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Abstract—We present a scheme to estimate the direction of
arrival of acoustic signals reflected by underwater targets using
wideband hydrophone arrays of opportunity. Such arrays may
be obtained by arranging together multiple smaller sub-arrays
that were originally designed to work independently. The array
of opportunity that results may be subject to practical mount-
ing limitations, hence the typical constraint that closest array
elements should not be spaced more than one half-wavelength
may not be upheld. In these conditions, the array is affected by
spatial ambiguity.

Our proposed scheme solves this issue by fusing direction-
of-arrival information with side information on the estimated
target location (obtained via multilateration). This makes it
possible to eliminate most of the ambiguity, and yields accurate
direction-of-arrival estimates. Our simulation results show that
our scheme achieves satisfactory direction of arrival estimation
and localization results. Moreover, even by relying on arrays
of opportunity, we can outperform classical direction-of-arrival
algorithms applied to larger arrays with half-wavelength spacing
design.

Index Terms—Wideband array processing; underwater acous-
tic signals; direction of arrival estimation; side information;
multilateration; localization

I. INTRODUCTION

Stand-off monitoring and remote sensing are of great im-
portance in many industrial, exploration, and environmental
conservation scenarios. Common approaches for this chal-
lenging task include image- and video-based monitoring [1],
LiDAR systems [2], as well as acoustic solutions [3]. In
particular, non-invasive acoustic systems can help monitor key
pelagic fish species in their natural habitat without harmful
anthropogenic interference. For the cases where the accurate
geolocation of sensed data is required, sonar systems usually
employ hydrophone arrays engineered to provide the desired
spatial scanning capabilities. Moreover, fusing the information
from multiple arrays typically improves the performance of
localization and ranging, even if the arrays are highly dis-
placed and the received acoustic signals are not significantly
correlated [4]. A particularly convenient case is represented by
arrays whose elements can be extended modularly, achieving
higher directivity and better output Signal-to-Noise Ratio
(SNR) on demand. In order to avoid having to redesign an
array from scratch, such extensions can also be achieved
by “opportunistically” joining arrays that were originally de-
signed to work independently. While some engineering issues
may still appear, such as ensuring the synchronous sampling
of all elements, the biggest challenge is that independent array
modules may not be designed to be joined into a larger array.

On the contrary, their physical design may give rise to different
kinds of mounting issues. For example, a given minimum
spacing among the sub-arrays may have to be ensured in order
to preserve connectors, or to avoid that power and data cables
bend in excess of their specifications.

There are at least two important consequences to these
constraints. First, it may be impossible to construct typical
array topologies such as uniform linear arrays (ULAs) or
uniform rectangular arrays (URAs). Second, the maximum
spacing of closest array elements may be forced to remain
larger than λ/2, where λ is the wavelength corresponding to
the maximum operational acoustic frequency of the array’s
hydrophones. A larger spacing than λ/2 may lead to very
significant ambiguities in beamforming and direction of arrival
(DoA) estimation operations, which may not be removed by
leveraging side physical characteristics of the array elements,
such as a non-omnidirectional radiation pattern [5]. When the
array is employed for localization purposes through multilater-
ation, larger-than-λ/2 spacing may also lead to very significant
errors [6].

Notably, most 3D wideband DoA estimation algorithms [5]
work with predefined array shapes, or are limited to 2D, to
specific signals, to a known number of objects to be found [7],
or directly employ particle velocity sensors [8].

In this paper, we propose a wideband DoA estimation
algorithm that works with generic 3D arrays with arbitrary
element spacing. Our method hinges on the observation that
most of the DoA ambiguity can be ruled out in case some
further information about the target can be exploited. As we
do not assume any cooperation with the target itself, we
need to extract such additional information from additional
array processing. Specifically, we estimate the location of the
target through multilateration, using time difference of arrival
(TDoA) measurements. This makes it possible to restrict the
DoA search to an area around the actual location of the target,
where ambiguity is mostly absent, even if the array elements
are not sufficiently spaced to achieve high resolution [4], and
the multilateration of the target is therefore not extremely
accurate.

Our simulation results show that our algorithm effectively
estimates DoAs and 3D target locations, making it possible to
take advantage of multiple combined arrays, even when the
resulting array topology is affected by sub-optimal spacing.
Specifically, we show that stacking three 5-element pyramidal
arrays (each of which could be, e.g., a separate USBL unit)
into a 15-element array yields very good angle and localization



error performance. Moreover, our algorithm applied to such an
array outperforms DoA estimation through a wideband delay-
sum algorithm, even when the latter is applied to a properly
designed cylindric array with 24 hydrophones.

