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Abstract

Thanks to the data from Planck Collaboration, the scalar spectral index of primordial fluctuations

is known with a very high accuracy. The recent findings of the BICEP2 collaboration, although still

under scrutiny, fix also the ratio between the tensor and the scalar power spectra to a value that

implies a non-negligible production of gravitational waves in the inflationary Universe. In this letter

we show that purely quadratic, renormalizable, and scale-invariant gravity, implemented by loop-

corrections, yields very precise predictions when compared to these data. In addition, this model

naturally exits inflation towards a standard reheating phase. In contrast to other scale-invariant

models, our scenario does not need matter fields coupled to gravity to explain inflation.
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INTRODUCTION

The claim of the BICEP2 collaboration [1] that the tensor-to-scalar ratio has the surpris-

ingly large value r = 0.2, which points to a flurry production of gravitational waves during

inflation, has polarized the attention of the physics community. The situation has become

less clear when some serious criticisms to the BICEP2 analysis appeared in the literature

(see for example [2]). Furthermore, very recently, the Planck collaboration has released the

data concerning the polarized dust emission [3], while the first attempts to make a joint

analysis of Planck and BICEP2 data have been presented (see, for example, [4, 5] and ref-

erences therein). The general feeling is that the value of r is lower than initially claimed in

[1] but still significant.

In a previous paper, we considered cosmic inflation in the context of f(R) gravity and

we showed that if the spectral index ns and r are known, the functional form of f(R)

can be uniquely determined [6]. In particular, we have shown that the slow-roll condition

during inflation implies that f(R) ∼ R2−δ, where δ is a small and weakly time-dependent

parameter. These results seem therefore to indicate that, at least during inflation, gravity

is best described by a scale-invariant, quadratic Lagrangian, with small deviations that

we interpreted as quantum gravitational loop corrections. This is in contrast with the

Starobinsky model [7], where the quadratic term is implemented by the usual linear term of

general relativity, so that the classical action is no longer scale invariant.

In this Letter, we take inspiration from this work and we study a specific effective La-

grangian of the form R2+ loop corrections, we calculate r, ns, and its running and compare

the results with the available data. We find that our model reproduces very accurately the

observed spectral indices and predicts a value of r that might be in line with the combined BI-

CEP2 and Planck findings. We also show that the Universe evolves smoothly out of inflation

into a radiation-dominated phase and, therefore, that there is no need of non-gravitational

fields to describe the early Universe, from inflation to reheating.

THE SCALE INVARIANT R2
MODEL

To begin with, let us recall the most general scale-invariant Jordan frame action containing

the square of the Ricci scalar, the Weyl invariant, and the Higgs doublet H, and a non-
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minimal coupling between the two:

SJ =

∫

d4x
√
g
[

bR2 + ξRH2 − (∂H)2 − λ

4!
H4 + . . .

]

. (1)

The dots stand for the other quadratic invariants of the metric and scale invariant operators

of the standard model. Here, the parameters b, ξ, and λ are all dimensionless. This action

has been thoroughly investigated in the past, see e.g. [8]. Recently, it was reconsidered

in [9], where it was shown that this model leads to an inflationary model consistent with

observations, provided one adds a new scalar field degree of freedom and takes in account

the running of b, ξ, and λ. In addition, this model is particularly attractive as it is believed

to be renormalizable and asymptotically free [10–13], although ghosts are in general present

(for a review, see [14]).

In this paper, we take a different look at this action and we wish to show that inflation

and reheating do not need the matter sector of the theory. In fact, they can be realized

exclusively by the gravitational sector, identified by just the first term of eq. (1), implemented

by suitable loop corrections.

In Ref. [6], we showed that the effective, one-loop corrected effective Lagrangian takes

the form

feff(R) =
R2

µ

[

1− γ ln

(

R2

µ2

)]

, (2)

which was derived upon the results presented in [16]. In this expression, γ is a small

positive parameter and µ is a constant that fixes the scale at which the logarithmic correction

comes into play (see also [17], and, for the asymptotic safety approach, [18]). With some

approximations, it was shown that this model predicts values of the spectral index ns and of

the tensor-to-scalar ratio r that are in line with the combined data of Planck and BICEP2.

