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Abstract: Most of segmental prestressed concrete box 

girders exhibit excessive multidecade deflections 

unforeseeable by past and current design codes. In order 

to investigate such a behavior, mainly caused by creep 

and shrinkage phenomena, an effective FE formulation 

is presented in this paper. This formulation is developed 

by invoking the stationarity of an energetic principle for 

linear viscoelastic problems and relies on the Bazant 

creep constitutive law. A case study representative of 

segmental prestressed concrete box girders susceptible 

to creep is also analyzed in the paper, i.e. the Colle 

Isarco viaduct. Its FE model, based on the 

aforementioned energetic formulation, was successfully 

validated through the comparison with monitoring field 

data. As a result, the proposed 1D FE model can 

effectively reproduce the past behavior of the viaduct 

and predict its future behavior with a reasonable run 

time, which represents a decisive factor for the model 

implementation in a decision support system.  

 

Nomenclature 

 

𝐴 cross section area 

       C costs 

𝐶0(𝑡, 𝑡′) compliance function for basic creep 

𝐶𝑑(𝑡, 𝑡′, 𝑡0) compliance function for drying 

𝑫 derivative operator 

𝐸28 Young’s modulus at 28 days 

𝐹(𝑢, 𝑣) extension of the total potential energy 

𝑯 operator of the assembled structure  

𝐼 momentum of inertia 

𝐽𝐵3(𝑡, 𝑡′) compliance function of Model B3 

𝑲 elastic stiffness operator 

𝑳 extended stiffness operator 

𝐿 beam length  

𝑴(𝑡) operator of time shape functions 

𝑵(𝑥) operator of spatial shape functions 

𝑅(𝑥, 𝑡′, 𝑡′) generic relaxation function evaluated at 

𝑡′ 

𝑅𝐵3(𝑡, 𝑡′) relaxation function of Model B3 

     aopt economically optimal choice 

𝑎 𝑐⁄  aggregate-cement ratio 

𝒇 vector of nodal forces 

𝑓𝑐̅ cylinder compression strength 

𝒈 extended vector of equivalent nodal 

forces 

       i index to indicate the generic iteration 

step 

       n index to indicate the current time step 

𝑝(𝑥, 𝑡) longitudinal distributed load 

     p(θ) prior probability of parameter 

     p(S) prior probability of possible structural 

conditions 

𝑝̂(𝑥, 𝑡) fictitious longitudinal distributed load 

𝑞(𝑥, 𝑡) transversal distributed load 

𝑞̂(𝑥, 𝑡) fictitious transversal distributed load 

𝑞1 first parameter of Model B3 

𝑞2 second parameter of Model B3 

𝑞3 third parameter of Model B3 

𝑞4 forth parameter of Model B3 

𝑞5 fifth parameter of Model B3 

𝒓(𝑡) vector of nodal DoFs 

𝒓𝒖 vector of extensional DoFs  

𝒓𝒗 vector of bending DoFs  

𝑡 generic time 

𝑡0 time when drying starts 

𝑡′ loading time 

     𝑢(𝑥, 𝑡)   longitudinal displacement 
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𝑢̂(𝑥, 𝑡) fictitious longitudinal displacement of 

the auxiliary elastic problem 

     𝑣(𝑥, 𝑡)   transversal displacement 

𝑣̂(𝑥, 𝑡) fictitious transversal displacement of the 

auxiliary elastic problem 

𝑤 𝑐⁄  water-cement ratio 

𝑥 beam longitudinal axis 

       y SHM measurements  

∆𝑇 temperature variation 

𝛼 thermal expansion coefficient 

𝜶(𝑡) vector of spatial displacement unknowns 

𝜶̂(𝑡) vector of fictitious displacement 

unknowns 

𝜷 vector of time displacement unknowns 

𝜀(𝑡) total strain evaluated at time t 

 𝜀𝑐𝑟  creep strain 

𝜀𝑠ℎ(𝑡) shrinkage strain evaluated at time t 

𝜀𝑠ℎ∞ shrinkage strain at infinity 

𝝐 tolerance vector 

𝜎 constant stress 

       θ vector of generic parameters 

  

1 INTRODUCTION 

 

1.1 Background and motivation 

 

“Clarification of the causes of major disasters and 

serviceability losses has been, and will always be, a prime 

opportunity for progress in structural engineering” 

(Bazant et al., 2012). This need always arises behind 

important upgrades in design codes and is followed by 

many researchers for a better understanding of complex 

phenomena.  

According to that need, this study will cover a specific 

class of bridges, i.e. prestressed concrete box girders, 

which reveal excessive multidecade deflections 

unforeseeable by past and current design codes. For 

instance, let us examine the Koror-Babelthuap Bridge in 

Palau, depicted in Figure 1(a)-(b), which collapsed in 

1996 mainly due to an excessive creep deflection 

recorded at midspan; or other four segmental prestressed 

box girders in Japan, which exhibited a similar behavior 

(Koshirazu, Tsukiyono, Konaru, and Urado) (Bazant et 

al., 2012). An example in Europe, proving once more that 

the multidecade deflections are not unique occurrences 

for the Koror-Babelthuap Bridge, is represented by the 

Colle Isarco viaduct, shown in Figure 1(c)-(d), which still 

constitutes a strategic link in the highway corridor 

connecting Northern Italy with Germany.  

Specifically, the excessive multidecade deflections of 

the aforementioned box girders and many others bridges 

spread throughout the world may be due to the 

combination of several factors (Beltempo et al., 2015) 

listed herein: i) the cast-in-place segmental method used 

for construction; ii) creep deformation; iii) losses of pre-

tensioning force in tendons; and iv) differential shrinkage 

between top and bottom slabs. However, with regard to 

the Colle Isarco viaduct, i.e. the case study of this paper, 

any attempt to investigate the midspan deflection drift 

using the classical CEB-FIP creep and shrinkage models 

(CEB, 2008) -those currently recognized by Eurocode 2 

(CEN, 2004)- failed to provide a convincing 

explanation/prediction. In fact, according to the CEB-FIP 

model, creep effects become negligible 20 years after 

concrete casting, whilst the Colle Isarco viaduct 

experiences a deflection still growing 40 years after its 

construction. Thus, the hyperbolic law exploited in 

Eurocode 2 creep models clearly exhibits limitations to its 

applicability. Bazant et al. (2012), focusing on Koror-

Babelthuap Bridge, also demonstrated that classical CEB-

FIP shrinkage and creep models are clearly not suited for 

reproducing the long-term deflection of large-span 

segmentally-erected box girders and recommended the 

use of creep Model B3 (Bazant & Baweja, 1995), which 

has been recently improved in Model B4 (Wendner et al., 

2015).  Unlike CEB-FIP models, both Model B3 and 

Model B4 consider a creep component whose effect 

persists even many decades after concrete casting. 

Moreover, they properly take into account difference in 

shrinkage between top and bottom slabs of the box girder, 

a phenomenon that could strongly influence the deflection 

trend. Model B4 includes two major improvements with 

respect to Model B3: the first is the inclusion of 

temperature effects in the creep function; the second 

concerns the separation of the drying and the autogenous 

components of shrinkage, particularly important for high 

strength concrete.  

An innovative approach to investigate excessive 

deflections in massive concrete structures could be the 

introduction of fractional (real-order) operators into the 

creep constitutive law (Di Paola & Zingales, 2012, Di 

Paola et al., 2013). Specifically, the use of fractional 

operators could bring significant computational savings to 

model calibration due to the reduced number of 

parameters -about three- involved into the formulation. 

