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Abstract

The spread of IoT devices has led to the design of new extensions of cloud computing, such
as fog computing, providing IoT applications with reduced latency, location-awareness and
mobility support. The term cloud-to-things continuum in this context refers to the fact
that the computation is no longer confined to a few data centers but workloads can be
displaced from the central cloud to the edge of network involving multiple infrastructure
owners and several devices with different computational characteristics. This heterogene-
ity impacts the capability of the infrastructure owner of satisfying the QoS requirements
of clients. Consequently, solving the placement and orchestration problems among the
cloud-to-things continuum becomes key to ensure the profitability for the involved stake-
holders. This thesis focuses on the algorithmic solutions for the problem of placement
and the orchestration of microservice-based applications in such a distributed and hetero-
geneous context.

On one hand, the placement problem involves the design of efficient solutions for the
deployment of applications on a fog infrastructure, a type of problem which typically is
NP-hard, even assuming a complete knowledge of applications’ requirements and resource
availability. In this thesis, the focus is on the design of approximated solutions for the
NP-hard problems behind such resource allocation tasks.

The orchestration of fog applications, on the other hand, deals with the maintenance
of applications’ QoS requirements under partial information about applications requests
arrivals. For each applications’ module, orchestration algorithms involve the decision
of deployment either in fog or in cloud as the applications requests vary over time. In
order to deal with this problem, we developed solutions based on stochastic optimisation
techniques.

The proposed methods outperform standard cloud-native solutions and suggest new
approaches for inter-operability between different fog regions. Additionally, numerical
results confirm the scalability properties of all the proposed solutions and their efficiency
in terms of infrastructure owner’s costs, for the placement side, and in terms applications’
QoS, for the orchestration part.
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Chapter 1

Introduction

1.1 Motivation

The diffusion of remote sensors, mobile and IoT devices have inspired the design of new
extensions of the cloud computing paradigm. The main problem is related to the huge
amount of data generated by these devices resulting in bottlenecks for network communi-
cations and long response times due to high latencies between the devices and the cloud.
IoT applications, especially real-time applications, present strict QoS requirements in
terms of time responsiveness and bandwidth consumption [83]. Cloud computing concen-
trates all the computation in a few data centers resulting to be not adequate to handle
the huge amount of data and requests generated by that applications.

In order to mitigate this kind of problems for IoT applications, new paradigms, such
as fog computing [23], have been proposed. The idea behind fog computing is to add a
new computation level between the cloud and the things in order to reduce costs, waiting
times, and the demand generated towards the cloud. In this manner, a continuum of
networking and computational resources is created between the things and the cloud. In
order to exploit the benefits of such a distributed paradigm, applications are not deployed
entirely in cloud or in fog. Rather, they can be distributed along the Cloud-to-thing
continuum. For example, depending on specific requirements, part of a given application
can be deployed close to the data source, and part in the cloud. This suggests the adoption
of a different architectural design with respect to the monolithic one for applications in
this new context.

Nowadays, the main trends in the design and development of cloud-native applications
are microservice-oriented service architectures [84]. Microservice-oriented applications
consist of a cascade of loosely-coupled components/modules (that is, the microservices)
that can be containerized independently. Each microservice performs specific compu-
tations on input data and forwards the resulting output to other microservices down-
stream for further processing. Microservice design is preferred to monolithic application
development because applications adopting such an architecture deliver same intended
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functionalities but attain higher degree of flexibility, reliability and scalability [56]. In
fog computing, on the other hand, available resources are geographically spread so that
a microservice-oriented architecture appears a natural choice for fog-native applications,
since it is possible to split them into components to be executed along the Cloud-to-things
continuum.

It is worth noting that all the current proposed solutions, such as [2, 3], offer support
only for the computational part, whilst the networking part is managed by telecommuni-
cation operators. This suggests that the distribution of applications on such a multiple-
owners scenario is a fundamental problem both for the applications’ users, who can have
high QoS requirements, and the infrastructure owners whose objective is to minimize the
deployment costs. As we will show in next chapters, the problems of how and where to
deploy each module of each application on a distributed fog infrastructure can be seen as
resource allocation problems, and they play a fundamental role in finding a good balance
between the guarantee of all the applications’ requirements, and the costs of management
of such distributed infrastructures.

1.2 Contributions and Structure of the Thesis

The main objective of this thesis is to contribute to the study and the design of new
resource allocation algorithms in distributed and heterogeneous computing
systems such as fog computing. In this thesis we highlight and tackle the main
problems arising in this context concerning the applications’ deployment and the QoS
maintenance. More in detail, this thesis work focuses on two main aspects: i) the static
deployment, namely the placement of microservice applications in a region-based fog
infrastructure via resource allocation algorithms that approximate well-known NP-hard
problems, and ii) the dynamic deployment, namely orchestration, of applications involving
the use of stochastic optimization techniques to deal with the high variation of demands
for the applications deployed on the system. The first aspect will optimize the revenue
of the infrastructure owner, while the latter guarantees strict delay constraints ensuring
a good level of QoS for the applications’ users.

In particular, the next chapter introduces the fog computing paradigm and the related
challenges in terms of resource allocation needs for the placement and the orchestration
of fog native applications.

Table 1.1 resumes the main aspects considered in the remaining chapters. In Chapter 3
we introduce the problem of applications’ placement in a region-based and single-domain
fog infrastructure with limited computational and networking resources. Applications are
represented as Directed Acyclic Graphs (DAGs), and the main objective is to maximize
the network operator’s revenue maximizing the number of applications deployed on the
infrastructure. The main problem results to be NP-hard and a heuristic algorithm is
proposed with relevant numerical results.
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Table 1.1: Table of chapters

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Problem
Placement 3 3

Orchestration 3 3

Objective
Cost Min 3 3

Revenue Max 3

Delay Min 3

App
Structure

Single Container 3

Pipeline 3

DAG 3 3

Fog
Domain

Single Domain 3 3 3

Multiple Domains 3

Chapter 4 presents the problem of microservice-based applications deployment in an
enhanced scenario with an infrastructure divided in different domains. The main objective
is to minimize the deployment cost of the infrastructure owner trying to satisfy all the
applications’ constraints. In particular, these constraints involve locality requirements,
e.g., a particular request for a device located in a different domain. Given the NP-hardness
of the problem we provide heuristic approaches that outperform baseline solutions.

Chapter 5 tackles the problem of application orchestration in a dynamic environment
where we have a set of pipeline applications deployed on the fog infrastructure and the
objective is to minimize the total delay experienced by all the applications under budget
constraints for cloud deployments. The total delay is given by the sum of the local
processing time and the fixed processing time in cloud. In this chapter, we provide a
model for the processing delay on a local server that shares its computational capacity
among all the applications’ modules deployed on it. Furthermore, we provide a well defined
structure of problem’s solution designing an optimal algorithm that works in polynomial
time. Finally, we present a stochastic approximation approach for the case noisy arrival
rates of the applications.

In Chapter 6 we present a new proactive caching framework to foster the orchestration
of applications in fog computing. The aim is to minimize the deployment cost in cloud
while satisfying the applications’ requirements. We show that proactively caching applica-
tions’ containers on fog servers is effective to match the expected activation pattern while
optimizing load balancing via container replication. To this aim we design a one-step
look-ahead policy to minimize the total running cost taking in input the prediction of
future arrival rates for each application. Experimental results demonstrate the potential
of this new approach over traditional caching and placement baselines.
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Chapter 2

Fog Computing

This chapter presents the Fog Computing context, including technological novelties intro-
duced by this new paradigm, and all the related challenges concerning the orchestration
and the placement of applications for the users’ QoS maintenance and network operators’
revenue.

2.1 From a centralized Cloud to a decentralized and distributed
Fog

Fog computing is a new technology that extends the cloud in order to tackle the problem
of data explosion in the IoT domain [23]. The main idea is to move the computation
close to the edge of the network, thus reducing the problem of bottlenecks in the network
infrastructure in data retrieval from network devices, and mostly, reducing deployment
costs in cloud. In this manner, the amount of data sent to the cloud is reduced, resulting
in a reduced bandwidth consumption and, hence, in reduced response times. Furthermore,
proximity to data sources lowers the round-trip time between objects and the backend of
processing applications. Further motivations for the adoption of fog computing are the
standardization of IoT services and privacy issues in data usage, which may be confined
to specific geographical areas [23, 112].

Figure 2.1 captures the differences with respect to the cloud computing paradigm.
A typical fog infrastructure can consist of a layered architecture, including a central
cloud, a series of edge units (fog nodes), gateways to connect server units and, finally,
objects (things) that generate data and carry out specific operations. In contrast to cloud
computing, where a set of homogeneous resources are concentrated in the same area, fog
computing infrastructure typically consists of a set of heterogeneous and geographically
distributed resources, possibly organized in fog regions with respect to the objects each
region hosts. Hence, in this context, workloads can be displaced from the central cloud to
the edge, going through a continuum of device with heterogeneous capabilities in terms
of processing, storage and networking, which are transparently made available by modern
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Figure 2.1: Example of Fog Architecture [1]

virtualization techniques [22]. The diversity of resources, their availability and location,
are all factors that impact the capability of the infrastructure owner of successfully offering
services with adequate quality. Given this heterogeneity, the main challenge comes from
the need to deploy parts of each application on the central cloud or on the edge units,
depending on the requirements of that particular application.

Fog Computing vs Edge Computing. Often, in the literature, the terms “Fog Comput-
ing” and “Edge Computing” are used interchangeably. However, according to the Indus-
trial Internet Consortium [4], there is a marked difference between the two paradigms.
Indeed, fog computing offers all possible services, including networking, computing and
storage from the cloud to the things that generate data. Conversely, edge computing
involves only the computation at the edge. A clear definition is given in [40]: “fog is in-
clusive of cloud, core, metro, edge, clients, and things” and ‘fog seeks to realize a seamless
continuum of computing services from the cloud to the things the network edges as isolated
computing platforms”.

Business Challenges. Given the high level of heterogeneity along the continuum going
from the cloud to the things, one main challenge is represented by the interaction between
all the entities involved in this context. Indeed, although several companies are offering
their fog solutions [2, 3], the problem is represented by the ownership of networking and
computational resources along the road. For example, main resource providers, such as
Amazon or Google, own huge amounts of computational resource but they have scarce
control on last mile connections typically owned by telecommunication operators. Hence
fog computing poses not only engineering problems but also business challenges related
to agreements between the involved stakeholders.

However, the main challenge offered by the fog paradigm is represented by the com-
plexity of management and orchestration of such a distributed computing infrastructure
with respect to the traditional cloud computing environment. In this context, resource al-
location, applications placement and orchestration must be conceived in a heterogeneous,
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widespread scenario where locality, context-awareness and network performances must be
taken into account [52].

2.2 Microservice Applications

The use of virtualization techniques, such as containers or virtual machines, on the in-
frastructure’s resources simplifies the management of IoT services [39], coping with het-
erogeneity of IoT technologies [75].

With this new paradigm structure virtual machines or containers can run either in the
central cloud, or over edge units, depending on the requirements of IoT applications. Ac-
tually, the current practice in cloud application design tends to favour microservice-based
development, both for reasons of availability and of scalability. As reported in [15], IoT
applications are not only monolithic but can consist of multiple interdependent compo-
nents. With the fast growth of IoT, microservice-based development has become the cur-
rent practice in cloud and fog application design in order to guarantee improved flexibility,
availability and scalability [57, 108]. Microservice applications are composed by coupled
modules, e.g., a graphical user interface, a user repository, a web server, an image recogni-
tion module, or a monitor application. Usually, as depicted in Figure 2.2, some modules
of an IoT application are connected to devices, such as cameras, acquiring some data
to be processed by other modules. Once interconnected using a specific communication
and computing pattern, the microservice architecture delivers the intended functionality
while preserving scalability, minimality and cohesiveness of the application [57]. To this
respect, it is natural to assume that fog-native applications should adhere to the modular
microservice paradigm.

As an example, consider an application for number-plate-based car access control to a
restricted traffic zone. The customer, e.g., a municipality, requires an application that can
access a well-located camera, convert the number plate from the video stream into text,
store the number plate in a database and compare it with authorized number plates. Such
a kind of application can be easily designed following a microservice-oriented architecture
and would clearly benefit from video stream computation close to the camera, e.g., to
reduce bandwidth needs and improve privacy.

Thanks to this particular structure, applications can be represented through graph
structures. Usually, such applications are represented as weighted DAGs (Directed Acyclic
Graphs) where each node of the graph represents an application’s component and an edge
between nodes indicates a particular relation between components [103]. As shown in
Figure 2.2, each node of the graph represents an application’s component (microservice),
and the edges represent some dependencies between components. The weights on the edges
can represent some important metrics for the application, e.g., the throughput generated
between two microservices or the maximum tolerable delay on a specific application’s link.

Recent studies have started to investigate the placement and load balancing problems
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Figure 2.2: Example of microservice-based application

of such applications [116, 88] where each module has specific requirements in terms of
computational and networking resources. Satisfying the requirements of all the modules
of an application translates in the selection and allocation of the right set of resources in
the fog-infrastructure. But, while resource allocation in cloud computing is a well-known
and complex problem – provably NP-hard in all cases of practical relevance [86] – in fog
computing the problem has a specific structure due to geo-distribution of heterogeneous
resources and location of IoT devices. The placement of each application’s module can
depend upon the specific requirements of the modules and the objective of the network
operator that is performing the placement.

2.3 Placement and Orchestration

Given the context of fog computing and the structure of IoT applications presented be-
fore, the placement and the orchestration of applications’ microservices play a fundamen-
tal role for guaranteeing optimal performances in terms of cost for network operators,
and Quality of Service (QoS) for users. Both these phases involve the use of resource
allocation techniques deeply used in the cloud computing context [102]. Such an envi-
ronment presents homogeneous resources where standard technologies are based on over-
provisioned data centers [42, 68]. In fog computing, the business of edge infrastructure
owners can not rely on overprovisioning. Rather, they need to trade off localized data
processing and low round-trip time for storage, memory and processing capabilities of
edge units [117, 103, 69]. In cloud computing the computation is limited to a few data
centers with homogeneous and powerful computational capabilities and there are no needs
for bandwidth optimization. On the other hand, in the fog computing context, the com-
putation can be displaced among all the cloud-to-things continuum and it is distributed
among different fog regions involving heterogeneous nodes for the computation. This also
requires a careful optimization of the bandwidth usage between different regions.
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The placement phase considers the initial deployment of all the applications modules
on the infrastructure such that all the applications requirements are satisfied optimizing a
given cost function. Each application can be distributed between the cloud and fog regions
depending on the optimal allocation according to the specific cost function. Typically,
cost functions involve the payment due to the use of external resources such as public
cloud resources. Most of the placement problems we are dealing with are proved to be
NP-hard preventing us to provide exact algorithmic solutions.

In Chapter 3 and Chapter 4 we introduce two different placement problems in two dif-
ferent contexts, and we provide discussions on the problems complexity and approximated
solutions obtained by the application of heuristic methods.

On the other hand, the orchestration step involves the deployment of applications as
their demands vary over time. Indeed, once the application demand changes, a decision
on the resource allocation must be taken. The orchestration involves all the decisions re-
garding the resource allocation as the applications’ demands change in order to guarantee
the desired applications’ requirements and to optimize specific cost functions at runtime.
In Chapter 5 and in Chapter 6 we tackle two orchestration problems involving delay and
budget constraints on the deployment of applications among the cloud and the fog.

2.3.1 Multidimensionality

It is worth noting that both the placement and the orchestration are dealing with multidi-
mensional problems due to the different resource requirements such as CPU, storage and
network capacity. As shown in [93], the multidimensional case is significantly different
from the single dimension one. Multidimensional resource allocation schemes may vary
depending on the solution space of the specific problem. In this thesis we can detect two
main features that significantly influence the type and the solution space of the problem:

• Application Structure: applications can be considered fitting the most general form,
i.e., a graph structure where we have a set of interdependent modules, or, on the
other hand, they can be considered as single entities consisting of single containers.
However, each module has multidimensional requests representing their needs in
terms of CPU, memory and storage. Furthermore, replication of different modules
can be taken into account (autoscaling).

• Infrastructure Scenario: in this thesis we take into account two different scenarios.
The first one is a multi-servers scenario where we have different servers distributed
in several regions where to deploy microservice applications. The second type of
scenario that we consider is a single-server scenario where the orchestration of ap-
plications between the cloud and a fog server is explored.

Obviously, different combinations of all the possible instantiations of the described
features can give rise to different problems. In this thesis we cover most of these com-
binations. In particular, in Chapter 3 and in Chapter 4 we take into account the most
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general scenario for both the application structure and the infrastructure, considering
microservice graph-based applications and a general infrastructure with multiple servers
distributed among different regions. In Chapter 5 we consider the orchestration problem
with pipelines applications in a single server scenario. Finally, in Chapter 6 we tackle the
problem of orchestration of single-container applications with replication possibility in a
multi-server scenario.
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Chapter 3

Throughput-aware Partitioning and
Placement of Fog Applications

In this chapter we present the problem of applications placement in a heterogeneous,
geographically distributed scenario such as the fog computing one. We assume the per-
spective of an infrastructure provider that aims to maximize her revenue while satisfying
the requirements of microservice-based applications. We root our analysis on the through-
put requirements of the applications while exploiting offloading towards different regions.
An algorithmic solution is designed to optimize the placement of applications modules
either in cloud or in fog. The overall solution consists of two cascaded algorithms: the
first one performing a throughput-oriented partitioning of the applications’ modules, and
the second one rules the orchestration of applications over a region-based infrastructure.
Extensive numerical experiments validate the performance of the overall scheme and con-
firm that it outperforms state-of-the-art solutions adapted to our context. This chapter
is mostly based on works [49, 50].

3.1 Introduction

Whilst several approaches have been proposed in the cloud literature, few of them ac-
count for the deployment among different regions. In fact, existing technologies fit the
cloud scenario where the resources’ pool is concentrated in the same area irrespective of
the objects’ location. For instance, current Kubernetes’ placement algorithms [5] perform
well in cloud, but they require new functional extension to discriminate the deployment of
application components across multiple regions. Consequently, there is a lack of solution
for application deployment that exploits the inter-operability between different regions.
Actually, in our tests we verify that, while for the sake of implementation it is tempting
to treat all the fog regions as a unique region ruled by off-the-shelf Kubernetes placement
algorithms, this may severely limit the number of applications deployed on the infrastruc-
ture.
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3.1.1 Main Contribution

In this chapter we address the problem of an infrastructure provider whose aim is to
deploy a batch of applications in a fog infrastructure covering different geo-distributed
and heterogeneous regions, subject to the applications’ requirements with respect to both
computation and communication. We represent IoT applications’ workflows by means of
direct acyclic graphs (DAGs), where microservices are vertices and the dependencies be-
tween the microservices represent graph edges. The corresponding resources optimization
problem results to be mixed integer non linear, and NP-hard. The problem combines
a multicommodity flow and a graph embedding problem, for which we provide a nega-
tive result for the possibility to design tight polynomial-time approximation algorithms.
Thus, we propose a cascade solution consisting of two main steps. First, at the applica-
tion level, a preliminary partitioning for applications minimizes the throughput footprint
of fog-native applications. Second, a placement step accounts for the computational and
communication demands and proximity requirements of applications.

3.2 State of the Art

In cloud and mobile cloud computing, the problem of microservices applications deploy-
ment has been thoroughly studied. As described in [15], cloud software design privileges
modular software structures where applications are composed by multiple coupled com-
ponents known as microservices. In [95], applications are assumed to have a microservice
architecture: the authors proposed a distributed mechanism for microservices scheduling
at the edge. The objective is to minimize the service latency for all the applications to be
deployed. However, applications are simply represented as sets of independent microser-
vices. In [59], instead, microservice fog applications are represented as DAGs. With such
an application structure, the general application deployment problem bears several sim-
ilarities with the graph embedding problem [37, 27], a well-known NP-hard problem. In
our context, even for two-module partitioned fog-applications, such a problem is proved
to still be NP-hard. In [116], a DAG structure for IoT applications similar to the one used
in this chapter is considered. However, the aim of the work is different from ours, since
the objective there is to perform communication load balancing among the microservices
of a single application via their replication across the infrastructure. Furthermore, the
infrastructure model is characterised only by the nodes that host some replicas of the
application’s microservices.

In [117], application provisioning is studied from the perspective of the network infras-
tructure. A fully polynomial time approximation scheme is derived for single and multiple
applications deployment, showing significant QoS performance improvement with respect
to applications’ bandwidth and delay figures. However, applications are represented as a
single module communicating with a set of IoT devices generating data. For this reason,
authors focused mostly on application’s networking requirements.
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Taneja et al. [103] defined a placement algorithm by mapping the DAG of the modules
of an IoT application into fog and cloud nodes. Numerical results show performance
gains in terms of latency, energy and bandwidth constraints, compared to edge-agnostic
placement schemes. Our work, conversely, develops an optimization framework able to
account for both traffic and computing demands of a whole batch of applications to be
deployed over multiple regions.

The DAG-like applications deployment on an infrastructure network reminds the Vir-
tual Network Embedding problem, a well-known NP-hard problem deeply studied espe-
cially in the topic of Virtual Network Functions (VNFs) placement [37]. Many heuristic
solutions have been proposed in the literature [33] since the general problem presents
strong inapproximability results [14]. The main difference with respect to our context is
that, usually only CPU constraints are taken into account in VNFs problems. Conversely,
in a fog scenario, where resources are limited and heterogeneous, all the requirements
(CPU, memory and storage) of each microservice should be considered. Furthermore, the
network infrastructure where VNF applications are deployed is usually not partitioned
into regions.

Partitioning the applications’ computation process represents a promising technique to
guarantee high performance in mobile cloud or edge computing, especially for inference
tasks with deep neural networks. E.g., Pachecom et al. [90] presented a partitioning
algorithm, based on the shortest path problem, for the layers of deep neural networks to
reduce the inference delay of a BranchyNet [104] distributed between the edge and the
cloud. The authors of [111] studied the problem of computation partitioning with the aim
of maximizing the application throughput in processing the streaming data. A genetic
algorithm is able to find the best partition in between the cloud and the mobile at runtime.
In [47], a general technique to minimize the execution time of IoT applications is proposed.
The model introduced takes into account computation and communication delays. By
reduction to the Matrix Chain Ordering Problem, an algorithm is provided in order to
solve the optimization problem via dynamic programming, with time-complexity log-linear
in the number of operators of the application. With respect to such solutions, we have
different objective, that is to maximize the infrastructure owner’s revenue (maximizing
the number of successfully deployed applications) by combining efficient applications’
partitioning while avoiding network bottlenecks.

One of the novelties of this work is the multi-regions scenario for the applications
partitioning and placement. With respect to the container technologies discussed in this
work, the de-facto standard for container orchestration is Kubernetes [29] even if new
technology solutions for the edge are being proposed [6]. As we will describe in the
next sections, resource allocation in Kubernetes proceeds by first enlisting servers able
to host a target application module in a container pod. In the native cloud version, the
actual container deployment is agnostic of the notion fog region and agnostic of network
conditions. Our placement logic, instead, is able to address also the locality of object
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Table 3.1: Main notation used throughout the chapter
Symbol Meaning
K set of regions |K| = K

U set of applications to be deployed U = ∪Ki=1Ui, |U| = U

Sk set of server units in region k, with |Si| = ni,∀i ∈ K, Si =

{si1 , . . . , sini}
S0 central cloud
Uk set of applications requiring IoT data in region k
Fu output samples per second required by application u
Cki

memory, storage and processing capacity of the i-th server in re-
gion k: Cki

= (CMki , C
S
ki
, CPki)

cm memory, storage and processing requirements of microservice am:
cm = (cMm , c

S
m, c

P
m)

xu,k,i ∈ {0, 1} boolean variable indicating the fog chunk of application u is placed
on server unit i of region k

xu,k xu,k =
∑

i∈Sk xu,k,i
xu,u boolean variable indicating the fog chunk of application u is placed

on the same region of the IoT object requested by the application
u

demands and their cumulative effect onto the communication infrastructures.