Here, we would like to take a step further by assuming that all loop corrections in the

gravitational sector of the effective Lagrangian can be resummed so that feff becomes, mim-

icking higher loops,

feff(R) =
R2

µ
[

1 + γ ln
(

R2

µ2

)] . (3)

The scale µ−1, which has the dimension of a squared mass, makes the functional derivative

of feff with respect to R conveniently dimensionless. Note that when the logarithmic term is
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small, the expressions (2) and (3) are basically the same, thus we are not changing the one-

loop corrected Lagrangian dramatically and the results below are in fact valid for both cases.

As we will shortly see, the surprising feature of (3) is that it yields an inflationary phase

such that the spectral index, its running, and the tensor-to-scalar ratio depend exclusively

on the number of e-foldings. The only constraints on γ and µ comes from the measured

amplitude of the power spectrum.

INFLATION IN f(R) THEORIES

In order to obtain the inflationary observables, we introduce a simple and transparent for-

malism that is valid for all f(R) theories. Let us consider the generic action in Jordan frame

(for reviews on f(R) gravity see e.g. [19–21])

SJ =

∫

d4x
√

|g|f(R). (4)

Our goal is to express the usual inflationary observables in both Einstein and Jordan frame

in a simple and universal form. The equations of motion for a homogeneous and isotropic

Universe with metric ds2 = −dt2 + a2d~x2 are

3XH2 =
1

2
(XR− f)− 3HẊ, (5)

Ẍ = −2XḢ +HẊ, (6)

where the dot represents a derivative with respect to the (Jordan frame) cosmic time t,

H = a−1ȧ is the Hubble function, R ≡ 6(2H2 + Ḣ), and X ≡ df(R)/dR. The conformal

transformation g̃µν = Xgµν brings the action (4) into the canonical form in Einstein frame

SE =

∫

d4x
√

|g̃|
[

M2

2
R̃− 1

2
(∂̃φ̃)2 − V (φ̃)

]

, (7)

where

V (φ̃) =
M2

2

(

XR− f(R)

2X2

)

, (8)

and X and φ̃ are related by

φ̃ =

√

3

2
M ln(X) . (9)
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Usually, the parameter M is identified with the Planck mass mp under the hypothesis that

the action (7) describes also the low-energy limit of the theory. However, since we will deal

with the scale-invariant Lagrangian (3), this identification is not strictly speaking justified.

Nevertheless, for now we keep a conservative point of view by setting M = mp and we

will comment below on alternative choices. If X(R) is positive definite and invertible, we

can always write a derivative with respect to φ̃ in terms of a derivative with respect to R.

In particular, we can express the slow-roll parameters as (the prime indicates a functional

derivative with respect to R)

ǫ =
M2

2

(

d ln(V )

dφ̃

)2

=
(XR− 2f)2

(XR− f)2
, (10)

η =
M2

V

d2V

dφ̃2
=

2(XR− 4f)

3(XR− f)
+

2X2

3(XR− f)X ′
,

ξ2 =
M2

V 2

dV

dφ̃

d3V

dφ̃3
=

4(XR− 2f)(X3X ′′ +X ′3XR− 8X ′3f + 3X2X ′2)

9X ′3(XR− f)2
,

from which we construct the spectral index, its running, and the tensor-to-scalar ratio defined

as

ns = 1− 6ǫ+ 2η,
dns

d ln k
= 16ǫη − 24η2 − 2ξ2, r = 16ǫ. (11)

With the help of the definition (9), we can also define the number of e-folding as a function

of φ̃ or R according to

N(φ̃) =
1

M2

∫

V

(

dV

dφ̃

)−1

dφ̃ =
3

2

∫

V

V ′

X ′2

X2
dR. (12)

We stress that these formulae are valid for any f(R) theory and hold whenever X(R) is

positive definite and invertible.

