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Abstract—The task of visual classification, done until not
long ago by specialists through direct observation, has recently
benefited from advancements in the field of computer vision,
specifically due to statistical optimization algorithms, such as
deep neural networks. In spite of their many advantages, these
algorithms require a considerable amount of training data to
produce meaningful results. Another downside is that neural
networks are usually computationally demanding algorithms, with
millions (if not tens of millions) of parameters, which restricts
their deployment on low-power embedded field equipment.

In this paper, we address the classification of multiple species
of pelagic fish by using small convolutional networks to process
images as well as videos frames. We show that such networks,
even with little more than 12,000 parameters and trained on small
datasets, provide relatively high accuracy (almost 42% for six fish
species) in the classification task. Moreover, if the fish images
come from videos, we deploy a simple object tracking algorithm
to augment the data, increasing the accuracy to almost 49% for
six fish species. The small size of our convolutional networks
enables their deployment on relatively limited devices.

Index Terms—Underwater images; fish classification; neural
networks; optimized architectures; accuracy; sea trial

I. INTRODUCTION

The study of the marine ecosystem often requires long-
term observations and statistical analyses, performed on a
discrete set of species, in order to study variations in overall
populations, migration patterns, or human impact. While these
tasks are often carried out manually, recent advances in statis-
tical image recognition algorithms (especially related to deep
learning) introduce substantial automation opportunities. Deep
learning is the sub-field of machine learning that focuses on the
design and use of deep neural networks for pattern recognition
and prediction tasks (such as classification and regression).
This technique has seen breakthrough applications in medicine
[1], [2], [3], autonomous vehicles [4], object detection [5],
speech synthesis [6], automatic translation [7], speech-to-text
[8], agriculture [9] and energy consumption optimization [10],
among many others. A detailed overview of the field can be
found in [11], [12].

In this paper we describe our experience with the design
and optimization of deep learning for the classification (i.e.,
the identification of the species) of fish images captured by
submerged camera arrays. Our work is framed as part of
the Symbiosis project,1 concerned with the detection and

1http://symbiosis.networks.imdea.org/

classification of pelagic fish in the Mediterranean Sea and
the Atlantic Ocean. In this project, an autonomous system is
lowered beneath the sea surface in a mooring. The system
has two sets of camera arrays, as well as sonars and other
sensors, and records in real time the type of each individual
fish within a given radius. Real-time statistics are computed
and aggregated results are sent to an external observation
station.

As the requirements of Symbiosis are to detect and classify a
specimen in real time, a number of constraints need to be con-
sidered. Firstly, the range of each camera is of approximately
10 meters, and the target pelagic fishes are fast. Hence, the
inference time must be reduced to a bare minimum. Secondly,
as the size and position of the specimen varies with respect to
the angle at which it approaches the camera and its distance
from it, images also need to be cropped and scaled before
being sent for classification. These are preprocessing steps
undertaken on the same device that performs inference for
the classification model, imposing restrictions on the size of
the deep neural network and the models that can be used.

In this project we target six species of pelagic fish (see
Section III), and we want to differentiate i) images showing
to fish of these species from images of other species (binary
classification), and ii) tell apart the images of target Symbiosis
species from one another (multi-class classification). Prior to
being deployed on the final hardware, the classifiers need
to be trained. Unfortunately, producing relevant datasets of
the six species of pelagic fish we target is a considerable
challenge. Firstly, there exist a limited number of images
and videos of these species, since they are usually found
if deep waters. Secondly, available images are either taken
above the sea level (which we chose not to use, as they
do not represent Symbiosis’s operational environment), or are
present in observation videos, from which many images can
be extracted, but typically showing a small set of specimens
that repeat across video frames. This has heavy implications
on the training of our deep neural networks. Specifically,
in order to counter the lack of variety of individuals, the
training and test phases are performed on images extracted
from different videos whenever possible. We consider this
situation to provide the most credible estimate for our system’s
performance.