3.3 System Model

The combination of a fog-native partitioning and a placement scheme follows the rationale
that microservices of the same application, when deployed on the same fog region, generate
negligible communication overhead; in fact, under standard containerisation technologies
they can be deployed on the same pod [29, 7]. On the other hand, when two application
modules are deployed in different region, the resources allocation balance must account
for the communication overhead. A rational choice is to group applications microservices
according to their requirements: fog modules with strict latency constraints require instal-
lation on the edge, e.g., to support real-time processing of data streams from a local IoT
device. Other microservices may need computational power not available on edge nodes,
this is the case, e.g., of online machine learning algorithms. This fog-cloud dichotomy
greatly simplifies the placement of such fog-native applications, since while the first group
hosts microservices that could be or need to be deployed on the edge, the second one is
the set of microservices without strict latency requirements and, in turn, possibly hard
computational requirements; for the latter, cloud deployment is assumed apriori. This
minimal partitioning results in the functional bi-partition shown in Figure 3.1.
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Figure 3.1: Cascade of throughput-aware partitioning of a fog application into two chunks, and
subsequent placement of the fog chunk onto an edge node.

3.3.1 Network Model

We consider a standard fog system architecture [91, 21] where the network architecture
consists of a central cloud, which is assumed of unlimited computational capabilities –
relatively to edge nodes – and a set of fog regions connected to the central cloud. Each fog
region comprises servers with specific computational capabilities in terms of memory, CPU
and storage. We consider a batch of applications to be deployed on such an infrastructure.
Each application is described by a list of requirements in terms of memory, CPU, storage
and bandwidth. The objective is to deploy the applications on the infrastructure in
order to maximize a certain profit function while satisfying the resources constraints and
applications’ demands. Throughout the chapter the target performance figure is the
number of concurrent fog-applications hosted simultaneously on the infrastructure; more
general objective functions can be studied in the same framework and are left as part of
future works. The problem is to find a set of mappings of applications onto fog-regions
to maximize such objective function, where each such mapping engenders diverse resource
occupation vectors and its own profit value.

More formally, we consider a fog system deployed over a set of geographic regions
K = {1, . . . , K}. Region k hosts a set Sk of edge servers or units. We denote ski , with
i ∈ {1, . . . , nk} a specific edge unit deployed within the k-th region; for the sake of
notation we denote the central cloud as S0. The resources of edge unit ski are represented
by capacity vector Cki = (CM

ki
, CP

ki
, CS

ki
). The first component of the capacity vector is

the memory capacity, while the second component is the processing capacity; the third
component denotes the storage capacity, i.e., the data volume that can be accommodated
on the storage of the edge unit. The fog infrastructure can be described by an undirected
weighted graph G = (V,E) where V = {Si ∪ Ui}i∈K and E ⊆ {{i, j}|i, j ∈ V, i 6= j}.
The weight of each edge {i, j} ∈ E consists of the latency on the link dij, and the link
bandwidth Bij. Let N (Si) = {Sj|{j, i} ∈ E}. Figure 3.2 reports a pictorial example of
such fog infrastructure.
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Obj.

Figure 3.2: Reference fog system architecture: application u1 requests data from an IoT object
(marked red) located in area S1; the whole system is composed of geographical areas (regions)
Si, i = 1, 2, 3 connected to the central cloud S0.

3.3.2 Application Model

The application model adopted in this chapter is based on the distributed data flow
model [103], where distributed components of an IoT application perform different com-
putational tasks. We model each application like a weighted DAG where the nodes repre-
sent the application modules and the edges between nodes represent the execution order
of the modules. The weight of each edge represents the throughput generated by one
microservice performing some computation and sending the results to another compo-
nent downstream. More formally, each application u is defined by the weighted digraph
(Gu, λu), where Gu = (Vu, Eu) and λu : Eu → R+, i.e., λu(m,n) represents the maxi-
mum throughput that can be generated by the microservice m and sent to microservice
n of the same application. Each microservice m is characterized by its requirements
cm = (cMm , c

S
m, c

P
m) in terms of memory, storage and processing. In each fog region k we

have a set of applications to be deployed, Uk. From here on out, we identify the appli-
cation and the device from which data are requested with same symbol. We say that
application u “belongs” to a given region because the IoT object is located there. Such
region is denoted Su for the sake of notation. Furthermore, we denote with U = ∪Ki=1Ui
the set of all applications to be deployed on the infrastructure. A further assumption
that we shall introduce is that each application is deployed on a set of servers defined by
the neighbourhood of the region from which the data are generated, as in Figure 3.2. To
this respect, we remark that the practice to ensure connectivity between containers is to
interface them at the application layer, e.g., connecting them by http(s) protocol, so that
multi-hop routing at the network layer is not viable for joint optimization as it would
introduce queuing and routing delay at each hop [97]. In the proposed system model,
placement on neighbouring regions still attains load balancing while greatly simplifying
system design. Nevertheless, in the numerical section we perform a thorough comparison
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of our reference system with other solutions violating such assumption.

3.3.3 Problem Formulation

The main problem can be resumed as follows:
Given a set of DAG-like applications U and a fog infrastructure G = (V,E), deploy

the maximum number of applications in order to maximize the provider’s revenue while
satisfying the applications’ delay requirements and the infrastructure capacity constraints.

The deployment of an application u ∈ U is represented by a mapping between each
module v ∈ Vu and a server of the infrastructure such that all the applications re-
quirements and the infrastructure constraints are satisfied. These constraints involve
the CPU, memory, storage and bandwidth constraints for the infrastructure, and delay
constraints for the application. This latter constraint involves the computation of the
optimal throughput for each edge of the application (v, w) ∈ Eu given the placement of
application’s nodes v and w. In order to compute such throughput values we should take
into account the maximal path, in terms of latency, from the source, the region where v
has been deployed, to the destination node, the region where w has been deployed. This
would result in having a non-linear constraint involving binary variables for the placement
of each application’s module and continuous variables for the computation of the optimal
throughput for each application’s edge.

Main Problem Formulation

Here we provide a formal description of the main problem.
Variables. We introduce a binary variable for the placement of each applications’

microservice on a single server of the infrastructure:

xu,mk,s =

1,
if microservice m of application u
is placed on server s of region k

0, otherwise

∀u ∈ U ,∀m ∈ Vu,∀k ∈ K ∪ {0}, ∀s ∈ Sk.
For the applications’ links mapping to the physical paths of the infrastructure we

introduce a second kind of binary variables:

yu,(m,n)p =

{
1, if (m,n) ∈ Eu is mapped to p ∈ P
0, otherwise

∀u ∈ U ,∀(m,n) ∈ Eu,∀p ∈ P , where P is the set of all paths between nodes in the
infrastructure graph G.

Furthermore, since the objective of the problem is to maximize the number of applica-
tions entirely deployed on the infrastructure (i.e., maximizing the revenue), we introduce
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a third binary variable to indicate whether an application is entirely deployed on the
infrastructure:

zu =

{
1, if application u ∈ U is entirely deployed
0, otherwise

∀u ∈ U . Hence, zu will be set to 1 if and only if all the microservices and links of
application u are deployed on the infrastructure.

Finally, we have continuous variables to control the optimal throughput generated on
applications’ links in order to satisfy the delay constraints:

λu(m,n) ∈ R+, ∀u ∈ U , ∀(m.n) ∈ Eu.

Constraints. First, we have resource capacity constraints for each fog server of the
infrastructure: ∑

u∈U

∑
m∈Vu

cmx
u,m
k,s ≤ Cks , ∀k ∈ K,∀s ∈ Sk, (3.1)

where cm and Cks are the requirements of microservice m and the capacities of server s
of region k, respectively, in terms of memory, storage and processing.

Then we have all the constraints related to the applications’ links mapping:∑
p∈Pk,k′

yu,(m,n)p =
∑
s∈Sk

xu,mk,s ∧
∑
s∈Sk′

xu,nk′,s, (3.2)

∀(k, k′) ∈ V × V , ∀u ∈ U , and ∀(m,n) ∈ Eu. Constraint (3.2) ensures that a unique
physical path of the network infrastructure is used by an application link whenever the
application nodes connected by such link are deployed on the extreme nodes of the physical
path (the symbol ∧ represents the Boolean "and" operator). Note that the sums on
the right side of the equation (3.2) are always either 0 or 1 since, as shown later, each
microservice can be deployed on at most one location, i.e.,, one server of a certain region.

We have to add constraints to guarantee a unique placement for each component of
each application (microservices and links):

(
∑
m∈Vu

∑
k∈V

∑
s∈Sk

xu,mk,s = |Vu|) ∨ (
∑
m∈Vu

∑
k∈K

∑
s∈Sk

xu,mk,s = 0), ∀u ∈ U , (3.3)

∑
k∈V

∑
s∈Sk

xu,mk,s ≤ 1, ∀u ∈ U ,∀m ∈ Vu. (3.4)

∑
p∈P

yu,(m,n)p ≤ 1, ∀u ∈ U ,∀(m,n) ∈ Eu. (3.5)

Constraint (3.3) guarantees that either all the applications’ microservices are deployed or
no one of them is deployed (the symbol ∨ is the Boolean "or" operator). Note that the
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two conditions are mutual exclusive so they cannot be true at the same time. The same
thing must be guaranteed for the applications’ links:

(
∑

(m,n)∈Eu

∑
p∈P

yu,(m,n)p = |Eu|) ∨ (
∑

(m,n)∈Eu

∑
p∈P

yu,(m,n)p = 0). (3.6)

An additional constraint should be added to guarantee a complete deployment for
each application. If all the microservices of an application are deployed then all the
application’s links must be mapped to a physical path and vice versa.∑

m∈Vu

∑
k∈V

∑
s∈Sk

xu,mk,s = |Vu| ⇔
∑

(m,n)∈Eu

∑
p∈P

yu,(m,n)p = |Eu|. (3.7)

The following are constraints on the bandwidth capacity for each physical link (k, k′) ∈ E:∑
u∈U

∑
(m,n)∈Eu

∑
p∈P :(k,k′)∈p

λu(m,n) yu,(m,np ≤ Bkk′ . (3.8)

Furthermore, we have constraints that bind x and y variables to z for each application
u ∈ U :

zu =
⌊∑

m∈Vu
∑

k∈K
∑

s∈Sk x
u,m
k,s

|Vu|

⌋
∧
⌊∑

(m,n)∈Eu
∑

p∈P y
u,(m,n)
p

|Eu|

⌋
. (3.9)

Indeed, for each application u ∈ U , the decision variable zu is set to one if and only if
all the application’s modules and links are deployed.

Finally, we have delay constraints for each application:

max
pu∈Pu

 ∑
(m,n)∈pu

∑
p∈P

(
∆u
m,n

λu(m,n)
+ yu,(m,n)p

∑
(k,k′)∈p

dk,k′)

 ≤ 1

Fu
, (3.10)

where Pu represents the set of all directed paths between the source and the destination
node of the application u, and ∆u

m,n is the data transmitted from the module m to module
n of the application u.

Objective. The objective function is the revenue of the infrastructure’s owner based
on the number of applications entirely deployed:

maximize
∑
u∈U

fu zu (3.11)

Complexity and Approximability of the main problem

Regarding the computational complexity of the main problem, it can be observed that -
by fixing throughput variables - the problem can be proved to be NP-hard by polynomial
reduction from a virtual network embedding problem, known to be strongly NP-hard.
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Indeed, as it can be noticed from the formulation, the main problem may resemble a
Virtual Network Embedding (VNE) problem with in addition the decision variables and
constraints for the throughput on the applications DAGs edges. Overall the main problem
appears non-linear. Furthermore, results in [14] show that the VNE problem is strongly
NP-hard with inapproximability results obtained by reduction from the Maximum Stable
Set Problem (MSSP). Thus, unless P = NP, no polynomial time approximation scheme
can be found within a factor of n

1
2
−ε for any ε > 0, where the term n represents the total

number of servers available for microservices’ deployment: we have ni servers for each
region i ∈ K, plus the cloud region which counts as a single server with infinite capacity.

Proposition 3.1. Unless P = NP, the application placement problem can not be approx-
imated in polynomial time within a factor of n

1
2
−ε for any ε > 0, where n := 1 +

∑K
i=1 ni.

Proof. The proof holds by reduction from the VNE problem, as defined in [14], to the
main problem. Let assume that the throughput variables on the applications’ edges are
fixed. Given the substrate graph G0 = (V 0, E0) of VNE problem and the set of requests
R, where each r ∈ R is a graph Gr = (V r, Er), we map each node in V 0 to a server of the
fog infrastructure G = (V,E) and we map all each request r ∈ R to an application with V r

microservices and Er edges. The nodes and edges capacities of G0 are mapped to servers
capacities and to the bandwidth capacities of the links in G, respectively. The demand for
each node and the traffic demand of each edge in Gr are mapped to microservices requests
and edges’ throughputs of each application. Exploiting the transitivity of polynomial
reduction, Corollary 3.3 in [14] applies to our problem.

3.3.4 Resolution Approach

The previous result rules out the possibility to devise efficient approximation algorithms to
solve the main problem altogether, in all cases of practical interest. Thus, in order to ren-
der the original problem more tractable, we split it into the cascade of two sub-problems.
In the first one, each application is partitioned in two chunks in order to minimize the
maximum throughput between them, and imposing that all the application’s modules
belonging to the same chunk will be deployed in the same region of the infrastructure.
In this manner, the communication overhead between application’s components and the
number of binary and continuous variables for the placement and throughput computa-
tion are reduced. In the second sub-problem, once fixed the partition for each application
solving the previous problem, a feasible deployment per application’s chunk is found. The
latter problem will be further transformed into an integer linear programming problem.

As introduced before, after partitioning step, each fog application will consist of two
chunks: the first one is the subset of application microservices apriori executed in cloud,
whereas the second is the subset encompassing microservices that can be deployed either
in fog or in cloud. By assumption, all applications are supposed to adhere to such a
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fog-oriented partitioning1. Of course, in general, any partition of microservices into two
chunks will do. However, we shall consider both the case of throughput-agnostic and that
of throughput-aware partitioning. With the former, the application partition is oblivious
to the data flow across microservices of the same application. In the latter case, instead,
we shall optimize partitioning based on the communication requirements of the microser-
vice architecture. In both case, anyhow, it is reasonable that a fog-native partitioning
would be completely infrastructure-agnostic, thus accounting for requirements of a tagged
application only.

Note that the partitioning phase can be realised by a static and offline algorithm
processing each application individually. Depending on the business model, the infras-
tructure provider can offer the application owner with a cloud service to containerize her
applications into a fog and a cloud chunk using the proposed algorithm. For the sake of
simplicity, we have omitted all the aspects related to the orchestration of the registries
where the images of the chunks are finally stored . In fact, multiple schemes can be en-
visaged, e.g., either a a single cloud registry, or also several per region registries caching
application chunk images. Once the registries have been populated with the chunk images
of the applications concerned with target areas, the placement algorithm could leverage,
e.g., the Kubernetes control plane to switch on the fog chunks of applications in the target
regions. How to optimize the registry placement and the chunk image caching process
will be discussed in next chapters.

The cloud computing literature provides well-known solutions in a single data-center,
such as, for instance, Kubernetes’ scheduling algorithms [5]. Although these algorithms
show good results in a single-region scenario, they are not designed to perform under
throughput constraints among several fog regions. Our target is an algorithmic solu-
tion identifying a region for the deployment of each partitioned application. Focusing on
the region selection only complies with the current practice in containers’ orchestration,
since Kubernetes orchestration procedures and/or optimized versions can be later applied
within each region to find the best local resource allocation. Overall, the complete place-
ment scheme proposed consists of the following logical phases which we describe next as
described in Figure 3.1:

1. Fog Application Partitioning : application packaging into a cloud and fog chunk.

2. Region Selection: selection of target regions in the neighbourhood of the objects
that generate data consumed by fog applications.

3. Deployment : using an off-the-shelf orchestrator (e.g., Kubernetes) to perform allo-
cation within a fog region cluster according to standard or optimized local placement
rules.

1Depending on the virtualisation technology, a fog-oriented application partitioning will produce two contain-
ers/pods or two VM images; however this is not relevant for the rest of our discussion.
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3.3.5 Throughput-aware fog partitioning

An efficient bipartition of the application graph can reduce monitoring and networking
costs. Indeed, for the sake of example, we can consider the case of video surveillance
applications. We can expect one or more of the application microservices to require
significant amount of computational power in order to execute, e.g., sophisticated face-
recognition techniques. Such microservices will be normally part of the cloud chunk.
On the other hand, since the throughput generated by video sensors represents a serious
bottleneck, we can also expect some filtering microservice to pre-process the raw video
stream on edge nodes, e.g., to extract just the frames relevant for the task from the raw
video stream. Thus, in order to reduce upstream the fog-to-cloud throughput of such an
application, it is indeed optimal to install, whenever possible, such a microservice in the
fog chunk.

Overall, an efficient throughput-aware partitioning shall split microservices such as to
minimize the total throughput flowing from the first set of the microservices partition,
the fog chunk, to the second set of the partition, the cloud chunk. Let the weighted DAG
Gu = (Vu, Eu) represent the target application u. The application partitioning problem
can be reduced to the Minimum k-cut problem on graph Gu. The standard definition for
a k-cut is set of edges whose removal leaves k connected components [106]. A minimum
k-cut problem asks for a minimum weight k-cut. In our context, we are looking for a
minimum 2-cut on Gu. The reason behind such a minimal cut is twofold. First, since
we are not assuming a hierarchical structure for the infrastructure, only fog regions and
the cloud can perform computational tasks. The IoT devices, indeed, are not usually
able to perfotm significant operations. Furthermore, within the same region, delay and
bandwidth constraints are negligible meanwhile they are relevant between two different
regions. Hence, splitting an application in more than two chunks would be equivalent
to distribute the applications in more than two regions and this would bring additional
communication overhead in terms of latency and routing implementation issues for the
applications. Finally, two different regions may not be directly connected forcing the
chunks of the applications to communicate through other regions. However, in this case
we would lose what we have gained in terms of latency with fog computing. Secondly, if we
wanted to partition an application in more than two chunks, we should solve a minimum
k-cut problem with k ≥ 3 and the partitioning problem would be NP-hard [106].

Given a source and a destination node, the minimum 2-cut problem is equivalent to
the maximum flow problem for the min-cut max-flow theorem [43] which can be efficiently
solved by a maximum flow algorithm such as the Ford-Fulkerson algorithm [55]. Hence,
solving an s-t cut problem we can solve our application partitioning problem as expressed
formally by Proposition 3.2 where APP-PARTITIONING is the application partitioning
problem described above and MIN-CUT is the minimum s-t cut problem.

Proposition 3.2. APP-PARTITIONING ≤p MIN-CUT.
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Algorithm 1: Application Partitioning Algorithm.
Input: Application graph Gu = (Vu, Eu), C ⊆ Vu
Output: 2-cut partition of the application u

1 Cloud← ∅;
2 Edge← ∅;
3 Vu ← Vu ∪ {t};
4 for v ∈ C do
5 Eu ← Eu ∪ {(v, t)};
6 λu(v, t)← +∞;

7 s← first node in a topological order of Gu;
8 G′u ← Max_Flow(Gu, s, t, λu);
9 for w reachable from s in G′u do

10 Edge← Edge ∪ {w};

11 Cloud← Vu \ Edge;
12 return (Edge, Cloud)

Proof. We can show the polynomial reduction by taking an application DAG and selecting
a source and a destination node (since we have a DAG structure there exists at least one
node with no incoming edges, the source, and one node with no outgoing edges, the
destination). Additionally, we set the maximum throughput of each application’s edge as
the maximum capacity of the graph. In this manner, by solving the min-cut problem on
such graph we have a 2-cut partitioning of our application graph.

Incidentally, whenever a single source and sink node pair can not be identified in
the application DAG, it is always possible to add a virtual source (sink) node adding
large-capacity edges and apply the algorithm to the resulting DAG.

The partitioning algorithm is described in Algorithm 1. The input is represented by
the application graph and a subset C of application’s microservices to be deployed in cloud
by default. The algorithm adds a dummy target sink node t to the application graph; t is
connected to each node in C using a dummy high-throughput edge. First, the algorithm
establishes a source node through a topological sort of the application’s DAG. Second,
the Ford-Fulkerson’s algorithm, applied to the augmented graph, returns the partition
separating s and t with a cut of minimum capacity. All the nodes still reachable from the
source node in the residual graph G′u will be included in the Edge set, while the others
will go to the Cloud set. We observe that the high throughput of the edges between nodes
in C and node t grants that all nodes in C will belong to the Cloud set, as stated by
Lemma 3.1.

Lemma 3.1. For each node v ∈ Vu \ {s}, if v ∈ C then v ∈ Cloud when Algorithm 1
terminates.
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a) b)

c)

Figure 3.3: Configurations types for the deployment of the Edge module uB; Cloud module uA
is always installed in cloud.

Proof. Let assume, by contradiction, that for some v ∈ C it holds v 6∈ Cloud. Since, by
assumption, v 6= s, there exists an in-going edge to v, (v′, v). If v′ 6∈ C, then λu(v′, v) <

λu(v, t), contradicting the cut minimality found by the Algorithm 1. If v′ ∈ C we can
repeat the previous argument until we find the first node v′′ 6∈ C, in the worst case until
reaching node s.

Complexity. The complexity of Algorithm 1 is dominated by the time complexity of
the Ford-Fulkerson’s algorithm which is O(|Eu|λ∗) for each application u, where λ∗ is
the maximum flow in the application network. We can improve the runtime through
the Edmonds-Karp implementation of the algorithm [45, 46] obtaining a complexity of
O(|Vu| · |Eu|2) independent of the maximum flow of the application network.

Throughput-intensive applications

Notation. From here on out, for the sake of brevity, for each application u ∈ U , we identify
with uA and uB the Cloud and the Edge chunks, respectively. Finally, let denote cMu , cSu ,
cPu the total resource requirements, in terms of memory, storage and processing capacity,
respectively, of uB; with compact notation we denote cu = (cMu , c

S
u , c

P
u ).

While the proposed framework does apply to other classes of applications, e.g.,memory-
intensive or CPU intensive applications, we shall focus on optimizing the allocation of
resources for throughput-intensive fog applications. They are a critical class of IoT appli-
cations which includes, e.g., streaming mining applications [31], where processing directly
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on fog nodes leads to huge bandwidth savings. In this context, for instance, a raw video
stream can be filtered to extract only the relevant parts of specific frames, e.g., those
containing a face which need to be sent to the cloud to perform recognition. Hence, after
the partitioning step showed in Figure 3.1, two different data units may be transmitted.
We call, for each application u, ∆H

u the data unit transmitted directly from the IoT sen-
sor (e.g., video camera frames) to the Fog chunk. ∆L

u is the data unit transmitted from
the Fog chunk to the Cloud chunk once a processing step has been performed (e.g., face
images).
Delay Constraints. These two different data units are sent at different rate; we denote
λHu as the raw throughput generated by the IoT device and λLu for the throughput gen-
erated towards the Cloud chunk once the Fog chunk of the application has processed
the stream. In this case, typically λHu ≥ λLu . In the fog resource allocation problem de-
scribed in the next subsection the throughput λHu and λLu are decision variables which
can be optimized in order to meet the applications’ delay requirements. In fact, we can
assume that each application u has to output every 1/Fu seconds a result like a positive
or negative face recognition match. The Cloud chunk is installed in the central cloud
S0. We can hence consider the whole processing chain involved by the two-chunks and
the related data transmission delay. We should also include the processing delay du of
application u (if deployed back to back to the IoT object), plus the communication delay
duj, which is the additional delay to retrieve data from region where the sensor belongs,
when the Fog chunk is installed in region j. In the resource allocation problem we need
to consider the processing and transferring time. Actually, the processing time for each
information unit depends on the throughput between application chunks. Any applica-
tion placement has to guarantee the application to process an information unit ∆u in 1

Fu

seconds. Thus, the allocation of such throughput depends on the application deployment
configurations. Since the Cloud chunk is always installed on the central cloud, the three
basic fog configurations to deploy application u are as in Figure 3.3:

• Type 1: Fog chunk deployed on Su; higher throughput λHu flows between IoT object
u and region Su, with IoT data unit ∆H

u . ∆L
u served between Su and S0 with low

throughput λLu ;

• Type 2: Fog chunk deployed on central cloud S0; IoT data ∆H
u is served between Su

and S0 with high throughput λHu ;

• Type 3: Fog chunk deployed on a neighbouring fog region Sj 6= Su; lower throughput
required between Sj and central cloud S0. However, the IoT data ∆u = ∆H

u is served
between Su and Sj with high throughput λHu .

3.3.6 Fog Resource Allocation Problem

The objective of the infrastructure owner is to maximize the revenue obtained by provi-
sioning her fog infrastructure to applications tenants. By using traditional scheme of pay
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per use, she can settle a cost for each application deployment. A tenant owning u pays
fu,k > 0 euros per application installed in region k.

The objective is thus to host containerized fog applications such in a way to maximize
the owner revenue, while satisfying the applications’ requirements. We can obtain the
optimal reward for a given batch of applications.

