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Abstract— Navigation in an unknown environment without any pre-
existing positioning infrastructure has always been hard for mobile
robots. This paper presents a self-deployable ultra wideband UWB
infrastructure by mobile agents, that permits a dynamic placement
and runtime extension of UWB anchors infrastructure while the
robot explores the new environment. We provide a detailed anal-
ysis of the uncertainty of the positioning system while the UWB
infrastructure grows. Moreover, we developed a genetic algorithm
that minimizes the deployment of new anchors, saving energy and
resources on the mobile robot and maximizing the time of the
mission. Although the presented approach is general for any class
of mobile system, we run simulations and experiments with indoor
drones. Results demonstrate that maximum positioning uncertainty is always controlled under the user’s threshold, using
the Geometric Dilution of Precision (GDoP).

Index Terms— Unmanned autonomous vehicles, Positioning System, Robot sensing systems

I. INTRODUCTION

Mobile robotics, either terrestrial or aerial, have quickly
registered incremental advances and interests from the industry
and research community. Nowadays, they are pervasively
applied in a variety of applications. Exploration of unknown
environments has attracted an increasing attention due to
their large application scenarios, such as search and rescue
missions [1], disaster recovery [2], planetary exploration [3],
photogrammetry [4], aerial inspection and monitoring of build-
ings and structures [5] [6], agriculture [7] and predictive
maintenance [8]. Localisation and positioning capabilities are
primary features for any autonomous exploration system.
According to the application scenarios, several solutions can
be used. The capability of positioning in an absolute reference
system, usually with the GPS signal [9], is one of the most
used techniques. However, many robot exploration activities
are in GNSS-denied environments, such as indoor. In such
challenging cases, alternative positioning methods are usually
considered, e.g., visual-SLAM [10] [11], laser scanners [12].
Some of these techniques require non-negligible computing
resources, work preferably in information-rich environment,
and cannot guarantee a maximum target uncertainty (e.g.,
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SLAM) [13]. Others, instead, have limited computational bur-
den and can compute positioning under controlled uncertainty.
Nevertheless, this class of solutions usually requires instru-
mented infrastructure in the surrounding with active or passive
markers. Examples of this category are Radio Frequency
(RF) active beacons for Radio Signal Strength Identification
(RSSI) [14] or Ultra Wide Band (UWB) [15] [16] [17], while
for passive solutions we can mention visual markers [18] or
passive RFID tags [19]. The nature of the technology and the
sensors embedded into the environment determine uncertainty
during the exploration.

Providing positioning measurements with limited uncer-
tainty for autonomous robot navigation is hard if an absolute
reference as the GPS is not available. The achievable position-
ing performance depends both on the specific technology used
by the sensing devices and on the algorithm defined for the
placement of such devices [20]. When RF ranging sensors are
considered, two different approaches are usually implemented
to achieve the optimal placement in an unknown environment:

1) Off-line. The environment is analyzed, e.g., using statis-
tics about the navigation paths, and the placement posi-
tions are determined to guarantee the desired target un-
certainty. For example, in [21], three off-line algorithms
are assessed and compared to find the candidate points
of an additional beacon that maximizes the accuracy of
the localisation service over the entire region.

2) Online. In this case, the environment may not be known
upfront, and the anchors are deployed on-demand, e.g.,
when the localisation uncertainty approaches the max-
imum tolerable value. For instance, in [22], the robots
use two different strategies to place a new sensor in the
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environment: measure the average of RSSI, and place the
new sensor when this value falls under a predetermined
value or based on a fixed distance.

Recently, ultra wideband UWB signals technology has
been quickly confirmed as an effective and cheap solution
for positioning problems. Different works are developed us-
ing UWB to decrease the target uncertainty. For example,
in [23] [24] [25], Kalman filters are used to fuse UWB and
Inertial Measurement Units (IMU) for improving the position
estimation and mitigating the problem of Non-Line-of-Sight
(NLoS). In [26], the poor estimation along the vertical axis,
which is a known weakness of the UWB infrastructures, is
mitigated using inter-vehicle distance. In [27], a combination
of LiDAR (Light Detection and Ranging) and UWB is inves-
tigated, exploiting LiDAR information to improve the UWB
results.