Due to the fact that the models need to be very small (the
target is deep neural networks with 10,000 to 20,000 param-



Fig. 1. The optical data pipeline, including similarity filtering, classification, and object tracking.

eters), their representation capacity is reduced and, combined
with their training on relatively small datasets, they could
suffer from poor performance. To remedy this, and taking ad-
vantage of the fact that the images come from videos, we insert
an additional step, between preprocessing and classification,
where we perform object tracking, presenting the classifier
with multiple images of the same object, with the scope of
increasing the amount of information available.

The main contributions of the paper are: (1) presenting a
series of very small neural networks that can be implemented
with very limited hardware resources, providing a training
method based on small and imbalanced datasets, and (2) using
object tracking to assist the classifier in its task.

The paper structure is as follows: in Section II we discuss
various theoretical aspects, such as a brief overview of the
neural architectures that have been used, relevant literature
as well as object tracking and the components of our data
pipeline. In Section III we give a detailed description of the
actual system and its sensors, as well as the various hardware
on which we performed our tests. This is followed by Sec-
tion IV, where we present experimental results for both binary
classification (distinguishing between our six classes grouped
into two subsets, with the aim of trying out the proposed
architectures) and multi-class classification (identifying each
of the six classes of interest). The final experiments present a
comparison between the cases where object tracking has been
used and those where it has not been used.

II. THEORETICAL ASPECTS AND RELATED WORK

Of particular significance in the field of image processing is
a type of neural layer known as a convolutional layer. Drawing
inspiration from the human visual cortex, convolutional layers
are able to exploit a series of invariances, such as invariance to
local deformation or translation, in order to perform efficient
feature aggregation and also drastically reduce the number of

Fig. 2. Architectures used for binary and multi-class classification.

parameters, as opposed to the classical multi-layer perceptron
(or fully-connected) layers [13].

The optical processing in the Symbiosis project (see Fig-
ure 1) is focused on the detection and automatic classification
of fishes, seen in front of one of the submerged cameras
and captured in a sequence of video frames. This process
makes use of convolutional neural networks to solve two
problems. First, image detection and segmentation, extracting
relevant segments from entire frames [14]. Second, image
classification, which is the focus of this paper, whose purpose
is selecting the segments representing one of the six relevant
species of pelagic fish. This involves differentiating them first
from segments portraying fishes and artefacts that are irrele-
vant to our problem. The detection and segmentation task uses
the neural network RetinaNET [15], whereas for the image
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classification tasks we have evaluated popular convolutional
architectures, like VGG16 [16] and François Chollet’s simple
architecture [17], and compared them to our own custom
networks (see Figure 2).

Our final goal is the classification of an object (detected
as a fish), which may appear in several frames, into one of
seven classes (one class for each the six species of interest in
Symbiosis, and a seventh class for other species). Feeding
the sequence of frames into a convolutional network, and
relying exclusively on the classification results to identify
the fish species would be problematic, as the same fish
may disappear and reappear intermittently across subsequent
frames. To circumvent this problem, we resorted to performing
object tracking, detecting whether or not the same fish appears
in a consecutive sequence of frames, after the frame itself
has been classified. For the purpose of tracking, we use the
SORT [18] algorithm.

Our approach, namely using convolutional neural networks
for detection, segmentation, and classification, integrates well
with previous work in the field. In what follows, we provide
a brief description of a number of works, related to object
detection in underwater scenarios. In [19], the authors present
a method for fish localization in underwater images. The
applied method consists of denoising and cleaning the images
in a preprocessing step, and then splitting them into regions
using the mean shift algorithm. Various statistical estimation
techniques are then used to combine the regions into objects.
This is a rather direct and hard-coded method, but it can be
used as a baseline for the following results.

Another effort, using classical machine learning algorithms,
is presented in [20]. The authors explore the limitations of
analyzing input from stereo video systems and propose a two-
step process for fish detection. First, they use a dimensionality
reduction technique, such as PCA, to model pixel-level knowl-
edge about the shape of the fish. Once the shape is identified,
the method requires that a significant region of the fish’s body,
usually the head, be segmented, and yields sub-pixel accuracy
in the object’s localization.