Decision variables xu,k,i are boolean variables indicating the placement of the fog chunk
of application u on the i-th server of region k. Further, decision variables λHu , λLu ∈ R+

represent the optimal throughput in the large and small data unit transfer mode for
application u, respectively. Indeed, the throughput declared for each application’s link
in the partitioning step is an upper bound on the actual throughput generated on each
link of the application. The optimal allocation policy using a mixed integer non linear
program (MINLP) is shown in (3.12). We let xu,k =

∑
i∈Sk xu,k,i ∀(u, k) ∈ U × K for

notation’s sake. The objective function is the revenue gained by the infrastructure owner.
The constraint (3.13) is meant component-wise: it bounds the resources utilization on fog
servers in terms of memory, processing and storage capacity, respectively. Also, (3.14)
and (3.15) bound the throughput generated by applications with respect to links’ capacity.
(3.14) accounts for all traffic from region k to the central cloud, whereas (3.15) accounts
for the throughput across adjacent regions as in Figure 3.3c. By constraint (3.16), the
total transmission and computing time needs to be smaller than the service rate of the
application. We assume that, according to (3.17), each application has at most one
deployment region, since, given the limited resources, it is not always possible to deploy
all the applications. In particular, (3.18) indicates that each application can be deployed
only on neighbour regions or on its original region.
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maximize:
∑

(u,k)∈U×K

fu,k xu,k (3.12)

subject to:∑
u∈U

cu xu,k,i ≤ Cki
, ∀k ∈ K,∀i ∈ Sk (3.13)∑

u∈Uk

(xu,k λ
L
u + xu,0 λ

H
u )+

+
∑

j∈N (Sk)

∑
v∈Uj

xv,jλ
L
v ≤ Bk0, ∀k ∈ K \ {0} (3.14)

∑
u∈Uk

xu,j λ
H
u +

∑
u∈Uj

xu,k λ
H
u ≤ Bkj, ∀jk ∈ E, j, k 6= 0 (3.15)

du +
∆H
u

Bu

+
(
duj +

∆H
u

λHu
+

∆L
u

λLu

)
xu,j+(

du0 +
∆H
u

λHu

)
xu,0 +

(
du0 +

∆L
u

λLu

)
xu,u ≤

1

Fu

∀u ∈ U,∀j ∈ N (Su) (3.16)∑
k∈K

xu,k ≤ 1 ∀u ∈ U (3.17)∑
k∈K\{N (u)∪{u}}

xu,k ≤ 0 ∀u ∈ U (3.18)

xu,k,i ∈ {0, 1} ∀(u, k) ∈ U × K ∀i ∈ Sk (3.19)
λHu , λ

L
u ∈ R+ (3.20)

The decision variables are the binary variables for the placement and the continuous
variables for the throughput. Prob. 3.12–3.20 is a combination of a placement and a
multi-commodity flow problem. For the sake of tractability, in the next section we offer
a transformation to a pure placement problem.

3.4 Pure placement problem

The aforementioned transformation is attained by fixing the continuous decision variables
of the MINLP, i.e., λLu and λHu . To do so, it is sufficient, for each application u ∈ U , to fix
the minimum throughput required in order to deliver the output at target rate Fu, given
its configuration type and deployment region.

• Type. 1: processing each information unit and providing an output result should
happen at rate 1

Fu
; by accounting for all processing and communication delay we
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write

du + du0 +
∆H
u

Bu

+
∆L
u

λLu
≤ 1

Fu
(3.21)

which can be solved for equality in λLu .

• Type. 2: For each application u, we have

du + du0 +
∆H
u

Bu

+
∆H
u

λHu
≤ 1

Fu
(3.22)

In this case we are solving for λHu ; we observe that it must hold indeed λHu ≥ λLu .

• Type. 3: if uB is deployed in a region neighbor of the original region of u, it holds

du + duj + dj0 +
∆H
u

Bu

+
∆H
u

λHu
+

∆L
u

λLu
≤ 1

Fu
(3.23)

In this case, in order to have a unique solution in the minimum throughout, we
impose additional constraints, namely we restrict to the set of solutions such that

λHu
λLu

=
∆H
u

∆L
u

(3.24)

Once we performed the above identification, the original problem becomes:

maximize:
∑

(u,k)∈U×K

fu,k xu,k (3.25)

subject to:∑
u∈U

cu xu,k,i ≤ Cki
, ∀k ∈ K,∀i ∈ Sk (3.26)∑

u∈Uk

(xu,k λ
L
u + xu,0 λ

H
u )+

+
∑

j∈N (Sk)

∑
v∈Uj

xv,jλ
L
v ≤ Bk0, ∀k ∈ K \ {0} (3.27)

∑
u∈Uk

xu,j λ
H
u +

∑
u∈Uj

xu,k λ
H
u ≤ Bkj, ∀jk ∈ E, j, k 6= 0 (3.28)

∑
k∈K

xu,k ≤ 1 ∀u ∈ U (3.29)∑
k∈K\(N (u)∪{u})

xu,k ≤ 0 ∀u ∈ U (3.30)

xu,k,i ∈ {0, 1}, ∀(u, k) ∈ U × K, ∀i ∈ Sk (3.31)
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3.4.1 Complexity

Problem (3.25)–(3.31) has a formulation similar to a specific Knapsack problem, namely
the Multidimensional Multiple-Choice Knapsack (MMCK) problem. This latter problem
is one of the most complex versions of the Knapsack Problem’s family. In this version of
the KP, there are different groups of items with the constraint that exactly one item for
each group must be picked [10].

In the multidimensional multiple-choice Knapsack problem there are m resource types
and the amount of available resources is given by vector C = (C1, . . . , Cm). Also, there
are n disjoint classes of items, Ji i = 1, . . . , n, where each class Ji has ri items. Each item
j ∈ Ji has profit value vij ≥ 0 and weight vector Wij = (w1

ij, . . . , w
m
ij ) ≥ 0, where each

weight component wkij ≥ 0, k = 1, . . . ,m, is the occupation of resource k of item j ∈ Ji.
The objective is to pick exactly one item from each class in order to maximize the

total profit value of the pick, subject to resource constraints:

maximize: Z =
n∑
i=1

ri∑
j=1

vij xij (3.32)

subject to:
n∑
i=1

ri∑
j=1

wkij xij ≤ Ck, 1 ≤ k ≤ m (3.33)

ri∑
j=1

xij = 1, 1 ≤ i ≤ n (3.34)

xij ∈ {0, 1}, ∀1 ≤ i ≤ n, 1 ≤ j ≤ ri. (3.35)

The pure placement problem and the MMCK have similar formulations. The next
result proves NP-hardness of our problem by reduction from the MMCK problem.

Proposition 3.3. Problem (3.25) is NP-hard.

Proof. We prove the NP-hardness by reduction from a specific case of the MMCK problem.
In particular, we consider the case where each class has the same number of elements r [63].
Furthermore, the NP-hardness can be easily proved by reduction from the MMCK problem
with m = 1, since starting from m = 1 the problem is already known to be NP-hard (for
m = 1 the problem is known as Multiple Choice Knapsack). Hence, for every instance of
a MMCK with n classes consisting of r elements and 1 dimension, we can reduce it to an
instance of our problem. Indeed, it is sufficient to consider an instance of (3.25)–(3.31)
with n applications and a single region with r − 1 servers with infinite capacity. Each
application has three possible configurations: deployed in cloud, deployed in fog or not
deployed. In this manner, each application defines a class of configurations consisting of
r elements. Each element’s weight can be mapped to the throughput generated by each
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Figure 3.4: Optimal solution vs. Rounding

application towards the cloud. In this manner, the only one capacity constraint is the
bandwidth constraint on the fog-cloud link.

Several algorithmic solutions have been proposed in the literature for the MMCK prob-
lem [63, 65]. However, such heuristic solutions cannot guarantee approximation bounds
on the produced allocation. Actually, to the best of the authors’ knowledge, no approxi-
mation algorithm is available to date for this specific Knapsack problem with a variable
number of dimensions. In [92], authors designed a polynomial time approximation scheme
(PTAS) for the MMCK problem when the number of knapsack dimensions is O(1). In
our case, instead, the number of dimensions varies with the number of applications and
regions.

One of the standard techniques to obtain approximation schemes for binary integer
NP-hard problems is to relax first the integrality of choice variables thus obtaining a
linear program and then round the so-obtained continuous solution of the linear program
to an integer solution of the original one [72]. One technique is to consider the continuous
relaxed variable as the probability to pick the tagged choice variable (setting that variable
equal to 1). Typically, a difficult challenge for such a relaxation algorithm is to guarantee
that the obtained integer solution is a feasible one for the initial integer problem. In
our case, the rounding technique does not represent a good strategy to obtain a valid
approximation scheme. As shown in Figure 3.4, the approximated feasible solution suffers
a significant optimality gap with respect to the optimal one. The figure reports the best
feasible solution obtained by the applying the rounding technique to the relaxed version
of problem (3.25). One of the main issues is represented by the constraint (3.29), which
misleads the relaxation procedure to pick solutions quite far from optimal. Indeed, by
relaxing this constraint, more than one variable can assume a non-zero value. In this case,
we need to choose which one to pick entirely. In our case we considered a probability

29



CHAPTER 3. THROUGHPUT-AWARE PARTITIONING AND PLACEMENT OF FOG
APPLICATIONS

Table 3.2: Complexity of all the sub-problems
Problem Complexity
Main Problem Strongly NP-hard, no PTAS better than n

1
2
−ε

App-partitioning Poly for k = 2, NP-hard for k ≥ 3

Fog Resource Allocation NP-hard
Pure Placement NP-hard, No FPTAS

distribution defined for each application on the set of its possible deployments. However,
as confirmed by Figure 3.4, this leads to a very conservative approximation factor since
the most probable variables to be picked may be arbitrarily far from the ones chosen by
the optimal integer solution.

Finally, in Table 3.2, we have resumed the complexity results for the problems tackled
in this chapter. The main problem is strongly NP-hard since it induces a VNE problem;
furthermore, it does not admit any tight polynomial-time approximation scheme. The
application partitioning problem has a polynomial time algorithm as per the reduction
showed in Proposition 3.2; it becomes NP-hard as the number of chunks is greater or equal
to 3. Finally, the Fog Resource Allocation problem is formulated as a MINLP problem:
by fixing the continuous throughput variables it becomes the Pure Placement problem
which is NP-hard by reduction from the MMCK problem.

3.5 Fog Placement Algorithm

Hereafter, we describe FPA, a greedy solution for (3.25) which is meant to provide prac-
tically viable solution for the placement problem described above. The key intuition of
the algorithm is to pick an aggregated view of fog regions’ resources utilisation, thus
permitting to measure the effect of placement as a pseudo-gradient descent in the space
of occupied resources, while treating the alternatives for the deployment of the same
application as different yet exclusive instances.

As described in Algorithm 2 FPA operates an iterative application deployment. At
each step, for each region and for each application u which belongs to that region, it selects
the set A of admissible regions for the deployment of chunk uB. Such set includes all the
regions satisfying the computational and throughput requirements of a tagged application.
Preliminarily, a feasibility check is performed through a verify procedure: given a region
and the application’s requirements, it verifies whether there exists at least one server in
the region to host uB, i.e., if the server has enough space in terms of CPU, memory and
storage. Further, throughput requirements are verified against each configuration type
for each application, by ensuring that the residual bandwidth of involved links satisfies
the throughput requirement corresponding to the tagged configuration type.

The select procedure is reported in Algorithm 3: it first calculates, for all the admissible
regions for the deployment of a given application u, a pseudo-gradient v̄S (∀S ∈ A). Its
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Algorithm 2: Fog Placement Algorithm (FPA)
Input: G = (V,E), U
Output: Container placement for each u ∈ U

1 while U 6= ∅ do
2 place← {};
3 for i = 1, . . . ,K do
4 for u ∈ Ui do
5 A ← ∅;
6 if verify(Si, u) then
7 A ← A∪ {Si};

8 for S ∈ N (Si) do
9 if verify(S, u) then

10 A ← A∪ {S};

11 if A 6= ∅ then
12 place[u]← select(A,u);

13 else
14 place[u]← ∅;

// select the application to be deployed
15 u∗ ← min_resource_region(place);
16 deploy(u∗, place[u∗]);

// Update G

17 update(G,Splace[u∗], Su∗ , u∗);
18 U ← U \ {u∗}

components are calculated at lines 2, 3, 4, 7−9, 11, and 14, respectively, by estimating the
normalized decrease of each resource type in case of deployment with tagged configuration.
The output is the region with the minimum pseudo-gradient (line 16). Once a feasible
region is selected for each application, Algorithm 2 chooses to be deployed first. This step
is executed by min_resource_region procedure. It takes the place mapping as input and
returns the application to which the region with the minimum pseudo-gradient has been
associated by the select procedure.

Subsequently, once the algorithm has selected the application to be deployed, it up-
dates the computational capacities of the server hosting the chunk of that application.

Afterwards, the algorithm updates the graph structure decreasing the available band-
width on the links connecting the regions selected for the deployment (line 17). It iterates
until all the applications have been considered.

Finally, we observe that, while the presentation of FPA is performed in the case of a
batch of applications all available at the same time, the algorithmic formulation can be

31



CHAPTER 3. THROUGHPUT-AWARE PARTITIONING AND PLACEMENT OF FOG
APPLICATIONS

Algorithm 3: Select procedure
Input: A, set of admissible regions for the deployment of chunk uB
Output: A region for the deployment
// Build a pseudo-gradient vector for each region in A

1 for S ∈ A do
2 vm ← cMu

residual_mem(S) ;

3 vp ← cPu
residual_proc(S) ;

4 vs ← cSu
residual_stor(S) ;

5 if S 6= Su then
6 if S ∈ N (Su) then

// Case 3

7 b1 ← λHu
residual_band({u,S}) ;

8 b2 ← λLu
residual_band({S,0}) ;

9 v̄S ← (vm, vp, vs, b1, b2);
10 else

// S = S0, case 2

11 b1 ← λHu
residual_band({0,u}) ;

12 v̄S ← (vm, vp, vs, b1, 0);

13 else
// Case 1

14 b1 ← λLu
residual_band({0,u}) ;

15 v̄S ← (vm, vp, vs, b1, 0);

16 return arg min
S∈A

{‖v̄S‖2}

easily adapted to the online case, where applications to be deployed arrive and depart, by
simply including the release of resources to the update procedures.

3.5.1 Complexity

The computational complexity of FPA is derived by noting that procedures verify, update-
Server and update have constant time complexity. Procedure select computes a vector
for each eligible region in set A. In the worst case, the cardinality of A is at most K − 1.
Hence, the complexity of the select procedure is O(K). The cardinality of U is U , and the
maximum cardinality of a neighbourhood of a certain region is O(K) in the worst case.
The cardinality of the set of applications to be ranked is O(U) at each step. Hence, the
total complexity of FPA is O(U2 ·K2 + U2) in the worst case.
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Table 3.3: Distribution of the applications’ microservices requirements of CPU, memory, storage
and throughput.

Requirement Mean Value (u0) Range (u ∈ U)
CPU (cPu ) 1250 MIPS [500, 2000] MIPS
Memory (cMu ) 1.2 Gbytes [0.5, 2] Gbytes
Storage (cSu) 3.5 Gbytes [1, 8] Gbytes
Throughput (λu(m,n)) 3 Mbps [1, 5] Mbps

3.6 Numerical Results

In this section we evaluate the performance of the combined scheme using throughput-
aware application partitioning and placement. We compare the performance with the case
of throughput-agnostic application partitioning, and with the case of placement driven by
virtual network embedding [114].

In order to understand the average behaviour of the proposed solutions, we examined
the performance of the algorithms on a number of randomly-generated graphs. The
network infrastructure is modelled with an undirected graph connecting a central cloud
to a fixed number K of fog regions, where K = 10 in our experiments. Thus, the central
cloud and fog regions form a star topology of cloud-to-fog connections, namely cloud-
links. For every topology realization, links between two fog regions are added according
to an Erdős-Rényi random graph model, where a link exists between two regions with
probability q. Finally, each link in the resulting network is assigned with a bandwidth of
15 Mbps, both for cloud-links and fog-links.

A batch of fog applications is generated for each experiment; we considered U =

{60, 70, 80, 90, 100} for the comparison with network embedding approaches and U =

{10, 50, 100, 150, 200} for the comparison with the standard Kubernetes placement de-
scribed in subsection 3.6.1. The demands of each application of the batch for CPU,
storage, memory and throughput are modelled as uniform independent random variables.
The mean value of such variables is dictated by the nominal value we measured on a
benchmark application, that is a plate-recognition application packaged as a two-modules
microservice where the fog microservice module can process the video stream either in
cloud or on a fog node. The resulting distribution of the key parameters for the applica-
tions microservices are enlisted in Table 3.3; symbol u0 refers to the nominal values we
measured on a proprietary fog platform for the plate recognition app [96, 8]. Each appli-
cation is generated as a DAG with a number of nodes sampled from the set {5, . . . , 20}.

Finally, the probability that an application belongs to region 1 ≤ k ≤ K follows a
truncated Pareto distribution of parameter α, i.e., P{Ru > k} = k−α/γ, where Ru is the
random variable representing the index of the region assigned to the application u and
normalization constant γ =

∑K
h=1 h

−α.
In the proposed scenario, the servers available within each region belong to three
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Table 3.4: Characteristics of the three classes of fog servers: low, medium and high.
Type CPU (MIPS) Memory (GB) Storage (GB)
Low 5000 2 60
Medium 15000 8 80
High 44000 16 120

classes, depending on the resources they are equipped with, namely low, medium and
high class. The computational characteristics are listed in Table 3.4 where CPU perfor-
mances are described in terms of Million Instructions Per Second (MIPS) representing the
processor’s speed of a server. This standard measure [30] is relevant in a heterogeneous
environment as fog computing, since all the servers in a specific fog region can mount
different cores and different processors. Hence, given this heterogeneity, this measure
represents a basic universal metric for processors’ performances, used in other fog sim-
ulators [61], that is independent from the specific model of the processor. The number
of servers per region is determined at each experiment sample as follows. Each region is
meant to satisfy same fraction of the expected aggregated demand. More precisely, each
region is equipped with aggregated resource vector (1 + β) U

K
cu0 . The parameter β is a

slack parameter tuning the probability that resources available in a fog region are under-
provisioned/overprovisioned compared to the aggregated demand. Finally, the servers’
population of the tagged region is generated by allocating iteratively servers of different
types at random until the region resource budget is exhausted.

Well-known Fog simulators and emulators presented in the literature [61, 80] do not
support natively scenarios with multiple fog regions. Hence, we developed a Python-based
simulator for the evaluation of the above algorithms. The Gurobi solver [62] has been
used to solve the optimal placement problem (OPT). Experiments have been conducted
on an Ubuntu Linux server with 32 core AMD Opteron(tm) 1.4GHz CPU and 64GB of
memory. Each data point depicted is the result of an average over 30 instances where the
network infrastructure is fixed and the application and servers distributions change. All
the results are averaged with the corresponding 95% confidence interval.

3.6.1 Reference Algorithms

We compared our proposed scheme with two benchmark solutions. More precisely, we
evaluate the application splitting and the deployment (FPA) algorithms. For the former
one we make a comparison with a throughput-agnostic splitting algorithm. For the latter
we implemented a state-of-the-art virtual network embedding algorithm presented in [114]
and two variants of the Kubernetes scheduler [5].
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Throughput-agnostic partitioning

For the evaluation of the partitioning algorithm we compare it with a throughput-agnostic
method that, given an application DAG as input, performs a random cut of the application
graph. In detail, the algorithm takes in input the application graph and perform a visit
of the DAG. Once an order of the application nodes is induced by the visit, a random cut
is chosen on the so-defined order without considering the total throughput on the chosen
cut.

Network Embedding Algorithm

The general problem of deployment of a DAG-like fog-application can be seen as a network
embedding problem, hence, we compare our solution with a standard algorithm. The
general procedure [114] for the embedding algorithm consists of three main steps to be
executed sequentially for each application:

1. Topological sorting. A topological sort is obtained by simply performing a modified
visit of the application DAG. The DAG-like structure of the application ensures that
there exists at least one topological order of the application nodes.

2. Application’s nodes mapping. This procedure selects, for each node, a set of possible
regions where the node can be deployed. Once this set is defined, one region is
selected according to a fixed priority function. In our implementation, we select the
region Si that maximizes

resCPU(Si)
∑

j∈N (Si)

resBW (Si, Sj), (3.36)

where resBW (Si, Sj) and resCPU(Si) indicate the residual bandwidth of physical
link {Si, Sj} and the residual CPU capacity in region Si, respectively. If any of the
application’s node has not eligible region, the application is not deployed.

3. Application’s links mapping. If a mapping for all the modules of the application is
found, the next step is to find a path between each couple of regions where two
application nodes are mapped in the previous step. Given two regions assigned to
two application’s nodes, we compute all the paths between these two regions and we
take the first path with enough bandwidth capacity for the application’s link. If all
the application’s links are mapped to a set of paths of the network infrastructure,
the application is finally deployed on the infrastructure.

Before applying the embedding procedure for each application, a deployment priority
should be established among them. Hence, we sort the batch of applications on the basis
of their total throughput demand. In this manner, the next application chosen for the
deployment is the one with the minimum total throughput demand.
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Remark: in the experimental section, we shall consider two variants of the VNE ap-
proach. The first is the one where embedding is performed only to regions neighbouring
the original one for the target fog application u. The second one, VNE-MultiHop, as-
sumes routing can be performed across all regions. The VNE-MultiHop variant may be
an advantage by performing load balancing more efficiently across the whole deployment,
it relies on a strong technological assumption in that it requires joint orchestration of
network and application layers; conversely all other solutions envisioned in this chapter
can be fully implemented at the application layer.

Kubernetes

Kubernetes scheduling algorithms consist of three main components: the filtering step
where a set of servers is selected for each pod; the ranking which selects, on the basis of
a specific priority function, the best server for the deployment among the ones previously
selected; finally, the deployment step is dedicated to the final deployment of the pods on
the servers selected on the previous step. In our case we selected LeastRequestedPriority
as the priority function for the second step. In this manner each server node is ranked
based on the fraction of the node resources that would be free after the deployment of
the selected pod.

For the sake of a comparison with our approach, we adapted the Kubernetes scheduler
to a multi-region scenario implementing two variants of the aforementioned procedure:
the first one runs the basic Kubernetes algorithm in every single fog region; each region
is hence thought as a separate cloud where a fog server is chosen to host the application
chunks to be deployed. We observe that in this approach, only deployments of type 1 and
type 2 are possible. The second approach is to consider the whole fog deployment as a
unique region. Hence, in the filtering step, Kubernetes shall select all the servers able to
host a tagged chunk across all fog regions.

3.6.2 Experimental Results

Application Partitioning

In Figure 3.5 we evaluate the effect of the fog partitioning algorithm. Figure 3.5a re-
ports on the fraction of cloud-link usage for each application deployed on the network
infrastructure both for the throughput-aware application splitting (FPA_M) and for the
throughput-agnostic (FPA_R) [49]. It is clear from the figure that with the min-cut split-
ting the cloud-link usage is almost constant as the size of applications batch increases.
Furthermore, the cloud-link usage of the throughput-aware partitioning is always less than
the random cut, as expected. The cloud-link usage of the throughput-agnostic decreases
as the size of application batches decreases for the applications deployment. Indeed, to
increase the number of applications deployed FPA tries to save bandwidth towards the
cloud as shown in [49]. Figure 3.5b represents the amount of fog-to-fog links usage for
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a) b)

c) d)

Figure 3.5: Comparison of throughput-aware vs. throughput-agnostic partitioning. a) cloud
links usage, q = 1/2, β = 0.5; b) cross links usage, q = 1/2, β = 0.5; c) number of deployed
applications for q = 1/2, β = 0.5; d) number of deployed applications for q = 1/2, β = −0.5.

both the two approaches. The throughput-aware partitioning exploits a larger number
of cross-links: as a consequence it can deploy a larger number of applications compared
with the throughput-agnostic solution, as confirmed by Figure 3.5c.