The main characteristic of UWB technology is to use
message exchange between mobile and fixed nodes. Typically,
the mobile nodes are mounted on the robot’s chassis, while
the fixed nodes, named anchors, build up an infrastructure
with known geometric characteristics. The fixed structure of
nodes is usually deployed before starting any operations in
the environment [28], hence adopting an off-line placement
procedure. Although it seems simple, off-line placement is
time-consuming and critical because any fault in this phase
or anchor position uncertainty seriously influences the posi-
tioning system’s precision.

To overcome infrastructure setup inaccuracies and provide a
positioning system also for unstructured environments, where
off-line analysis is inapplicable, we developed a method for
dynamic placement and runtime extension of the infrastructure
anchors. In our work, while exploring the environment, the
mobile robot deploys new anchors to strengthen the infrastruc-
tures. Thus the ranging sensors are self-deployable and will
extend the positioning reference at runtime during the robot
exploration. Notice that this marks a striking difference with
respect to the known literature. Indeed, existing solutions, e.g.,
[29], [30], cannot change the nodes infrastructure at runtime
based on robot needs nor can adequately leverage the ratio of
information versus uncertainty that a new added anchor injects
in the multilateration problem. Moreover, our solution is robot-
centered: existing solutions usually try to optimize the entire
region as a whole, with evident computational burden issues
and difficulties in unknown or partially known environments,
while our solution is extremely light in terms of computing
power and can be computed onboard the vehicle while it
explores the (possibly unknown) environments. In particular,
our solution proposes an online-incremental algorithm based
on a genetic approach to solve the constrained optimization
problem, which finds the most convenient placement for
new anchors and reduces the number of deployments. The
algorithm keeps the maximum target uncertainty below the
user requirement, which is based on the Geometric Dilution
of Precision (GDoP). It has to be noted that the proposed
solution works with any metric able to express the positioning
uncertainty, but the GDoP comes handy for this purpose [31].

In this work, we focus on positioning accuracy problems and
not strictly on robot localisation, which requires the analysis
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Fig. 1: Circular sector intersections from (a) bad or (b) good
distributions of satellites

of the problem’s observability and the model of the robot
dynamics [32]. We present how to use the proposed approach
for a generic class of robot dynamics (e.g., ground or aerial
vehicles), mainly focusing on positioning uncertainty.

The paper is organised as follows. Section II describes
the placement metric adopted and the formulation of the
problem. Section III presents the solution based on a genetic
algorithm to optimize the chosen metric and the optimal
deployment manoeuvres, while Section IV investigates the
position uncertainty of the proposed deployment algorithm.
Section V discuss the simulation and experimental results.
Finally, Section VI concludes the article and proposes future
research directions.

II. BACKGROUND

GDoP is a metric adopted to quantify the precision and
accuracy of the data received from GPS satellites, which is
now being adopted to the wider set of generic positioning
system [33], [34]. This metric indicates how well the satellites
are geometrically organized. The lower the value, the better
is the position accuracy [35]. A graphical representation of a
poor or good geometric configuration is given in Figure 1.
GDoP is proportional to the ratio between the range error
and position error [36], thus it is inversely proportional to
the volume formed by the vectors from user to satellites and
the number of satellites. Given the distance ρi from the i-th
anchor and assuming that all the ranging measurements have
the same finite variance (hence, the homoscedastic property is
satisfied), we define the variance associated to the ranging as
σ2
ρ and, from [37], the covariance matrix of the positioning

error is

C = σ2
ρ
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2
zz represent the variance of the es-

timated location along the corresponding axes and σ2
tt is the

time offset of the receiver. Sub-metrics can be defined from (1)
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Fig. 2: A graphical representation of the problem statement.
Example of subareas S(i + (j − 1)r/n, jr/n), with j=1,...,n,
using the described simplified approach.

by adopting the trace on different sub-matrices, such as

HDoP =
√
σ2
xx + σ2

yy,

VDoP = σ2
zz,

PDoP =
√
σ2
xx + σ2

yy + σ2
zz,

GDoP =
√
σ2
xx + σ2

yy + σ2
zz + σ2

tt,

(2)

where HDoP, VDoP and PDoP are the Horizontal, Vertical and
Position Dilution of Precision, respectively, all derived from
the GDoP. We moved these metrics to UWB infrastructures.
Thus the position estimate of a receiver (called tag) in a
generic three-dimensional space requires at least four UWB
devices (called anchors). In contrast to (1), the time t is not
of interest for UWB ranging system because the propagation
time of the signal is directly used for the time-of-flight mea-
surement [38], hence the last column of C will be neglected.
Consequently, the PDoP metric in (2) is used in place of the
GDoP.