However, both Di Paola & Zingales (2012) and Di Paola 

et al. (2013) applied fractional operators to hereditary 

materials, e.g. polymers, and not to ageing materials like 

concrete. Therefore, in this research work we focus on 

Model B3 mainly because its creep and relaxation 

functions (Bazant & Baweja,1995, Bazant et al.,2013), 

can be fitted by fractional operators. Moreover, a reliable 

relaxation function is not yet available for Model B4 and, 

therefore, Model B3 is preferred. 
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Significant aspects relative to monitoring and 

modelling of segmental box girders should worthy of 

investigation. In fact, in most cases, the inexplicable 

behavior of this specific class of structures led to the 

installation of efficient structural health monitoring 

(SHM) systems and to the development of FE models. 

This is the case of the Colle Isarco viaduct, for which both 

field data -revealed to assess the effectiveness of the last 

maintenance work undertaken in 2014- and FE model 

predictions were used to provide information on future 

structural performance and to support decisions 

concerning the viaduct management. The SHM system 

installed on the Colle Isarco viaduct includes: i) fiber-

optic sensors based on fiber Bragg gratings (Balageas et 

al., 2010; Glisic & Inaudi 2007) to measure strains of top 

and bottom slabs; ii) PT100 resistance thermometers to 

acquire temperature variations along the whole structure; 

and iii) a topographic network with prisms to measure 

displacements. This fusion of data coming from different 

sensors certainly reduces uncertainties regarding 

structural behavior (Han et al., 2017), helps the bridge 

manager to identify causes of possible anomalies and 

improves his or her capability to take optimal decisions 

(Cappello et al., 2016).  

As further support for computational frameworks for 

Bayesian inference and bridge maintenance decisions, a 

1D FE model of the Colle Isarco viaduct, which is 

presented in this paper, was also developed. Along the 

same lines, Caracoglia et al. (2009) developed a time-

domain FE model to better interpret the behavior of long-

span modern bridges under vortex shedding-induced 

loads. Torbol et al. (2013) used a FE analysis to evaluate 

bridge fragility throughout its service life. Shapiro (2007) 

built a FE model of the Interstate Highway 565 Bridge in 

Huntsville (Alabama), to investigate the main causes of 

cracking phenomena observed just after the construction 

of the bridge. The main difference between the 

aforementioned models and the model of the Colle Isarco 

viaduct is that they are all available in commercial 

software, mainly ANSYS or OpenSEES (Mazzoni, 2006); 

conversely, the Colle Isarco’s model is implemented in 

MATLAB and relies on an energetic formulation for 

linear viscoelastic problems (Carini et al., 1995). Another 

important aspect is its reduced run time, which is 

determinant for both stochastic computations and model 

implementation in a Decision Support System (DSS). In 

sum, to the authors’ knowledge, there is a paucity of 

papers dealing with modelling of creep and shrinkage 

phenomena for simple yet effective FE simulations of 

complex segmental prestressed concrete box girders; box 

girders that, in addition, are subjected to complex loading 

histories. These are the important issues that the paper 

explores further. 

 

1.2 Scope 

 

This paper presents the main issues regarding the 

modelling of creep and shrinkage phenomena for a 

specific class of bridges, i.e. segmental prestressed 

concrete box girders subjected to complex loading 

histories. It also shows how a reliable SHM system 

coupled to an effective FE model can be used to 

investigate the past behavior and predict the short- and 

long-term deflection of such complex structures, 

considering, as representative case study, the Colle 

Isarco viaduct.  

According to this aim, we organize the paper as 

follows. Firstly, Section 2 describes an energetic 

formulation and a creep constitutive law suitable for the 

problem under investigation. Section 3 introduces a 

segmental prestressed concrete box girder, i.e. the Colle 

Isarco viaduct, focusing on the main structural 

characteristics and the SHM system installed on the 

viaduct in 2014. Section 4 provides details about the 

implementation of the viaduct geometry and the whole 

load history into the FE formulation, together with model 

results. Moreover, an overview of the conceived DSS as 

further development of this research work can be found 

in Section 5. Finally, we present conclusions and future 

developments in Section 6. 

 

2 A FE FORMULATION FOR PRESTRESSED 

CONCRETE BOX GIRDERS 

 

In this section, we propose an effective way to model 

segmental prestressed concrete box girder deflection 

and, generally, all structures highly sensitive to creep, 

without resorting to commercial software analyses. 

Hence, we present a 1D FE formulation by invoking the 

stationarity of a functional for linear viscoelastic 

problems, which relies on the creep constitutive law of 

Bazant (Bazant & Baweja, 1995). 

Hereinafter, we recall the Bazant’s creep law, known 

in the literature as Model B3 (Bazant & Baweja, 1995); 

and present, in greater detail, an energetic formulation 

for concrete (aging) materials derived from a previous 

formulation proposed by Carini et al. (1995). 

 

2.1 A constitutive creep model: Model B3 

 

In its most general form, Model B3 (Bazant & Baweja, 

1995) assumes that, for a constant stress σ applied at 

age 𝑡′, the resulting strain 𝜀(𝑡) at time t can be expressed 

as 

 

𝜀(𝑡) = 𝐽𝐵3(𝑡, 𝑡′) ∙ 𝜎 + 𝜀𝑠ℎ(𝑡) + 𝛼 ∙ ∆𝑇(𝑡)              (1) 
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in which 𝐽𝐵3(𝑡, 𝑡′) defines the compliance function, i.e. 

strain at time 𝑡 caused by a unit uniaxial constant stress 

at 𝑡′, 𝜀𝑠ℎ is the shrinkage strain, ∆𝑇 defines the 

temperature variation, and 𝛼 the thermal expansion 

coefficient. Furthermore, we can conceive the 

compliance function as the sum of three components, 

 

𝐽𝐵3(𝑡, 𝑡′) = 𝑞1 + 𝐶0(𝑡, 𝑡′) + 𝐶𝑑(𝑡, 𝑡′, 𝑡0)                 (2)           

 

where 𝑞1 defines the instantaneous strain due to a unit 

stress, 𝐶0 is the compliance function for basic creep, 

meaning the creep at constant moisture content and no 

moisture movement through the material, and 𝐶𝑑 defines 

the compliance function for drying starting at time 𝑡0. 

The basic creep compliance can be further broken 

down into 

 

𝐶0(𝑡, 𝑡′) = 𝑞2𝑄(𝑡, 𝑡′) + 𝑞3 𝑙𝑛[1 + (𝑡 − 𝑡′)𝑛] +

𝑞4𝑙𝑛 (
𝑡

𝑡′
)                                                                       (3) 

 

where function 𝑄 is discussed in more detail in Bazant & 

Baweja (1995). The terms in (3) containing 𝑞2, 𝑞3, 𝑞4 

represent the aging viscoelastic compliance, non-aging 

viscoelastic compliance and flow compliance, 

respectively, as deduced from the solidification theory. 

The drying compliance 𝐶𝑑 reads 

 

𝐶𝑑(𝑡, 𝑡′, 𝑡0) = 𝑞5[𝑒−8𝐻(𝑡) − 𝑒−8𝐻(𝑡0
′ )]

1 2⁄
               (4)              

 

where H is the hydraulic radius of the section, i.e. the 

volume-to-surface ratio and 𝑡0
′ = max (𝑡′, 𝑡0). Evidently, 

a)  b) 

c) d) 

Figure 1. (a) The Koror-Babelthuap Bridge in Palau; (b)  the Koror-Babelthuap Bridge failure;  

(c) the central span of the Colle Isarco viaduct in Italy; (d) northern lateral spans of the Colle Isarco viaduct 
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Equation (4) is valid for t > 𝑡0
′ , otherwise it is equal to 

zero. The five parameters of Model B3 can be either 

treated as statistical variables or estimated through the 

following formulas, valid only for certain ranges of 

material mechanical properties (Bazant & Baweja, 

1995), i.e. 