Figure 3.5c shows the effectiveness of the proposed application cut in terms of appli-
cations placement in an overprovisioning situation in terms of available computational
resources. Indeed, with a minimum cut for the application splitting, FPA_M is able
to deploy almost the totality of the applications’ requests until |U| = 100. This is also
the reason why the cross-link usage for the throughput-aware approach keeps increasing
steadily until |U| = 100, as shown in Figure 3.5b. In fact, FPA_R suffers from the non-
optimized splitting of the applications, especially in scenarios where bandwidth saturation
represents a bottleneck for the applications deployment [49]. Thus, we conclude that op-
timized application splitting causes a significant increase of the infrastructure capacity to
host fog applications. Figure 3.5d shows that the relative gain of the min-cut approach
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a) b)

c) d)

Figure 3.6: a) OPT vs. FPA vs. VNE in terms of number of applications deployed, q = 1/2,
β = 0.5; b) OPT vs. FPA vs. VNE in terms of number of applications deployed, q = 1/2,
β = −0.9; c) FPA vs. VNE in terms of average total delay overhead , q = 1/2, β = −0.9; d)
Average execution time for FPA and VNE, q = 1/2, β = −0.9.

under tighter constraints on available resources remains significant versus throughput-
agnostic approaches.

Network Embedding

For the VNE algorithm we implemented two variants: the standard one (VNE), adapted
to our scenario, allows the deployment of microservices only on regions neighbouring the
target one; the extended one (VNE-MultiHop), conversely, allows paths across region
nodes when mapping links of the application graph during the embedding procedure.

Figure 3.6a reports on the number of applications deployed across the infrastructure
in an underprovisioning scenario. We can observe that, as expected, VNE-MultiHop can
deploy all the applications since we remove the constraint of using only one-hop links
for the applications mappings. The difference between OPT and FPA is reduced and,
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on the other hand, the VNE presents a significant loss. The VNE algorithm, indeed,
tries to deploy all the applications towards the cloud until the bandwidth between the
original regions and the cloud is exhausted, confirming the bandwidth towards the cloud
to be a real bottleneck for the applications deployment problem. The VNE-MultiHop,
instead, escape from this problem by allowing the applications’ links mapping among the
paths that go from the original region of the applications and the cloud. Indeed, given
the metric (3.36), the best resulting region for each application deployment will be the
cloud (for the unlimited computational power). However, as highlighted in Figure 3.6c,
this approach can lead to a significant time overhead. In Figure 3.6b reports we have the
same results when the fog has enough computational resources (overprovisioning). In this
case we can see a little loss from the VNE-MultiHop still due to the metric (3.36) for the
region selection. The VNE-MultiHop continues to select the cloud without considering
the quantity of resources available in Fog. This can easily lead to a bandwidth saturation
towards the cloud.

Figure 3.6c validates our choice of deployment using two hop schemes when offloading
to neighbouring regions in Type 3 configurations. Indeed a multi-hop approach such as
VNE-MultiHop may incur in a significant latency overhead due to the multi-hop path
traversing several links to connect two different regions. On the other hand FPA and
VNE have a small difference in delay, confirming that it is the multi-hop approach to
introduce a significant latency overhead.

Finally, in 3.6d we show the execution time of the three algorithms. It is clear from
the figure that VNE and FPA have comparable and scalable execution times. The VNE-
multiHop presents highest execution times due to the computation of the paths between
all pairs of region nodes where two application nodes are mapped.

Kubernetes

Finally, in Figure 3.7a and Figure 3.7b we have compared our solution with the two Ku-
bernetes algorithm’s variants: Kub and Kub1, respectively. In the second scenario all
algorithms tend to deploy a larger number of applications than in the first one. This is
expected since the latter both has more computational resources and more connected re-
gions. In both figures we can observe that FPA performs close to the optimal solution. The
poor performance of the Kub algorithm indicates that offloading towards neighbourhood
fog regions is key to efficient fog resource allocation. Also, as the number of applications
increases, the gap between FPA and Kub1 broadens. The reason can be ascribed to two
key differences between FPA and Kub1. First, the deployment order of applications in
FPA matches remaining resources at each step, by choosing the application with minimum
resources consumption pseudo-gradient. In Kub1, conversely, applications are deployed
in a predefined order. Second, for Kub1 neglects crosslinks bandwidth utilization, it leads
quickly to bandwidth resources consumption. On the other hand, FPA’s better perfor-
mance is due to the fact that it accounts for bandwidth occupation of both cloud-links and
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a) b)

c) d)

Figure 3.7: Number of deployed applications with respect to Kubernetes algorithms: a) q = 1/3,
β = −0.2; b) q = 0.5, β = 0.5; c) Configuration types distribution for a typical solution instance
with U = 100, q = 0.5 and β = 0.5; d) Configuration types distribution for a typical solution
instance with U = 150, q = 0.5 and β = 0.5;
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crosslinks. This confirms the key role of accounting for bandwidth consumption on both
fog-links kind of network links for the final applications deployment, in order to avoid
early bottleneck formation. Figure 3.7c and Figure 3.7d provide further insights into the
structure of the produced solutions. There, we have reported the number of deployments
of each type produced by different algorithms in a throughput-dominated scenario. The
OPT and Kub1 solutions prioritize type 3 configurations over type 1 configurations, while
the opposite occurs for FPA. Overall, as expected, deployments on fog regions, i.e., type
1 and type 3 configurations, are more frequent than type 2, since they save bandwidth on
cloud-links. Actually, for a batch of 150 applications the number of type 2 deployments
becomes negligible (Figure 3.7d). These results confirm the importance of type 1 and
type 3 deployment configurations even in an overprovisioning situation at the edge to
reduce bottlenecks effects on the bandwidth towards the cloud, and, hence, maximize the
number of deployed applications.

3.7 Remarks and Possible Extensions

In this chapter we have introduced a joint partitioning and optimization framework for
throughput-intensive applications. We showed that a smart cut of the applications’ com-
putation flow in between cloud and fog is beneficial to cope with the applications’ per-
formance requirements while improving the revenue figures of the infrastructure owner.
The scheme for the resource allocation combines a multi-commodity flow and a placement
problem, but can be reduced to a specific Knapsack problem by introducing throughput
proportionality and considering only the placement formulation. A greedy algorithm,
FPA, is able to perform efficiently with respect to the optimal solution by placing par-
titioned applications using a pseudo-gradient approach. Numerical experiments confirm
the scalability of the proposed fog placement scheme and the efficiency in terms of infras-
tructure owner’s revenue and additional communication overhead compared to existing
solutions in the literature.

As we previously stated, the algorithmic formulation of FPA can be easily adapted
to the online case, where applications to be deployed arrive, are executed, and leave
the system. Further works will involve the study of such non-clairvoyant formulation by
means of the standard theoretical tools for the evaluation of online algorithms such as the
competitive ratio [66] or the worst-case static regret [100].
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Chapter 4

Deployment of Application
Microservices in Multi-Domain
Federated Fog Environments

In this chapter we consider the problem of initial resource selection for a single-domain fog
provider lacking sufficient resources for the complete deployment of a batch of IoT appli-
cations. To overcome resources shortage, it is possible to lease assets from other domains
across a federation of cloud-fog infrastructures to meet the requirements of those appli-
cations: the fog provider seeks to minimize the number of external resources to be rented
in order to successfully deploy the applications’ demands exceeding own infrastructure
capacity. To this aim, we introduce a general framework for the deployment of applica-
tions across multiple domains of cloud-fog providers while guaranteeing resources locality
constraints. The resource allocation problem is presented in the form of an integer linear
program, and we provide a heuristic method that explores the resource assignment space
in a breadth-first fashion. Extensive numerical results demonstrate the efficiency of the
proposed approach in terms of deployment cost and feasibility with respect to standard
approaches adopted in the literature. This chapter is mostly based on [53].

4.1 Introduction

One of the main drawbacks of existing fog platforms is that they are bound to work
within a single administrative domain. Hence they require exclusive ownership of resources
spanning from cloud to things. Nevertheless, given the wide geographical diffusion and
heterogeneity of fog computing resources, single-domain solutions are likely to be unfit
for the deployment of fog-native applications. In fact, they come – by their own nature –
with some hard-constraining locality requirements, dictated by the geographical location
where some processing needs to be executed or some devices need to be used.

This work contributes to current research efforts towards the definition of a multi-
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domain federated fog ecosystem, where fog providers (i.e., owners of fog resources) can
stipulate contracts among them to rent additional resources (otherwise not accessible) and
ensure smooth execution of their own applications. Whilst the technical feasibility of such
approach – requiring the interface to a specific resource brokerage platform – has been
proven [34, 98, 71], a different angle is considered in this work. We take the perspective
of a fog provider and pose the following question: what resources should I rent to ensure
that a given set of applications is correctly deployed in the federated fog while minimizing
external resource usage?

To answer this question, we assume that the fog provider implements a mechanism
(e.g., based on matchmaking [77]) to retrieve from the resource brokerage platform a set of
potential rentable resources owned by other providers, based, e.g., on applications’ locality
needs. Given such a set of potential rentable resources and the self-owned resources, the
objective is to find a feasible application deployment to minimize the cost of external
resource rental, while deploying over the federated fog environment as many applications
as possible to increase the provider’s revenue.

By exploiting integer linear programming (ILP) methods, we formally formulate the
application deployment problem: the aim is to allocate enough federated fog resources to
satisfy the applications’ requirements while self-owned resources are used as much as pos-
sible. More formally, an application deployment is a map of the applications’ components,
namely microservices and data flows among them, to the available fog resources. Finding
such an optimal map is virtual network embedding (VNE) problem, which is known to
be NP-hard [36, 26] and hard to approximate [14]. Hence, a practically viable approach
is to design algorithmic solutions consisting of tailored heuristics to approximate an op-
timal solution. We thus propose a scalable heuristic algorithm solving the application
deployment problem while taking into account locality constraints. Experimental results
validate our solution with respect to the optimal and state-of-the-art approaches in terms
of deployment cost and feasibility percentage.

4.1.1 State of the Art

4.1.2 Service deployment in federated cloud

Service deployment mechanisms have been widely studied in the literature related to cloud
federation [94, 54]. Various dynamic and adaptive algorithms for resource allocation have
been proposed. For instance, a distributed and adaptive approach for service placement
on a heterogeneous cloud federation is presented in [35]. In [16] a multi-objective op-
timisation problem is formulated for resource allocation while addressing variations in
applications’ behaviour. Although these works describe crucial problems for an appropri-
ate applications’ deployment in a cloud federation environment, in that context locality
constraints coming from inherent needs of IoT applications are not taken into account
as applications’ requirements. However, these constraints are the ones that mostly dis-
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tinguish a federated fog from a federated cloud ecosystem, besides a higher resources
heterogeneity. Conversely, our approach accounts explicitly for locality constraints when
selecting resources for the deployment of fog applications. Furthermore, all the aforemen-
tioned works consider a monolithic structure for applications, whereas a microservice-
oriented architecture represents a more promising paradigm for the design of future-proof
fog-native applications.

4.1.3 Virtual Network Embedding

Several works in the literature considered a microservice-oriented and modelled applica-
tions as Directed Acyclic Graphs (DAGs) [116, 59]. With this kind of structure, the ap-
plication deployment can be assimilated to a Virtual Network Embedding problem, which
is NP-hard. Furthermore, it has been proven that VNE-like problems result hard to be
approximated even with locality constraints [14]. Hence, several heuristic [32][78, 41],
and metaheuristic [48, 118] methods have been proposed in the literature, especially with
respect to the relevant problem of Virtual Network Function (VNF) placement [36] and
for the deployment of requests of a single application (or VNF) at a time. Indeed, the
most common procedure to solve these problems is to greedily deploy one VNF at a
time. However, when dealing with locality constraints, the deployment should be per-
formed considering the whole batch of applications at once. In this context, we proved
that a Breadth-First Search visit driven by the applications’ region-based partitioning
significantly reduces the deployment costs and ensures better feasibility percentages with
respect to existing solutions.

4.2 System Model

4.2.1 Involved stakeholders and scenario

Figure 4.1 resumes the scenario envisioned in this work. Two main stakeholders are
involved:

• Application provider: it designs a microservice-oriented application that can be
used by its customer(s) to accomplish some specific tasks. A good example is rep-
resented by the application for number-plate-based car access control described in
Chapter 2.

• Fog provider: it owns a fog infrastructure that can host different microservice-
oriented applications. A fog infrastructure can either be geographically distributed
(spanning from cloud to edge) or confined to a specific geographical area (no cloud,
only edge). It (i) provides computational, memory and storage capacity and (ii) can
ensure access to things deployed on specific areas and owned by the fog provider, if
any (e.g., video cameras or IoT sensors). We refer to a fog infrastructure owned by
a fog provider as fog domain (or domain).
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Figure 4.1: Application deployment in a multi-domain federated fog ecosystem.

As already mentioned, in our investigated scenario we take the perspective of a fog
provider – called main fog provider from now on – that wants to deploy multiple applica-
tions over its fog infrastructure. However depending on the applications to be deployed, it
may happen that the fog provider’s infrastructure alone cannot meet all the applications’
requirements. This may happen for two reason:

• Locality : an application requires some processing capability in a specific geographical
location. e.g., it requires video streming acquisition and elaboration from a camera
owned by another fog provider.

• Peculiar resource usage: an application requires the usage of some peculiar resources
that are not owned (or do not suffice for an appropriate application execution) by the
main fog provider. For example, an application may need a GPU for fats processing,
but no GPU is owned by such a provider.

From now on we assume that the main fog provider can rely on a multi-domain fed-
erated fog ecosystem (and its related infrastructure), where resources from other fog
providers can be rented to meet application requirements – including locality and pecu-
liar resource usage – otherwise exceeding its own capacity. Figure 4.1 depicts this reference
scenario. In the following, the models (i) for the aforementioned multi-domain federated
fog infrastructure and (ii) for the applications to be deployed are presented.
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Table 4.1: Main notation used throughout the chapter.
Symbol Meaning
GI = (VI , EI) Infrastructure network graph: VI physical nodes (regions), EI

physical edges (network connections)
A Set of applications to be deployed on GI
GA = (VA, EA) Graph for application A ∈ A: VA virtual nodes (modules) and

EA are virtual edges (data flows)
LA ⊆ VA Subset of virtual nodes to be deployed on a specific physical node

of the infrastructure
rA : LA → VI Maps virtual node vA to a given physical node
crvA Resource requirements of virtual node vA ∈ VA, with r ∈

{cpu, gpu,mem, stor}
λA(uA, vA) Max. throughput on edge (uA, vA) ∈ EA
dA(uA, vA) Max. tolerated delay on edge (uA, vA) ∈ EA
Sv Set of available hosts in physical node v ∈ VI
Crv,i Resource capacity of the i-th host in physical node v ∈ VI , with

r ∈ {cpu, gpu,mem, stor}
Du,v Latency on the physical link (u, v) ∈ EI
Bu,v Capacity of the physical link (u, v) ∈ EI
w(v) Cost of physical node v ∈ VI
P Set of computed paths p between any couple of physical nodes
Pu,v ⊆ P Set of computed paths between v ∈ VI and u ∈ VI
sp, dp First and last node of path p ∈ P
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4.2.2 Multi-domain federated fog infrastructure modelling

The considered infrastructure consists of several geographically distributed fog or cloud
regions belonging to different fog domains, including the main fog domain. From a mod-
elling point of view, the only difference between cloud and fog regions is their processing,
memory and storage capabilities. Each region is composed by multiple hosts (or servers),
which are the atomic unit where a microservice can be deployed. An example of such an
infrastructure is shown in Figure 4.1.

The multi-domain infrastructure is described by a weighted graph GI = (VI , EI) where
VI is the set of regions of the infrastructure and EI ⊆ VI×VI . Furthermore, cost function
w : VI → R+ specifies the cost for application deployment in a specific region of the in-
frastructure. Nodes (regions) and links/edges composing the infrastructure are also called
physical nodes and physical links/edges. Each physical link (u, v) ∈ EI is characterized
by a couple (Du,v, Bu,v) modelling the latency and the bandwidth capacity of the link,
respectively. We assume that hosts within the same region are interconnected through
high-performance connections, where bandwidth is never a bottleneck and latency can
be considered negligible. Conversely, regions (either belonging to different domains or
within the same domain of the federation) are interconnected through best-effort network
connections, meaning that bandwidth and latency constraints must be considered.

4.2.3 Application modelling

We denote A as the set of applications to be deployed on the infrastructure and each
application A ∈ A is described by a weighted DAG GA = (VA, EA), where VA is the set
of microservices (or modules) composing the application, and EA represents the set of
dependencies between microservices. Each directed edge (uA, vA) of an application A is
characterized by (i) the maximum throughput generated on that link, λA(uA, vA) and (ii)
the maximum tolerated delay on that link, dA(uA, vA). Each node vA of an application
A has computational requirements in terms of CPU, memory and storage crvA , where
r ∈ {cpu,mem, stor}. Furthermore, each application has a set of locality constraints
representing the regions where some microservices must be deployed, for example, to
acquire data from specific devices belonging to that regions. We model this fact by
introducing a set LA ⊆ VA for each application A ∈ A. This set contains all the nodes
that need to acquire data from a tagged device placed on a specific region: hence, they
must be placed in that region. Function rA specifies, for each node in LA, the region
where it must be deployed. Nodes and links composing an application are also called
virtual nodes and virtual links, respectively.

4.3 Problem Formulation

In this section we provide the ILP formulation of the placement problem.

47



CHAPTER 4. DEPLOYMENT OF APPLICATION MICROSERVICES IN MULTI-DOMAIN
FEDERATED FOG ENVIRONMENTS

4.3.1 Decision variables

We introduce two types of variables:

1. A binary variable for the assignment of each application module to a physical node:

xA,vAv,i =

1,
if module vA of application A
is deployed on host i of node v

0, otherwise

where A ∈ A, vA ∈ VA, v ∈ VI and i ∈ Sv.

2. A binary variable for the assignment of virtual links of each application to physical
paths:

y(uA,vA)p =

{
1, if link (uA, vA) is mapped to path p
0, otherwise

where A ∈ A, (uA, vA) ∈ EA, and p ∈ P .

4.3.2 Objective Function

Given a subset of nodes belonging to the main provider, we want to minimize the total
deployment cost for all the application requests of that provider. We assign a weight w to
the deployment of a virtual node onto a physical node v of the federated infrastructure.
We assume that weights are larger when such deployment is performed towards nodes
belonging to other fog domains, since their resources need to be rented. More formally,
we have a weight function defined for each physical node, w : VI → R+. Finally, the
objective function writes as follows∑

A∈A

∑
vA∈VA

∑
v∈VI

∑
i∈Sv

w(v)xA,vAv,i . (4.1)

4.3.3 Constraints

First, we have integrity constraints on the applications’ deployment on the infrastructure.
Indeed, all the modules of an application must be deployed and each such a module must
be placed only once. These conditions are expressed through the following constraint
(4.2) and (4.3), respectively.∑

vA∈VA

∑
v∈VI

∑
i∈Sv

xA,vAv,i = |VA|, ∀A ∈ A, (4.2)

∑
v∈VI

∑
i∈Sv

xA,vAv,i = 1, ∀A ∈ A, ∀vA ∈ VA. (4.3)
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Second, we have constraints on the resource capacity for each host in the infrastructure:∑
A∈A

∑
vA∈VA

cresvA x
A,vA
v,i ≤ Cr

v,i (4.4)

where v ∈ VI , i ∈ Sv, and resource r ∈ {cpu, mem, stor}.
Third, there are constraints related to virtual and physical links capacity. We start

by introducing the structural constraints binding variables related to nodes and virtual
links: ∑

p∈Pu,v

y(uA,vA)p ≤
∑
i∈Su

xA,uAu,i , (4.5)

∑
p∈Pu,v

y(uA,vA)p ≤
∑
j∈Sv

xA,vAv,j , (4.6)

∑
p∈Pu,v

y(uA,vA)p ≥
∑
i∈Su

xA,uAu,i +
∑
j∈Sv

xA,vAv,j − 1, (4.7)

where (u, v) ∈ VI × VI , A ∈ A, and virtual link (uA, vA) ∈ EA.
Constraints (4.5), (4.6) and (4.7) ensure that a unique physical path is used by a

virtual link whenever the virtual nodes connected by such link are the extreme nodes of
the path.

The following are constraints on the bandwidth capacity for all physical links (u, v) ∈
EI ∑

A∈A

∑
(uA,vA)∈EA

∑
p∈P :(u,v)∈p

λA(uA, vA) y(uA,vA)p ≤ Bu,v, (4.8)

and the applications’ delay constraints, namely

y(uA,vA)p

∑
(u,v)∈p

Du,v ≤ dA(uA, vA), (4.9)

where A ∈ A, (uA, vA) ∈ EA, and p ∈ P .
Finally, we have locality constraints: they impose the placement of a subset of ap-

plications’ nodes on specific regions, since data are acquired by devices located on those
specific regions: ∑

i∈SrA(vA)

xA,vArA(vA),i
= 1, ∀A ∈ A,∀vA ∈ LA. (4.10)

4.4 Proposed Solutions

The problem formulated in the previous section is a VNE problem which, as already said,
is a well-known NP-hard problem. Hence, it is important to look for fast and scalable
algorithms whose output solutions have an acceptable cost.
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The VNE problem has been extensively studied in the literature, and several heuristic
solution methods have been proposed [32]. In the following, we briefly resume the main
idea of the most adopted greedy approaches, which are based on a Depth-First Search
(DFS) exploration of the deployment solution space. We start from this approach and
propose a solution tailored for the specific requirements of our problem, based instead on
a Breadth-First Search (BFS) method.

4.4.1 Depth-First Search Approach

The most popular heuristic methods for VNE adopt a greedy embedding procedure. It
receives as input a sorted list of application deployment requests and returns a mapping
between each request and a subset of physical nodes/edges of the infrastructure. Our
reference DFS-based algorithm is an adaptation of the basic one presented in [114].

For each application in the input batch, the following three steps are executed sequen-
tially:

1. Topological sorting of the application graph: it is obtained by performing a visit of
the application graph; as a result, an order of the DAG nodes is established.

2. Virtual node mapping : it defines, for each virtual node, a set of possible placements
(set of possible regions where the virtual node can be placed). Once defined, it
selects one placement from this set.

3. Virtual link mapping : it finds a path between each couple of physical nodes where
virtual nodes are mapped in the previous step.

The DAG-based deployment order on the application’s modules, as established in the
first step, accounts for their dependencies. A topological sort, indeed, ensures that for
each couple of nodes uA, vA ∈ VA, if (uA, vA) ∈ EA then uA precedes vA in the topological
order, that is uA is a predecessor of vA. Once the order is defined by the topological
sort, the application’s node mapping to the infrastructure’s resources is performed. At
this stage, node mapping accounts for the actual resources occupation, and requires to
establish a certain priority function; it defines, for each application, an admissible set for
each module of the applications containing all the regions with at least one host with
enough resources for that module. If this set contains at least one region, it selects the
region that v ∈ VI that maximizes

resCPU(v)

 ∑
u|(u,v)∈EI

resBW (u, v) +
∑

u|(v,u)∈EI

resBW (v, u)

 , (4.11)

where resBW (u, v) and resCPU(v) are the residual bandwidth of the physical link (u, v)

and the total residual CPU capacity in region v, respectively [114]. If the set of admissible
regions is empty for at least one module of the application, such an application cannot be
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Figure 4.2: DFS vs. BFS approaches after the topological sorting step.

deployed. Instead, if a mapping for all the modules of the application is found, the next
step is the link mapping procedure. For each virtual edge, the algorithm takes the two
physical nodes assigned to the virtual nodes it connects (chosen by the second step) and
considers the least-congested path that satisfies both bandwidth and delay requirements
of the virtual link. If all the virtual links can be mapped to a non-empty set of paths of
the infrastructure, the algorithm has found a complete map of the application onto the
physical infrastructure. This operation is iterated for all the applications to be deployed
in the input sorted list.

4.4.2 Breadth-First Search Approach

The basic idea of our novel approach is to deploy the batch of applications in a breadth-
first fashion. This means that we do not deploy a single application per time, conversely,
at each step we consider all the application nodes: at each iteration we consider for
placement the first virtual node of each application, as determined by the topological
sorting of the application’s graph. Every time a virtual node is mapped to a host, it is
popped out from the stack of the topological order of its application. The rationale of this
approach is that applications’ locality constraints can be better matched, especially the
one requiring a placement in the main domain (e.g., for privacy reasons).Indeed, a depth-
first greedy procedure can quickly saturate all the resources of a particular region for the
deployment of certain applications without considering that some remaining (not deployed
yet) applications in the batch may have hard locality constraints on that region. This
typically renders the deployment of the whole batch infeasible,as will be better highlighted
in the next section.

Given a batch of applications to be deployed on the multi-domain infrastructure, our
algorithm consists of three main steps:

1. Sorting of the batch of applications : it sorts all the application on the basis of their
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total bandwidth consumption.