In the remainder of this paper, we survey relevant related
work (Section II), describe our DoA method (Section III), and
provide performance results (Section IV). Finally, we draw
concluding remarks in Section V.

II. RELATED WORK

Array processing for underwater detection and communi-
cation has a long history, and includes contributions to sonar
systems, communications and underwater target detection with
passive and active arrays [9]. In recent times, classical beam-
forming algorithms have been mixed with different estimation
or signal processing techniques in order to improve the ac-
curacy and decrease the complexity of adaptive beamforming
algorithms. For example, the work in [10] employs a particle
filter to estimate the direction of arrival of an acoustic source.
This is shown to improve the performance of Bartlett and
conventional likelihood beamformers using real data from
the SwellEx’96 experiment. By exploiting partial information
related to the structure of a transmitted signal, the authors
of [11] improve the performance of a blind DoA and channel
parameter estimation algorithm from the literature [12].

To localize a blind node, [13] mixes DoA and time of
flight (ToF) information related to the signals that the blind
node receives from synchronous reference nodes. In pool
experiments, the blind node integrates a 4-element linear array
for DoA estimation. Tesei et al. [4] discuss sound source
localization in 3D using one or two tetrahedral arrays deployed
at different locations. Despite synchronous sampling in the two
systems, no joint array processing is performed, as the distance
between the arrays decorrelates the received signals.

Compressive sensing and sparse reconstruction techniques
have also found application in underwater array process-
ing. For example, the work in [14] relies on compressive
beamforming to estimate the DoA of an underwater acoustic
source via a forward-looking sonar transmitting continuous-
wave comb signals. The system is proven using field experi-
ment data. In [15] sparse reconstruction is used to detect the
DoA of the sound emitted by underwater vessels using linear
arrays. The authors carry out an experiment using a passive
towed array sonar system to prove the performance of their
algorithm. The work in [16] applies coherent signal subspace
processing and compressive sensing to DoA estimation for
wideband signals. The method yields higher resolution than
the conventional minimum variance distortionless response
(MVDR) beamformer.

As acoustic vector sensors already provide a first estimate
of the direction of arrival of an underwater signal, several
works involve one or more such sensors in DoA estimation
tasks [17]–[19]. Arrays of vector sensors and coherent process-
ing also improve the resolution of underwater DoA estimation
for wideband coherent sources [20].

Wideband beamforming has recently spurred significant
interest in the broadband terrestrial radio communication do-
main, and finds applications for underwater acoustic detection
and communications as well. Liu and Weiss [5] provide an
extensive coverage of classical approaches and recent research
results for wideband array processing with applications to
signal enhancement and DoA estimation. In the broadband
underwater acoustic communication domain, [21] explores
multichannel processing through diversity combining and op-
timal beamforming applied to the reception of high-speed
underwater acoustic communication signals, and shows that
the beamforming approach reduces the complexity of the
receiver. The capability to coherently extract the energy of
underwater multipath signal is demonstrated through a sea
experiment. The work in [22] applies sparse Bayesian methods
to estimate the DoA of wideband LFM signals using a uniform
linear array. The fractional Fourier transform is employed to
isolate the signal and improve the signal-to-reverberation and
signal-to-noise ratios.

Typically, the development of signal processing algorithms
for underwater acoustic arrays assumes a simple array topol-
ogy, for which the steering vectors and array manifolds can
be computed in close-form. Often, linear arrays are used [10],
[11], [13]–[15]. A study involving 3D, 4-element tetrahedral
arrays is provided in [4]. Unlike the above literature, in this
paper we propose a DoA estimation algorithm that works
on arbitrary, 3D underwater array topologies, as we typically
obtain by combining multiple sub-arrays originally conceived
as independent units. In doing so, we assume that we cannot
rely on properly spaced array elements (i.e., we need to deal
with the ambiguity arising from larger-than-λ/2 spacing), and
target wideband array processing. Note that, unlike in [4], we
synchronously sample and jointly process all array elements.
The next section describes our approach.

III. WIDEBAND DOA ESTIMATION ALGORITHM

A. Key idea

We assume to employ an array of wideband hydrophones
arranged into a known topology. We assume these elements
to be comparatively close and sampled synchronously, but not
necessarily spaced to obey the λ/2 constraint. The array is co-
located with a projector that transmits wideband signals, such
as linear chirps of duration T , spanning the frequencies from
fmin to fmax. The task of the array is to detect the DoA of the
signal reflections off targets in the surrounding areas. As the
suboptimal spacing of the array elements leads to ambiguity
in DoA estimation, our algorithm mitigates such ambiguity
by fusing the output of delay-sum wideband array processing
with the outcome of TDoA-based multilateration.