Other efforts focus strictly on deep learning and on the
capacity of convolutional neural networks to complete a vari-
ety of vision-related tasks. In [21], a CNN-based algorithm is
used (called R-CNN, or Regions with CNN). Fast R-CNN is
a version of the algorithm that initially generates subsegments
from many candidate regions, then uses a greedy algorithm to
combine similar segments, and finally combines the generated
segments into final candidate proposals. The authors apply
this technique to a dataset of approximately 24,000 images
of fishes from 12 different species, and report a mean average
precision (mAP) of 81.4%.

Another approach is provided in [22], where two supervised
learning methods are proposed. The first method extracts
object features using the Histogram of Oriented Gradients
(HoG) technique, and then uses a classical machine learning
classifier, such as an SVM, to differentiate the fish. The second
proposed method is an end-to-end convolutional network.

As we have seen, deep learning algorithms have long

surpassed traditional hard-coded approaches for vision tasks.
Whether used in combination with some classical techniques
(specially for feature extraction, denoising, or more general
preprocessing, before a learning component performs the
classification task) or in an end-to-end manner (where a
convolutional network is the one responsible for extracting
its features and performing the classification task), almost
all identified works, including our own, use deep learning
due to its ease of domain adaptation and relatively low
implementation complexity.

We perform two benchmarking tasks, one being binary
classification between our species of interest and others (in
this paper we simply use the whole dataset of our six species
grouped into two subsets), and one multi-class classification,
distinguishing among our particular species. As the hardware
resources are limited, small architectures are chosen, each hav-
ing less than 20,000 trainable parameters. They are variations
on the same general pattern, depicted in Figure 2.

As depicted in Figure 1, the classification procedure consists
of a two-step process: image classification and object tracking.
Tracking identifies a set of images, representing the same
fish, which are classified separately. Each classifier returns
a vector of probabilities, describing the representative class
of the particular image. A voting system then decides on the
accepted result, and this is assigned to the detected object.

III. EXPERIMENTAL SETUP

The Symbiosis system is an opto-acoustic system whose
objective is to detect, track, monitor, and classify pelagic
fishes. The system is to be submerged into the sea, attached to
a mooring cable. The system (see Figure 3) includes acoustic
and optical subsystems. The acoustic system is a new advanced
sonar designed and built ad hoc, with capabilities to detect,
localize and track marine faune within a range of 500 m.
The optical system is composed of two camera arrays, one
in the top and other in the bottom of the system, separated
15 meters between them. The camera array has six camera
units in a circle with a 10.5 degrees of overlap in the field
of view on either side. Each camera unit consists mainly
in the camera itself and an NVIDIA Jetson TX2 with an
embedded GPU to process the data using neural networks. The
system structure has longitudinal cylindrical distribution. A
large waterproof case hosts a central computational unit (which
is another NVIDIA Jetson TX2) and batteries. Sonar elements
are distributed in several sub-units along the whole structure
(e.g., the three cylinders facing left in the right-most photo
of Figure 3). The system is designed to work autonomously
under water, 20-40 meters deep, attached to a mooring cable
with a surface buoy. This surface buoy provides connectivity
with the shore. In the design terms, the energy autonomy of
the system is one month without recharging the battery.

Energy consumption is an important constraint in the sys-
tem. Due to that, acoustic and optical detection subsystems do
not work simultaneously. Instead, the acoustic system operates
continuously in low-energy mode, until a possible fish is
detected in the detection range (10-500 meters). When that
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Fig. 3. Schematic representation of the acoustic and optical Symbiosis system
and its main components (only the upper camera array is shown).

happens, the advanced sonar takes control to localize and
track the targets. All this information is analyzed to classify
the targets as one of the species of interest and estimate the
biomass according to the acoustic data. If a fish trajectory can
enter the detection vision range (1-10 meter radius, depending
on water and light conditions) of one or more cameras, the
optical pipeline is activated. The camera units will capture
a sequence of images or frames, and perform the optical
detection and classification of the possible fish candidates. The
results of the cameras will be aggregated in the central unit.
This data and the acoustic data will be processed and merged
to generate the final report to be sent to shore for each event,
to be further analyzed by marine biologists.