A. Problem formulation
The contribution of this paper is to derive an optimal

self-deployment on-line solution for UWB anchors during
exploration problems and using the PDoP metric to define
the target uncertainty. The optimal reduction of positioning
uncertainties is tailored to the robotic platforms’ requirements,
saving onboard hardware and computation resources and time.
The algorithm calculates the minimum number of anchors to
deploy during the mission to accomplish the robot goal. More
formally, let us consider the situation depicted in Figure 2.
We assume that the anchors can only be deployed on the
Xw × Yw plane of the right-handed reference frame 〈W 〉 =
{Xw, Yw, Zw}, since the altitude of the placement is assumed
to be not controllable. Notice that assuming no knowledge
about the environment, we consider the worst possible con-
ditions for the z coordinates, i.e., that the multilateration
algorithm is applied using coplanar anchors (flat terrain),

hence we are assuming very poor VDoP. We denote with
ai = [Xi, Yi]

T the known coordinates of the anchor in 〈W 〉
and projected on the plane Xw×Yw. Moreover, given Ak the
set of all the anchors ai, we define with Ak,n as the set of all
the combinations of n anchors inAk. Therefore, Dk(s) ∈ Ak,4
denote the set of 4 anchors attaining the minimum value of
PDoP in a certain position s. As a consequence, given:

• A sampling time Ts, which is induced by the sampling
time of the available anchors;

• A planned exploration path Sp = {qi}hi=1 is a set of h
viapoints on the plane, i.e. qi = [xqi , yqi ]

T ;
• The actual position of the robot sk = [xk, yk]T at time
kTs, supposed to be projected on the plane X×Y , while
Sk = {si}ki=0;

• An initial set A0 of 4 anchors that are in communication
with the robot;

• A set of the overall deployed anchors Ak up to time kTs;
• A maximum tolerable value pm of the PDoP along the

exploration path;
• A maximum distance ρm from an anchor to retrieve the

ranging measurement;
• A PDoP function g(Dk(sk), sk) computed on the position
sk given the anchors ai ∈ Dk;

the goal is to guarantee the existence of at least four anchors
Dk ⊂ Ak at time kTs, such that the UWB positioning system
can provide a PDoP g(Dk(sk), sk) ≤ pm, ∀sk during the
exploration while using the ranging data ρi,k = ‖sk − ai‖ ≤
ρm. To this extend, we define two problems:
i) the first is the Optimal placement problem (OPP)

min #Ak s.t.
∃Dk(qi) ⊆ Ak with g(Dk(qi), qi) < pm,∀qi ∈ Sp,

where of course #Ak are the number of elements in Ak.
ii) The second, named Optimal Exploration and Placement
Problem (OEPP), is based on OPP and defined on the actual
robot positions sk, instead of the planned positions qi. The
difference between the two problems is that OPP refers to
the nominal robot trajectory, while OEPP considers all the
maneuvers needed to deploy the new anchors.

In this paper, we will make explicit reference to a particular
class of robots, namely Unmanned Aerial Vehicles (UAVs),
even though the solution remains of general validity. It is
worthwhile to mention that the algorithm is totally agnostic
about the planner used to synthesize the robot path. One
of the most used exploration methods is the sampling-based
algorithm such as RRT [39]. Moreover, notice that the robot
should entirely cover the exploration path at least once, i.e.
∃k ∈ N such that sk = qi, ∀qi ∈ Sp.

III. ANCHORS DEPLOYMENT ALGORITHM

At a first glance, OPP may appear a trivial problem that
could be solved by computing g(Dk(sk), sk) at time kTs for
the positions sk = qi and place a new set of 4 anchors on
the same pattern of Figure 2, when either g(Dk(sk), sk) =
pm or ρi,k = ρm for some ai ∈ Ak. Then the robot starts
over. However, we observe three different problems with this
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Fig. 3: Flowchart of GANP algorithm.

approach (which is inspired by [40] applied to ground wheeled
vehicles):

1) While placing 4 anchors satisfies the sufficient require-
ment for positioning, it does not guarantee that it is the
only possible deployment.