 

𝑞1 = 0,6 ∙ 106 𝐸28              𝐸28 = 4734√𝑓𝑐̅                      (5) 

 

𝑞2 = 185.4 𝑐0.5 𝑓𝑐̅
−0.9

                                                        (6) 

 

𝑞3 = 0.29 (𝑤 𝑐)⁄ 4
𝑞2                                                          (7) 

 

𝑞4 = 20.3 (𝑎 𝑐)⁄ −0.7
                                                           (8) 

 

𝑞5 = 7.57 ∙ 105𝑓𝑐̅
−1

|𝜀𝑠ℎ∞|−0.6                                            (9) 

 

All the formulas above are given in SI (metric) units 

(MPa, m). In addition, 𝐸28 is the Young’s modulus at 28 

days, 𝑓𝑐̅ defines the cylinder compression strength, 𝑤 𝑐⁄  

is water-cement ratio, 𝑎 𝑐⁄  is aggregate-cement ratio, and 

𝜀𝑠ℎ∞ is the shrinkage strain at infinity. 

Once the compliance function and its five parameters 

are known, it is also possible to estimate the 

corresponding relaxation function 𝑅𝐵3  through the 

following approximate formula (Bazant et al., 2013): 

 

𝑅𝐵3(𝑡, 𝑡′) =
1

𝐽𝐵3(𝑡,𝑡′)
[1 +

𝑐1𝛼(𝑡,𝑡′)𝐽𝐵3(𝑡,𝑡′)

𝑞𝐽𝐵3(𝑡,𝑡−𝜂)
]

−𝑞

           (10)                             

 

where  

 

𝑐1 = 0.0119 ln(𝑡′) + 0.08         𝑞 = 10                      (11)               

 

𝛼(𝑡, 𝑡′) =
𝐽(𝑡′+𝜖,𝑡′)

𝐽(𝑡,𝑡−𝜖)
− 1                                                       (12) 

 

𝜖 =
𝑡−𝑡′

2
                                            𝜂 = 1                       (13)                                                                  

 

Unlike the formula developed in 1979 by Bazant and 

Kim (Bazant & Kim, 1979), Equation (10) prevents any 

violation of the thermodynamic requirement of negatives 

of 𝑅𝐵3(𝑡, 𝑡′). Therefore, (10) can be utilized to describe 

the long-time relaxation phenomenon of concrete loaded 

at a young age; for this reason, it is particularly useful for 

compliance functions that correctly describe 

multidecade creep, which is the case of the Model B3 

compliance function. 

In summary, Model B3 depends on five different 

terms, controlled by parameters 𝑞1, 𝑞2, 𝑞3, 𝑞4, and 𝑞5. 

The first three components roughly reproduce the same 

effect as the classical CEB-FIP model (CEB, 2008) and 

have no impact on the long-term behavior. In contrast, 

the flow compliance term, including q4, is unique to 

Model B3 and to the aforementioned Model B4 

(Wendner et al., 2015); it depends on the logarithm of 

time and, thus, keeps producing its effects in the long 

term. Lastly, the term involving q5, which depends on the 

effective thickness H, allows us to properly take into 

account the differential drying rate of the two 

(bottom/top) slabs of box girders.  

 

2.2 FE viscoelastic formulation  

 

In order to take into account creep effects, we start 

from the classical total potential energy with an 

additional integration over time. Moreover, we assume 

the classical hypotheses of Bernoulli-Navier and first-

order beam theories, denoting with 𝑥 the coordinate of 

the beam longitudinal axis, 𝑢(𝑥, 𝑡) the longitudinal 

displacement, and 𝑣(𝑥, 𝑡) the transversal displacement of 

the generic point of the beam. Hence, 𝑥 defines the local 

axis of the beam and, in the case under investigation, it 

matches the global axis.  

The extension of the total potential energy functional 

to viscoelasticity reads, 

𝐹(𝑢, 𝑣) =
1

2
∫ ∫ 𝑅(𝑥, 𝑡′, 𝑡′) [𝐴 (

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
)

2

+
𝐿

0

𝑡

𝑡′

𝐼 (
𝜕2𝑣̂(𝑥,𝑡)

𝜕𝑥2 )
2

] 𝑑𝑥 𝑑𝑡 − ∫ ∫ 𝑝(𝑥, 𝑡)𝑢̂(𝑥, 𝑡)
𝐿

0

𝑡

𝑡′
𝑑𝑥 𝑑𝑡 −

∫ ∫ 𝑞(𝑥, 𝑡)𝑣̂(𝑥, 𝑡)
𝐿

0

𝑡

𝑡′
𝑑𝑥 𝑑𝑡                                                   (14) 

 

where [𝑡′, 𝑡] is the time interval, 𝑅(𝑥, 𝑡′, 𝑡′) defines the 

viscous relaxation kernel evaluated at 𝑡′, and 𝑝(𝑥, 𝑡) and 

𝑞(𝑥, 𝑡) are the longitudinal and transversal components 

of distributed load, respectively; whereas, 𝑢̂(𝑥, 𝑡) and 

𝑣̂(𝑥, 𝑡) define the solution of the auxiliary problem. 

 

Figure 2. DoFs of a plane beam finite element 

 

Now, among the admissible displacement fields, the 

solution of the viscoelastic problem, in the given time 

interval, is the field that makes the functional minimum. 

The admissible displacement fields are intended as those 

that satisfy both compatibility equations and the 

Dirichelet boundary condition.  

Due to the double dimension of the integral, we need 

to introduce into (14) both space and time discretization. 

For the spatial discretization, beam finite elements with 

three DoFs per node are considered. Figure 2 depicts a 

single beam finite element with its six DoFs. In addition, 
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we take into account the classical linear shape functions 

for the extensional DoFs  𝒓𝒖 = [u1 u2]T, and the classical 

cubic shape functions for the bending DoFs 𝒓𝒗 = [v1 θ1 

v2 θ2]T. The shape functions, referring to each node of the 

mesh, are collected into the operator 𝑵(𝑥) and the 

corresponding nodal DoFs into the vector 𝒓(𝑡). Thus, we 

can express the displacement vector 𝒖 = [𝑢  𝑣]𝑻  as 

follows:  

 

𝒖 = [
𝒏𝒖

𝑻 𝟎𝑻

𝟎𝑻 𝒏𝒗
𝑻] [

𝒓𝒖

𝒓𝒗
] = 𝑵(𝑥)𝒓(𝑡)                                 (15)                                                          

 

𝒓(𝑡) = 𝑨𝜶(𝑡)                                                                (16) 

 

where 𝑨 denotes the coordinate transformation operator 

and 𝜶(𝑡) the vector of nodal DoFs. With regard to the 

time discretization, the vector 𝜶(𝑡) reads 

 

𝜶(𝑡) = 𝑴(𝑡)𝜷                                                              (17) 

 

It expresses the product of time shape functions, 

collected into the operator 𝑴(𝑡), and time DoFs, 

collected into the vector 𝜷. For each spatial DoF, we 

consider two linear time shape functions, for a total of 12 

DoFs per beam finite element. The first time shape 

function is 0 at the beginning of the time step and 1 at the 

end of the time step, whilst the second is 1 at the 

beginning and 0 at the end.  