The Symbiosis prototype focuses on six species of bony
fishes (see Figure 4), selected based on their high commercial
importance, distinct behaviour or appearance, and occurrence
at either or both study locations of this project – the Eastern
Mediterranean Sea and the Canary Islands:

• Albacore tuna (Thunnus alalunga);
• Dorado (dolphinfish, Coryphaena hippurus);
• Atlantic mackerel (Scomber scombrus);
• Mediterranean horse mackerel (Trachurus mediterra-

(a) Albacore (b) Amberjack

(c) Atlantic mackerel (d) Dorado

(e) Mediterranean mackerel (f) Swordfish

Fig. 4. Example of the studied species in Symbiosis project.

neus);
• Greater amberjack (Seriola dumerili);
• Swordfish (Xiphias gladius).

The interested reader is referred to the corresponding Sym-
biosis project report [23] for more information about these
species.

IV. RESULTS

It is generally considered that neural networks are data-
greedy classification algorithms, requiring a consistent sample
of training examples, corresponding to the different classes,
for efficient training. Otherwise, due to the high number
of trainable parameters (weights), there is a high risk of
overfitting when using small datasets. Hence, for the purpose
of the optical processing tasks of Symbiosis, the compilation
of a reasonably large and curated training dataset was a
necessary step. This requires collecting, cleaning and further
aggregating in a homogeneous form a large quantity of images
and their corresponding relevant meta-data: labels, bounding
boxes (regions of interest, or ROI), etc. This often represents
the most time-consuming data analysis sub-task.

The raw data used in this paper was provided by the
Biology team of the Symbiosis project, from the University
of Haifa, who performed the collection task from a multitude
of public and private data sources. They collected a number of
photographs and videos that contained images of the 6 species
of pelagic fish targeted in the optical classification process.

The data extraction and preprocessing of the raw data
provided by the Biology team has gone through a series
of steps. As the data contained both image and video files
(of very different lengths), frame extraction was performed
on the latter. Then, a preliminary version of the detection
and segmentation algorithm [14] was applied on the resulting
individual frames by the Optics team from the University of
Haifa. This produced more than 1.5 million image segments
(containing ROI with potential fish). As the algorithm was
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TABLE I
Distribution of images subset for training. Total number of images: 51,260.

Species Training Validation Testing
Albacore 4, 100 1, 393 1, 353
Amberjack 8, 563 2, 931 2, 803
Atlantic mackerel 2, 679 840 812
Dorado 7, 631 2, 560 2, 576
Mediterranean mackerel 1, 884 654 680
Swordfish 5, 789 2, 035 1, 977
TOTAL 30, 646 10, 413 10, 201

still being optimized at the time, we inspected the images
manually to discard those that did not contain a fish, or where
the size or quality of the fish image was too low. This filtering
process was based on various characteristics such as image
quality, minimum size, full or partial coverage of the fish
body, detection accuracy, etc. While a small part of this process
was crowdsourced, the bulk of this cleaning was finally done
manually, resulting in 51,260 segments.

The datasets used to perform both binary classification
(distinguishing between our species of interest, grouped into
two classes) and multi-species classification (distinguishing
among our six species of interest), have been further split into
train, test, and validation subsets, with a distribution of the
sizes of (80%, 10%, 10%) over each species. The segments
from the same video were kept together in this process. The
size of this dataset appears in Table I. As an be seen, while the
total number of images is not small, these are very unevenly
distributed among the six species.