2) When the UAV places the 4 anchors, the PDoP should be
kept under control on the placement trajectory as well,
hence a PDoP threshold p∗ < pm should be considered;

3) The next location to place the anchors may be a function
of the future exploration path viapoints Sp, thus making
some locations more favorable than others.

To address these issues, we propose the Genetic Anchor Node
Placement (GANP) algorithm, which comprises a prediction
of the PDoP function along the future path positions with
a finite horizon r and then compute the most favourable
locations using a Genetic Algorithm (GA). More precisely, let
us consider the robot is in position sk = qi, the algorithm starts
by evaluating if ∃qj ∈ {qi, qi+1, . . . , qi+r} = S

(i,r)
p ⊂ Sp

such that g(Dk(qj), qj) > pm. In such a case, we need to
add at least one anchor. We can then grow a region S(i,r)

p

around the path portion S(i,r)
p of width w by simply taking the

local perpendicular to the path of length w passing through
each position qj = S

(i,r)
p . However, to avoid a placement

that concentrates the anchors in nearby positions, we split the
finite horizon r in n subsets of r/n points and then we could
define non-overlapping regions S(i,r/n)

p , . . . ,S(i+r−r/n,i+r)
p

each hosting at most one new anchor. To simplify the subareas
splitting, we simply take the line joining qi and qi+r and
consider it as an approximation of the path, thus simplifying
the searching regions comprised in S(i,r)

p as sketch in Figure 2.
Of course, the width w of the searching region, the forecasting
horizon r, and the number of sub-paths n plays a crucial role
in the algorithm performance, hence a tuning procedure is
presented in Section V.

A flowchart of the GANP algorithm is depicted in Figure 3.
Whenever one or more anchors should be placed according
to the PDoP function, a list of the possible deployment

coordinates is computed. The main idea is to allow at most
one anchor in each subarea S(i+(j−1)r/n,jr/n)

p , with j =
1, . . . , n. Suppose four anchors result placed in the j-th area
to achieve an optimal PDoP value. In that case, it means that
the considered j-th area is too detached (i.e., far) from the
infrastructure, then j − 1-th area is considered forcing the
algorithm to generates at least one additional anchor.

The GA fitness function considers the optimal PDoP values
for each point qj ∈ Si,rp by determining the set Dk(qj).
The PDoP quantities are then stored into a list and weighted
according to the distance from qi: the more ‖qj−qi‖ is larger,
the higher is the weight. These values are then summed up and
constitute the objective function to minimize, i.e.

Y =

r∑
i=1

g(Dk(sk), sk) log(‖qj − qi‖).

Notice that the weighting mechanism pushes the new possible
anchors deeper along the exploration path, maximizing the
effect of the coverage and ensuring the minimum number of
anchors for the considered subset Si,rp . The GA constraint
function checks the following three conditions for each gen-
erated possible anchor location:

• The position of the generated anchor should have a PDoP
value below the maximum threshold pm;

• The path joining the robot position and the anchor can-
didate location should have a PDoP below pm as well;

• The PDoP of all the positions in Si,rp should be below
pm.

Notice that the GANP algorithm ensures the optimality of the
OPP only. To extend the results to the OEPP, the nature of the
deploying maneuver should be taken into account.

A. Deploying Manoeuvres

The GANP algorithm ensures that the value of PDoP never
exceeds the maximum target value pm. In fact, the algorithm
governs the UAV controlled behaviour based on three states of
a Finite State Machine. The UAV starts in Mission State (MS)
where it follows the exploration path. When the condition is
violated on the path horizon r, the optimal position of the
anchor is determined, and the UAV switches to the Deployment
State (DS). The UAV stores the last point reached along the
mission path, say qi ∈ Sp, and follows the shortest path
towards the deploying location. After the anchor is positioned,
the UAV either continues on the placement (if convenient, as
described in the rest of this section) or it switches to the Placed
State (PS). Here, a return-path to qi is generated and followed.
When the robot reaches qi either switches back to DS (if
additional anchors should be placed, or returns to MS, where
the exploration continues. This motion pattern is pursued until
the last point of the mission is reach, where the UAV decides
which action to perform:

• Landing (or stopping) and becoming an integral part of
UWB positioning infrastructure with its tag that switches
to an anchor. This action can be fired by the battery level
when it falls below a certain threshold;



5

START

PSDSMS

Place anchors Return to left
mission point

GANP

YES

NO Need
anchors?