The discretized form of (14) reads 

 

𝐹(𝑢, 𝑣) =
1

2
∫ 𝜶̂𝑻(𝑡) {∫ 𝑅(𝑥, 𝑡′, 𝑡′) [𝐴 (

𝑑𝒏𝒖(𝑥)

𝑑𝑥
) (

𝑑𝒏𝒖(𝑥)

𝑑𝑥
)

𝑇

+
𝐿

0

𝑡

𝑡′

𝐼 (
𝑑2𝒏𝒗(𝑥)

𝑑𝑥2 ) (
𝑑2𝒏𝒗(𝑥)

𝑑𝑥2 )
𝑇

] 𝑑𝑥} 𝜶̂(𝑡) 𝑑𝑡 −

∫ 𝜶̂𝑻(𝑡) {∫ 𝒏𝒖(𝑥)𝑝(𝑥, 𝑡)
𝐿

0
𝑑𝑥}

𝑡

𝑡′
 𝜶̂(𝑡)𝑑𝑡 −

∫ 𝜶̂𝑻(𝑡) {∫ 𝒏𝒗(𝑥)𝑞(𝑥, 𝑡)
𝐿

0
𝑑𝑥}

𝑡

𝑡′
𝜶̂(𝑡) 𝑑𝑡                            (18)                                     

 

The vector 𝜶̂(𝑡)  of the ‘fictitious’ displacement 

unknowns can be obtained by means of the 

aforementioned auxiliary elastic problem with the 

following longitudinal and transversal distributed loads: 

 

𝑝̂(𝑥, 𝑡) = −
𝜕

𝜕𝑥
(𝑅(𝑥, 𝑡, 𝑡′)𝐴

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
) −

𝜕

𝜕𝑥
∫ (𝑅(𝑥, 𝑡, 𝜏)𝐴

𝜕𝑑𝑢(𝑥,𝜏)

𝜕𝑥
)

𝑡

𝑡′
                                                  (19) 

 

𝑞̂(𝑥, 𝑡) =
𝜕2

𝜕𝑥2 (𝑅(𝑥, 𝑡, 𝑡′)𝐼
𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2 ) +

𝜕2

𝜕𝑥2 ∫ (𝑅(𝑥, 𝑡, 𝜏)𝐼
𝜕2𝑑𝑣(𝑥,𝜏)

𝜕𝑥2 )
𝑡

𝑡′
                                                (20) 

 

named ‘fictitious’ loads by Carini et al. (1995). Invoking 

the stationarity of the classical total potential energy 

functional, we reach the following resolving system for 

the auxiliary problem, 

 

𝑲𝜶̂(𝑡) = 𝑯𝜷                                                                     (21) 

 

with 𝑲 the well-known elastic stiffness operator of the 

assembled structure and, 𝑯, an operator depending on 

both the relaxation kernel and the time shape functions. 

Hence, we can derive the vector 𝜶̂(𝑡) from (21) and, 

then, introducing its expression into (18), its minimum is 

reached when  𝜷 corresponds to the solution of the 

following linear system:  

  

𝑳𝜷 = 𝒈                                                                              (22) 

 

where 𝑳 is the extended stiffness operator and 𝒈 is the 

extended vector of equivalent nodal forces.  

In order to specialize the solution to the case of ageing 

materials, it is necessary to consider a proper creep 

model into the formulation. For instance, according to 

the reasoning set out in Section 1 for box girders under 

investigation, the relaxation function of Model B3 (10) 

has to be replaced into (19) and (20). Moreover, the 

subdivision of the whole time step into small 

subintervals will further improve the proposed 

formulation. As a result, a sequence of smaller problems 

can be solved and, at every step, the calculation is 

accomplished by starting from the results available from 

previous steps. A pseudocode, summarizing the whole 

FE viscoelastic formulation, is reported in the Appendix. 

 

3 THE CASE STUDY OF THE COLLE ISARCO 

VIADUCT  

 

3.1 Bridge structural characteristics  

 

   The Colle Isarco viaduct is an example of segmental 

prestressed concrete box girder that experienced 

excessive multidecade deflections just after its 

construction. It was designed by engineers Bruno and 

Lino Gentilini and erected between 1968 and 1971 

(Gentilini & Gentilini, 1972). Overall, the viaduct 

comprises two structurally independent decks, the so-

called North and South carriageways, with 13 spans, for 

a total length of 1028.2 m. The main span of the viaduct, 

163 m long, consists of two symmetric reinforced 

concrete Niagara box girders, which support a suspended 

beam of 45 m, as depicted in Figure 3. Each box girder 

ends with a 59m-long cantilever, counterbalanced by a 

back arm with a length of 91 m. Moreover, each box 

girder is composed of 33 box-girder cast-in-place 

segments with a depth varying from 10.93 m, at the pier, 
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to 2.57 m, at the edge. The thickness of the top slab of 

the box girder is constant at 0.29 m, whilst the bottom 

slab varies from 0.99 m to 0.12 m. A concrete of nominal 

class Rck = 450 kg/cm2 (C35/45 according to the current 

CEN (2004)) was used for all cast-in-place elements of 

piers and girders. The initial prestressing was applied 

through 32 mm diameter Dywidag ST 85/105 threaded 

bars, with 1030 MPa nominal tensile strength and an 

initial jacking tension of 720 MPa. For each 59m-long 

cantilever, the longitudinal force above the pier was 

about 120 MN and was provided by a total of 266 cables.  

As mentioned in Section 1, after only a few years from 

the viaduct opening, monitoring field data started to 

exhibit a deflection drift that cannot be explained using 

classical creep models such as those found in most 

design codes, e.g. CEN (2004). In this respect, Figure 4 

depicts the deflection trend recorded at cross section A 

of Figure 3(a). In stark contrast with the design 

prediction (CEN, 2004) of 160 mm in 1988, the actual 

deflection reached 230 mm with an apparent rate of 8 

mm/year. A similar behavior was also observed for the 

other three box girders. These first observations 

prompted the owner to undertake, between 1988 and 

1989, a radical intervention. Specifically, 10 cm of road 

pavement was removed from the cantilever arms and the 

suspended central beam, and replaced with a thinner 

layer of lightweight asphalt. The effect of this work is 

evident in Figure 4 through the immediate recovery of 70 

mm in deflection and the disappearance of the deflection 

drift for a few years after the intervention. A second 

major maintenance activity was accomplished between 

1998 and 1999, with the aim of repairing the concrete 

cover of the top slab, heavily deteriorated by the 

extensive use of salt during winter. The repair consisted 

of a scarification of the damaged concrete, replacement 

of corroded unprestressed bars, and restoration of the 

damaged concrete cover. In the following years, dumpy 

level measurements showed once more an increase in 

deflection drift. Therefore, another important 

intervention followed in 2014, which mainly involved 

the installation of an external post-tensioning system 

within the four box girders. The retrofit was designed by 

the Autostrada del Brennero SpA technical office in 

collaboration with an engineering consultant, SEICO 

SRL. The additional prestress was provided by a total of 

212 0.6” diameter compact strands, with a jacking load 

of 213 kN. The additional longitudinal force produced 

above the pier was about 45 MN, which is almost 40% 

of the original prestress. To compensate the additional 

post-tensioning force, the thickness of the top slab of the 

box girder was increased from 260 mm to 290 mm. This 

last intervention led to a recovery of 80 mm in deflection 

and a change from negative to positive deflection slope. 

Other minor work was carried out along with the post-

tensioning. Details of the retrofit work can be found in 

the relevant design documentation (Autostrada del 

Brennero SpA, 2013). 