GLOBAL DYNAMICS

Before turning to inflation, It is useful to recall well-known properties of the classical, scale-

invariant Lagrangian L = b
√

|g|R2 in the physical Jordan frame. For this theory, the

equations of motion (5)-(6) reduce to the single equation

2HḦ − Ḣ2 + 6H2Ḣ = 0 , (13)
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which has only two exact solutions, namely H = const, which corresponds to a de Sitter

space with arbitrary cosmological constant, and H = (2t)−1, which describes a radiation-

dominated Universe with R = 0. Upon quantization, it is also known that this theory has

no ghosts [15].

If we consider loop corrections as in (3), it is easy to see from the equations of motion

that (6) identically vanishes when R (and so H) is a constant. Then, (5) determines the

curvature, yielding Rdiv = µ exp
(

− 1

2γ

)

, where the subscript indicates that, at that value of

R, feff(R) diverges, see (3). Thus, the system formally approaches a de Sitter vacuum when

R → Rdiv. On the other hand, also H = 1/(2t) is an asymptotic solution for large t. To see

this it is sufficient to note that, since R → 0 in this case, all terms of the type R lnR vanish

and the equations of motion reduce again to the expression (13). These qualitative features

can be easily checked by solving numerically the full system of equations, which confirms

that the solution to the equations of motion for the model (3) smoothly connect a (quasi)

de Sitter space to a radiation-dominated Universe.

INFLATIONARY OBSERVABLES

We now turn to the inflationary phase. With the help of eqs. (10) and (11), we find that

ǫ =
4γ2

3(1 + γz − 2γ)2
, η = − 16γ3

3(1 + γz − 2γ) [(1 + γz)2 − 3γ(1 + γz) + 4γ2]
,

ξ2 =
128γ5 [2 + (2z3 − 3z2 − 3z + 8)γ3 + (6z2 − 6z − 3)γ2 + (6z − 3)γ]

9 [1 + (z2 − 3z + 4)γ2 + (2z − 3)γ]3 [1 + (z − 2)γ]2
. (14)

where we set z = ln (R2/µ2).

Conventionally, inflations ends at the largest value of φ̃ (or the corresponding R) such

that (ǫ = 1, |η| = 1). By inspection of the first two equations above, we find that the relation

between the largest roots is R(ǫ = 1) ≃ 0.991× R(|η| = 1) independently of the value of γ.

Therefore, we fix the end of inflation at |η| = 1, which corresponds to

zend =
5

3
− 1

γ
− (15

√
29− 80)2/3 − 5

3(15
√
29− 80)1/3

≃ 3.1727− 1

γ
. (15)

With f(R) of the form (3), we can integrate eq. (12) and the result, in terms of z, reads

N(z) =
3z2

16
− 3z

2
+

3z

8γ
+

3

4
ln

[

(1 + γz)4

(1 + γz − γ)

]

. (16)
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At a given number N⋆ of e-folding before the end of inflation, when the relevant scales exit

the horizon, the corresponding value of zex is implicitly determined by the equation

N(zex)−N(zend) = N⋆. (17)

The spectral index, its running, and the tensor-to-scalar ratio are finally obtained numeri-

cally by inserting zex in the expressions (14) and (11). One surprising characteristics is that

the results do not depend on γ but only on N⋆. In table I, we report the numerical values

of ns, r, and dns/d ln k for a range of N⋆

N⋆ ns r dns/d ln k

40 0.9661 0.084 -0.0008

45 0.9697 0.075 -0.0007

50 0.9727 0.068 -0.0005

TABLE I: Values of ns, its running, and r corresponding to three values of the number of e-foldings

before the end of inflation.