2. Topological sorting of the application graph: it establishes a topological sort of each
application graph following the applications’ order decided in the previous step. A
stack is created for each application: the first node of the topological order is put
on top of the stack.

3. Virtual node and link mapping : it iterates over all the applications in a breadth-first
manner, exploring all of them jointly and level by level. At each iteration, all the
virtual nodes on top of the applications’ stacks are popped up and a node mapping
is performed in the order established by step 2: each module is assigned to a host
of the infrastructure. Link mapping is then performed in conjunction with node
mapping. Figure 4.2 illustrates the iterations of the third step of the algorithm
(after the topological sort of the applications’ DAGs) comparing this breadth-first
approach with respect to a depth-first visit.

More in detail, the selection of the regions to perform the virtual node mapping (step
3) is operated by choosing for deployment a set of admissible regions that takes into
account the requirements and the locality constraints of each application module. Once
such set is defined, the algorithm selects the regions with the lowest deployment cost.
Afterwards, to choose the most suitable region, it greedily selects the placement option
that has the smaller relative increment of occupied nodes’ resources with respect to CPU,
memory, storage and bandwidth.

Finally, to perform link mapping, each time an application node vA is mapped to a
region r, the algorithm takes the list of all the regions assigned to the predecessors (in the
topological order of A) of vA and selects the least-congested paths between them and r.

Figure 4.3 illustrates a toy example to show the difference between the two approaches
in the deployment phase of applications. In this example, we have two applications
composed by three modules and an infrastructure with two domains, the Domain A with
deployment cost equal to zero, and the Domain B with a deployment cost greater than
zero. Both the domains have three hosts with the same capacity and only one microservice
can be deployed on each host. The first modules of each application have the locality
constraint that requires to deploy that modules on one server of the first domain. A DFS
approach will firstly deploy all the microservices of the first application in the domain
with lower cost, and then it will take into account the second application. However, given
its greediness with respect to the cost function, the DFS will saturate Domain A with only
modules from the first application leaving no space for the second application in the same
domain. This leads to an infeasible solution for the DFS approach since it is not able to
satisfy the locality constraint for the second application. The BFS approach, on the other
hand, at each iteration will consider both the two applications, deploying, at iteration 0,
the first modules of applications on the first domain, satisfying their locality constraints.
The approach will continue to deploy the other modules using also resources from Domain
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Figure 4.3: Example of applications deployments performed by the DFS and the BFS.

Table 4.2: Applications’ microservices requirements [26].
Requirement Mean Value Range
CPU (cvAcpu) 1250 MIPS [500, 2000] MIPS
Memory (cvAmem) 1.2 Gbytes [0.5, 2] Gbytes
Storage (cvAstor) 3.5 Gbytes [1, 8] Gbytes
Throughput (λA) 3 Mbps [1, 5] Mbps
Delay (dA) 262.5 ms [25, 500] ms

B. In this manner all the applications will be deployed without any constraint violation.

4.5 Performance Evaluation

In this section we validate our solution for applications deployment on a multi-domain
federated infrastructure. Our goal is twofold: (i) prove that a Depth-First Search approach
for the deployment of applications can negatively impact on either the feasibility of the
solution (i.e., not all the applications can be deployed) or on its optimality ; (ii) show that a
Breadth-First Search approach leads to a good trade-off between feasibility and optimality,
especially when some locality constraints are specified. We measure the feasibility as the
percentage of instances that admit a feasible solution (i.e., meets all the constraints), for
the problem described in Section 4.3, among all the generated instances.

4.5.1 Simulation settings

We describe how we generate the test network topologies and the batch of applications
to be deployed. Network topology: the multi-domain fog infrastructure is modelled as a
directed network graph with a number of fog regions K and a number of domains D. For
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the main fog domain, we consider a central cloud region that is always connected to fog
regions in a star topology. For each randomised topology realisation, links among different
fog regions (either belonging to the main fog provider or to other external providers) are
instead added according to an Erdős-Rényi random graph model, where a link between two
regions exists with probability pr = 0.5. Eventually, each link in the resulting topology
is assigned an average bandwidth of 60 Mbps and an average delay of 10 ms representing
the average values of modern communication links [26]. The hosts available within each
region belong to three classes, depending on the resources they are equipped with, namely
low (CPU: 5000 MIPS, memory: 2 GB, storage: 60 GB), medium (CPU: 15000 MIPS,
memory: 8 GB, storage: 80 GB) and high (CPU: 44000 MIPS, memory: 16 GB, storage:
120 GB). To well dimension the computational resources within any region, the aggregated
demand of the batch of applications to be deployed (in terms of CPU, memory and storage)
is equally split among all the regions excluding the main cloud. Then, the set of hosts of
a certain region is generated by iteratively and randomly choosing hosts of different types
until the aggregated demand fraction assigned to that region is satisfied.

Application batch: a batch of applications A is generated for each experiment; we
consider |A| = {10, 15, 20, 25, 30}. The demand of each applications’ module in terms of
CPU, storage, memory and throughput are uniform independent random variables. The
distribution values for each microservice are enlisted in Table 4.2. Each application is
generated as a DAG ordering all the nodes and adding an edge only between predecessors
and successors in the order.

We developed a Python-based simulator for the evaluation of the above algorithms
since well-known fog simulators do not support scenarios with multiple domains and fog
regions yet [61]. The Gurobi solver [62] has been used to solve the optimal placement ILP
problem (OPT ). Each data point in the shown graphs is the average value over 30 ran-
domized instances, where the infrastructure is fixed and the batch of applications and host
distribution change. All the results are shown with their corresponding 95% confidence
interval. We evaluate the proposed solutions in a scenario with K = 6 regions, D = 3

domains. The optimization problem is solved from the main fog provider perspective:
such domain contains one cloud and one fog region, while the other fog regions are dis-
tributed among the remaining fog providers’ domains (external providers). We consider
a unit cost for all the deployments outside the main domain (w = 1) and zero-cost for
the deployments inside the main domain (w = 0). To highlight the importance of locality
constraints, we impose that the first module of each application must reside in the fog
region of the main domain.

4.5.2 Numerical results

In Figure 4.4 we evaluate the tradeoff between optimality and feasibility of the proposed
solutions. Figures 4.4a) and b) report on feasibility and optimality with two variants
of the state-of-the-art DFS approach. DFS_SoA_NoCost represents the variant where
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a) b)

Figure 4.4: Feasibility-optimality tradeoff. a) Feasibility percentage; b) Total deployment cost
for each application.

deployment cost optimization is not taken into account: this means that the objective
of this strategy is just maximizing the number of deployed applications without caring
about the overall deployment cost. Conversely, DFS_SoA_Cost objective is to minimize
the deployment cost. BFS refers instead to our proposed novel strategy. From Fig. 4.4a),
we can notice that OPT, BFS and DFS_SoA_NoCost have high feasibility. Especially,
the first two strategies have a feasibility of 100%, meaning that they are able to deploy
the complete batch of applications in all the 30 randomized instances (note that feasibility
refers to the percentage of instances that are feasible).

Additionally, looking at the deployment cost (computed as in eq. 4.1) in Fig. 4.4b),
we can see that BFS presents a very close solution to the optimal one (OPT ). On the
other hand, DFS_SoA_NoCost leads to a high deployment cost even though it has a
good feasibility percentage. Conversely, in DFS_SoA_Cost the feasibility percentage is
low as well as the deployment cost. This behaviour is reasonable given the greedy nature
of the DFS approach. Indeed, if we include a cost optimization in such an approach, the
algorithm prioritizes all the regions with the lowest cost (that is, the regions in the main
domain) for the deployment of all the applications’ modules. In this manner, resources
with lower cost are quickly saturated precluding the possibility to satisfy the locality
constraints for the applications that have not been deployed yet. On the other side, if we
do not consider cost optimization, all the regions are treated in the same way, increasing
the chance of having a feasible solution while increasing the deployment cost too. From
this perspective, a BFS approach is beneficial since it does not evaluate the deployment of
each application at a time, but it considers the deployment of a part of every application at
each iteration. Thanks to this property, this method leads to a high feasibility percentage,
since it helps to guarantee locality constraints, and to a strong reduction of the deployment
cost. In summary, Fig. 4.4b) confirms that our solution explores the best tradeoff between
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a) b)

Figure 4.5: Bandwidth and CPU usage. a) Percentage of bandwidth usage within the main
domain and in external domains; b) CPU usage in the main domain and in external domains.

optimality and feasibility with respect to both variants of DFS.
Figure 4.5a) reports on the bandwidth usage of the proposed solutions within and

outside the main domain. The bandwidth consumption of DFS_SoA_Cost is almost
constant and low in both the main and external domains since it tries to avoid the de-
ployment of applications towards external domains and mostly deploy applications on the
main fog region until it becomes saturated. OPT and BFS solutions present, instead, a
similar trend on bandwidth usage as the size of the application batch increases. The con-
sumption of the link between the main cloud and fog region is slightly higher for OPT than
for BFS since the optimal deployment can accommodate more applications in the main
domain. With respect to external domains, the two solutions behave the opposite con-
firming the slightly higher cost of the BFS solution. Finally, DFS_SoA_NoCost presents
a similar behaviour on both main and external domains, since it maximizes relation (4.11)
without distinguishing between main/external domains.

In Figure 4.5b) we report the percentage of CPU usage of all the proposed solutions on
the main domain (upper figure) and on external domains. Reasonably, the CPU usage of
OPT is slightly greater than of BFS in the main domain since it deploys more applications
there, as confirmed by Figure 4.4b). DFS_SoA_Cost, given its greedy nature, presents a
high and constant percentage of CPU usage in the main domain, meanwhile it has very
low CPU consumption in external domains. On the other hand, the DFS_SoA_NoCost
has the opposite trend, showing an increasing usage from external domains and decreasing
usage from the main domain as the number of applications increases. Note that memory
and storage usage have a similar trend as CPU usage and thus are not reported in this
section for the sake of conciseness.

Finally, Table 4.3 reports on the average execution time of the proposed solutions
over the 30 instances. The values of OPT refer to executions that are stopped after
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Table 4.3: Execution time (sec).
|A| OPT BFS DFS_SoA_NoCost DFS_SoA_Cost
10 3.58 0.03 0.02 0.02
15 26.90 0.05 0.05 0.03
20 40.30 0.07 0.07 0.03
25 60.72 0.09 0.09 0.03
30 79.10 0.13 0.12 0.04

5 minutes if the solver has not completed the computation in that time range. The
higher scalability of all heuristic approaches is evident compared to OPT. Note that
DFS_SoA_Cost has lower execution time than the other approaches because its execution
is generally stopped earlier,i.e., when the algorithm cannot deploy one of the applications
and the deployment is considered infeasible. The time efficiency of heuristic methods is
given by their polynomial time complexity: indeed, we can see the deployment of the
batch of applications as a visit of a graph composed by a root dummy node connected
with an edge to all the subgraphs represented by the applications, as shown in Figure 4.2.
In this problem, given the existence of locality constraints, a breadth-first visit results to
be more efficient in terms of feasibility and optimality.

4.6 Remarks and Possible Extensions

In this chapter we have considered the problem of deploying fog applications onto a fed-
erated cloud-fog environment. In this context, solving the problem of initial resource
selection is crucial to reduce offloading costs, satisfy all the applications’ requirements
and accommodate future requests. By considering a microservice paradigm for fog appli-
cations, a virtual network embedding problem is faced, which is known to be NP-hard. In
this context, standard heuristic solutions need to trade-off feasibility, cost-efficiency and
scalability. This work proposed a new deployment technique for batches of fog applica-
tions, based on a breadth-first visit of all the applications’ graphs to deal with locality
constraints in the deployment. It has been showed to provide a near-optimal perfor-
mance and yet good percentage of feasibility, outperforming standard depth-first greedy
heuristics.

Future works will investigate the applications deployment in case of several locality
constraints for each application. Indeed, one limitation of the present solution is that it has
been tested only with a single locality constraint for each application. The BFS algorithm
can be extended in case of different locality constraints defined for each application. The
idea is to initially partitioning all the applications based on their locality constraints and
then perform the placement exploring the solution space in a breadth-first fashion. In fact,
from numerical results, one of the most frequent cause of infeasibility is represented by the
impossibility to satisfy locality constraints due to initial greedy choices that compromise
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the complete deployment of the batch of applications. Prioritizing locality constraints can
reduce the probability of violating them in overprovisioned situations, i.e., with enough
computational and networking resources.

Furthermore, in future works, we shall extend the proposed framework to account for
transactions between different domains, paving the way to the design of new exchange
mechanisms for fog computing.
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Chapter 5

Optimal Blind and Adaptive Fog
Orchestration under Local Processor
Sharing

In this chapter we study the tradeoff between running cost and processing delay in order
to optimally orchestrate multiple fog applications. Fog applications process batches of
objects’ data along chains of containerised microservice modules, which can run either
for free on a local fog server or run in cloud at a cost. Processor sharing techniques,
in turn, affect the applications’ processing delay on a local edge server depending on
the number of application modules running on the same server. The fog orchestrator
copes with local server congestion by offloading part of computation to the cloud trading
off processing delay for a finite budget. Such problem can be described in a convex
optimization framework valid for a large class of processor sharing techniques. The optimal
solution is in threshold form and depends solely on the order induced by the marginal
delays of N fog applications. This reduces the original multidimensional problem to an
unidimensional one which can be solved in O(N2) by a parallelised search algorithm under
complete system information. Finally, an online learning procedure based on a primal-dual
stochastic approximation algorithm is designed in order to drive optimal reconfiguration
decisions in the dark, by requiring only the unbiased estimation of the marginal delays.
Extensive numerical results characterise the structure of the optimal solution, the system
performance and the advantage attained with respect to baseline algorithmic solutions.
This chapter is mostly based on [44].

5.1 Introduction

In a typical fog or cloud service, data batches generated from objects are processed se-
quentially over a sequence of containerised microservice modules [15, 115]. In principle,
the corresponding virtual machines or containers can be run either in the central cloud
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Figure 5.1: Illustration of the cost vs processing tradeoff in the considered fog placement problem.

or hosted on a fog server. In this context, the fog orchestrator is the controller which
decides for each application which part of the computation, i.e., which modules, should
run on the fog server and which ones in cloud [87, 115]. The resulting placement has a key
impact on the processing delay experienced by fog applications. In fact, even a top-notch
edge server has limited capacity compared to the aggregated capacity of overprovisioned
cloud systems, so that processor sharing on a fog server may induce unacceptably long
processing delays.

In fact, optimization of computation capacity of edge units to meet customers’ de-
mands is emerging as a central problem in fog computing [75, 117]. In this work, fog
applications are assumed to receive data batches to process at given rate. Each data
batch entails a given processing delay when processed by an application module.

Under processor sharing, concurrent applications’ modules run in parallel on the same
fog server, at the price of increased processing delays as shown in Figure 5.1. However,
in case of performance degradation, it is still possible to migrate part of the running
applications to the cloud. Throughout this work, the objective is to study how to trade-
off between the load on local edge servers, reflecting in the processing delay, and the cost
for offloading to the cloud. To this aim, the fog orchestrator can tune the performance
of the system by increasing or decreasing the number of modules of an application which
are executed on the fog server. The resulting control problem is a convex problem where
the control is the number of modules to be run in fog for each application.

5.1.1 Main Contributions

The first part of this work focuses on the structure of the solution by minimising the
cumulative batch processing delay. Under a general processor sharing policy, the optimal
solution is determined by 1) the budget expenditure and 2) by a crucial metric, namely
the marginal delay of applications. The marginal delay represents the performance gain
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obtained by offloading a module of a tagged application towards the cloud. The N -
dimensional optimization problem can thus be solved via a one-dimensional search in the
space of the spent budget. The optimal solution sorts applications in order of increasing
marginal delays. The optimal policy is of threshold type in all cases of practical interest,
randomised on at most one control.

In the second part of the work, the precise knowledge of the optimal solution suggests
a polynomial time algorithm to determine the optimal placement in O(N2) time. Fur-
thermore, the optimal policy can be adjusted in case the system load varies in time using
an adaptive algorithm based on stochastic approximations of the Robinson-Monroe type,
whose convergence proof is derived for a primal-dual convex minimisation using the ODE
method [74]. It is worth noting that this type of solution is able to converge to the optimal
threshold policy in the dark: this is key when there is no apriori information on some
system parameters. Specifically, this is crucial when facing unknown data batch arrival
rates or unknown applications’ processing rates, either in cloud, in fog or both. More in
general, the proposed algorithm converges to the optimal solution leveraging only on on-
line unbiased estimates of the processing delay. More important, provided that processing
delays are increasing and convex in the server’s load, blind convergence to the optimal
restpoint shall hold irrespective of the fog server processor sharing policy.

5.2 State of the Art

In the fog computing literature literature a few studies take into account the tradeoff
between local processing and the cloud cost for the deployment of multi-modules applica-
tions. The objective here is to account for processor sharing effects on the placement of
concurrent applications’ chains in fog under the constraint of a limited budget for cloud
usage.

Applications scaling and migration have been discussed extensively in the cloud liter-
ature [79, 67, 109, 113, 60]. Heuristic threshold policies have been extensively adopted
before to solve feasibility problems [79, 67]. Reactive migration methods employ such
thresholds to divert virtual machine instances from congested servers [109, 110]. Con-
versely, the threshold policies described in this work result from the minimisation of the
processing delay. Load balancing in cloud, based on multi-server queue sampling has been
studied, e.g., in [113]. Our learning algorithm is based on a queueing sample scheme as
well, but, it performs vertical load balancing between cloud and fog. Deterministic primal-
dual algorithms appear, e.g., in [60]. The stochastic solution proposed here converges to
the optimal policy with imperfect state information leveraging noisy estimates of process-
ing delays. In [66], authors proposed an online algorithm for service reconfiguration of
edge-clouds; while considering limited storage capacity of edge servers, processor sharing
effects are not accounted for. Wang et al. [105] studied dynamic edge service migration
via Markov Decision Processes (MDPs) where migration depends on the desired service
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location. In these two latter works, applications are represented as monolithic services
without considering a more general structure consisting of interdependent modules.

Analytical models for resource sharing in cloud systems have been proposed in the
literature [17, 101]. In particular, Processor Sharing (PS) is usually described as a pre-
emptive policy where jobs can be stopped and resumed through their execution [64]. It
has been deeply analysed in the queueing literature [12, 24, 13]. In that context, threshold
policies have been identified as best responses for a game where customers can choose to
be served on a private machine or on a remote mainframe [13]. A main difference with
respect to those models is that in the proposed framework, applications incur a service
rate slowdown since all the application queues run simultaneously on the same server
without job interruption.

5.3 System Model

Let consider a set of N fog applications. Each application i is composed of ni microservice
modules. Batches of data are received by the first module of the i-th application at
some rate λi and processed sequentially along the chain formed by the other modules
downstream. For each application i, the first ui modules can be placed in fog, whereas
the rest of the chain, i.e., the ni − ui modules downstream, in cloud. Thus, 0 ≤ ui ≤ ni
is a control variable representing the number of modules of application i placed on the
fog server. Under policy u = (u1, . . . , un) the load of modules running on the fog server
is u =

∑N
i=1 ui.

When the fog server is serving u modules, a processor sharing scheme divides the com-
puting resources among the modules running on the server. Let Gi(u) be the sojourn time
for a module of application i when the fog server hosts u modules, where the dependence
on λi is omitted for the sake of notation. It indicates the time elapsing from the instant
when a data batch is received from the tagged module till the end of processing, after
which the resulting output is sent to the module downstream.

Processor sharing techniques reduce application’s processing rate when multiple mod-
ules are hosted on the server. Every application module running on the fog server is
subject to a stability condition, i.e., there exists a critical load ui,max such that for each
u ≥ ui,max, it holds Gi(u) = +∞, and Gi(u) < +∞ for u ≤ ui,max. Within their respective
stability region Si = {1 ≤ u ≤ ui,max}, the Gi(u)s are assumed convex increasing in the
fog server load.

Conversely, since a cloud system can provide a large number of servers, let di denote the
constant average processing delay for modules of application i running in cloud. Finally,
the processing delay of a data batch consumed by application i is given by the following
governing equation

Di(u) = uiGi(u) + (ni − ui) di (5.1)

In (5.1) the last ni − ui modules of application i are executed in cloud: let c be the cost
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paid to place a module on cloud. Also, the overall budget available to place modules in
cloud is denoted b0 ≥ 0; b := (

∑
ni − b0/c) ≥ 0 is the minimum number of modules to

be placed in fog. Finally, the cumulative delay D(u) :=
∑

iDi(u) is the target utility
function used in the rest of the chapter.

Benchmark model: let consider an M/M/1 queue for the i-th application module. The
service rate is µi data batches per second when the module runs alone on the server (let
µi > λi to avoid trivial conditions). Conversely, when the server CPU is shared across
application modules, applications continue processing in parallel but with a slowdown
factor for the batch processing rate: under policy u, service rate becomes µi(u) = µi/u

data batches per second. For the slowed M/M/1 case, the explicit expression for the batch
processing delay writes Gi(u) = (µi

u
− λi)−1. By direct calculations, the Gi(x)s, in this

case, are convex increasing in the stability region. Note that, while this model is handy to
explain the theoretical development, the results derived in the following apply in general
to any convex increasing Gi(u).

5.3.1 Validity of the model

Hereafter a few observations to precise the applicability of the proposed model.

• Pipeline model : the expression (5.1) is exact under the assumption that the modules
of each application form a cascade of queues having all the same average batch
processing delay as in Figure 5.1. E.g., in the benchmark model, when data batch
arrival processes are independent, the first term of (5.1) represents the exact average
processing delay of the i-th application due to the fog server [28]. The discussion in
the following can be generalised to the heterogeneous case, i.e., when the modules
service times are not identical: for the sake of analysis, the discussion will be limited
to the homogeneous case.

• Processor Sharing (PS) model : PS models have been extensively studied in the
communication literature, capturing the situation where a single server processes
jobs and reserves a fraction of the whole service time proportional to the number
of customers [12]. The key difference, for instance, with the benchmark model is
that each queue (i.e., each application module) receives a fixed fraction of CPU
clock: the u containers or virtual machines placed on the fog server incur into a
u-fold slowdown of their data batch processing rate. However, it is worth observing
for most PS models found in the networking literature, the expected system time,
while very difficult to express analytically, appears invariably convex increasing in
the server’s load in all experiments, as per assumption on Gi(·).

• Underlying MDP model : in the rest of the chapter, u is a continuous control vector,
where the placement of the last module in fog of application i occurs with probability
ui − buic. Randomised threshold policies in at most one tap emerge naturally in
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Table 5.1: Main notation used throughout the chapter
Symbol Meaning
N number of apps
b0 budget to place apps in cloud
b min. number of modules in fog b :=

∑
ni − b0/c

c cost to place one app module in cloud
ni number of microservice modules for app i
ui number of modules in fog of app i
u placement policy u = (u1, . . . , uN )

u fog server load u =
∑

i ui
umax maximum number of modules in fog
Gi(u) proc. delay of app i modules fog batch at load u
µi fog service rate for app i modules (M/M/1 PS)
λi data batches per second towards app i (M/M/1 PS)
di batch processing time in cloud for app i
Di batch processing delay for app i
D cumulative processing delay D :=

∑
iDi

the theory of Markov Decision Processes [11]. Actually, governing equation (5.1)
is still exact for integer values. But, since any randomised policy would perform a
linear interpolation of deterministic policies, it would lead to a piecewise linear delay
function. Conversely, relaxing the continuous control (5.1), the objective function
introduced next,

∑N
i=1Di(u), becomes a smooth convex interpolation, the tighter

the larger the number of application modules.

5.4 Problem Formulation

The objective of the fog orchestrator is to optimally place the modules of each application
in between a fog server and the cloud. The optimal placement policy can be determined
according to the following formulation

Problem 5.1. Fog Placement

minimize
u

N∑
i=1

Di(u)

subject to
N∑
i=1

c · (ni − ui) ≤ b0 (5.2)

ui > 0 iff u ∈ Si, i = 1, . . . , N (5.3)
0 ≤ ui ≤ ni, i = 1, . . . , N (5.4)
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At this point, let precise the search space of the optimal solution. Since processor
sharing techniques inevitably reduce the application’s processing rate, constraint (5.3)
forces the orchestration strategy to be such that all applications can complete batch
processing within a finite time.

For the sake of concreteness, let refer to the benchmark model: there such constraint
has the familiar form ∑

ui <
µi
λi
, i = 1, . . . , N.