 

 

Figure 4. Comparison between monitoring data (black 

dots) and design prediction of CEN (2004) (red line) 

relevant to cross section A of Figure 3(a) 

 

 

a) 

 

 

 

 

b) 

Figure 3. (a) Elevation of the three main spans of the viaduct and (b) generic cross section of the box-girder. 

Dimensions in m 

 

C B A 
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3.2 SHM system for field data acquisition  

 

The SHM system recently installed on the viaduct 

consists of three different sets of instruments, each based 

on a different technology. The first set is made of two 

Leica TM50 topographic total stations and 72 GPR112 

prisms. It was installed and activated in early 2014, so it 

managed to record the effects of the retrofit intervention. 

The total stations can detect the position of each prism 

with a precision in the range of 2 to 20 mm, every hour. 

The second and third set of the system were installed in 

June 2016 but have not yet been activated. These are 

made of 56 fiber optic sensors (FOSs) implementing 

fiber Bragg gratings (FBGs) and 74 PT100 platinum 

resistance thermometers connected to their respective 

reading units. The topographic network was designed to 

monitor the deflection of the decks between Pier #7 and 

#10 during the structural intervention and afterwards. 

The total stations were installed on a 1.50 m-high 

concrete pile and protected by low-iron glass, a type of 

glass that minimizes the measurement error due to 

refraction. The location of the two stations was chosen 

both to ensure stability and to maximize the precision of 

the measurements. In general, the latter is enhanced by 

placing the measurement points and the benchmarks at 

approximately the same distance from the total stations 

and at the same altitude. The location of the 60 prisms 

used as measurement points and the 12 benchmarks is 

depicted in Figure 5. In order to reduce the uncertainty 

(Kirkup & Frenkel 2010), 6 benchmarks were used for 

each total station and were positioned in sparse locations 

around the Isarco Valley.  

The systems based on FOSs and PT100 sensors were 

designed to monitor the long-term effects of the recent 

post-tensioning intervention and to assist the 

investigation into possible structural anomalies. These 

systems record the strain of both the top and bottom slabs 

of the box girders and the temperature pattern between 

Piers #7 and #10. The FBGs sensors measure the average 

uniaxial strain with a base of 2.00 m, whilst the PT100 

resistance thermometers measure local temperature. 

Each instrumented section contains 4 FOSs, 2 for each 

deck, 1 for each slab, whilst 4 acquisition units are 

located near Piers #8 and #9. In total, 14 sections are 

measured using the FOSs. The temperature field is 

measured in 10 sections: 16 PT100 sensors, 8 for each 

deck, are devoted to cross sections C5 and C7, see Figure 

6, whilst 6 PT100 sensors, 3 for each deck, are devoted 

to each of the remaining sections. The strategy consists 

in accurately measuring the temperature pattern in cross 

sections C5 and C7, and then obtaining the pattern in the 

remaining sections by using the temperatures provided 

by the 3 sensors as boundary conditions. Since the units 

that record data from the PT100 sensors can acquire 

measurements from 4 different sensors at most, 4 

acquisition units are installed in cross sections C5 and 

C7, and 2, one for each deck, in the others. Each 

acquisition unit has an RJ-45 interface and is connected 

to an industrial PC by means of a TCP/IP protocol. 

The total stations started acquiring data on June 9, 

2014. Figure 7 shows the vertical displacement of prisms 

8N1N and 8N1S, along with the air temperature, 

recorded from August 4 to 9, 2014. These prisms are 

placed at the edge of the north girders, i.e. a location that 

is sensitive to variations in loads, temperature and 

mechanical properties. By observing these 

measurements, we can conclude that the behavior of the 

two decks before post-tensioning was similar, and 

mostly affected by temperature rather than live loads. 

Based on Figure 7, we can also argue that when the air 

temperature increases in the morning, the edge of each 

deck moves down, with a short time delay. This occurs 

because the source of heat, i.e. the sun, increases the 

temperature of the top slab more than that of the bottom 

slab, and so leads the top slab to elongate more than the 

bottom one. 

In Figure 8, we show the instant effects of post-

tensioning. The figure displays one measurement per 

day, acquired from 5 am to 7 am -when a measurement 

exists within this interval-. Three phenomena can be 

observed in Figure 8: 

 

i. from July 31 to August 11, 2014, part of the top slab 

belonging to the girder bearing the southbound 

carriageway was removed and new concrete was cast 

to the required thickness; this weakened the 

corresponding deck, leading it to behave differently 

from the girder bearing the northbound carriageway; 

ii. from November 25 to December 3, 2014, the external 

cables installed in the girder bearing the southbound 

carriageway were tensioned, causing the same deck to 

rise by about 70 mm; 

iii. the behavior of the southbound deck after post-

tensioning in 2014 was different from the other, as its 

deflection clearly increased more over time than that 

of the northbound carriageway. 

 

In addition, Figure 8 also shows the influence of the 

environmental temperature. In particular, we can notice 

that whereas the measurements of Figure 7 are strongly 

influenced by the hourly effects of the sun, which causes 

the edge of the cantilever to lower, the deflection 

displayed in Figure 8 seems to increase with the 

temperature. The reason for this is that measurements 

shown in Figure 7 were recorded before sunrise, i.e. 
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when the temperature of the two slabs should be about 

the same and close to the average temperature of the air 

in the early morning. Based on this reasonable 

assumption, a global increase in temperature of the 

structure increases the size of the whole viaduct, in 

particular of the piers, resulting in larger measurements 

of the edge deflection.  

Finally, Figure 8 shows that the effect of every stage 

of the 2014 intervention was monitored with a good 

precision and that measurements agree well with first 

principles and engineering judgement. 

 

 
 

Figure 5. Configuration of prisms between Piers #8 and 

#9. Dimensions in m 

 

 

 
Figure 6. Configuration of FOSs and PT100 sensors 

 

 
Figure 7. Time histories of deflection and temperature 

field data 

 

 
Figure 8. Measured deflection at prisms 8N1N and 

8N1S and air temperature field data 

 

 

4 FE MODELLIIN OF THE COLLE ISARCO 

VIADUCT 

 

A realistic FE model of the Colle Isarco viaduct may 

be useful not only for the investigation of the main 

causes of its past behavior, but also to estimate future 

deflections, to detect the effectiveness of the last 

intervention, and to provide a useful means for the 

development of a DSS, resulting in significant cost 

savings in future maintenance.  

Therefore, in the sequel, we present two separate FE 

models. The first is a refined 3D model that we used to 

perform local analyses only; in fact, the run time required 

for analyses of the whole structure appeared to be 

excessive. The second is a simpler 1D model, based on 

the formulation presented in Section 2 and conceived to 

perform rapid and accurate creep analyses on the main 

box girders. To the best of authors’ knowledge, this is the 

first time that an energetic formulation for linear 

viscoelastic problems is developed and applied to a 

realistic structure subjected to such a complex loading 

history. 
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4.1 3D FE model  

 

We developed a 3D FE model of the Colle Isarco 

viaduct in ANSYS v. 12.1. The concrete structure of the 

viaduct was implemented using SOLID186 elements, 

whereas the 414 cables were modeled with 8059 

BEAM188 Timoshenko beam elements, for a total of 

260000 degrees of freedom (DoFs). With regard to the 

prestressing load, each cable was placed into the model 

at its proper longitudinal and transversal position, 

simulating the prestress friction losses by applying an 

equivalent thermal gradient between the two edges of 

each cable. The geometrical characteristics considered in 

the model reproduce the actual geometry of the viaduct, 

as well as the mechanical properties of materials. We 

summarize both geometrical and mechanical properties 

in Table 1 and Table 2, where 2.38÷10.80 m indicates 

that the cross-section depth varies from 2.38 m at section 

A of Figure 3a to 10.80 m at Pier #8 as well as for the 

lower slab thickness. 