Compute
inteserction
with planned

path

Fig. 4: Overall logic that govern the behaviour of the drone
during its mission.

ai

aj qj

qi

(a) Deployment path generation,
each anchor has its relative inter-
sections point.

ai

aj

qi

(b) Deployment path generation,
from first intersection point, all
anchors in list are deployed.

Fig. 5: Deployment manoeuvres followed in DS and PS.

• Continue the exploration mission, selecting a new explo-
ration area with a new synthesized path and executing the
described process;

• Alternatively, the robot can move back to the starting
position, increasing the accuracy of the placed anchors.

The flowchart of the depicted algorithm is reported in Figure 4.
The path followed in the DS and PS states is crucial for
any vehicle autonomy, especially when UAVs are considered.
Therefore, the maneuver should take the shortest. While the
placement path for a single anchor is straightforward, i.e., it is
sufficient to move along the local perpendicular segment with
respect to the planned path (see Figure 5a), the placement of
more than one anchor may be tricky. When the new anchor
locations ai and aj are determined, two possible strategies are
considered. The first is reported in Figure 5a: the back-and-
forth motion is adopted whenever the UAV reaches an intersec-
tions points on the path (first qi, then qj). The second more
involved situation is depicted in Figure 5b, where the UAV

starts the deployment manoeuvres from the first intersection
point, qi, and sequentially place all the anchors before going
back to the point qi. The selection of the two strategies is made
on the fly by comparing the perimeter of standard geometric
shapes (recall that at most 4 anchors should be placed at once),
with the constraint that the manoeuvre in DS starts and ends
in the same point qi (to cover the entire exploration path). For
example, the path followed in DS for Figure 5b is shorter than
the path of Figure 5a, thus it will be selected. It is now evident
that, by embedding this manoeuvre generation in the constraint
function of the GA, the OEPP problem is solved requiring the
limit of the PDoP to be satisfied along the shortest deployment
manoeuvres.

IV. UNCERTAINTY ANALYSIS

In this section, we first present the explicit derivation of
the PDoP function g(Dk(sk), sk) and an analysis of the
positioning uncertainty accounting for the incorrect anchor
deployment.

A. Position Dilution of Precision
As described in Section II, the PDoP function used in this

paper g(Dk(sk), sk) is a function of the anchor locations
Dk(sk) = {ai1 , . . . , aim} and of the point sk considered. In
particular, defining with

P =


xk−Xi1

ρi1,k

yk−Yi1

ρi1,k

...
...

xk−Xim

ρim,k

yk−Yim

ρim,k

 , (3)

the Jacobian of the ranging function (4) and denoting with Q
the covariance matrix of the positioning error

Q = σ2
ρ(PTP )−1 = σ2

ρ

[
σxx

2 σxy
2

σyx
2 σyy

2

]
,

the PDoP function g(Dk(sk), sk) =
√
σxx2 + σyy2.

B. Anchor deployment uncertainty
The position of the UAV is computed using multilateration

on distance measurements. The ranging measurements are
collected by means of an UWB infrastructure, using a Single
Side Two-Way-Ranging (SS-TWR) communication protocol.
Assuming n UWB anchors in known positions ai = [Xi, Yi]

T ,
i = 1, . . . , n, the ranging measurement from the i-th anchor
at time kTs is defined as

ρ̄i,k = ρi,k + εi,k =
√

(xk −Xi)2 + (yk − Yi)2 + εi,k, (4)

where εi,k is the ranging measurement uncertainty, usually
considered as a white sequence with zero mean and variance
σ2
ρ for all the anchors. Computing the difference of the squares

of the distances ∆ij,k = ρ̄2
i,k− ρ̄2

j,k from at least three anchors
and using the same solution reported in [41], it is possible to
derive the robot position estimates using a Weighted Least
Squares (WLS) solution as

ŝk =

[
x̂
ŷ

]
=

1

2
(A(n)TN

(n)−1

k A(n))−1A(n)TN
(n)−1

k h
(n)
k , (5)
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where h(n)
k is the vector of the indirect measurements ∆ij,k

and anchor positions, A(n) is a matrix containing the known
anchor positions, while

N
(n)
k = σ2

ρ


ρ2

1,k + ρ2
2,k ρ2

1,k . . . ρ2
1,k

ρ2
1,k ρ2

1,k + ρ2
3,k . . . ρ2

1,k
...

