fault trees,
even when the failure of all BEs is given in terms of exponential rates.

Automated res for fta via Minimal Cut Sets 15

5 Conclusions

In this work we have defined importance functions for res analysis of fault
trees. These functions can be automatically derived from the tree structure, by
re-writing the tree as a disjunction of its minimal cut sets. This can be applied
to repairable dynamic fault trees without PAND gates, that are given semantics
as iosa. Our method exploits a simple concept, and yet we have demonstrated
that it can outperform classical Monte Carlo analysis, and even compete against
other automatically derived importance functions for res analysis of rfts.

Our empirical evaluation was sound yet arguably modest in size. hecs is
a classical fta benchmark that features several gates an heterogeneous sub-
tree structures, but it remains a single case study. It is important to exercise
our techniques in further systems, e.g. to determine whether mildly-balanced
trees (where most mcs have roughly similar contributions to the tle) makes
a distinction between IMCS and its normalised counterpart IMCS-N.

An interesting line of future research would be to weigh the cut sets based on
their failure probability or failure rates. Moreover, the study of rel750 for hecs
without repairs raised the issue of time-awareness for importance computation.
If the rarity of the dependability metric is based on the shortness of the time
horizon, our approach will most likely not perform well, since it is oblivious to
this dimension. Penalising importance based on the remaining time may be a
way to approach this issue.

A Galileo of the hecs3 dft
1 toplevel "HECS";
2 "HECS" or "IF" "MEM" "BUS" "PROC";
3
4 "IF" or "SW" "HW";
5 "SW" lambda=4.5e-12 EXT_repairPDF=uniform(28,56);
6 "HW" lambda=1.0e-10 EXT_repairPDF=uniform(28,56);
7
8 "MEM" 3of5 "M1" "M2" "M3" "M4" "M5";
9 "MEM1" fdep "MI1" "M1" "M2";

10 "MEM2" fdep "MI2" "M4" "M5";
11 "MEM3" fdep "MI3" "M3";
12 "MI3" and "MI1" "MI2";
13 "MI2" lambda=5.0e-9 EXT_repairPDF=uniform(21,28);
14 "MI1" lambda=5.0e-9 EXT_repairPDF=uniform(21,28);
15 "M1" lambda=6.0e-8 EXT_repairPDF=uniform(21,28);
16 "M2" lambda=6.0e-8 EXT_repairPDF=uniform(21,28);
17 "M3" lambda=6.0e-8 EXT_repairPDF=uniform(21,28);
18 "M4" lambda=6.0e-8 EXT_repairPDF=uniform(21,28);
19 "M5" lambda=6.0e-8 EXT_repairPDF=uniform(21,28);
20
21 "BUS" and "B1" "B2" "B3" "B4" "B5" "B6";
22 "B1" lambda=8.7e-4 EXT_repairPDF=lognormal(4.45,0.24);
23 "B2" lambda=8.7e-4 EXT_repairPDF=lognormal(4.45,0.24);
24 "B3" lambda=8.7e-4 EXT_repairPDF=lognormal(4.45,0.24);
25 "B4" lambda=8.7e-4 EXT_repairPDF=lognormal(4.45,0.24);
26 "B5" lambda=8.7e-4 EXT_repairPDF=lognormal(4.45,0.24);
27 "B6" lambda=8.7e-4 EXT_repairPDF=lognormal(4.45,0.24);
28
29 "PROC" and "PROC1" "PROC2";
30 "PROC1" wsp "P1" "PS1" "PS2" "PS3";

16 C.E. Budde & M. Stoelinga

31 "PROC2" wsp "P2" "PS1" "PS2" "PS3";
32 "P1" lambda=1.0e-3 EXT_repairPDF=lognormal(4.45,0.24);
33 "P2" lambda=1.0e-3 EXT_repairPDF=lognormal(4.45,0.24);
34 "PS1" lambda=1.5e-3 EXT_dormPDF=dirac(1e4) EXT_repairPDF=lognormal(4.45,0.24);
35 "PS2" lambda=1.5e-3 EXT_dormPDF=dirac(1e4) EXT_repairPDF=lognormal(4.45,0.24);
36 "PS3" lambda=1.5e-3 EXT_dormPDF=dirac(1e4) EXT_repairPDF=lognormal(4.45,0.24);
37
38 "RB_I" repairbox_priority "HW" "SW";
39 "RB_M" repairbox_priority "MI1" "MI2" "M1" "M2" "M3" "M4" "M5";
40 "RB_B" repairbox_priority "B1" "B2" "B3" "B4" "B5" "B6";
41 "RB_P" repairbox_priority "P1" "P2" "PS1" "PS2" "PS3";