The processor sharing technique running on the fog server grants the stability condition
for application i if and only if u < µi/λi. Thus, when the search of an optimal solution u

is performed in an interval where u > µi/λi for some application i, a candidate optimal
solution needs to be such that ui = 0, so that Di(u) = di and the corresponding constraint
can be removed. It follows immediately that the original problem maps into (at most) N
subproblems, one for each partition induced by the stability condition (5.3), which can be
solved in parallel to finally determine the optimal solution over the set of the (at most)
N local minima. Each of such problems, as showed in the next section, is convex.

For the sake of simplicity, in the rest of the chapter such regions of instability are
excluded, by assuming ui,max ≤ umax, where umax =

∑
ni; in the case of benchmark

model, this entails µi > λiumax for all i = 1, . . . , N . Hence, the analysis restricts to the
case when u ∈ [b, umax] so as to neglect bound (5.3).

The next section performs the general analysis of the problem and characterises the
optimal solution. Before, the benchmark model for a single application serves as a concrete
introduction to the general case.

5.4.1 Benchmark model for N = 1

From direct calculations on (5.1), in this case D(u) = u/(µ/u− λ) + d(n− u). Thus, the
problem is apparently strictly convex in the stability region. Dropping all indexes for the
notation’s sake, the unique optimal fog placement control writes

u∗ =


n if 0 < λ ≤ λ

u if λ < λ < λ

b if λ ≥ λ

(5.5)

where u := µ
λ
(1 − (1 + λd)−

1
2 ) is the unique solution of the unconstrained minimization

problem. Here, λ and λ are two thresholds: λ is the unique positive solution of 1√
1+xd

= 1−
nx
µ
if d < 2n/µ0 or λ = +∞ otherwise; λ is the unique positive solution of 1√

1+xd
= 1− bx

µ

if d < 2b/µ or λ = +∞ otherwise; since b ≤ n, then it holds λ ≤ λ.
Even this simple case reveals a threshold structure varying with continuity with λ from

very low batch arrival rates, where modules are all placed in fog, to high batch arrival
rates, where it is optimal to place as many modules in cloud as possible, due to large
delays introduced by the fog server.
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5.5 Optimal Policy

Extending the result obtained for N = 1 to the general case, let identify a metric able
to sort applications in order of importance, i.e., represent the convenience of storing an
application module either in cloud or in fog.

First, let characterise the convexity of the problem. Using auxiliary functions uiGi(
∑
ui),

the Hessian of D(u) is positive definite according to the following result.

Theorem 5.1. In the stability region
∑N

i=1Di(u) is strictly convex so that Problem 5.1
has a unique solution.

Proof. Indeed, Gi(
∑
ui) is still convex since it is the composition of a convex function

with an affine function. In order to verify the convexity of the objective function, one can
verify the convexity of Di(u)− diui = uiGi(

∑
ui). Without loss of generality, let restrict

to i = 1, and define f(u) = G1(
∑
ui) and g(u) = u1.

For the product fg of two real multivariate functions f and g, the Hessian writes

H(fg) = gH(f) + fH(f) + (∇g)T∇f + (∇f)T∇g

Here, it holds ∇f(u) = Ġ(u)1n, and ∇g(u) = e1, where 1 = (1, . . . , 1) and e1 =

(1, 0, . . . , 0), respectively. Finally, let write

H(u1G1(u)) = u1H(G1(u)) + Ġ1(u)(Λ + ΛT )

where Λ = eT1 1n. Since the spectrum σ(Λ) = {1, 0}, then Λ � 0; indeed, H(G1(u)) � 0

because of the convexity of Gi(u). Hence, it holds that for all is, Di(u) is convex, and it
is strictly convex if ui > 0. Thus, for all u 6= 0, D(u) is strictly convex; however, it needs
to be strictly convex in all the domain u ≥ 0 as well, otherwise this would contradict the
strict convexity in the one dimensional case.

5.5.1 Marginal Delays

In order to find the structure of the optimal solution, the Lagrangian for the problem can
be written as

L(u,α,β, γ) =
N∑
j=1

uj

(
Gj(u)− dj

)
−

N∑
j=1

αjuj

−
N∑
j=1

βj(nj − uj)− γ(u− b)

Constraint (5.3) does not appear since in the stability region the corresponding multipliers
must vanish. For any policy u let define the key metric used in the rest of the chapter.

Definition 5.1. Marginal delay: the marginal delay of application i under policy u is
the parameter ri(u) := Gi(u)− di
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The interpretation of this parameter is immediate: it is the difference of the batch
processing delay in fog Gi(u) and in cloud di. I.e., it measures the increase of processing
delay when an application i is placed on the fog node instead of in cloud, under load u.

Marginal delays appear in the application of KKT conditions; here they are neces-
sary and sufficient for Problem 5.1 since all constraints are affine [25]. First order KKT
conditions write

Lui = ri +
∑

ujĠj(u)− αi + βi − γ

The optimal solution will correspond to the set of nonnegative multipliers α∗, β∗ and γ∗.
Previous relations and complementary slackness bring

βj = −rj + γ −
N∑
j=1

ujĠj(u), αj = 0, for j = 1, . . . , S

αj = rj − γ +
N∑
j=1

ujĠj(u), βj = 0, for j = V + 1, . . . , N

where indexes are sorted such that uj = nj for j = 1, . . . , S and uj = 0 for j = V +

1, . . . , N , respectively.
Now, for a given control vector u, it is possible to sort conveniently the indexes based

on complementary slackness conditions.

Proposition 5.1. Let r1 ≤ . . . ≤ rS and rV+1 ≤ . . . ≤ rN , then r1 ≤ . . . ≤ rS ≤ rS+1 =

. . . = rV ≤ rV+1 ≤ . . . ≤ rN

Proof. If i < S < j < V , let write ri + βi = rj and since βi > 0, then ri < rj. In the same
fashion, it is possible to write that, for i < V < j, it holds ri = rj − αj and since αj > 0,
then ri < rj. For S + 1 ≤ i ≤ V follows from the fact that αi = βi = 0.

Since S ≤ V , denote S = V = 0 to indicate that all application modules are placed
in cloud, whereas S = 0 but V > 0 means no application has been fully placed in fog;
S = V > 0 indicates that all applications are entirely placed either in fog or cloud.

Now it is possible to draw a few conclusions from Proposition 5.1:

1. For any optimal solution u∗, the number of fog modules u∗ induces the order ac-
cording to which application modules should be placed in fog or cloud.

2. An optimal solution for which γ = 0, i.e.,
∑
ui > b, implies that the constraint is

not active, i.e., budget b0 is not saturated. But, for such an optimal solution, it
is always possible to replace the budget constraint such that

∑
ui = b′ > b, i.e.,

resorting to a case where the constraint is active, e.g., γ > 0.

3. Once the structure of the optimal solution in the case γ > 0 has been determined,
the optimal solution can be found in the one-dimensional space of parameters b ≤
u ≤ umax.
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The above observations will be the basis for the algorithmic solutions solving Prob-
lem 5.1 which are proposed in the following sections.

5.5.2 Quasi-threshold structure

Hereafter, let further describe the optimal solution u∗ for γ > 0: the result is a specific
waterfilling type of policy, which becomes a threshold policy for all cases of interest.

Let assume the budget was saturated, then two indexes for the optimal solution S∗

and V ∗ can be characterised by the following result:

Theorem 5.2. Let the optimal solution u∗ be attained for γ∗ > 0, i.e., u∗ =
∑
ui = b,

then
i. V ∗ = min{1 ≤ j ≤ N |

∑N
i=j+1 ni ≤ b0} := V

ii. Either S∗ = V ∗ or S∗ = V ∗ − 1.

Proof. Case i. Let assume by contradiction that the optimal solution u∗ is such that
V ∗ > V (if V ∗ < V the constraint is violated). By employing an exchange argument,
the uniqueness of the solution is contradicted. Let define I := {S∗ + 1, . . . , V ∗}: indeed
uj < nj for all j ∈ I, let construct a new policy which only differs for the indexes in set
I as

uj =


u∗V ∗ − η j = V ∗

u∗j + δj j ∈ I \ {V ∗}
u∗j j 6∈ I

(5.6)

where, since V ∗ > V , indeed there exists positive η and δjs such in a way that
∑

j∈I\{V ∗} δj =

η.
Let compare the delays under the two policies; preliminarily let observe that for any

policy u, it holds Di(u) = ri(u)ui + nidi. Since u∗ = u = b, finally

∆D = D(u∗)−D(u) =
∑
i∈I

Di(u
∗)−Di(u)

= rV ∗η −
∑

i∈I\{V ∗}

riδi ≥ rV ∗
(
η −

∑
j∈I

δj

)
= 0

where the last step, due to the fact that the marginal delays are sorted non decreasing,
concludes the proof of part i.

Case ii. First, from the definition of I, it holds 0 < ui < ni for all i ∈ I. If S∗ = V ∗,
then the budget constraint is saturated∑

i∈I

(ni − ui) = b0 −
N∑

j=V ∗+1

nj = 0

so that I = ∅. Conversely, let S∗ < V ∗. If S∗ = V ∗ − 1 there is nothing to prove.
Consequently, if |I| > 1 let I be sorted according to increasing values of ri. The idea is
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to show that we can build a new optimal solution with at most one application deployed
between the fog server and the cloud, i.e., a solution for which |I| = 1 and hence S∗ =

V ∗ − 1. Since |I| > 1 we can assume that there exist two applications deployed between
fog and cloud, i and j. Their contribution to the total delay is

f(ui, uj) := ui (Gi(u)− di) + uj (Gj(u)− dj) + ni di + nj dj, (5.7)

with 0 < ui < ni and 0 < uj < nj. We indicates with ū the sum of ui and uj, i.e.,
ū = ui+uj. Now we show that we can build a better solution with at most one application
between cloud and fog. We want to minimize function (5.7) keeping the sum of ui and uj
constant. That is

minimise f(ui, uj)

subject to ui + uj = ū

ui ∈ {0, . . . , ni}, uj ∈ {0, . . . , nj}.

Assuming Gi(u)− di < Gj(u)− dj, we should increase the number of fog modules of the
application with the lowest delay. Indeed

ui [Gi(u)− di] + uj [Gj(u)− dj] =

ui [Gi(u)− di] + (ū− ui) [Gj(u)− dj] =

ui [Gi(u)− di −Gj(u) + dj] + ū [Gj(u)− dj].
(5.8)

From equation (5.8) follows that the value of ui must be increased in order to mini-
mize (5.7). Hence, to keep ū constant, the value of uj should be decreased. Now we have
two cases:
a) uj ≥ ni − ui. Hence, u′i = ni, i.e., application i is entirely deployed in fog, and
u′j = nj − (ni − ui). In this case we have

D(ui, uj) ≥ f(ni, u
′
j) > D(ni, u

′
j),

where D(ui, uj) is the delay function with values ui and uj for application i and j, respec-
tively.
b) uj < ni− ui. Hence, u′j = 0 and u′i = ui + uj. In this case, the application j is entirely
placed on cloud and the application i deployed between the cloud and the fog. The new
configuration respects the following inequality

D(ui, uj) ≥ f(ui + uj, 0) > D(ui + uj, 0).

In both cases, we have built another configuration with at most one application deployed
between cloud and fog with a non-increasing delay with respect to the previous configu-
ration, contradicting our initial assumption.
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The actual structure of the optimal solution is now derived. In order to simplify the
discussion, with no loss of generality, wherever ri = rj, the indexes in I will be sorted for
nonincreasing values of nidi. The key role of the order of the ris induced by u is reflected
in the following:

Definition 5.2. Marginal delays order. For any value of b ≤ x ≤ umax, umax :=
∑
ni,

let σx : {1, . . . , N} → {1, . . . , N} be the permutation ordering of the marginal delays such
that rσx(1) ≤ . . . ≤ rσx(N) and nσx(i)dσx(i) ≥ nσx(i+1)dσx(i+1) in case equality holds. Denote
Σ = {σu|b ≤ u ≤ bmax} the set of such permutations in the stability region.

The role of this definition is needed in the proof of the following:

Theorem 5.3. Let γ∗ > 0, and assume u∗ = b. Then the optimal solution u∗ has the
following structure

u∗i =


ni if 1 ≤ i ≤ S∗

γ∗−rV ∗−
∑S∗
j=1 njĠj(b)

(V ∗−S∗)Ġi(b)
if S∗ + 1 ≤ i ≤ V ∗

0 if V ∗ < i ≤ N

(5.9)

where V ∗ = V ∗(b) and S∗ = S∗(b) are as in Thm. 5.2 and the order of the indexes is
determined by σb.

Proof. The statement needs to be proved for S∗ + 1 < i ≤ V ∗ only. First, let observe
that Ġi(u) > 0. Second, the solution is obtained by solving the following system

V ∗∑
j=S∗+1

ujĠj(b) = γ − rV ∗ −
S∗∑
j=1

njĠj(b)

V ∗∑
j=S∗+1

uj = b−
S∗∑
j=1

nj

Hence, a solution for the first equation can be obtained in the form

u∗i =
γ − rV ∗ −

∑S∗

j=1 njĠi(b)

(V ∗ − S∗)Ġi(b)

where, in order to satisfy the saturation condition, it is always possible to define

γ∗ = rV ∗ +
S∗∑
j=1

njĠj(b) +
(V ∗ − S∗)(b−

∑S∗

j=1 nj)∑V ∗

j=S∗ 1/Ġj(b)

concluding the proof, since the solution is unique.
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Finally, when card(I) = 1, the solution is a threshold policy with at most one non-
extremal control uV ∗ = b −

∑V ∗−1
j=1 nj. In this case, indeed, the calculation of γ∗ is not

needed in order to determine the optimal solution. Conversely, when card(I) > 1, the
policy is “almost threshold”, i.e., it is extremal for all i 6∈ I. For the sake of notation, in
the rest of the discussion, we assume nidi 6= njdj for all i, j = 1, . . . , N ; next results can
be extended to the case when equality holds for some index.

5.6 Algorithmic Solution

In order to fully determine the optimal solution, it is necessary to determine the actual
value of the budget under which the constraint is saturated and optimal. The idea is
to operate a search in the space of the threshold policies in the form determined in
Theorem 5.3, parametrised in the one-dimensional domain of the actual budget spent.
First, it can be proved the cardinality of the set of permutations Σ induced by the order
of the ris is polynomially bounded by the number of applications due to the monotonicity
and convexity of marginal delays, |Σ| = O(N2). Hence, with this remark, it is possible to
partition the interval [b, umax] in subintervals defined by each permutation of the ris within
the stability region, [b, umax] = ∪K−1k=1 Ak, where K is the maximum number of intersections
between two different marginal delay functions. In this manner, proving that the objective
function is piecewise convex in u ∈ Ak, for each k, it is possible to perform a bisection
search on each interval computing the placement policy with the minimum delay on that
interval. Finally, the minimum among all the intervals is taken. This permits to solve the
original problem with complexity O(N2) in the worst case.

Let remark first on the cardinality of the set of permutations Σ introduced in Defini-
tion 5.2. Due to monotonicity and convexity, the number of permutations in Σ induced
by the order of the ris is expected to be finite for most practical cases. For the benchmark
system, the marginal delay of two different applications can at most attain equality for
k = 2 values of the load u, simply inspecting equation

u

µi − uλi
− di =

u

µj − uλj
− dj.

More generally, the following bound on the number of search interval holds:

Lemma 5.1. Let equation ri(u) = rj(u) have at most k solutions, then |Σ| ≤ k
(
N
2

)
.

Proof. For every b ≤ u ≤ bmax, the order of the ris is induced by verifying ri(u) ≤ rj(u)

is true or false for every pair of applications i 6= j. Starting at u = a, the order of the
ri(u)s can change at most k

(
N
2

)
times, from which the statement follows.

Since Σ has cardinality at most quadratic in the number of applications N , it can thus
be computed in polynomial time. Furthermore, from the previous result, let partition
[b, umax] = ∪K−1k=1 Ak where [ak, ak+1], a1 = b and aK = umax. Clearly, σu is invariant
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within each interval of the partition, i.e., σu = σak for u ∈ [ak, ak+1]. Thus, σk indicates
permutation σu over interval Ak.

5.6.1 Threshold policy decomposition

For each permutation σk ∈ Σ, and for every value b ≤ u ≤ umax, let consider policy
u(σk, u) constructed as follows:

ui(σk,u):=


ni if u≥

∑i
j=1 nσk(i)

u−
∑i−1
j=1 nσk(j) if ∑i−1

j=1 nσk(j)≤u<
∑i
j=1 nσk(j)

0 otherwise

(5.10)

The policies designed in (5.10) coincide with the ones in Theorem 5.2 for all values of
u ∈ Ak. Of course, each such policy, in general, is sub-optimal outside the interval Ak.
The next immediate result shows that the search for the optimal solution can be restricted
to the set of policies in (5.10):

Lemma 5.2. Let u∗ be the optimal solution. Let define

(σ̂, û) = arg min
b≤u≤umax

D(u(σ, u))

and the corresponding policy û = u(σ̂, û). Then u∗ = û.

Proof. First, let observe that since u∗ is attained at some value u∗ =
∑
u∗i , indeed û =

u(σu∗ , u
∗), so that D(u(σ̂, û)) ≤ D(u(σu∗ , u

∗)) from (5.11). But, from the optimality of
u∗ it must hold, D(u(σ̂, û)) ≥ D(u(σu∗ , u

∗)). Since by construction both solutions respect
the constraints, from the uniqueness of the optimal solution u∗ = û.

Finally, in order to discuss the complexity of our proposed algorithm the following
statement is needed

Theorem 5.4. Fixed σk ∈ Σ, the function D(u(σk, u)) is piecewise convex in u ∈ Ak.

Proof. Let define the set of switching points {vs} where, if u = vs, the s-th application
is fully placed in fog, i.e.,, vs =

∑s
j=1 nσk(j). Let define Bk,s := [vs − 1, vs] ∩ Ak, where

v0 = ak and vH = ak+1. Now, let partition the interval Ak = ∪Hs=1Bk,s, and for u ∈ Vs it
follows

D(u(σ̂, û))=C+
s−1∑
j=1

n
σk(j)

Gσk(j)(u)+(u− vs−1)Gσk(s)(u)

where C is a constant from which the statement follows
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MDTA({Gi},d)

Precalculate: Σ = {σk}, {Ak} and {Bs}
Initialize: D∗ ←∞, Dmid ←∞

u∗ ← 0, umid ← 0

1: FOR k = 1, . . .K

2: σ ← σk
3: FOR s = 1, . . . H

4: uL = bs−1, uR = bs,
5: WHILE |u− utmp| > ε

6: umid ← (uL + uR)/2

7: umid ← u(σ, umid)

8: IF ∂uD(umid) < 0

9: uL ← umid

10: ELSE
11: uR ← umid

12: END
13: END
14: IF D(umid) < D∗

15 u∗ ← umid

16 D∗ ← D(umid)

17: END
18: END
19: END
20: RETURN u∗ and D∗

Figure 5.2: Pseudocode of the MDTA algorithm.

It is now possible to describe the Marginal Delays Threshold Algorithm (MDTA). The
pseudocode of MDTA is reported in Figure 5.2: it works by searching over the space of
the budget [b, umax) and returns the optimal delay and the corresponding optimal fog
placement. It receives as input the specifications of each application i, the processing
delay Gi(·) and its cloud service time di; for the benchmark model, this amounts to
receive the arrival rate λi and its fog service rate µi. MDTA performs the precomputation
of the partition {Ak}, the corresponding permutation σk, and the subintervals {Bk,s}
defined in Theorem 5.4. Then, for every interval Ak (FOR cycle starting at line 1), it
explores the threshold policy within every sub-partition {Bk,s} of Ak (FOR cycle starting
at line 3). From Thm. 5.4, within each Bk,s the D(u(σ, u)) is convex: a bisection search
applies (line 5 to 13), where the sign of the subgradient ∂BD guides the algorithm to move
to the right half of the domain or to the left. Finally the minimum is found exploring all
possible intervals (line 14 to 18).
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5.6.2 Complexity Analysis

While the problem analysis was meant to describe the structure of the optimal solution,
state-of-the-art tools for convex optimization can be used to solve Problem 5.1; however,
general interior point methods and ε-accuracy methods rarely provide polynomial com-
plexity bounds in the input size so that their scalability is debated [85]. The proposed
solution has worst case complexity which is quadratic in the input size of the problem
with a parallel implementation. However, as showed in the numerical section, the O(N2)

estimation for the number of intervals σ is rather conservative and it appears almost linear
in the input size.

Furthermore, the pseudocode in Figure 5.2 is a sequential implementation with com-
plexity O(N2 log(umax

ε
)). With a simple parallelisation, and observing that, for each Ak,

the number of subintervals {Bk,s} is O(1) since it is upper bounded by umax − b, it holds

Theorem 5.5. MDTA has complexity O(N2).

Proof. From Lemma 5.1, K, i.e., the maximum number of intersections between two dif-
ferent marginal delay functions, is O(N2). The number of subintervals {Bk,s} corresponds
to the number of switches possible within Ak, i.e., the maximum number of modules that
can be placed in fog. However, such number is upper bounded by umax − b, which is an
input of the problem and not dependent on N . The bisection search can be performed in
parallel for each interval, and all the K(umax − b) local minima should be compared.

5.6.3 Example

Figure 5.3 reports on the dynamics of the ris for an example for N = 3 with n1 = 8, n2 = 9

and n3 = 7 modules, respectively. The order on the ris is determined by the intersections
ri(u) = rj(u). The exploration space is partitioned according to the sets {Ak}, i.e., three
valid intervals Ak = [ak, ak+1], where a1 = b, a2 solves for r2(a2) = r3(a2), a3 solves for
r1(a3) = r3(a3) and a4 = umax. In the example b0 = 24, hence the minimum number of
modules to be deployed on fog is b = 0: the optimal solution u∗, highlighted by vertical
red line, lies in the first interval. Observe that u∗ > b: the solution identifies the optimal
fraction of the budget to be spent.

5.7 Online Learning

In much part of the current literature, cloud and fog orchestration is performed with an
initial placement, typically based on nominal load values, and using later online migration
techniques to reduce hotspots at runtime [109, 110]. In fact, several system parameters
may change over time: batch arrival rates {λi}, applications’ fog processing delays {Gi}
and cloud processing delays {di} may fluctuate around their nominal values or drift, e.g.,
due to variations in fog applications’ workloads. They might even switch to different
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Figure 5.3: Example for N = 3 with λ = (0.14, 0.26, 0.3) s−1, µ = (5.33, 10.9, 7.96) s−1, d =

(1, 2, 3) s, n1 = 8, n2 = 9, and n3 = 7.

values as a consequence of sudden changes in operating conditions (e.g., objects data
generation rates may change). As a result, the {ri}s, considered so far as deterministic
quantities, form in fact a random process. Let assume that the system is configured in
some interior point of the domain x0 > 0: this is sufficient to obtain, for each tagged
application i, the estimates {G̃i,n}n∈N and {d̃i,n}n∈N for the batch processing time in fog
and in cloud, respectively. Such samples are generated at rate λi. If this is not the case,
for the next scheme to work it is necessary to introduce probing schemes able to migrate
some modules to the fog or the cloud in order to obtain the needed samples. However,
such schemes are out of the scope of the present work.