...
. . .

...
ρ2

1,k ρ2
1,k . . . ρ2

1,k + ρ2
n,k

 ,
(6)

the covariance matrix of the measurements, which is a function
of the actual distances ρi,k. The robot position uncertainty
s̃k = ŝk − sk derived from (5) has, hence, the following
multilateration covariance matrix

Ξ(n) = (A(n)TN
(n)−1

k A(n))−1 =

[
σ2
x,k σ2

xy,k

σ2
yx,k σ2

yy,k

]
, (7)

whose explicit form is reported in [41] and holds true when
the anchor positions are perfectly known a-priori, i.e., a map
of the anchors is available.

The problem presented in this paper is different from the
classic multilateration just reported, since for the problem at
hand, the positions of the anchors are deployed by the robot,
hence affected by uncertainty except for the very first set
A0. From this perspective, the problem is more similar to
a Simultaneous Localisation And Mapping (SLAM) problem
rather than a standard positioning problem, since the anchor
map is built on the fly. Indeed, while the ranging measurements
from an anchor in A0 is simply (4), from the i-th deployed
anchor turns to

ρ̄i,k =

√
(xk − X̂i + δix)2 + (yk − Ŷi + δiy )2 + εi,k, (8)

where we denote with δi = [δix , δiy ]T the deployment error
and with âi = [X̂i, Ŷi]

T the estimated anchor position (i.e.,
ai = âi−δi). Assuming that the i-th anchor has been deployed
at time kTs, we have that âi = ŝk, hence given by (5),
thus affected by an uncertainty described by the covariance
matrix (7). In a typical SLAM problem, the first estimate of
the position of a feature (which is used in the next steps as
a landmark for localisation) is treated as the mean value of
a random variable, usually considered as Gaussian. Applying
this idea to the problem at hand, the feature estimate turns to be
the anchor estimated position âi and the δi the corresponding
random variable of the uncertainty, customarily assumed with
zero-mean and generated by a white stochastic process. To
analyze the effect of this uncertainty, we may rewrite (8) with
its first order Taylor approximation with respect to εi,k and δi,
thus obtaining

ρ̄i,k = ρi,k + εi,k + Fδi = ρi,k + ηi,k, (9)

where F =
∂ρ̄i,k
∂δi

is the gradient of (8) evaluated in the mean
value of δi, i.e. F is the same of P in (3), but evaluated in âi.
Therefore, using (9) instead of (4), the overall uncertainty for
the ranging measurements from deployed anchors is expressed
by ηi,k, which is a white zero-mean sequence with variance

σ2
ηi,k

= σ2
ρ + FΞ(n)FT , (10)

where Ξ(n) is given in (7) (i.e., the robot position uncertainty
during the placement). Since σ2

ηi,k
≥ σ2

ρ, when the i-th

deployed anchor is used, the ranging uncertainty will be larger.
For instance, assuming that at time kTs the robot uses the
anchors 1 and 2 from A0 and anchors i and j newly placed,
i.e. for which only the estimates âi and âj are available, we
have the new form of (6) as

N
(n)
k =

σ2
ρ(ρ2

1,k+ρ2
2,k) σ2

ρρ
2
1,k σ2

ρρ
2
1,k

σ2
ρρ

2
1,k σ2

ρρ
2
1,k+σ2

ηρi,k σ2
ρρ

2
1,k

σ2
ρρ

2
1,k σ2

ρρ
2
1,k σ2

ρρ
2
1,k+σ2

ηρj,k

.
However, the previous development along the lines of the
classic SLAM approach is not entirely correct, as empirically
proved in Section V. Indeed, δi should not be considered as
a white random variable with zero-mean and covariance (7)
but, instead, as a realization of a random variable at time
kTs, i.e., a realization of the random variable modelling the
robot positioning uncertainty, hence an unknown but constant
offset. With this assumption, a typical non Bayesian approach
as the nonlinear WLS can be adopted. More precisely, given
at least three consecutive ranging measurements ρ̄i,k, ρ̄i,k+1

and ρ̄i,k+2 described in (8), the value of δi is given by

δ̂i=argmin
(δix ,δiy )

k+2∑
j=k

[(x̂j−X̂i+δix)2+(ŷj−Ŷi+δiy )2−ρ̄2
i,j ]