B. Algorithm description

Call the transmitted chirp

f(t) = cos

(
2π

fmax − fmin

2T
t2 + fmin t

)
, (1)
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Fig. 1. Flow diagram of the DoA estimation and localization algorithm.

and let sn(t) be the real-valued signal received by the nth array
element. With reference to Fig. 1, our scheme proceeds by
first detecting f(t) within the sn(t) signals using a normalized
matched filter. For each array element, the output of the filter
is expressed as

Rn(τ) =

∫ +∞

0

f(t) sn(t+ τ) dt(∫ T

0

s2n(t) dt

∫ +∞

0

f2(t) dt

)1/2
. (2)

We search relevant cross-correlation peaks in Rn(τ) via a
sliding window method. In more detail, we consider a window
of length T aligned with the beginning of Rn(τ), and take
the highest peak in the window; then we slide the window,
take the highest peak and repeat the process until the window
has reached the end of Rn(τ). The result of this process is
a reduction of the peaks in Rn(τ), whereby secondary peaks
that are never the tallest in any window are discarded. Call
Pn the set of peaks thus singled out, where a peak p ∈ Pn is
fully defined by its time of occurrence t, its amplitude a and
the hydrophone n that detects it, i.e., p = (t, a, n) ∈ Pn.

We proceed by applying the DBScan algorithm [23] over
the whole set of peaks

P = P1 ∪ · · · ∪ Pn . (3)

DBScan corresponds to a function

C = D(P) (4)

that returns a number of subsets of arrivals C ∈ C, such
that ideally a subset C contains groups of detections that
correspond to the same target. The algorithm is configured to
seek arrivals detected by at least 50% of the array elements,
and spaced in time no more than the maximum propagation
delay difference between any two elements. This step serves
as a very fast “coherence test,” and enables our algorithm to
discard peaks that are not detected reliably by all elements, or
that are overly spaced in time, and thus unlikely to correspond
to the same signal reflection from a nearby target. Note that,
in general, a cluster C may contain peaks from only a subset
of the array elements, as some may be shadowed by other
hydrophones.

We now consider a set of elevation angles Θ and azimuth
angles Φ, and scan the power received by the array along
every direction identified by a pair (θ, φ), for θ ∈ Θ and
φ ∈ Φ. Specifically, for each cluster C, we measure the energy
perceived by the array along different directions through a
wideband delay-sum algorithm [5]. We implement the algo-
rithm by computing a 1024-point fast Fourier transform (FFT)
of the signal portion that covers the arrivals in C in each
hydrophone. We then apply a different, frequency-dependent
phase shift vector to each frequency bin in order to steer the
array towards the direction (θ, φ). Finally, we convert back to
the time domain via an inverse FFT operation, and sum the
resulting outputs across all hydrophones. The outcome of the
wideband delay-sum algorithm is a map α(θ, φ) of the power
received over all scanning directions specified by sets Θ and
Φ. As we consider arrays of opportunity where the elements
may be spaced more than λ/2, the delay-sum map may be
affected by ambiguities, and may indicate the reception of a
significant amount of power from directions different than the
true target direction.

In order to reduce such ambiguity, we filter out irrelevant
peaks using side TDoA information. In more detail, call
u = [x y z]T the Cartesian coordinates of the target,
un = [xn yn zn]T the location of hydrophone n, and t0 the
time of the earliest across all peaks in cluster C. Without loss
of generality, assign index 0 to the hydrophone that receives
this arrival. Finally, call c the sound speed near the array, which
we assume to be known. For each peak p = (t, a, n) ∈ C, the
corresponding multilateration equation is

x ·Xn + y · Yn + z · Zn +Dn = 0 , (5)

where
Xn =

2xn
c t
− 2x0
c t0

(6)

(analogous equations can be written for Yn and Zn), and

Dn = c (t− t0)− x2n + y2n + z2n
c t

+
x20 + y20 + z20

c t0
. (7)

Collecting one equation such as (5) for every peak in cluster
C results in an over-determined system of equations, which
we solve through Moore-Penrose’s pseudo-inverse. The result
is a rough estimate of the target location u? = [x? y? z?]T,
which can be converted in polar coordinates to yield

u? = [r? θ? φ?]T . (8)

We exploit the above estimate to define a masking function
having the shape of a truncated bi-variate Gaussian kernel

m(θ, φ) = min

{
1;

1

2πσθσφ
e
− (θ−θ?)2

2σ2
θ e

− (φ−φ?)2

2σ2
θ

}
, (9)

where σθ = π/8 and σφ = π/4. Using m(θ, φ), we mask
the output of the wideband delay-sum beamformer in order to
mitigate (and typically fully remove) ambiguities. Finally, we
set the estimated DoA for the received signal as

α? = arg max
θ,φ

α(θ, φ)m(θ, φ) . (10)
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Fig. 2. Intensity map at the output of the wideband delay-sum beamformer without (left) and with (right) TDoA multilateration-based masking. The latter
mitigates the ambiguity and makes it possible to correctly estimate the location of the target (white cross). Yellow hues denote a stronger signal.
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Fig. 3. Array topologies considered in this paper.