Code 1: Description of hecs3 in (extended) Galileo

B Importance functions used for HECS experiments

In Table 2 we give the importance functions used in Sec. 4, for experimentation
with the case study hecs3, which are oblivious of repairs. The arithmetic ex-
pressions use the names of the iosa modules that give semantics to the BEs
of the dft. For instance nodes SW, HW, MI1, and MI2, are all BEs. In the iosa
semantics these BEs correspond to modules named BE_0, BE_1, BE_3, and BE_8
resp. Since the {mcsj} family of hecs3 includes {SW}, {HW}, and {MI1, MI2},
therefore in Table 2 the max of function IMCS ranges (among others) over the
following three summations: BE_0, BE_1, and BE_3+BE_8.

We highlight that the importance function IFT from [3] is more complex, but
not necessarily larger than the functions introduced in the current work. This
is mainly a consequence of the VOT gate in the Memory subsystem, a 3of5,
which yields 10 minimal cut sets. The FDEPs give even further tle possibilities.
Indeed, from the 21 minimal cut sets of hecs, 17 come from failure combinations
in the Memory subsystem.

ifun Expression in terms of the iosa semantic model

IFT

max(30*(max(BE_0,BE_1)),5*(summax(3,2*(max(BE_3,BE_4)),2*(max(BE_3,BE_6)),max(BE_3+
BE_8,2*(BE_10)),2*(max(BE_8,BE_12)),2*(max(BE_8,BE_14)))),5*(BE_17+BE_18+BE_19+BE_20
+BE_21+BE_22),3*(max(BE_24+BE_25+BE_29+BE_31,(5.0*(SPARE_26==9?1:0)))+max(BE_33+
BE_25+BE_29+BE_31,(5.0*(SPARE_27==9?1:0)))));0;30

IMCS

max(BE_0,BE_1,BE_4+BE_6+BE_10,BE_4+BE_6+BE_12,BE_4+BE_6+BE_14,BE_4+BE_10+BE_12,BE_4
+BE_10+BE_14,BE_4+BE_12+BE_14,BE_6+BE_10+BE_12,BE_6+BE_10+BE_14,BE_6+BE_12+BE_14,
BE_10+BE_12+BE_14,BE_3+BE_10,BE_3+BE_12,BE_3+BE_14,BE_8+BE_4,BE_8+BE_6,BE_8+BE_10,
BE_3+BE_8,BE_24+BE_33+BE_25+BE_29+BE_31,BE_17+BE_18+BE_19+BE_20+BE_21+BE_22);0;6

IMCS-PR
max(BE_0,BE_1,BE_3+BE_10,BE_3+BE_12,BE_3+BE_14,BE_8+BE_4,BE_8+BE_6,BE_8+BE_10,BE_3+
BE_8,BE_24+BE_33+BE_25+BE_29+BE_31);0;5

IMCS-N

max(30*(BE_0),30*(BE_1),10*(BE_4+BE_6+BE_10),10*(BE_4+BE_6+BE_12),10*(BE_4+BE_6+
BE_14),10*(BE_4+BE_10+BE_12),10*(BE_4+BE_10+BE_14),10*(BE_4+BE_12+BE_14),10*(BE_6+
BE_10+BE_12),10*(BE_6+BE_10+BE_14),10*(BE_6+BE_12+BE_14),10*(BE_10+BE_12+BE_14),15*(
BE_3+BE_10),15*(BE_3+BE_12),15*(BE_3+BE_14),15*(BE_8+BE_4),15*(BE_8+BE_6),15*(BE_8+
BE_10),15*(BE_3+BE_8),6*(BE_24+BE_33+BE_25+BE_29+BE_31),5*(BE_17+BE_18+BE_19+BE_20+
BE_21+BE_22));0;30