2. (11)

This way, the offset δi induced in the anchor placement
by the robot position uncertainty s̃k can be estimated and,
hence, removed from the anchor estimated position âi by
means of this nonlinear unconstrained regression problem, as
shown in the next section. It is important to remark that the
PDoP in (3) does not consider the effect of the offset on
the deployed anchors position. These effects are voluntarily
neglected because their contributions to the estimation of the
PDoP generate. In the worst case of an offset in the order of
tens of centimetres, a difference with the actual PDoP is less
than 3% of pm. Therefore, being the offset errors after (11)
of the order of few centimetres, we simply impose a PDoP
threshold of 95% of pm to account for those effects and design
a conservative approach.

V. SIMULATIONS AND EXPERIMENTS

To evaluate the effectiveness of the GANP algorithm, we
first present here the simulation results. We assume that the
maximum ranging distance is ρm = 60 m, which is derived
by the hardware specification of the Decawave DWM1001
UWB anchors. To fine-tune the parameters of the GANP
algorithm, i.e., the area width w, the number of subareas n
and the horizon of the prediction r, we report here an analysis
based on the Taguchi Orthogonal Array (OA) design [42].
To this end, we impose the maximum PDoP value to be
pm = 1.5 (a value guaranteeing low positioning uncertainty
and a sufficiently large feasible placement region) and an
exploration path length of approximately 60 m. The result
of the analysis, reported in terms of the performance indices
number of anchors m, travelled distance dt and computational
time ct, is subsumed in Table I. It is evident that a larger
area minimises the number of deployed anchors, since the
feasible deploying space increases, at the price of a higher
travelled distance. Instead, while the computation time clearly
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TABLE I: Performance of the GANP algorithm versus param-
eter choices.

Parameters Performance indices
w [m] r [m] n m dt [m] ct [s]

10 10 2 12 138 1118
10 20 4 12 140 1007
10 30 3 11 145 450
30 10 4 10 166 307
30 20 3 9 154 362
30 30 2 9 146 895
50 10 3 9 170 680
50 20 2 9 180 650
50 30 4 9 176 526

TABLE II: Optimal choices of the parameters.

Performance indices w [m] r [m] n
m 50 30 3
dt 10 30 2
ct 30 30 3

Average value 27 30 3

increases for larger areas (i.e., a larger space to explore for
the GA algorithm), too small areas may imply difficulties in
the search for a suitable solution. Hence the computation time
increases as well. An optimal choice of the parameters would
lead to the optimization of all the performance indices at once,
which is hardly possible for the contrasting goals explained.
Therefore, we compute the choice of the parameters w, r
and n minimising each selected performance index at once
and then compute the average among them, as reported in
Table II. The placement obtained with the depicted tuning
is then applied to a simulation example, thus obtaining the
level curves of the PDoP reported in Figure 6. In this case,
just 4 new anchors have been added to cover the entire
exploration path and respecting the PDoP limit pm = 1.5.
For comparison, Figure 7 reports the same scenario assuming
the trivial approach sketched at the beginning of Section III.
It is evident that, albeit simple, this algorithm implies a waste
of resources, imposing the PDoP region g(Dk(sk), sk) ≥ pm

to be too wide comapred to the exploration task. Moreover,
as it can be observed from Figure 8, the PDoP constraint is
not always verified along the exploration path or the placement
path for the simple approach, while it is strictly satisfied for the
GANP algorithm. As a final simulation test, we verified that
the SLAM-like assumption of the anchor estimated positions
âi cannot be considered as a random variable, as discussed in
Section IV-B. To empirically prove this fact, we have carried
out 106 Monte Carlo trials where δi uncertainty is treated as a
random variable contributing to the random, zero-mean white
noise in (10) and hence applying the multilateration (5), which
results in the position uncertainty in Figure 9, dashed line. As
can be noticed, this assumption end up with a non-negligible
bias on the estimates of the estimated position ŝk (the Figure 9
reports the bias on the x̂k axis, but it acts similarly on ŷk).
Consequently, the bias should be treated as a constant but
unknown quantity using (11), thus resulting in the unbiased
estimation uncertainty of Figure 9, solid line. In the next
section, this phenomenon is additionally highlighted in the
experiments.
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Fig. 6: PDoP level curves computed using Dk(sk), where sk
covers the entire map.
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Fig. 7: PDoP level curves computed using Dk(sk) for the
straightforward algorithm sketched at the beginning of Sec-
tion III.