Fig. 2 provides an example of the delay-sum output (left
panel). Here, several local maxima exist (red dots), and noise
easily leads to a wrong estimate (red cross) of the target’s
DoA (white cross). Conversely, applying the multilateration-
based mask (right panel) singles out the target’s location and
enables accurate DoA estimation. We note that some local
maxima still remain even after applying the mask, but these
are now sufficiently mitigated, and do not impede a correct
DoA estimation.

As a final step, the estimated DoA is fused with ranging
information and passed on as a valid output only if the target is
found to be located within the boundaries of the water column.

IV. PERFORMANCE EVALUATION

To illustrate the performance of our DoA estimation algo-
rithm, we assume that the signals transmitted to detect targets
in the proximity of our arrays of opportunity is a linear chirp
of duration T = 10 ms and spanning the acoustic band from
fmin = 7 kHz to fmax = 17 kHz.

We consider five different arrays, as illustrated in Fig. 3.
Array 1 is composed of two 5-element pyramidal arrays having

a base side length of 14.14 cm and an height of 7.07 cm. The
sub-arrays are stacked at a distance of 27 cm, and the bottom
one is rotated by 45◦. This is typical in the case each sub-array
is, e.g., a separate USBL unit, whose connector mounting and
cable bending constraints impede placing the units closer than
a given maximum distance. Array 2 is similar to array 1, but
is composed of three pyramidal arrays stacked at a distance
of 27 cm. In this case, the second array is rotated by 30◦ and
the third by 60◦. Array 3 is composed of two circular sub-
arrays of radius 3.5 cm, placed at a distance of 27 cm from
each other. Each sub-array embeds 5 elements (the same as a
pyramidal array). The elements are equally spaced along the
circumference and closest elements are 4.4 cm apart. Array 4
is similar to array 3, but is composed of three rather than
two circular sub-arrays. Finally, Array 5 is a cylindric array
composed of 4 circular sub-arrays of 6 elements each. The
distance between closest elements along the same circle and
across different circles is 4.4 cm. We remark that assuming a
sound speed of 1500 m/s, such a distance corresponds to λ/2
spacing up to a frequency of ≈ 17 kHz. Because array 5 is
designed with proper λ/2 spacing throughout all frequencies
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Fig. 4. CCDF of the azimuthal angle estimation error for a target located at
100 m from the array.

spanned by the chirp signal, we do not apply the m(θ, φ) mask
to the wideband delay-sum output in this case.

To simulate our algorithm, we consider an isovelocity water
body of depth 100 m. We position the array of opportunity
at a depth of 10 m, and place a target at a distance of
either 100 m or 200 m from the array, at different azimuthal
angles φ and depths d. We simulate acoustic propagation in
this environment by considering the three strongest paths that
would be detected by the array, namely the specular path
and first-order reflections off the sea surface and bottom.
We neglect second-order reflections, which anyway would be
comparatively less powerful, given that they originate from a
target-reflected signal. We simulate our DoA estimation and
localization scheme over a Monte-Carlo set of 270 target
locations, chosen at random to be representative of all array
lookout directions. For each location, we repeat the estimation
for 10 different noise realizations. We consider a SNR of
−10 dB.

For a target located at a distance of 100 m, Fig. 4 shows
the complementary cumulative distribution function (CCDF)
of the azimuthal angle estimation error for the five array
types discussed above. We observe that arrays 1 to 4 perform
equivalently. Array 2 achieves a marginally but noticeably
lower angle estimation error than array 1, because its 5-
element pyramidal arrays are rotated by 30◦ and 60◦, respec-
tively, which yields a better discrimination capability over the
azimuthal plane. Array 5 provides the best performance among
the considered arrays (median error of about 3◦). This is due
both to the larger number of elements in each circular section
of the array and to the denser spacing of the hydrophones,
which respect the λ/2 constraint for all frequencies in the 7–
17 kHz band.