 

Table 1. Geometrical characteristics  

Cross section properties 

Cross section depth 2.38÷10.80 m 

Upper slab width 11.00 m 

Lower slab width 6.00 m 

Upper slab thickness 0.26 m 

Lower slab thickness 0.12÷0.99 m 

Lateral slab thickness 0.40 m 

 

Table 2. Mechanical properties  

Concrete 

Compression strength  45 MPa 

Young’s modulus  31043 MPa 

Poisson’s ratio 0.2 

Density 2500 kg/m3 

Dywidag bars 

Yield strength 850 MPa 

Young’s modulus 210000 MPa 

Poisson’s ratio 0.3 

Density 7850 kg/m3 

 

With regard to the constitutive law of Bazant, ANSYS 

allows users to redefine the mechanical constitutive 

behavior of materials through User Programmable 

Features (UPF). Thus, Model B3 was implemented in 

FORTRAN language as an external user-defined 

subroutine with two outputs: i) the incremental creep 

strain at the current time step; ii) the corresponding time 

derivative. According to Equations (2)-(4), these two 

strain quantities are functions of five parameters, which 

were estimated through a Bayesian analysis (Bolstad, 

2010) and read: 𝑞1 =19.33𝜇𝜀, 𝑞2 =129.93𝜇𝜀, 

𝑞3 =0.56𝜇𝜀, 𝑞4 =10.09 𝜇𝜀 and 𝑞5=19352.92𝜇𝜀 ∙ 𝜀𝑠ℎ∞. 

      Regardless of the constitutive law considered in 

the model, ANSYS can analyze creep phenomena by 

means of two different integration methods. 

 

 

Figure 9. Phases of displacement evolution of upper 

point at cross section B of Figure 3(a) during 

construction estimated by a 3D FE simulation 

 

The first is the explicit forward Euler method, whilst 

the second corresponds to the implicit backward Euler 

method. The explicit method is widely used in creep 

analysis because of simplicity, and its accuracy depends 

on the time-step size. Furthermore, it is conditionally 

stable, which means that its stability is restricted to small 

time steps. On the other hand, the implicit Euler method 

is numerically unconditionally stable, which implies that 

it does not require as small a time step as the explicit 

creep method, so it is much faster overall. However, the 

price for the unconditional stability is the need to solve 

non-linear equations at each time step. The computation 

of the creep strain,  𝜀𝑐𝑟 , through the implicit integration 

method, i.e. the method selected for modelling the Colle 

Isarco viaduct, follows the algorithm summarized in 

Table 3. Therein, we use n to indicate the current time 

step, i the iteration step, 𝑫 the derivative operator, 𝑲 the 

stiffness operator, and 𝝐 a tolerance vector.  

As clearly shown in Table 3, the accuracy and 

effectiveness of the implicit method depend on both the 

chosen tolerance and the convergence ratio of the fixed 

point iterations. A drawback that might occur in this type 

of analysis concerns the slow convergence of the fixed 

point iterations. Therefore, if the desired accuracy is not 

reached within 3-4 iterations, the time-step size will be 

decreased and calculations repeated starting from Step 1. 

For instance, in the case of the Colle Isarco viaduct 
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model, due to the heavier deformation gradient occurring 

within the first few days after load application, we 

divided initial time steps into several small subintervals. 

 

Table 3. Algorithm for the evaluation of creep strains 

implemented in the ANSYS software  

Implicit creep method 

Set 𝑖 ≔ 0;   𝜺𝑛+1
𝑐𝑟𝑖

= 𝜺𝑛
𝑐𝑟  ;    𝝈𝑛+1

𝑖 = 𝝈𝑛 

1 Subroutine computes ∆𝜺𝑛
𝑐𝑟𝑖

; 𝜺𝑛+1
𝑐𝑟𝑖+1

= 𝜺𝑛
𝑐𝑟 + ∆𝜺𝑛

𝑐𝑟𝑖
 

 

If |𝜺𝑛+1
𝑐𝑟𝑖+1

− 𝜺𝑛+1
𝑐𝑟𝑖

| > 𝝐 then 

    solve: 𝑫𝑲𝑫𝑻𝒖𝑛+1
𝑖+1 = −𝒇 + 𝑫𝑲𝜺𝑛+1

𝑐𝑟𝑖+1
+ 𝑫𝑲𝜺𝑛+1

𝑡ℎ𝑖+1
 

    calculate: 𝝈𝑛+1
𝑖+1 = 𝑲(𝑫𝑻𝒖𝑛+1

𝑖+1 − 𝜺𝑛+1
𝑐𝑟𝑖+1

) 

    set 𝑖 ≔ 𝑖 + 1 and go to 1 

else 

     set 𝜺𝑛+1
𝑐𝑟 = 𝜺𝑛+1

𝑐𝑟𝑖+1
 

end 

 

The 3D model accounts for all variations in loading, 

geometry and boundary conditions. Furthermore, it can 

reproduce both bridge history and construction stages 

with optimal accuracy. For instance, Figure 9 shows the 

principal construction phases tracked by ANSYS in 

terms of deflection at cross section B, specified in Figure 

3(a). In particular, the box girder deck was erected in 

alternate segments launched each side of Pier #8, known 

in the technical literature as balanced construction. As a 

result, after a new segment cast, indicated in red in the 

curve of Figure 9, the post tension followed, whose 

deflection is depicted in blue, in the same curve. Then, 

because of the different lengths of the cantilever arm (59 

m) and the back arm (91 m), the balanced construction 

required the erection of a temporary support at cross 

section C of Figure 3(a). After the construction of the 

back arm, the temporary support was removed, reaching 

its final configuration.  

We employed the same 3D FE model to perform a 

creep analysis from 1969 to 2016; anyhow it did not lead 

to satisfactory results due to: i) the huge simulation time, 

more than 15 days with an 8-core machine -32 GB of 

RAM and 2.10 GHz of CPU frequency-; ii) the amount 

of memory required to complete the analysis. Given this 

computational burden, we mainly used the ANSYS 

model to perform 3D elastic analyses; moreover, the 

extent of local stresses at the anchorage blocks of the 

post-tensioning systems and at other critical parts of the 

structure were estimated. 

 

4.2 1D FE model 

 

Owing to the drawbacks of the 3D ANSYS model, the 

1D model was then selected for non-linear simulations 

accounting for: i) the construction stages of the viaduct; 

ii) its geometry; iii) the prestress loadings; iv) the tension 

losses; v) and major maintenance work. Accordingly, we 

describe herein the main input data for the FE 

formulation anticipated in Subsection 2.2. 

As depicted in Figure 10, we divided the box girder 

into 48 segments. Hence, 49 nodes, with three DoFs per 

node, characterize the 1D FE model, for a total number 

of 147 DoFs against the 260000 DoFs of the 3D model. 

In order to take into account the exact assembly of the 

segments and the change of constraint configuration, we 

redefine the geometric input data at each time step within 

the interval 0 days (start of construction on May 1969) to 

731 days (end of construction on May 1971), with a time-

step size equal to 1 day. After the construction end, the 

static configuration of the box girder was left unchanged. 

Thus as depicted in Figure 3(a), the final configuration 

of each single box girder consists of a roller at Pier #7 

and a pin at Pier #8. 