IMCS-PR-N
max(10*(BE_0),10*(BE_1),5*(BE_3+BE_10),5*(BE_3+BE_12),5*(BE_3+BE_14),5*(BE_8+BE_4),5
(BE_8+BE_6),5(BE_8+BE_10),5*(BE_3+BE_8),2*(BE_24+BE_33+BE_25+BE_29+BE_31));0;10

Table 2: Importance functions used for hecs3

Automated res for fta via Minimal Cut Sets 17

References

1. Bayes, A.J.: Statistical techniques for simulation models. Australian Computer
Journal 2(4), 180–184 (1970)

2. Budde, C.E.: Automation of Importance Splitting Techniques for Rare Event Simu-
lation. Ph.D. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2017)

3. Budde, C.E., Biagi, M., Monti, R.E., D’Argenio, P.R., Stoelinga, M.: Rare Event
Simulation for non-Markovian repairable Fault Trees. In: TACAS’20 (to appear)

4. Budde, C.E., D’Argenio, P.R., Hermanns, H.: Rare event simulation with fully
automated importance splitting. In: EPEW 2015. LNCS, vol. 9272, pp. 275–290.
Springer (2015). https://doi.org/10.1007/978-3-319-23267-6_18

5. Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of impor-
tance functions in fully automated importance splitting. In: VALUETOOLS. ICST
(2016). https://doi.org/10.4108/eai.25-10-2016.2266501

6. Cérou, F., Del Moral, P., Furon, T., Guyader, A.: Sequential Monte Carlo
for rare event estimation. Statistics and Computing 22(3), 795–808 (2012).
https://doi.org/10.1007/s11222-011-9231-6

7. Crouzen, P., Boudali, H., Stoelinga, M.: Dynamic fault tree analysis us-
ing input/output interactive markov chains. In: DSN’07. pp. 708–717 (2007).
https://doi.org/10.1109/DSN.2007.37

8. D’Argenio, P.R., Monti, R.E.: Input/Output Stochastic Automata with Urgency:
Confluence and weak determinism. In: ICTAC’18. LNCS, vol. 11187, pp. 132–152.
Springer (2018). https://doi.org/10.1007/978-3-030-02508-3_8

9. Garvels, M.J.J.: The splitting method in rare event simulation. Ph.D. thesis, Uni-
versity of Twente, Enschede, The Netherlands (2000)

10. Heidelberger, P.: Fast simulation of rare events in queueing and relia-
bility models. ACM Trans. Model. Comput. Simul. 5(1), 43–85 (1995).
https://doi.org/10.1145/203091.203094

11. Iglewicz, B., Hoaglin, D.: How to Detect and Handle Outliers. ASQC basic refer-
ences in quality control, ASQC Quality Press (1993)

12. Jégourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: CAV. LNCS, vol. 8044, pp. 576–591. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_38

13. Jégourel, C., Legay, A., Sedwards, S., Traonouez, L.M.: Distributed verification
of rare properties using importance splitting observers. ECEASST 72 (2015).
https://doi.org/10.14279/tuj.eceasst.72.1024

14. Junges, S., Guck, D., Katoen, J., Stoelinga, M.: Uncovering Dynamic Fault Trees.
In: DSN’2016. pp. 299–310. IEEE (2016). https://doi.org/10.1109/DSN.2016.35

15. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
National Bureau of Standards applied mathematics series 12, 27–30 (1951)

16. Law, A.M.: Simulation Modeling and Analysis. McGraw-Hill Education (2014)
17. L’Ecuyer, P., Le Gland, F., Lezaud, P., Tuffin, B.: Splitting techniques. In: Rubino

and Tuffin [24], pp. 39–61. https://doi.org/10.1002/9780470745403.ch3
18. Lee, W., Grosh, D., Tillman, F., Lie, C.: Fault Tree Analysis, Methods, and Ap-

plications | A Review. IEEE Transactions on Reliability R-34(3), 194–203 (1985).
https://doi.org/10.1109/TR.1985.5222114

19. Monti, R.E.: Stochastic Automata for Fault Tolerant Concurrent Systems. Ph.D.
thesis, Universidad Nacional de Córdoba, Argentina (2018)