We now consider the capability of the array to correctly
estimate the depth of the target. Fig. 5 shows the CCDF of
the depth estimation error. We observe that taller arrays yield
better results: arrays 2 and 4 achieve a better depth estimation
error than arrays 1 and 3 (specifically, a median error of up
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Fig. 5. CCDF of the depth estimation error for a target located at 100 m
from the array.

0 10 20 30 40 50 60 70
Error, r[m]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
[e

rr
or

>
r ]

Array 1, d=100m, ( r
50% =   16.5m )

Array 2, d=100m, ( r
50% =   13.6m )

Array 3, d=100m, ( r
50% =   27.7m )

Array 4, d=100m, ( r
50% =   25.7m )

Array 5, d=100m, ( r
50% =   22.2m )

Fig. 6. CCDF of the location error for a target located at 100 m from the
array.

to 2.6 m, against up to 3.8 m for arrays 1 and 3). We remark
that the arrangement of the sub-arrays is comparatively less
important for depth estimation. In fact, pyramidal and circular
sub-arrays yield similar results because the distance between
subsequent sub-arrays is 27 cm in all cases. Array 5 provides
the worst performance: we recall that since the elements of
array 5 are properly spaced, we do not apply TDoA-based
masking to the delay-sum output for Array 5, resulting in a
higher median depth estimation error of about 6.3 m.

Angle and depth information can be combined with mea-
surements of the transmitted signal’s round-trip time in order
to yield an estimate of the 3D target location. Fig. 6 shows the
CCDF of the target location error. We observe that arrays 1
and 2 achieve the best performance, with slightly better results
for array 2 due to its higher number of elements and larger
height. Arrays 3 and 4 achieve the worst performance (with
array 4 slightly better than array 3 due again to the larger
height and number of elements). Array 5 ranks intermediately,
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Fig. 7. CCDF of the azimuthal angle estimation error for a target located at
200 m from the array.

with a good median error, but higher worst-case and best-case
errors. The best median error is achieved by Array 2 (13.6 m).

When the target is 200 m away from the array, the depth
estimation and localization performance change slightly. Fig. 7
confirms the intuition that the distance of the target does
not significantly influence the azimuthal angle error. The
performance of all arrays is very good, with median errors
not exceeding 5◦, and 80% of the errors being less than 15◦.
The depth estimation error (Fig. 8) is expectedly worse than
in the 100 m-distance case, because the same elevation angle
estimation error translates into larger depth discrepancies if the
target is farther. In any event, arrays 2 and 4 still achieve the
best error performance (with a median error less than 4 m);
arrays 1 and 3 achieve a median error of 5.7 m and 8 m,
respectively. The limited vertical extension of array 5 and the
lack of TDoA-based masking compound to yield the worst
depth estimation performance, with a median error of 15 m.

Finally, we show the overall localization error in Fig. 9. The
trend and ranking of the algorithms is the same as in Fig. 6:
arrays 2 and 4 achieve the lowest error, whereas arrays 1, 3
and 5 show worse performance. In the best case of array 2,
the median error is less than 20 m, and 80% of the estimates
are affected by an error of less than 50 m.

From the above results, we conclude that the triple pyra-
midal structure of array 2 yields the best tradeoff between
azimuthal and elevation angle estimation capabilities, provided
that the ambiguity arising from the spacing larger than λ/2
is corrected through side information, as is the case for our
TDoA-based mask. More broadly, we also conclude that our
algorithm is a promising solution to achieve satisfactory array
performance when multiple smaller sub-arrays are opportunis-
tically combined into a larger array.

V. CONCLUSIONS

We present a wideband DoA estimation algorithm de-
signed to operate with sub-optimally designed acoustic arrays.
Such arrays may result from the opportunistic combination
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Fig. 9. CCDF of the location error for a target located at 200 m from the
array.

of smaller, typically independent sub-arrays into a bigger
structure, with non-ideal element spacing possibly exceeding
the λ/2 constraint. We proposed to solve the spatial ambiguity
issues that affect such arrays by augmenting a delay-sum DoA
estimation algorithm with a multilateration step: we estimate
the location of the target from TDoA information, and mask
the delay-sum output to significantly mitigate the ambiguity.

Our results show that the proposed scheme yields satisfac-
tory azimuthal angle and depth estimation error, and therefore
good 3D localization results. For a specific 15-element array
composed of three-pyramidal sub-arrays, we show that our
method outperforms classical DoA estimation applied to a 24-
element cylindric array, whose element spacing is less than or
equal to λ/2 throughout the acoustic band of interest. Future
work includes the evaluation of our algorithm in a sea trial.
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