As mentioned above, the Symbiosis optical detection and
classification process consists of a pipeline with two separate
stages, both using convolutional neural networks. The first
stage, the detection and segmentation task, developed by the
Optical team from the University of Haifa [14], uses the
network RetinaNET [15] to extract regions of interest (ROI) or
image segments, corresponding to areas where a fish has been
identified in a raw image or video frame. The second stage of
the optical process, which is the focus of this paper, deals with
segment classification, in which each image segment extracted
is processed to determine if it corresponds to a fish of one of
the six species of interest, and in case it is, which species.
(See Figure 1 for a scheme of the Symbiosis optical pipeline
and the role of these two stages in it.)

In fact, the classification stage is further split into two
separate tasks: the binary classifier, which discriminates our
species of interest from other species of fish, and the multi-
species/multi-class classifier, providing a representative label
from one of our six classes/species.

One of our main tasks has been to find extremely light
architectures that would provide results comparable to well-
known networks (such as VGG16 [16] or Chollet [17]). Some
of the proposed models are just under 11, 000 parameters, and
provide comparable performance to their considerably larger
counterparts, in both binary and multi-class classification. All
architectures discussed in the present paper are listed, together
with their number of trainable parameters, in Table II. As

TABLE II
Total number of trainable parameters for the architectures considered in the
present paper. The final dense layer Dy is either D2 or D6, for binary and

multi-class classification, respectively. VGG16 is pre-trained and only the
final layer has been re-trained with our dataset.

Architecture Number of Parameters
4(C16M)D8D16Dy 18, 030
4(C16M)D32D32Dy 50, 166
5(C16M)D8Dy 10, 942
5(C16M)D32Dy 14, 566
5(C16M)D16D8Dy 12, 238
VGG16 15, 124, 518
Chollet 1, 667, 494

can be seen, the architectures proposed in this paper are all
formed by a sequence of pairs of layers, each pair formed by
a convolutional layer and a max pooling layer (denoted C16

and M , respectively), followed by a sequence of dense layers
(denoted Dx, x ∈ {8, 16, 32}), and a final classification layer
(Dy , y ∈ {2, 6}, see Figure 2). We remark that VGG16 is
a pre-trained architecture, for which only the final layer has
been retrained on our particular dataset.

The tracking component makes use of SORT [24], [25],
[26], an open-source tracking algorithm which shows good
performance with regards to typical fish movements. As
opposed to a deep learning model, SORT is not very
computationally-expensive, and this facilitates its deployment
on small systems, where memory and computational power
are limited. The input to the tracker is formed by the im-
age segments coordinates (pixel-wise), from every frame, in
consecutive order. The algorithm then provides an artefact
identifier and the predicted position of the object, in the next
frame. In our algorithm, the predicted coordinates are then
compared with the current coordinates, aiming at maximizing
the intersection over union (IoU), and link the identifier with
the image segment. A particular remark is that the tracker
needs to be updated frame-by-frame, even in situations where
the object itself is missing, in order to keep a consistent history.
This is useful and brings strength if the detection stage could
have a false negative for an intermediate frame, in particular,
in cases with low frame rate.

For benchmarking a series of neural network architectures,
we have constructed two datasets, one in which the six species
of interest have been grouped into two classes, and a second
dataset in which each species represents its own class. In the
binary dataset, the images from amberjack and dorado are
placed in one class, while the rest of species are placed in the
other class. This results in two sets of results, for binary and
multi-class classification, respectively. The setup in both cases
is identical: segmented images are first sent to a classifier,
in order to establish the fish species. A group of segmented
images, and their assigned classes, are combined with the
tracking procedure, to determine if the images represent the
same object. The classification results are thus placed into
a vector, if the tracking algorithm decides they represent
the same fish. We then have three methods of extracting an
accuracy value from the vector of predictions: by taking the
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TABLE III
Results for the binary classification task with and without the tracking component. The mean, max and voting columns refer to the type of decision scheme

used when the tracking mechanism is applied.