Hereafter, based on the structure of the optimal solution, a continuously adaptive
procedure is designed. It works under the assumption that an optimal policy saturates
the available budget, i.e.,

∑
ni − u∗i = b0. The algorithm performs the optimization of

marginal delays

Problem 5.2. Marginal Delay Optimization (MDO)

minimize
x

−
N∑
i=1

ri · ni · xi

subject to
N∑
i=1

ni · xi − b0 ≤ 0

0 ≤ xi ≤ 1, i = 1, . . . , N

where the identification is for the sake of notation xi = 1−ui/ni, obtaining a fractional
knapsack problem [72]. It is easy to verify that the optimal solution solves Problem 5.1
under budget saturation. However, let assume to have just noisy measurements of both
the objective function and the constraints. A tool to handle this situation is represented
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by stochastic approximation [74]. Hence, hereafter a stochastic primal-dual optimization
algorithm of the family discussed in [73] is introduced. This entails a learning procedure of
the Robinson-Monroe type, which is known to have efficient noise rejection properties [74].
However, it is convenient to replace the objective function in Problem 5.2 with a convex
one as follows

Problem 5.3. Convexified MDO

minimize
x

f(x) := −
N∑
i=1

ri · ni ·
1− e−xi
1− e−1

subject to q(x) :=
( N∑
i=1

ni · xi − b0
)
≤ 0

0 ≤ xi ≤ 1, i = 1, . . . , N

It is immediate to observe that the optimal control attained by Problem 5.3 coincides
with the solution of Problem 5.2 (even if the value of the attained minimum is different).
The online learning procedure is based on the Lagrangian associated to Problem 5.3, thus
minimising

L(x, θ) = f(x) + θ q(x)− ξ · x + ν · (x− 1), (5.11)

where ξ ≥ 0 and ν ≥ 0 are the multiplier vectors accounting for the box constraints
0 ≤ xi ≤ 1, for i = 1, . . . , N , and θ ≥ 0 accounts for the coupled constraint. The iteration
for the update of the primal and of the dual variables writes as follows

xi,n+1 = Π[0,1]

[
xi,n − εnL̃xi(xn, θn)

]
(5.12)

θn+1 = Π≥0 [θn + εnq(xn+1)]

ξi,n+1 = Π≥0 [ξi,n − εnxi,n+1]

νi,n+1 = Π≥0 [νi,n + εn(xi,n+1 − 1)] ,

where {εn}n∈N are the stepsizes of the algorithm, and obey to the following assumption

εn ≥ 0,
+∞∑
n=0

εn = +∞,
+∞∑
n=0

εn
2 < +∞. (5.13)

In (5.12), Π[0,1](y) = max(0,min(y, 1)) and Π≥0(y) = max(0,min(y)) denote projection
functions.

Let L̃xi indicate noisy estimates of the k-th component of the gradient of the La-
grangian: each time an estimate is produced, the i-th control component is updated, and
the dual variables θ, ξ and ν as well. The update instants triggering the updates in (5.12)
are those when a new measurement of the marginal delay of application k is available.
Actually, the explicit expression appearing in (5.12) is

L̃xi(xn, θn) = ni

(
e

e− 1

(
G̃i − d̃i

)
e−xi,n − θn

)
− ξi,n + νi,n
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where G̃i and d̃i are estimates of the system time of modules in fog and in cloud.
The following result ensures the convergence to the unique solution of Problem 5.2.

Theorem 5.6. Let sequence {εn} satisfy (5.13) and let the G̃i and d̃i be unbiased estimates
with finite second order moments. Then the sequence of policies xn converges to the
optimal policy x∗ with probability one.

Proof. The proof is based on the ODE method and requires to verify first the assumptions
of Theorem 2.1 in [74]. Let consider the update equation for the component xi,n: same
relations are verified in the same way for the other components, and are omitted for
the sake of space. Let rewrite the update equation (5.12) for xi,n in the form xi,n+1 =

xi,n + εn(Yn + Zn), where

Yi,n = Lxi(x, θ, ξ,ν) + δMn + βn (5.14)

In (5.14), the term βn allows for the presence of an asymptotically unbiased error, Zn is
the error due to projection, while δMn is the martingale noise estimation, e.g.,

δMn = Yn −En[Yn|(x0, θ0, ξ0,ν0), Yi, i < n]

where index 0 denotes the initial conditions.
The assumptions of Theorem 2.1 in [74] are verified hereafter with respect to the

problem:
A1) supnE|Yn|2 < +∞: this condition is immediately verified since G̃i and d̃i have finite
second order moments;
A2) There is a measurable function g(·) of (x, θ) and random variables βn such that
En[Yn|x0, Yi, i = 1 < n] = g(x, θ) + βn: by construction it holds

g(x, θ) := (∇xL(x, θ), q(x),x,1− x),

which is continuous and thus measurable; also, by assumption estimates are unbiased and
the gradient of the Lagrangian is linear in the estimates so that EnδMn = 0 and βn = 0

for all n ∈ N ;
A3) g(x, θ) needs to be continuous: because the Lagrangian is continuously differentiable
this assumption indeed holds;
A4) (5.13) is satisfied: by assumption;
A5)

∑
εn|βn| <∞ with probability 1: true since βn = 0 for all n ∈ N .

Once the above assumptions hold true, the trajectories of (5.12) are guaranteed to con-
verge to an invariant set of the ODE identified by the equations

ẋ = ∇xL(x, θ, ξ,ν), θ̇ = q(x)

ξ̇ = −x, ν̇ = x− 1.

As stated by Theorem 2.1 in [74], if the constraint set is dropped but the trajectories
of (5.12) are bounded with probability one, we still have the guarantee of convergence

77



CHAPTER 5. OPTIMAL BLIND AND ADAPTIVE FOG ORCHESTRATION UNDER
LOCAL PROCESSOR SHARING

to an invariant set of (5.15). Furthermore, since the ODE is Lipschitz, the solution is
unique. But, a restpoint of the above equation solves for the first order KKT conditions
of Problem 5.3 and verifies also all complementary slackness conditions. Hence, it must
coincide with the optimal solution. Thus the invariant set is, by construction, the optimal
policy and the multipliers associated with it. Theorem 2.1 in [74] grants that the sample
paths of the algorithm converge with a certain probability to such restpoint. The asymp-
totic stability of the restpoint with respect to (5.15) grants that the sample paths of the
algorithm converge a.s. to the restpoint of (5.12). Actually, as proved in [38][Lemma 4.1],
the strict convexity of the Lagrangian grants that the Lyapunov condition for asymptotic
stability of a restpoint is verified for the primal-dual trajectory in (5.15). This concludes
the proof.

From the proof of Theorem 5.6, the learning procedure works with any possible esti-
mator providing unbiased samples of an application’s processing delays. E.g., the sample
mean of the elapsed time between the time when a batch is fed to a module and the time
when the output result is given as input to the module downstream.

Finally, in the numerical section it is employed a penalty function p(x) =: 1
2
p0 q

2(x)

[19], where p0 is a tunable penalty factor. While this operation does not change the optimal
solution, a notable increase of the numerical stability of the algorithm is observed; the
proof of convergence can be adapted in the obvious way.

5.7.1 Adaptive Version

In order to adapt faster to changing parameters, it is possible to use a variant of the
stochastic approximation technique where the step of approximations has small but con-
stant size. Using the same algorithm, the constant stepsize εn = ε > 0 is used for all n:
because the approximation step does not vanish over time, the system continues to adapt.

However, while for decreasing stepsizes convergence in probability to the solution of
the KKT conditions is proved, for constant stepsizes convergence results are weaker. In
particular, let consider neighborhoods of radius δ around the optimal solution ϕ∗ =

(x∗, θ∗, ξ∗,ν∗) of the type Nδ(ϕ
∗) = {ϕ ∈ R3N+1 : ||ϕ− ϕ∗||2 < δ}. The following result

grants that, as long as a sufficiently small stepsize is chosen, the algorithm produces an
output which remains confined around a suitable neighborhood of the optimal solution

Theorem 5.7. For any δ > 0, define by Nδ(ϕ
∗): for ε → 0, the sample paths of the

algorithm defined in the iteration (5.12) for constant stepsize converge in distribution to
elements in Nδ(ϕ

∗). The fraction of time spent by the process in Nδ(ϕ
∗) during [0, T ]

goes to 1 as time horizon T diverges.

The above result can be proved by verifying that Theorem 2.1 at pp. 248 in [74] holds
true.
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5.8 Numerical Results

a) b)

Figure 5.4: a) Threshold structure of the optimal solution; N = 10, ni ∈ [1, 10], λi ∈ [0.1, 0.3]

s−1, µi ∈ [5, 16] s−1, di ∈ [0.5, 3.3] s; b) Optimal control and cumulative delay for increasing
budget b0; N = 10, ni ∈ [1, 5], λi ∈ [0.1, 0.3] s−1, µi ∈ [5, 15] s−1, di ∈ [0.5, 3.3] s.

In this section the characterisation of the optimal fog orchestration policy is com-
pleted by performing numerical exploration. Figure 5.4a describes the optimal policy
for a set of N = 10 applications adhering to the benchmark model, where the param-
eters of applications are chosen uniformly at random in their respective intervals, i.e.,
ni ∈ [1, 10], λi ∈ [0.1, 0.3] s−1, µi ∈ [5, 16] s−1, di ∈ [0.5, 3.3] s. Applications’ indexes
have been sorted according to the ris corresponding to the optimal solution produced by
Matlab R© nonlinear optimization toolbox. The optimal policy is clearly of threshold type.
Furthermore, Figure 5.4b depicts the behaviour of the optimal control and the cumulative
delay at the increase of the budget available for the offloading to the cloud. It is seen
there that there exists a certain threshold (b0 = 23.8 in the figure): above such value, in
fact, the aggregated delay does not improve by further offloading to the cloud, i.e., with
larger costs. Rather, the local server provides a computational advantage for a subset
of the applications under moderate load. Figure 5.4b confirms that, as a byproduct of
the optimization, one can obtain a precise answer to the practical dilemma whether or
not saturating the available budget is optimal, whose answer is not obvious apriori from
the system parameters. The figure also confirms that an identically null solution, u = 0,
cannot be an optimal solution. Hence, even though there is enough budget to put all the
applications on the cloud and low delays in cloud, the optimal solution never takes into
account this option when, as in the experiment, ri(1) < 0 for some application i.

Figure 5.5a describes the comparison, for increasing budget size, of the optimal solution
obtained via the optimization toolbox (Opt), the MDTA algorithm and a benchmark greedy,
load-based fog orchestration algorithm (greedy). The last algorithm sorts the applications
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a) b)

Figure 5.5: a) Cumulative delay attained by Opt, MDTA, and greedy algorithm, respectively, for
increasing budget b0; b) Number of intervals {Ak} and upper bound.

based on the nominal load of the i-th application, i.e., the ratio λi/µi, but neglects the
effect of the processor sharing on the fog server. As proved in the theoretical development,
MDTA attains indeed the optimal solution. The greedy algorithm presents a significant
performance loss with respect to the optimal policy for the same budget.

In the worst-case complexity analysis, the computational complexity of MDTA has been
dominated by the number of the intervals Ak. Fig. 5.5b provides a numerical evaluation of
the actual number of the intervals Ak. From that experiment the quadratic upperbound
on the number of intervals appears conservative, and it is possible to conjecture that the
complexity of MDTA might result moderately superlinear in the input size on average.

a) b)

Figure 5.6: a) Cumulative delay for Opt, MDTA, greedy algorithm, and reactive control, respec-
tively; b) Convergence of the stochastic algorithm to the optimal solution. Example with N = 3,
ε = 1/100, θ0 = 0, θmax = 100, and p0 = 30.
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Figure 5.6a depicts the comparison, for increasing number of applications, of the opti-
mal solution, the MDTA algorithm, the benchmark greedy algorithm and the reactive control
algorithm [109]. The reported results are averaged over 100 instances, with 95% confi-
dence interval, for a scenario with parameters ni ∈ [1, 5], λi ∈ [0.1, 0.3] s−1, µi ∈ [10, 60]

s−1 and di ∈ [0.5, 3.3] s, under budget saturation.
Reactive control is a standard dynamic algorithm used in cloud for virtual machine

(VM) migration: the algorithm performs online migrations in order to mitigate server
overload conditions. When overload is detected, the VM with the highest ratio between
the memory demand and the actual volume occupied by the VM is migrated. The ac-
tual migration is triggered when the server utilization goes beyond a certain threshold.
This mechanism has been adapted to the fog placement problem by assuming that one
application is placed in cloud every time the server utilization exceeds the threshold and,
at the same time, the budget is sufficient to perform the offload. In the experiment of
Figure 5.6a, the threshold is fixed as 40% of the fog server utilization. Every time a
violation condition is detected, the application with the highest load in fog is chosen for
the placement in cloud. The figure shows that a fixed-threshold strategy leads to large
cumulative delay, especially under limited cloud budget. Also, since an optimal threshold
policy accounts for the effect of processor sharing, as expected, it outperforms the greedy
solution, which is based on the nominal load of the applications.

a) b)

Figure 5.7: a) Convergence of the stochastic algorithm in terms of cumulative delay for N = 3

and N = 10; b) Dynamics of the three components and cumulative delay under the adaptive
stochastic algorithm.

Figure 5.6b, Figure 5.7a, and Figure 5.7b evaluate the performance of the stochastic
approximation algorithm. Figure 5.6b shows the convergence of the algorithm to the
optimal solution for N = 3, where λ = (1.7, 1.2, 1.5) s−1, µ = (53.3, 108.9, 79.6) s−1,
d1 = 5 s, d2 = 10 s, d3 = 15 s, b0 = 3, n1 = 3, n2 = 3, and n3 = 1. The convergence of
the algorithm under an exponential and under a uniform distribution for the fog system
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times is tested, using single samples as estimators. The algorithm reaches the optimal
solution within 5000 iterations with a constant step-size εn = 1/100, irrespective of the
chosen distribution. Figure 5.7a reports the dynamics of the optimal cumulative delay
under relatively slow batch arrival rates - 1.5 data batches per second per application on
average - for N = 3 and N = 10, respectively; the algorithm converges to the optimal
policy within 300 s and 6000 s, respectively.

Finally, Figure 5.7b describes the adaptive capabilities of the stochastic approxima-
tion algorithm. The graphic shows the dynamics of the components ui and of the cu-
mulative processing delay. For this example, the scenario has three applications with
n1 = 3, n2 = 4, n3 = 5 and two configurations: Config.1 = {λ1 = (3.4, 2.6, 3) s−1, µ1 =

(103.3, 108.9, 79.6) s−1 } and Config.2 = {λ2 = (1.4, 2.6, 3) s−1, µ2 = (5.33, 10.89, 7.96) s−1

}, respectively. At 2000 s, the batch arrival rate and the service rate of the first application
suddenly drop, thus changing the optimal policy. The algorithm adapts to the configura-
tion change, and converges to the optimal placement for the second configuration. After
4000 s the behaviour of the first application is restored to the initial configuration. Again,
the algorithm reaches the optimal policy under Config.1. The learning algorithm proves
able to detect sudden changes of the applications configuration in the dark, i.e., without
apriori knowledge of the system parameters.

5.9 Remarks and Possible Extensions

Fog applications may experience long processing delays on local servers due to processor
sharing effects. In order to minimize the processing delay of a set of N fog applications,
it is possible to execute the overloaded ones in cloud at a cost. In this context, a key
metric is the marginal delay of fog applications measuring their relative performance when
executed in cloud or in fog. Algorithms for the optimal placement have been introduced
both under perfect information, with a search in the consumed budget, and when the load
is unknown at runtime, a primal-dual stochastic approximation procedure can learn the
optimal policy in the dark.

This work has only tackled a few aspects of the fog placement problem. First, while
the proposed adaptive learning procedure works when stability conditions are met for all
fog applications, a valuable objective is to perform in parallel also the online detection
of the critically loaded ones, so as, e.g., to proactively enforce their placement in cloud.
Furthermore, the proposed framework can be extended to fog clusters accounting for, e.g.,
standard servers placement policies adopted in cloud computing literature [113], where
one needs to split the budget over specific servers, based on their current load.

We discuss some possible extensions of the work’s model below.
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5.9.1 Model Extension

Cloud Delay

One possible extension is to consider an additional cloud access delay, experienced by the
applications having at least one module placed on the cloud. Positive cloud delay access
prioritises the applications with lower number of modules ni. Our model still holds valid
by replacing (5.1) with

Di(u) = ui

(
Gi(u)− d0

ni

)
+ (ni − ui) di

where d0 is the cloud access delay. The linear negative term added to Gi(u) is a reward
per module placed in fog: the access delay appears now in the marginal delay ri =

Gi(u)− d0
ni
− di and affects the order of modules of applications which are to be placed in

fog.
With a fixed cloud delay, we have an additional fixed delay d0 for each application

that has at least one module deployed on the cloud. Hence, we add an indicator function
(it indicates whether the application has at least one module deployed on cloud ) to the
delay definition of each application extending equation (5.1):

Di(u) = uiGi(u) + (ni − ui) di + d0 · 1{ui 6=ni}. (5.15)

The indicator function makes the objective function discontinuous. In order to use the
concept of marginal delay we can distribute the cloud delay among all the applications
and treat it like a reward per module placed in fog. In this manner we have new marginal
delays defined as

ri(u) = Gi(u)− d0
ni
− di. (5.16)

Such marginal delays retain a threshold structure of the solution.

Multi-server Scenario

The model is described for a single server for simplicity’s sake. But, it extends to the
case of M servers. Under a fixed dispatching policy, applications are assigned to fog
servers, and for the ease of containers or VMs internetworking, it is current practice to
have modules of the same application reside on same server. Hence, applications would
be partitioned into M per-server groups and so the control variables. The cumulative
delay becomes the sum of the cumulative delay per server, as a function of orthogonal
per-server placement variables, coupled through the budget. The optimal orchestration
policy has the same structure derived for the single server case, with marginal delays
being now defined per server.
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Multi-core Servers

In a multicore scenario VMs and containers will still perform depending on the server
load and on the orchestrator’s per-core dispatching policy. If such dispatching policy is
known apriori, same rationale can be used as for the multiserver case. However, while
the fog processing delay per application will increase at the increase of deployed modules,
convexity may not necessarily hold; convex approximations of such delay characteristics
should be used.
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Chapter 6

Fog Orchestration meets Proactive
Caching

Running fog computing applications on fog servers requires to match activation of appli-
cations containers to time varying demands. In this chapter we study the dynamic orches-
tration of a batch of applications over a network infrastructure including fog servers and
a cloud. Cloud application deployment faces higher cost and high latency, but unlimited
computational capacity. Fog servers, conversely, have limited computational resources,
but ensure low latency at low cost. In this context we propose a new scheme for joint
caching and placement in fog: the aim is to minimize the deployment cost while satis-
fying the applications’ constraints. In fact, image caching appears mandatory to reduce
the containers’ activation time. On the other hand, proactively caching images on tar-
get servers is effective to match the expected activation pattern while optimizing load
balancing via container replication. Using two-stage stochastic programming we derive a
one-step-ahead policy to minimize the total running cost and satisfy applications’ require-
ments. Extensive numerical results demonstrate the potential for this novel approach over
traditional caching and placement algorithms. This chapter is mostly based on [51].

6.1 Introduction

Virtualization is key for the flexible installation of services onto fog servers in the prox-
imity of IoT objects [23]. Indeed, heterogeneity of IoT technologies [75] is mitigated by
packaging fog service modules in advance, e.g., in the form of Docker images adapted
to the host OS system [81]. Container-based orchestrators, such as Kubernetes [7], sup-
port availability and load balancing by means of container replication. Replicas of the
image of a tagged fog application can be displaced on different target fog servers: once
replicated among different servers, requests towards a tagged application are dispatched
by applying a load balancing procedure (e.g., Round-Robin) among the servers. On the
other hand, for a fog server to offload some container, it has to query the controller for
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the network topology in order to check which servers executing the same application can
take over. The Kubernetes monitoring system ensures service availability by removing
stalled containers and activating replicas on different servers.

Typically, containerized services can not be migrated in a stateful manner with a proper
infrastructure. Rather, the practice is to replicate and switch on a container at the new
location and turn off the old one. Clearly, this process introduces some delay which can be
broken down into a start up time, a platform-dependent orchestration overhead delay, and
the image transfer delay. The last component is critical because it involves unpredictable
network delays and depends on the image size and on network availability. Thus, caching
containers’ images on fog servers is key to reduce the total delay experienced by fog
applications. For instance, under Kubernetes, every node, as a Docker host, can perform
image caching operations. A cache hit means that the container image is available on
a target fog server and, if not active, the start-up time can be performed within some
milliseconds [99]. A cache miss, conversely, requires either to wait the image download
onto the fog server – a delay usually unacceptable for most applications – or to redirect
the request on other available instances, e.g., in cloud. Furthermore, every new image
download involves several operations, such as the image decompression, with an overhead
on the server’s CPU usage much higher than image activation, especially on devices with
limited resources [9].

In this chapter we study the joint optimization of application image caching and orches-
tration in fog. We consider single container fog applications, and we leave the extension
to more complex microservice architectures for later works. The system infrastructure
includes a central cloud and a fog region with a cluster of fog servers. Fog servers have
limited CPU, memory and storage capacity but are cost free. In cloud, unlimited compu-
tational resources are available at a cost. The aim is to optimally orchestrate applications
running on the described infrastructure. I.e., minimize deployment costs while complying
with applications’ delay figures.

Inspired by proactive caching systems, we study an optimal joint orchestration and
caching policy. Proactive caching is aimed at preventing the download of containers from
a central repository to avoid large image transfer delay. The control is the proactive
placement of the applications’ images stored in the container registries across the network
infrastructure, mapping applications’ containers to fog servers or to the cloud. Each
application’s container can be either cached or not on a fog server. Also, it can be
available in two forms on each server: it can be either active, i.e., the container is running
on the server, or it can be disabled, i.e., the image of the container is cached but not yet
running.

State-of-the-art solutions for images caching, such as Kubernetes’ caching for instance,
are reactive and thus not suitable for delay-constrained fog computing applications. In
fact, a container not present on a target host is fetched from the central repository (e.g.,
a Docker hub). Proactive edge caching has become popular in 5G networks [18] and has
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Table 6.1: Main notation used throughout the chapter
Symbol Meaning
N number of applications
S number of fog servers
λti arrival rate at time t for application i
δi maximum processing delay tolerable by application i
r resource type: processing (P ), memory (M) and storage (D).
Crs available resource in server s, with r ∈ {P,M,D}
cri resource occupation of application i container, r ∈ {P,M,D}

appeared recently in the literature [58].
However, fog proactive caching appears fundamentally different compared to standard

multimedia edge caching. First, it maybe tempting leveraging on standard caching poli-
cies as done in proactive multimedia edge caching. Most frequently used (MFU), for
instance, is provably optimal under stationary content popularity [76]. In fog comput-
ing such analogy is misleading because the more requests a container receives, the more
the processing resources consumed in terms of CPU, storage and communications on the
servers it is installed on. Thus, the server “occupation" depends on the fog application’s
“popularity" and a fog application’s performance depends by the presence of other active
containers on the same host. As proved by our numerical experiments, traditional caching
techniques are suboptimal for the considered problem, especially under variable demand
patterns.

Main contribution: we propose a one-step-ahead joint caching and orchestration scheme
accounting simultaneously for caching, load-balancing, and replication of fog containers’
images. One application may be cached in advance on several servers and may be acti-
vated or not depending on the current application’s load. In our model, the CPU load
generated at a specific server depends on the number of replicas installed elsewhere and
made run in parallel precisely to smooth the peak processing delay per instance. Our
work is, to the best of the authors’ knowledge, the first one to study jointly proactive
containers’ image caching and orchestration in a fog computing scenario.

6.2 System Model

We consider a network infrastructure consisting of a fog cluster and a cloud. The fog
cluster is composed by S fog servers. Each server s has a limited amount of CPU, memory
and disk storage available, denoted by the triple Cs = (CP

s , C
M
s , C

D
s ). On the other hand,

in cloud there are unlimited but expensive resources.
Applications. We consider a batch of N different applications to be run on the

infrastructure; they can be deployed either in cloud or on the fog cluster. Each appli-
cation consists of a container to be replicated across several fog servers and/or in cloud.

87



CHAPTER 6. FOG ORCHESTRATION MEETS PROACTIVE CACHING

Each container of application i has requirements in terms of CPU, memory and storage,
described by the triple (cPi , c

M
i , c

D
i ).

Cache. We assume that each fog server has the ability to store containers in a cache,
and possibly to disable cached containers when not needed. This allows to predict future
application requests and reduce start-up delays for new applications, that is to download
the respective containers if not cached locally. We consider that each container may
consist of successive layers, corresponding to incremental software updates. Yet, out of
all layers downloadable from a central repository, a container of application i only needs
a portion ηi ∈ (0, 1] of them to run properly.

Control. The orchestrator decides at each period t:

1. Which new containers should be downloaded to the fog servers’ caches;

2. Which containers, among those who are are present in the respective caches, should
be activated.

We remark that the activation policy is constrained by the delay requirements of each
application, and we shall provide some constraints on the churn rate of cached images in
order to disincentive disruptive reconfigurations.