Other important input data provide information about 

the number of upper and lower pretensioning cables, the 

homogenized area, the homogenized moment of inertia, 

and the volume-to-surface ratio at each cross section of 

mesh; all assigned according to the technical reports of 

Autostrada del Brennero SpA. In detail, the area and 

moment of inertia are two fundamental quantities for the 

determination of the element stiffness operator Ke, 

whereas the volume-to-surface ratio is utilized to 

compute the drying compliance of Model B3. All 

additional information useful for estimating the five 

parameters of Model B3 through Equations (5)-(9), i.e. 

cement content, aggregate content, water content, 

environmental relative humidity, and other mechanical 

properties of materials, are directly included into the 

 
 

Figure 10.  Discetization of the box girder under exam 

 



Beltempo et al. 12 

MATLAB code. As previously discussed, we reassigned 

these geometric input data, i.e. number of cables, area, 

moment of inertia, and volume-to-surface ratio, at each 

time step within the first 731 days and during the last 

maintenance work in 2014. For instance, Table 4 collects 

geometric input data and information about the Model 

B3 parameters at Pier #8, where ‘o’ indicates the 

characteristics of the old concrete C35/45 and ‘n’ 

indicates the characteristics of the new layer of concrete 

C45/55 added at the top of the upper slab during the last 

maintenance work (2014). In addition, it is important to 

underline that we set the final values of Model B3 

parameters through a proper calibration process; it was 

accomplished by varying the main quantities related to 

shrinkage phenomena, i.e. relative humidity and volume-

to-surface ratio. Since they are taken into account by 

parameter q5, it affected the most the creep response of 

the structure. 

 

Table 4. Geometrical characteristics and Model B3 

parameters of the cross section at Pier #8, where ‘o’ 

indicates the characteristics of old concrete and ‘n’ 

indicates the characteristics of the new layer of concrete 

Characteristics of the cross section at Pier #8 

Cross section depth 10.80 m 

Upper slab width 11.00 m 

Lower slab width 6.00 m 

Upper slab thickness  0.26 m 

New upper slab thickness 0.09 m 

Lower slab thickness 0.99 m 

Lateral slab thickness 0.40 m 

Number of upper cables 260 

Number of lower cables 0 

Homogenized area 18.13 m2 

Homogenized inertia 340.43 m4 

Volume-surface ratio (o) 0.22 m 

Volume-surface ratio (n) 0.09 m 

𝑞1,𝑜  19.33 𝜇𝜀 

𝑞2,𝑜  143.90 𝜇𝜀 

𝑞3,𝑜  1.07 𝜇𝜀 

𝑞4,𝑜  9.22 𝜇𝜀 

𝑞5,𝑜  323.47 𝜇𝜀 

𝑞1,𝑛  17.41 𝜇𝜀 

𝑞2,𝑛  101.43 𝜇𝜀 

𝑞3,𝑛  0.75 𝜇𝜀 

𝑞4,𝑛  6.99 𝜇𝜀 

𝑞5,𝑛  304.79 𝜇𝜀 

 

Table 5. Load history at Pier #8 during main 

interventions 

Date M [kN m] P [kN] 

16/05/1971 -8.66∙105 1.09∙105 

15/03/1988 -7.06∙105 9.94∙104 

24/11/2014 -7.60∙105 9.64∙104 

04/10/2015 -7.60∙105 1.40∙105 

 

Both the dead loads and the prestress loads were 

assigned at each time step. A total of 1373 time steps 

were assigned until year 2040, in terms of bending 

moment M and concentrated force P. Table 5 reports the 

load history of the cross section at Pier #8 relative to the 

dates of main interventions. Moreover, in order to 

guarantee the compatibility of displacements between 

the old and new slab after the intervention of 2014, we 

considered a horizontal force applied at the interface. We 

evaluated this horizontal force by simply subtracting the 

increment of creep-shrinkage deformation of the new 

layer to the increment of creep-shrinkage deformation of 

the old upper slab; then, we multiplied this difference by 

the Young’s modulus and the cross section area of the 

new layer.     

 

4.3 1D model validation and prediction  

 

In this section, we discuss the validation of the 1D FE 

formulation through comparison between field data and 

the simulated time-deflection profile. Moreover, we also 

present the prediction made by the 1D model.  

 

 

 
 

Figure 11.  Comparison between 1D FE model 

predictions and field data of time-deflection profile 

relevant to cross section A of Figure 3(a) 

 

With regard to model validation, Figure 11 depicts the 

deflection trend at cross section A of Figure 3(a), from 

the construction of the viaduct in 1969 up to 2016. The 

first part of the simulation curve is characterized by a 

slope very similar to the one acquired by dumpy level 

measurements. We can also observe a high level of 

accuracy in reproducing the elastic recoveries during the 

two maintenance interventions, in 1988 and 2014, 

respectively. A slight deviation between field data and 

the FE model occurs from 1989 to 1996; however, this 
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mismatch vanishes a few years after 1996. Overall, we 

estimated a RMSE equal to 5.7 % between the results of 

1D FE model and measured field data. Therefore, it is 

evident that the proposed FE model can capture the past 

behavior of the viaduct with a favorable accuracy.  

The comparison between field and model data during 

the last maintenance work can be better appreciated in 

Figure 12; more precisely, deflection values decrease in 

sign before the post-tensioning of November 2014 and 

increase afterwards, at a rate of 7 mm/year from 

December 2014 to September 2016. Obviously, this 

deflection increase will reduce over the years due to both 

tension losses and reduction in the differential shrinkage 

between top and bottom slabs. As a result, the 1D FE 

model predicts a horizontal configuration of cross-

section A around November 2025 with a limited 

decrease up to 2040. The relevant FE analysis from 1969 

to 2040 requires 8 hours, with an 8-core desktop 

machine, 32 GB of RAM and 2.10 GHz of CPU 

frequency. 

 

 
 

Figure 12.  Deflection effects after the intervention of 

2014 and prediction until 2040 relevant to cross section 

A of Figure 3(a) 

 

It is then evident that the 1D model requires a lower 

computational effort than the model involved in the 

ANSYS 3D analysis, briefly described in Subsection 4.1. 

The relevant main reasons are: i) the reduced number of 

DoFs; ii) the integration method used to compute creep 

strains; and iii) the time-step size required for the 

analysis. In fact, as most of commercial software, 

ANSYS software evaluates the creep strain 𝜺𝑛
𝑐𝑟  through 

the backward Euler method performing an iteration 

process at each time step n, as summarized in Table 3. 

On the other hand, no iteration process is required in the 

proposed 1D formulation, mainly because of the linearity 

of the problem and the update of both 𝑳 and 𝒈, see 

Equation (22), at each time step. In addition, the 1D 

formulation allows for the use of larger time steps than 

the backward Euler method, guaranteeing accurate 

results nonetheless. Another limitation of the backward 

Euler method regards its accuracy, which depends on the 

time-step and the convergence ratio of the fixed point 

iterations. Conversely, the accuracy of the 1D FE 

formulation also depends on the order of the chosen time 

shape functions collected in 𝑴(𝑡) of Equation (17). In 

other words, if we perform 1D and 3D analyses with the 

same time-step size, the choice of higher order shape 

functions in the 1D model can guarantee a better 

accuracy. Moreover, the presented 1D FE model, 

implemented in MATLAB and based on the energetic 

formulation presented in Subsection 2.2 seems to be 

particularly effective for the simulation of the Colle 

Isarco viaduct, including its history. Notwithstanding 

that, the proposed model neglects shear deformations, 

which is acceptable considering the slenderness of the 

structure, i.e. the incidence of bending deformations. 