A. Experimental results

To test the algorithm on an actual set-up, we first char-
acterise the UWB anchors at disposal. To this end, we car-
ried out a Type A analysis [43], collecting at first repeated
ranging measurements from known distances, i.e., at 1, 3
and 7 meters. As an example, the histogram of the ranging
measurements ρ̄i,k in (4) collected from an UWB anchor
Decawave DWM1001 at a distance of 3 m is reported for
reference in Figure 10-a. Figure 10-b reports the histogram
of the error on the position. Albeit all the available anchors
behave similarly and with a relatively small variance σ2

ρ,
they all exhibit an approximately linear dependency on the
actual distance ρi,k, as reported in Table III for the three
sampled distances. We may noticed a slight increase of
the bias and of the standard deviation σρ, which can be
compensated with a simple linear fitting model. Since we do
not have a large arena to test the system, we test the GANP
placement algorithm forcing the anchors to be closed to each
other by selecting pm = 2 to be above the minimum PDoP
value obtained for the known first four anchors, which was
g(Dk(s0), s0) = 1.1 (Dk(s0) = {a1, . . . , a4} in Figure 11).
As stated previously, once the new anchor has been deployed
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Fig. 8: PDoP evolution along the simulations in Figure 6
(GANP) and Figure 7 (trivial), respectively.
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Fig. 9: Monte Carlo trials for the placement problem. When
the placement error δi is treated as a random variable, a bias
of about 15 cm is induced (dashed line), while if it is treated
as an unknown but constant quantity estimated through (11)
(solid line), the estimator is practically unbiased (bias around
1 mm).

in position a5 and due to the positioning uncertainty of the
UAV, the robot actually believes that the anchor is in â5

(Figure 11). After the placement, the UAV comes back to the
exploration path (solid line in Figure 11) and, as described in
Section IV-B, it stores three consecutive estimated positions,
namely ŝk, ŝk+1 and ŝk+2, which actually corresponds to the
ideal values to be reached sk, sk+1 and sk+2 (see Figure 11
for reference). To estimate the bias δ5, the robot collects
10 consecutive ranging measurements ρ5,k from position sk
and then compute the average. The process is then repeated
from sk+1 and sk+2. The solution to (11) is then obtained
using the Levenberg-Marquardt (LM) algorithm applied to
the averages, thus obtaining the corrected location acorrect5 of
Figure 11, exhibiting a far reduced bias compared to â5. The
method thus described has been compared with a linearized
least square (LS) solution to (11) on such experimental data,
which results in the comparison of Figure 12. Of course
the iterative and incrementally precise approach of LM gives
better results than LS for the bias estimation. Similarly, LM
performs better of LS also for the standard positioning problem
using multilateration. However, since the algorithm can be
executed on board the vehicle and with constrained resources,
the LM should be adopted with parsimony (its computation

(a) (b)

Fig. 10: (a) Characterisation of the ranging measurements ρ̄i,k
by means of an histogram obtained with 3000 consecutive
measurements (b) Histogram of positioning error with 30000
consecutive measurements

TABLE III: Characterisation of bias and standard deviation of
the ranging measurements

ρi,k [m] Bias [m] σρ [m]
1 0.06 0.029
3 0.10 0.0231
7 0.18 0.16

times is about 40 times compared to a linearized LS). As a
consequence, we decided to keep the LM solution uniquely
for the bias estimation problem.

VI. CONCLUSION

This paper presented the development of a self-deployable
UWB infrastructure by robots, with simulations and experi-
ments done on small indoor UAVs to confirm the effectiveness
of our approach. Starting from a minimal pre-deployed in-
frastructure, the robot can extend the UWB anchors geometry
while exploring the environment during the mission. Clearly,
uncertainty could increment while expanding the UWB in-
frastructure. To address this concern, we developed a genetic
algorithm to compute the optimal placement of new anchors
using the Geometric Dilution of Precision (GDoP). Simulation
and experimental results demonstrated that the positioning
algorithm uncertainty is always kept under the threshold
required by the user. Future research threads will be devoted
to apply the solution to a team of heterogeneous robots and
to extend the analysis to the localisation problem, where the
motion of the robot and its dynamic should be considered in
the placement problem.
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