We note that, in order to fit the experimental value ns = 0.9603± 0.0073 [22] we need to

take a number of e-fold which is lower than the standard interval 50 < N⋆ < 60. However,

it is known that for non-polynomial (in Einstein frame) models of inflation such a range can

be safely extended [23]. We also note that the tensor-to-scalar ratio is about ten times larger

than the one predicted by the Starobinsky model [27] and it might fit the combined Planck-

BICEP2 experimental value. The running of the spectral index is negative but quite low

compared to other models and to the Planck result dns/d ln k = −0.015 which is, however,

uncertain up to 1.5 σ [22]. Although ns, dns/d ln k, and r are independent of γ and µ, the

amplitude As of the power spectrum of the curvature perturbations is not. In our model

(with the assumption that M is the same as the Planck mass) we find the expression

As =
V

24π2M4ǫ
=

µ(1 + γz)2(1 + γz − 2γ)3

512M2π2γ2(1 + γz − γ)2
, (18)

which must be evaluated at the horizon exit z = zex. By assuming the typical value As ≃
10−12, we find that

√
µ/M ≃ 10−6/

√
γ. The parameter γ is assumed to be a small number,

and only when γ ∼ 10−12 the mass scale
√
µ approaches the value of the Planck mass M .

With the help of eqs. (9) and (17), we can write φ̃ at a generic N⋆ as

φ̃⋆

M
= f(N⋆)−

√
6

2

(

ln γ +
1

2γ

)

, (19)
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where the first term is a complicate function of N⋆ only. If, for example, we require that

the value of φ̃ at horizon exit is of the order of 5M , as in the Starobinsky model [7], we find

that, for N⋆ = 40, γ ≃ 0.087 in line with the requirement that γ ≪ 1. In Jordan frame, this

value corresponds to Rex ≃ 3 × 10−8M2 and to a Hubble parameter that can be estimated

to be of the order of Hex =
√

Rex/12 ≃ √
2µ = 5 × 10−6M , similarly to the Starobinsky

model. This shows that our model can be compared to the Starobinsky one in terms of

energy scales and spectral index.

REHEATING

After the end of inflation, marked by the condition |η| = 1, our model of the early Universe

enter a radiation-dominated phase, as explained above. As it is well-known, the transition

from inflation to radiation domination can trigger a conspicuous particle production [24] and

reheat the Universe. The details of the reheating phase are strongly model-dependent and

go beyond the scope of this latter. However, we notice that the “graceful” exit in our case

differs from most f(R) models. In general, these are built in such a way that at the end of

inflation a term linear in R takes over so that the effective potential has a minimum, where

the scalaron can oscillate and ignite the reheating phase, as in the Starobinsky model [25].

In our case such a linear term is not present and reheating is entirely due to the smooth

transition from a de Sitter to a conformally invariant metric.

There is however another possibility to mention, namely that the reheating is induced by

the matter part of the Lagrangian (1), which includes the linear (in R) term ξRH2. If we

assumes that, at the end of inflation, the Higgs field stays “frozen” in some vacuum state,

and that the term ξRH2 is of the order of bR2, then reheating can take place along the

lines of the Starobinsky model. Whether this mechanism can compete with the transition

described above is an interesting and open question.

CONCLUSIONS

In this letter we entertained the idea that the early Universe can be entirely described

by a purely quadratic gravitational effective theory, provided loop corrections are taken in

account. In fact, these are crucial as they allow to smoothly patch two classical solutions of
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quadratic gravity, namely the de Sitter space and the radiation-dominated Universe. During

the (quasi) de Sitter phase, the predicted tilt of the spectrum of scalar perturbations matches

the Planck data. Our model also predict a non-negligible gravitational wave production with

a spectral index in between Planck and BICEP2 measurements. The outcome of the ongoing

joint analysis of the two data set will be a crucial test for our proposal.

It is worth noticing that our model is not, in principle, affected by a transplanckian

problem. It is know, from the Lyth bound [26], that in single-field inflation, in order to have

a non-negligible value of r, one needs a planckian excursion of the inflaton field, according

to ∆φ/mp ∼
∫ N⋆

0
dN

√
r. If future data analysis will confirm that r is of the order of 10−1 it

will be difficult to claim that quantum gravitational effects should not be taken in account in

these models. In our case, the situation is different as the scale M that appears in (9) should

not in general be identified with the Planck mass. Thus, the expression ∆φ/mp implicitly

contains the ratio M/mp and the Lyth bound can be relaxed. This is consistent with the

fact that the classical part of our model is scale-invariant and physical scales appear only

during reheating, when standard model particles emerge.
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