Let xti,s be the binary variable indicating whether a container of the application i

is active on server s at time t (s = 0 denotes the cloud for the notation’s sake). The
caching control is represented by continuous variable yti,s ∈ [0, 1]: it describes the fraction
of container’s layers cached on server s at time t for application i. In fact, containerized
applications may be operational even when some features are missing. But, if yti,s < ηi,
i.e., the portion of cached layers is insufficient, then xti,s = 0, hence the application can
not be activated. We denote

A(yt) = {(i, s)|yti,s < ηi}

the set of containers that can not be activated: xti,s = 0, for all pairs (i, s) ∈ A(yt).
Requests. For the sake of model tractability we divide the time into slots. During

slot t, application i receives data to be processed at a rate of λti – that can be thought
of as a measure of application’s popularity – and we denote by λ̄t the vector of all arrival
(or demand) rates. Although theoretically a time-slot can be defined at one’s will, in
practice we suggest to define a new slot whenever the arrival rates change considerably.
This assumption is aligned with the majority of monitoring systems. Indeed, in most of
the existing systems as Kubernetes [7], a new orchestrating decision is taken whenever a
change in the applications arrival rates is detected and a potential inconsistency between
the required and guaranteed requirements is detected. We remark that demand rates λ
at future slots t′ > t are not know, but can only be predicted; a discussion on models for
IoT data traffic is beyond the scope of this work [82].

Latency. The presence of several active applications on the same fog servers impacts
the processing time of each of them. The processing delay dti,s experienced by a tagged
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application i on a server s at time t can be modelled as a convex function of the ap-
plication’s demand rate, and of the the number of applications active on the server and
processing capacity of the server:

dti,s(x̄
t
s, λ

t
i) =

(
cPi∑N
i=1 x

t
i,s

− λti∑S
s=0 x

t
i,s

)−1
(6.1)

By (6.1) over-exploiting fog servers by increasing container replicas reduces the CPU share
each receives thus increasing the processing delay. Conversely, a uniform load balancing
policy can split the demand rate per application evenly across all servers on which the
application is active. On the other hand, in cloud there is no computational bottleneck,
so that a container of application i activated in cloud has constant processing time di0.
However, we assume a fixed latency ∆0 between the fog cluster and cloud.

Cache churn rate. The cache storage occupation can not exceed the cache capacity
CD
s , i.e.,

∑N
i=1 y

t
i,s c

D
i ≤ CD

s , for each fog server s. Also, due to limited download speed,
we fix an upper bound ε on how much cache content can vary between consecutive slots:
a fair resource share imposes

|yt+1
i,s − yti,s| ≤ ε,

for each application i and server s.
Orchestration constraints. We assume application i to tolerate a maximum pro-

cessing delay of δi seconds. When active in fog, this is described by constraint

dti,s(x̄
t
s, λ

t
i)x

t
i,s ≤ δi,

for any fog server s. In cloud, the fog-to-cloud latency is factored in as

(di0 + ∆0)x
t
i,0 ≤ δi.

Furthermore, CPU and memory occupation of all containers activated on a given server
s can not exceed the total CPU and memory available at time slot t, i.e.,

N∑
i=1

xti,s c
r
i ≤ Cr

s ,

for every request r ∈ {P,M}.
Finally, every application i for which λti > 0 must be served at time slot t, so that at

least one active container is needed, i.e.,
S∑
s=0

xti,s ≥ 1.

Objective. In order to minimize the financial cost of running the overall infrastruc-
ture, we aim at minimizing the number of containers

∑N
i=1 x

t
i,0 deployed in cloud at each

time-slot t. We do so by jointly controlling caching and activation of containers, while ful-
filling caching and orchestration constraints, per server and per application as described
above.
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Figure 6.1: Two-stage optimization and its one-step ahead (OSA) solution

6.3 Solution: One-step ahead programming

Our goal is to devise an orchestration policy that jointly decides the caching and the
activation of containers for the requested applications with the aim of minimizing the
number of containers deployed in the cloud. This allows to eventually minimize the
overall deployment cost.

The frequency at which new requests arrive and (already cached) containers are ac-
tivated is much higher than the frequency at which new containers can be downloaded
and cached at fog servers [99]. For this reason, we decide to articulate the decisions
on caching and activation in hierarchical and sequential fashion. Caching decision are
planned in advance in stage 1, to anticipate the scenario that may materialize in stage 2
once the container download is terminated. Finally, at stage 2, new containers are cached
in the servers and they are activated in accordance with the actual requests.

We remark that the two stages are interleaved in time: at time t, the caching decisions
are made (stage 1), while containers are activated given the caching decisions taken at
previous time t− 1 and materialized at time t (stage 2).

Technically speaking, our solution approach follows the classic paradigm of two-stage
stochastic programming [20] and its natural one-step ahead (OSA) associated solution,
illustrated in Figure 6.1 and described formally below. We will describe the two stages in
backward fashion, since stage 1 relies on the solution of the problem solved by stage 2.

6.3.1 OSA - Stage 2: Activation of cached containers

By time t + 1, the new arrival rates λ̄t+1 are observed. Moreover, we assume that stage
1 has already taken place at time step t, producing caching decision ȳt+1; hence, by
time t + 1 new containers are downloaded accordingly. Then, as the second stage of our
optimization, cached containers are activated so as to minimize the number of them in
cloud, while fulfilling all the orchestration constraints. The corresponding mathematical
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program writes as follows.
Input: Actual arrival rates λ̄t+1, container caching ȳt+1

Output: Container activation x̄t+1(ȳt+1, λ̄t+1)

Compute at time t+ 1:

x̄t+1(ȳt+1, λ̄t+1) = argmin
xt+1

N∑
i=1

xt+1
i,0 := F (2)(xt+1) (OPT2)

subject to:
dt+1
i,s (xt+1

s , λ̄t+1
i,s )xt+1

i,s ≤ δi,

∀i ∈ {1, . . . , N},∀s ∈ {1, . . . , S}
(di0 + ∆0)x

t+1
i,0 ≤ δi, ∀i ∈ {1, . . . , N}

xt+1
i,s = 0, ∀(i, s) ∈ A(ȳt+1) (6.2)
S∑
s=0

xt+1
i,s ≥ 1, ∀i : λ̄t+1

i > 0

N∑
i=1

xti,s c
r
i ≤ Cr

s , ∀s ∈ {1, . . . , S},∀r ∈ {P,M}

xt+1
i,s ∈ {0, 1}, ∀i ∈ {1, . . . , N},∀s ∈ {1, . . . , S}.

6.3.2 OSA - Stage 1: Container caching

At time t, stage 1 has to devise a caching policy ȳt+1 deciding the percentage1 of container
layers to be cached in each server. Future arrival rates at time t+ 1 are unknown and can
only be predicted, hence ȳt+1 is computed by minimizing the expected number of containers
deployed on the cloud at time t + 1. Yet, for each possible arrival rate scenario λt+1 and
for each caching ȳt+1 one can compute the optimal container activation x̄t+1(ȳt+1, λt+1)

through the analogous version of (OPT2).
Hence, we define the objective function F (1) of the first stage optimization as the

expected value of the objective realized of stage 2, i.e., Efλ [F (2)]. Here, fλ is the predicted
arrival rate distribution at time t + 1, i.e., fλ(a) = Pr(λt+1 = a). We can also account
for the fact that more up-to-date containers will generally provide better performance by
introducing an increasing function R(.) of the number of cached container layers, which
results in the following objective function

F (1)(yt+1, x̄t+1) := Efλ
[
F (2)(x̄t+1)

]
−
∑
i,s

R(yt+1
i,s ) (6.3)

where x̄t+1 := x̄t+1(ȳt+1, λt+1). The optimization problem solved at stage 1 is described
below.

1relative to the most recent container version present in the main repository
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Input: Predicted arrival rates distribution fλ for time t+ 1

Output: Caching policy ȳt+1

Compute at time t:

ȳt+1 = argmin
yt+1

F (1)(yt+1, x̄t+1(yt+1, λt+1)) (OPT1)

subject to:
N∑
i=1

yti,s c
D
i ≤ CD

s , ∀s ∈ {1, . . . , S} (6.4)

|yt+1
i,s − yti,s| ≤ ε, ∀i ∈ {1, . . . , N}, ∀s ∈ {1, . . . , S} (6.5)

yt+1
i,s ∈ [0, 1], ∀i ∈ {1, . . . , N},∀s ∈ {1, . . . , S}

We highlight that at this stage one optimizes over both container caching yt+1 and
activation x̄t+1(yt+1, λt+1) for each possible scenario λt+1. However, only caching decisions
ȳt+1 are deployed in the system. In fact, container activation for time t+ 1 is performed
only once the true requests λ̄t+1 materialize at time t + 1, since activation is almost
instantaneous in practice. Hence, at stage 1 the activation variables x are only auxiliary,
as they have the sole purpose of evaluating the quality of caching.

6.4 Solving Stage 1: Derivative-free methods

As described above, the caching problem (OPT1) requires to solve (OPT2) for each pos-
sible demand rate scenario λt+1. This entails two major technical difficulties:

1. (OPT2) is computationally hard (being formulated as an Integer Program);

2. The objective function F (2) is not in closed-form.

Regarding 1), we describe below a simple heuristic for (OPT2). To tackle 2) we resort
to derivative-free optimization techniques, that only need to sample the value of the
function, without needing to resort to their derivative. The general paradigm we employ is
coordinate-descent [89], which at each iteration selects one coordinate yi,s, keeps the others
fixed, and optimizes function F (1) over yi,s via a univariate, derivative-free line search
method such as Bayesian Optimization (BO) [107] or Golden Section Search (GSS) [70].

We dub this procedure Coordinate-Descent-Caching (CDC) and we describe it in Al-
gorithm 4. There, K is number of iterations; coord_select and search are the procedures
for the coordinate variable selection and the derivative-free line search method, respec-
tively. Each time a new coordinate (i, s) is selected, a lower and an upper bound for yi,s
are computed in lines 4 and 5 to confine the search, respectively. Specifically, the upper
bound u for variable yi,s is the maximum between the value for the cache churn rate and
the residual storage capacity of server s with all yj,ss, j 6= i, fixed. This allows CDC to
output a feasible solution.
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Algorithm 4: Coordinate-Descent-Caching(CDC)
Input: arrival distribution fλ, ȳt, η, ε > 0

Output: Caching decisions ȳt+1

1 ȳ ← ȳt;
2 for k = 1, . . . ,K do
3 (i, s)← coord_select(N,S);
4 l← max{yti,s − ε, 0};

5 u← min{yti,s + ε,
CSs −

∑
j 6=i c

S
j yj,s

cSi
};

6 yi,s ← search(F (1)(ȳ, x̄t+1(ȳ, ¯λt+1)), fλ, [l, u], η̄);

7 ȳt+1 ← ȳ;
8 return ȳt+1

Proposition 6.1. At each iteration of CDC it holds that

ȳt+1 ∈ Y t+1 :=
{
yt+1 ∈ [0, 1]N×S|(6.4), (6.5) hold

}
. (6.6)

Hence, the caching solution computed by CDC is feasible for (OPT1).

The proof of Proposition 6.1 trivially follows from the computation of bounds l and b
in Algorithm 4.

6.4.1 Heuristic for (OPT2)

As mentioned, optimizing stage 1 requires to solve the container activation problem (OPT2)
as a sub-routine, for each possible demand rate λt+1. This clearly calls for a heuristic ap-
proach to solve (OPT2)) which is originally formulated as an Integer Program. We propose
a greedy placement algorithm which selects, for each application i, an admissible set of
fog servers where a container can be activated. Hence, the server with minimum memory
and CPU occupation is chosen. Once this applications-servers mapping is obtained, if
all the applications delay constraints are met then the mapping is considered as a valid
activation. Otherwise, the applications violating constraint are moved to the cloud if
their fog-to-cloud latency permits. We note that (OPT2) performs also load balancing by
containers replication among the fog servers whereas our heuristic does not; this will be
studied in future work.

6.4.2 Coordinate Selection and Search methods

The coord_select procedure can have several variants; we choose a method where coordi-
nates are randomly permuted and selected sequentially. Other methods can be envisioned,
e.g., coordinate selection on the basis of the real arrival rates of the previous time-slot
t. In this way, applications with highest arrival rates in the previous time-slot would be
prioritized for the caching in the fog servers. We leave such variants for future works.
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Table 6.2: Applications’ containers requirements [27].
Requirement Mean Value Range
CPU 1250 MIPS [500, 2000] MIPS
Memory 1.2 Gbytes [0.5, 2] Gbytes
Storage 3.5 Gbytes [1, 8] Gbytes

For the derivative-free line search procedure we evaluated Bayesian Optimization
(BO) [107] and Golden Section Search (GSS) [70]. GSS is a classic dichotomy proce-
dure that samples the function at two middle points of the current search interval and
then restricts the interval. It returns the global optimum of a univariate unimodal func-
tion, otherwise – which is our case – it returns a local optimum. The BO method is
usually applied when the utility function is expensive to evaluate because it has high
sample efficiency. Indeed, the term related to the caching computation (xt+1

i,0 (ȳt+1, λ̄)) is
inherently computationally expensive to evaluate, even by using a heuristic activation as
we do. By inferring the function at unknown points via a Gaussian Process, BO selects
points having high probability of achieving low cost.

6.4.3 Computational Complexity

The computational complexity of CDC is mainly dominated by the computation of the
placement function x̄t+1(yt+1, λt+1), the size |fλ| of the support of fλ (determining the
number of possible demand rate scenarios λt+1), and the search method. The compu-
tational complexity of the greedy heuristic for container activation is O(NS). Under
sequential coordinate selection and with a fixed number of iterations K, the total com-
plexity is O(|fλ|KNS log(τ−1)). The logarithmic factor appears due to the convergence
rate of iterative methods such as the Golden Section Search method [70] where τ is a
tolerance parameter. Hence, remarkably, the total complexity remains polynomial in the
size of the input.

6.5 Numerical Results

In this section we evaluate our solution in a specific fog computing scenario where we test
our joint caching and orchestration scheme. Three main goals are in order:

1. Select the best method to perform the proactive caching optimization, i.e., select
the most suitable coordinate descent algorithm using two candidate search methods,
namely Golden Section Search (GSS) and Bayesian Optimization (BO).

2. Compare our approach with standard placement algorithms used to drive the acti-
vation step.
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Figure 6.2: Expected cost of GSS and BO derivative-free line-search methods for N = 25,
averaged across 10 instances.

3. Demonstrate that our approach outperforms baseline schemes in terms of cloud
deployment cost.

6.5.1 Simulation Settings

In our simulation experiments we consider one input batch of applications to be deployed
on a system composed of one fog region with 3 servers and a cloud. Resources and
applications requests per server are represented by triples of CPU, memory and storage
units. Servers’ capacity triples are C1 = (15000, 8, 50) and C2 = C3 = (44000, 16, 60),
where CPU is measured in MIPS and memory in Gbytes. The applications’ requirements
per container are listed in Table 6.2. In our tests, we have assumed different sizes of
the applications’ batch, namely N = 10, 15, 20, 25. The demand rates and the maximum
tolerable processing delay of each application are generated uniformly at random in [0, 300]

jobs/s and in [5, 6] sec, respectively. Fog-to-cloud latency has been set to 500 ms, and the
cloud processing delay is generated uniformly at random in [1, 5] sec, for each application.

6.5.2 Search Methods

In stage 1, the orchestrator computes the caching policy by the coordinate descent Algo-
rithm 4 (CDC) described in Section 6.4. As a sub-routine, CDC computes the minimum
of the objective function F (1) on a line via a derivative-free method. We hence compared
Golden Section Search (GSS) and Bayesian Optimization (BO) on Gaussian Processes.
Figure 6.2 shows the expected cost of deployment achieved by the two methods forN = 25.
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a) b)

Figure 6.3: a) Evaluation of placement methods for N = 10; b) Evaluation of placement
methods for N = 15.

Each point is the average of ten instances where the infrastructure is fixed and the appli-
cation arrival rates’ distribution changes. We implemented two variants for the coordinate
selection method. The sequential (SEQ) approach applies each method to each coordi-
nate of the caching matrix ȳt in sequential manner. The random (RANDOM) approach
selects a random coordinate at each iteration. The figure highlights the capability of GSS
to obtain a better value of the expected cost with respect to the BO method. BO is
sensitive to input hyper-parameters, and it is generally no easy task to select the most
suitable ones. Given its better performance, in the next experiments we adopt GSS as
our preferred search algorithm as a sub-routine in CDC, to solve stage 1.

6.5.3 Container activation algorithms for Stage 2

We now discuss how to solve the container activation problem (OPT2) in stage 2. We
devised two reasonable baseline heuristics for the joint caching and orchestration problem.
We call Delays-first and Rates-first our baseline activation algorithms: they give priority
to applications with the lowest delay constraints and highest demand rates, respectively.
These two heuristics apply both to the activation function xt+1

i,0 (ȳt+1, λ̄) used in the first
stage of our approach, i.e., to cache containers, and to the activation phase of the second
stage; yet, the baseline heuristics do not perform proactive container replication. The
caching policies are standard proactive edge caching ones as described later on.

Figure 6.3 shows the overall performance comparison among the proposed methods,
averaged over 10 instances along with their 95% confidence interval. We set ε = 0.6

for the cache churn rate constraint, meaning that at most 60% of cached containers can
be changed at each step. We can observe from the figure that heuristics are far from
the optimal one, which in turn is attained by our approach (OSA). In fact, prioritizing
containers’ activation on the basis of their delay constraints would lead to deploying appli-
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a) b)

Figure 6.4: a) Cost incurred by each caching policy; b) Average number of hits per fog server.

cations with strict constraints in fog; this will cause an increase of the delay experienced
per application due to CPU sharing on fog servers. Lack of replication of same containers
on different servers increases the delay as well. Thus, all the remaining applications will
be deployed in cloud, hence incurring a larger cost. A similar argument applies to the
Rates-first heuristics since in that case applications with higher demand rates will be
deployed together on the fog servers; but this is possible as long as their delay constraints
are satisfied, while other applications with lower arrival rates must be deployed in cloud.

6.5.4 Caching

The performance gain of our one-step-ahead (OSA) approach over the two heuristics can
be ascribed to its efficient caching strategy. Hence, we now highlight the key differences
between standard proactive edge caching and our optimized proactive fog caching. We
consider the following classical caching strategies for comparison:

• the Most-Popular (MP) which, at each time-slot t, for each server, prioritizes appli-
cations with highest popularity, i.e., applications presenting the highest arrival rate
at the previous time-slot t.

• Least Recently Used (LRU) strategy, evicting the least recently requested containers
on each server.

• Least Frequently Used (LFU) strategy which discards the least frequently requested
container since the first time-slot.

MP, LRU and LFU strategies track demand rates and demand epochs by updating a
table of file requests.

We imposed the cache churn rate constraint, with ε = 0.3, for all caching strategies.
Also, each file is cached at the minimum level required for its activation. LRU, LFU
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and MP refer to the plain memory occupation as the reference metric to evaluate cache
space on fog servers. Figure 6.4 reports on the performance of each fog caching policy
for N = 20. Data points represent an average over ten instances. For each instance a
distribution over the applications’ demand rates is generated and, at each time-slot, a
vector of arrival rates is chosen with probability defined by the initial distribution. In
these experiments all the vectors of demand rates are sampled with uniform probability.
In Figure 6.4a) the comparison in terms of deployment cost is showed. All classical caching
policies have same cost due to the low percentage of discarded files during the sampled
period, whilst approach (OSA) performs significant savings. Furthermore, Figure 6.4b)
shows the average number of hits per fog server. The highest rate is achieved by OSA with
respect to baseline approaches, as expected. These results prove that in a fog environment
joint caching and orchestration of applications is key in order to reduce expensive costs
of deployment in cloud.

6.6 Remarks and Possible Extensions

In this chapter we have developed a framework to perform the orchestration of fog ap-
plications and minimize their deployment cost. We have proved that proactive caching
greatly improves the performance of fog orchestration by matching in advance the ex-
pected demand rates of applications and the available resources on fog servers. Actually,
fundamental differences exist between fog caching and edge caching due to the multidi-
mensionality of resources per deployed container, the impact of fog-to-cloud delay and
the effect of resource sharing on fog servers. Our scheme performs a two-stage stochastic
optimization by forecasting the impact of containers’ activation onto servers capacity and
applications computing delays.

Several novel aspects deserve further study to this respect. Some possible extensions
are highlighted in the following points:

• Greedy Heuristic for OPT2. One possible extension involves the formulation of a new
lightweight heuristic solution to approximate the behaviour of the optimal one for
OPT2. Indeed, the actual adopted solution is a very basic one. A possible improved
version could consider the possibility of replication in each available server for each
application’s containers. Replication, indeed, is beneficial to lower the processing
delay experienced by the single applications. However, the heuristic should be able
to find the right trade-off between applications’ replication degree and the servers
occupation level, another crucial element that greatly influences the processing delay
of applications.

• Alternative formulation for OPT2. One fundamental constraint of OPT2 is that each
container’s deployment must satisfy the delay bound of the application. However,
in real scenarios, delay violations are quite likely implying an infeasibility of the
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problem. For this reason, the formulation of OPT2 can be relaxed admitting the
violation of delay constraints in case of cloud deployment. In this way, a penalty
function could be added in order to minimize the number of such violations improving
the feasibility of the model.

• Generalization of delay function. We adopted a specific model for the processing
delay function. A possible extension is represented by the generalization of such a
function showing the validity of the model even with other delay functions.

• Adaptive algorithmic solutions. An important open question is how to dynamically
adjust the solutions found by the aforementioned algorithms as demands and re-
sources vary over time.

• More scalable solutions. Another interesting extension consists of investigating other
scalable solutions as the number of involved variables increases. Indeed, depending
on the length of a time-slot, i.e., the frequency at which new requests arrive, differ-
ent derivative-free optimization methods can be evaluated. The coordinate-descent
method proposed could suffer from scalability problems as the arrival rates frequency
increase. Hence, a deeper study of alternative iterative optimization methods such
as, e.g., Sequential Quadratic Programming, can represent a significant improvement
for the current work.
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Chapter 7

Conclusions

The declared aim of the thesis in the introduction chapter was “to contribute to the study
and the design of new resource allocation algorithms in distributed and heterogeneous
computing systems such as fog computing”. In order to achieve such an objective, we
detected two main challenges for resource allocation algorithms tackling the applications
deployment problem in this context.

The first one is the placement problem where, given a batch of microservice-based
applications with complete information of their requirements, and a distributed region-
based fog infrastructure, the objective is to deploy the applications on the infrastructure
optimizing the costs of the infrastructure’s owner.

To this scope, in Chapter 3 we introduced a joint partitioning and optimization frame-
work for the deployment of throughput-intensive applications on a region-based fog in-
frastructure. Experimental results showed that a smart cut of the applications’ graph
is beneficial both for improving the applications’ performance requirements and to maxi-
mize the revenue of the infrastructure’s owner. Given the lack of solutions for region-based
deployments of microservice applications, this work improved the existing cloud-native so-
lutions, proposing a new framework that fosters the inter-operability between fog regions.

In Chapter 4 we considered the problem of applications placement in a federated cloud-
fog environment. Here, we showed that a breadth-first exploration of the solution space
presents better performance with respect to standard solutions, mostly when applications
present locality constraints requiring the placement of microservices on regions of the
main domain. Furthermore, we highlighted the importance of trade-off feasibility, cost-
efficiency and scalability in such a distributed and heterogeneous environment.

The second challenge we detected for resource allocation algorithms in this context, is
the possibility to optimize the QoS performance of applications when the arrival requests
are not completely known at runtime, i.e., the dynamic orchestration problem.

From this aspect, Chapter 5 tackled the problem of orchestration of applications
pipelines between a local fog server and an expensive cloud. We modelled each appli-
cation as a cascade of queues and we considered a processor sharing model for the local
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server. With such a model we tried to capture the bottleneck, in terms of performance
degradation, that each application experiences when it shares computational resources
with other applications deployed on the same server. This represents a novelty in the fog
literature, especially for applications consisting of a set of interdependent modules de-
ployed in resource constrained nodes. We provided an optimal algorithmic solution under
perfect information about the arrival rates of each application and, finally, we formulated
a stochastic approximation scheme in the case the load and the arrivals rates are not
known at runtime. The proposed solution present relevant convergence and adaptability
properties.

Finally, in Chapter 6 we introduced a proactive caching system that helps applications
to avoid long start-up times that degrade their performance. We proposed an optimisa-
tion scheme that jointly takes into account the caching of application on fog servers and
the strategic activation of that applications with unknown arrival requests for each appli-
cations. The activation of an application on a given server influences the performance of
all other applications currently active on the server. This sheds new light on the caching
problem in the context of fog computing. The proposed proactive caching system greatly
improves the fog orchestration by matching in advance the expected demand rates of
applications and the available resources on fog servers.

Overall, we believe that the research work of this thesis contributed to extend the
state of the art by characterising new research lines straddling networking and computing
problems. A consistent part of the results of this thesis can be promptly used in current
fog computing platforms that adopt state-of-the-art technologies. However, further work
is needed to explore and exploit the full potential of such a new computing paradigm.
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