Architecture Test Accuracy
(NO TRACKING)

Test Accuracy
(Acc. Mean)

Test Accuracy
(Acc. Max)

Test Accuracy
(Acc. Voting)

4(C16M)D8D16D2 52.73 % 61.05 % 61.67 % 61.08 %
4(C16M)D32D32D2 53.20 % 60.51 % 60.53 % 60.71 %
5(C16M)D8D2 63.78 % 64.85 % 63.80 % 64.39 %
5(C16M)D32D2 62.08 % 63.43 % 62.24 % 63.52 %
5(C16M)D16D8D2 57.68 % 60.47 % 60.20 % 60.46 %
VGG16 74.37 % 80.47 % 73.86 % 79.95 %
Chollet 69.09 % 65.42 % 68.39 % 65.01 %

TABLE IV
Results for the multi-class classification task with and without the tracking component. The mean, max and voting columns refer to the type of decision

scheme used when the tracking mechanism is applied.

Architecture Test Accuracy
(NO TRACKING)

Test Accuracy
(Acc. Mean)

Test Accuracy
(Acc. Max)

Test Accuracy
(Acc. Voting)

4(C16M)D8D16D6 37.55 % 38.09 % 41.24 % 36.10 %
4(C16M)D32D32D6 38.38 % 54.21 % 53.42 % 53.66 %
5(C16M)D8D6 35.30 % 47.53 % 48.32 % 45.64 %
5(C16M)D32D6 37.39 % 54.43 % 51.42 % 52.89 %
5(C16M)D16D8D6 41.54 % 45.11 % 47.55 % 43.96 %
VGG16 52.73 % 62.79 % 59.71 % 61.48 %
Chollet 28.94 % 48.21 % 46.54 % 48.61 %

mean of all values (denoted as Acc. Mean), by taking the
maximum value (Acc. Max) or by using a majority voting
scheme (Acc. Voting).

We present the results for the binary classification in
Table III. As can be seen VGG16 is the architecture with
the largest accuracy, with more that 74% without tracking.
However, this comes as a cost of using more than 15 millions
of parameters. On the other hand, architecture 5(C16M)D8D2

reaches almost 64% accuracy with less than 11, 000 param-
eters. A second observation from Table III is that tracking
increases the accuracy in all cases (except for the Chollet
architecture), in some cases significatively (more than 8%).

For the second task, namely multi-class classification among
our species of interest, we observe a relatively lower accuracy
when the convolutional classifier alone is used. In Table IV,
we show the multi-class classification results for the different
architectures, with and without the final object tracker. Again
VGG16 is the architecture with highest accuracy (more that
52% without tracking and more than 62% with tracking), but
much simpler architectures with roughly 12, 000 parameters
have also comparable accuracy, of more than 41% without
tracking and more than 47% with tracking. Again, we observe
that tracking increases the accuracy significantly.

V. CONCLUSIONS

Performing underwater object detection with autonomous
probes poses a series of technical limitations on computational
power, memory availability, and image quality, among others.
Working within these constraints, we have proposed a series
of neural network models that are light-weight, in terms of
the number of trainable parameters, but nevertheless produce
results similar to much larger and widely used architectures,
such as VGG16. To further augment their predictive capability,

we combine the output of the image classifiers with an object
tracking algorithm, SORT, that is computationally inexpensive
and does provide a consistent boost in classification perfor-
mance.

A difficult task for this work has been acquiring and
preparing a dataset. In general, the amount of relevant images
available (for the classes of interest) have been limited. As
such, we found it necessary to perform frame extraction from
videos. This, in turn, raised the issue of frame similarity, and
the need to avoid having nearly identical images in both the
train and validation/test sets. In addition to the size of the
training data, its balance also posed a challenge. As seen
in Table I, the number of images from each species is very
different. This may be a reason that may have caused a lower
accuracy. For binary classification, the six classes have been
split into two categories, by maintaining a similar number of
images per class. Future work includes collecting more images
to balance the dataset, and performing more experiments with
our current dataset.
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