 

5 DEVELOPMENT OF A DECISION SUPPORT 

SYSTEM 

 

In this section, we propose a general scheme of DSS 

for the Colle Isarco viaduct, in which information 

coming from the 1D FE model are also involved. As 

depicted in Figure 13, the proposed DSS consists of two 

main parts: i) Bayesian logic (Sivia & Skilling, 2006; 

Bolstad, 2010, Han et al., 2017) to compute probabilities 

of structural states that may occur; and ii) axiomatic 

Expected Utility Theory (EUT) (Neumann & 

Morgenstern, 1944) (Raiffa & Schlaifer, 1961) to 

identify economically optimal choices. To the best of 

authors’ knowledge, no DSS based on EUT has yet been 

proposed for everyday use in the field of civil 

engineering. Indeed, a recent publication by Faber & 

Maes (2008) pointed out a number of issues arising when 

optimal decision-making has to be implemented in real-

life settings for management of structures and 

infrastructures. Conversely, DSSs already operational in 

the real life can be found in fields of medicine and 

finance (Mussi, 2004; Sauter, 2010), as the probabilities 

of different scenarios and the financial consequences can 

be easily assessed.  

The DDS proposed herein takes as inputs four 

variables: 

 

i. The most recent SHM measurements, y, which, in our 

case, are the displacements from the total stations, the 

strains from the FOSs and the temperatures from the 

PT100 sensors; 

ii. the prior probability p(θ) of the parameters θ that 

define the structural state, i.e. Young’s modulus of 

concrete, initial prestress and relative humidity; 

iii. the prior probability p(S) of possible structural 

conditions, i.e. ‘pristine’ and ‘damaged’; 
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iv. the costs C corresponding to each possible event, i.e. 

costs of using a damaged structure -including indirect 

costs- and costs of inspection. 

 
The DSS contains a Bayesian inference module and a 

decision-analysis module. In order to calculate the 

probability p(S|y) of each possible state of the viaduct, 

given the updated observations y, the former module 

implements a numerical Bayesian inference such as the 

Metropolis-Hastings algorithm (Cappello et al., 2015) 

and Monte Carlo importance sampling (Evans & Swartz, 

1995). In order to identify the economically optimal 

choice aopt for the detected structural behavior, the 

decision-analysis module takes into account costs C, 

(Cappello et al., 2016). Typical choices to be considered 

are: ‘do nothing’, ‘close the bridge’ and ‘send an 

inspector’. The optimal action aopt corresponds to the 

maximum expected utility, calculated by applying the 

EUT axioms. 

In this framework, the 1D FE model proposed in 

Subsection 4.2 is used to train the Bayesian inference 

module depicted in Figure 13. The objective of the 

Bayesian module is to identify which structural condition 

S -‘pristine’ or ‘damaged’- agrees with the measurements 

best; therefore, it must contain the response predicted by 

the FE model in both conditions. During training, the 

structural behavior is simulated using the FE model for 

different realizations of structural condition S and for 

different realizations of state parameters θ. The need to 

perform a number of simulations that is significant from 

a statistical viewpoint made it necessary to develop an 

extremely efficient structural model. Straub (Straub, 

2014) estimated that 102 to 103 simulations are required 

to accurately calculate structural reliability. Relevant 

simulation results are stored in a lookup table, which 

provides the structural response of the viaduct for the 

realizations of S and θ not considered during training. 

The use of a lookup table reduces the execution time of 

the Bayesian inference algorithm within the DSS, and 

therefore, expedites the identification of the optimal 

action aopt that is recommended to the bridge manager. 

 

6 CONCLUSIONS AND FUTURE 

PERSPECTIVES 

 

In this paper, we have presented the conception and 

development of effective FE-based tools to model, in 

general, segmental prestressed concrete box girders 

susceptible to creep and, in particular, the significant 

Colle Isarco viaduct. We have also shown the recordings 

from the structural health monitoring system recently 

installed on the viaduct, thus highlighting its key role in 

both model validation and interpretation of the structural 

behavior of the viaduct. 

 

 
Figure 13. The architecture of the decision support 

system 

Two different FE models of the Colle Isarco viaduct 

were presented, both based on the creep constitutive law 

proposed by Bazant and co-workers. The first is a 3D FE 

model developed in a commercial software, utilized to 

perform elastic analyses only, due to the excessive 

simulation time required to perform creep analyses. The 

second is a 1D FE model conceived through an energetic 

formulation for linear viscoelastic problems, used to 

estimate the deflection trend at the tip of the longest 

cantilever, from viaduct construction in 1969 up to 2040. 

Unlike the 3D FE model, the 1D FE formulation relies 

on an extension of the classical total potential energy and 

is particularly convenient for accomplishing creep 

analyses mainly due to its reduced run time. 

Furthermore, it simulates the past behavior of the viaduct 

with a good level of accuracy and provides a satisfactory 

prediction of its long-term behavior up to 2040, with a 

clear change in the deflection trend at the end of 2025. 

The results of the 1D FE model were validated using 

both field data from the old dumpy level acquisition 

method until 2013 and from the new structural health 

monitoring system, afterwards. Moreover, the structural 

health monitoring system not only provides accurate and 

reliable data for validation of the proposed 1D FE model, 

but also successfully records the response of the viaduct 

during the last maintenance work in 2014. 

The obvious exploitation of both the 1D FE model and 

monitoring field data, presented above as an effective 

tool for future risk estimation and viaduct management, 

is their use into the context of Bayesian inference for the 

implementation of an efficient decision support system. 

Finally, further run time savings can be achieved in the 

1D FE model by parallelizing the algorithm solution for 

different load applications and by replacing the 5-

parameter Bazant model creep constitutive law with 

three parameters fractional-based real-order operators.  
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APPENDIX 

 

In this appendix, we summarize the FE viscoelastic 

formulation presented in Subsection 2.2 by means of the 

following pseudocode. 

 
%------------------------------------ 

 

INPUTs 

nodes = coordinates of each mesh node 

elements = mechanical and geometrical 

properties of elements 

loads = load applied at each mesh node 

t0 = time instant of applying load 

te = ending time instant 

 

%------------------------------------ 

 

initialize:  

k_gl = global stiffness operator 

f = global load vector 

L = extended stiffness operator 

G = extended vector of equivalent nodal 

forces 

 

for  i = 1:nel % loop over elements   

compute the element stiffness 

operator k_el; 

assemble into global stiffness 

operator k_gl; 

end 

    

 

set GE -> number of Gauss points for 

external integration; 

chooce coordinates t and weights w 

within the time interval [t0,te]; 

 

for  j = 1:GE 

  

initialize H_gl  

 

for i = 1:nel 

     

compute:  

RB3(t(j),t0); 

M(t0);             

R=(RB3(t(j),t0)/RB3(t0,t0))* 

M(t0);                

set GI -> number of Gauss 

points for internal 

integration GI; 

chooce coordinates tt and 

weights ww within the time 

interval [t(j),t0]; 

 

for x = 1:GI  

    compute: 

    RB3(t(j),tt(x)); 

    dM -> derivative vector; 

    R=R+ww(x)*(RB3(t(j),tt(x)/ 

RB3(t0,t0))*dM; 

end 

 

compute the element relaxation 

operator H_el; 

assemble into global 

relaxation operator H_gl; 

end  

 

g=g+w(j)*(H_gl)'*(k_gl\f);    

L=L+w(j)*(H_gl)'*(k_gl\H_gl); 

end     

 

compute the time DoFs vector β=L\g; 

 

%------------------------------------ 

 

OUTPUT 

α = DoFs vector of the assembled 

structure 

 

%------------------------------------ 
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