20. Monti, R.E., D’Argenio, P.R., Budde, C.E.: A compositional semantics for re-
pairable fault trees with general distributions. arXiv e-prints arXiv:1910.10507
(2019)

https://doi.org/10.1007/978-3-319-23267-6_18
https://doi.org/10.4108/eai.25-10-2016.2266501
https://doi.org/10.1007/s11222-011-9231-6
https://doi.org/10.1109/DSN.2007.37
https://doi.org/10.1007/978-3-030-02508-3_8
https://doi.org/10.1145/203091.203094
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.14279/tuj.eceasst.72.1024
https://doi.org/10.1109/DSN.2016.35
https://doi.org/10.1002/9780470745403.ch3
https://doi.org/10.1109/TR.1985.5222114

18 C.E. Budde & M. Stoelinga

21. Nicola, V.F., Shahabuddin, P., Nakayama, M.K.: Techniques for fast simulation
of models of highly dependable systems. IEEE Transactions on Reliability 50(3),
246–264 (2001). https://doi.org/10.1109/24.974122

22. Raiteri, D., Iacono, M., Franceschinis, G., Vittorini, V.: Repairable fault tree
for the automatic evaluation of repair policies. In: DSN’04. pp. 659–668 (2004).
https://doi.org/10.1109/DSN.2004.1311936

23. Rubino, G., Tuffin, B.: Introduction to rare event simulation. In: Rubino and Tuffin
[24], pp. 1–13. https://doi.org/10.1002/9780470745403.ch1

24. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods.
Wiley (2009). https://doi.org/10.1002/9780470745403

25. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review 15-16, 29–62 (2015).
https://doi.org/10.1016/j.cosrev.2015.03.001

26. Sullivan, K., Dugan, J.: Galileo user’s manual & design overview. https://www.
cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm (1998),
v2.1-alpha

27. Sullivan, K., Dugan, J., Coppit, D.: The Galileo fault tree analysis tool.
In: 29th Annual International Symposium on Fault-Tolerant Computing (Cat.
No.99CB36352). pp. 232–235 (1999). https://doi.org/10.1109/FTCS.1999.781056

28. Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault tree handbook with aerospace applications. NASA Office of Safety and Mis-
sion Assurance (2002), version 1.1

29. Villén-Altamirano, J.: RESTART method for the case where rare events can occur
in retrials from any threshold. International Journal of Electronics and Communi-
cations 52, 183–189 (1998)

30. Villén-Altamirano, J.: Importance functions for RESTART simula-
tion of highly-dependable systems. Simulation 83(12), 821–828 (2007).
https://doi.org/10.1177/0037549707081257

31. Villén-Altamirano, J.: RESTART vs Splitting: A comparative study. Performance
Evaluation 121–122, 38–47 (2018). https://doi.org/10.1016/j.peva.2018.02.002

32. Villén-Altamirano, M., Martínez-Marrón, A., Gamo, J., Fernández-Cuesta, F.: En-
hancement of the accelerated simulation method RESTART by considering mul-
tiple thresholds. In: Proc. 14th Int. Teletraffic Congress, Teletraffic Science and
Engineering, vol. 1, pp. 797–810. Elsevier (1994). https://doi.org/10.1016/B978-0-
444-82031-0.50084-6

33. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a method for accelerat-
ing rare event simulations. In: Queueing, Performance and Control in ATM (ITC-
13). pp. 71–76. Elsevier (1991)

https://doi.org/10.1109/24.974122
https://doi.org/10.1109/DSN.2004.1311936
https://doi.org/10.1002/9780470745403.ch1
https://doi.org/10.1002/9780470745403
https://doi.org/10.1016/j.cosrev.2015.03.001
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
https://doi.org/10.1109/FTCS.1999.781056
https://doi.org/10.1177/0037549707081257
https://doi.org/10.1016/j.peva.2018.02.002
https://doi.org/10.1016/B978-0-444-82031-0.50084-6
https://doi.org/10.1016/B978-0-444-82031-0.50084-6

	Automated Rare Event Simulation for Fault Tree Analysis via Minimal Cut Sets

