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Abstract. The paper focuses on two pivotal cognitive functions of both
natural and Al agents, namely classification and identification. Inspired
from the theory of teleosemantics, itself based on neuroscientific results,
we show that these two functions are complementary and rely on dis-
tinct forms of knowledge representation. We provide a new perspective
on well-known AI techniques by categorising them as either classifica-
tional or identificational. Our proposed Teleo-KR architecture provides
a high-level framework for combining the two functions within a single Al
system. As validation and demonstration on a concrete application, we
provide experiments on the large-scale reuse of classificational (ontologi-
cal) knowledge for the purposes of learning-based schema identification.
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1 Introduction

Class and classification are powerful notions in computer science and Al, yet the
terms hide a variety of interpretations. Library classifications, for instance, are
a traditional form of knowledge organisation that apply principled methods to
structuring written human knowledge. The notion of class as used in ontologies
by the Semantic Web community, while also a form of knowledge organisation,
is different as it is defined through formal logic and it aims to cater to computa-
tional applications such as reasoning or data integration. The machine learning
community also heavily relies on the notion of classification, understanding it
as the sorting of a discrete number of input elements into a discrete number of
output categories, classes or clusters, in a supervised or unsupervised manner.

Our paper looks behind the diverse uses of these notions by various Al com-
munities to find that they are not merely the result of different procedural ap-
proaches towards similar goals. Rather, they are complementary and serve tasks
with markedly different purposes and representational needs.

* This paper was partly supported by the InteropEHRate project, co-funded by the
European Union (EU) Horizon 2020 programme under grant number 826106.
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The theoretical underpinning of our work is the philosophical theory of
teleosemantics (also known as biosemantics or the teleological theory of men-
tal content), and in particular Ruth Millikan’s results. Teleosemantics is one of
the most popular naturalistic explanations of mental representations: it binds
together models of cognition, such as the classical and connectionist models, and
has yielded results in fields such as communication theory or genetics [18]. Based
on neuroscientific evidence from animals and humans—and thus formulated in
total independence from results in AT or computer science—teleosemantics states
that classification and identification are two distinct tasks that are performed
using separate devices of the brain that rely on separate representations of knowl-
edge [23].

The paper offers four main contributions. (1) Based on a teleosemantic per-
spective, we interpret the notions of classification and identification and clarify
the difference between the two. Our goal is not to redefine terminology already
in use in various fields of AI, but rather to propose a both theoretically and
practically useful distinction between kinds of functions that are often conflated
into the same task. (2) We categorise a wide range of AI solutions as based on
either of the two or their combination, shedding light on why ‘classificational’
and ‘identificational’ tasks need different representations of knowledge in order
to be efficient. (3) We introduce a novel Teleo-KR architecture that bridges these
two fundamental cognitive functions and combines them into a unified AI agent.
This high-level theoretical framework may serve, in our view, as a blueprint for
future hybrid Al solutions for learning to map between different kinds of rep-
resentations. (4) Finally, we demonstrate the application of the framework on
the AI task of matching data schemas via a combined use of the two kinds of
knowledge. We implement the setup as a series of experiments on large sets of
data schemas and interpret the results.

In section 2, we define and describe classification and identification based on
results from teleosemantics. In section 3, we situate well-known Al tasks with
respect to these two functions. Section 4 presents the Teleo-KR architecture that
models cognitive abilities of artificial agents. Section 5 presents our case study
on schema identification. Finally, in section 6 we look at the significance of our
results and possible future work.

2 Classification and Identification

Teleosemantics considers biological perceptual-cognitive systems (PCS)—i.e., what
is able to perceive the external environment, to organize sensory information and
to know—to be composed of devices having specific functions. A device corre-
sponds to a biological component of the brain while the notion of function, as
used in neurobiology, describes the role fulfilled by the device. Devices perform
tasks with specific goals, in relation to other devices or to the external environ-
ment.

In a classic clarifying example [21], bees can be considered as PCSs, i.e.,
sender/receiver representational systems, having a device whose function is to
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accumulate information about a portion of the environment, such as the location
where nectar can be found, as well as a device to communicate it to other bees,
e.g., through the bee dance.

‘Communication’ and ‘accumulation’ can be generalised as pivotal applica-
tions of classification and identification, respectively. Classificational representa-
tions are views over the stream of diverse data sources collected by the represen-
tational system over time. Different individuals may have different classificational
representations for the same world state (e.g., a car dealer and a mechanic may
classify cars differently), and even the same individual may describe the same
world state differently according to context and pragmatic requirements. Nev-
ertheless, classes within individual classifications aim to remain consistent and
unequivocal.

Identification, in turn, is required to make learning possible: its purpose is
to keep track of things over time, to understand whether they were previously
encountered or not, and to focus on new incoming information. In contrast to
classification, identification relies on an open and adaptive space for diverse,
potentially fuzzy, or contradicting information. Identificational representations
afford non-invariant knowledge, adapting to changes in how one perceives things
over multiple encounters [3, 23].

The device implementing identification relies on knowledge necessary to recog-
nise what is encountered through sensory experience (directly observing the
world through seeing, hearing, etc.) and to gather information about it. The
device implementing classification builds unequivocal and shareable knowledge
from the stream of diverse data collected over experience. Accordingly, a central
statement of teleosemantics-which this paper applies to Al as a key contribution-
is that devices may provide their own distinct representations of the world, rather
than sharing one common representation. In particular, classificational and iden-
tificational representations of knowledge are distinct and are organised in differ-
ent ways [20].

Applying these insights to computational agents, we model identificational
representation (KR') as follows:

KR' = (8,0 {(s,¢")}) (1)

where s is a formalization of a perceptual state, i.e., a cognitive representation
posterior to perception, also called neural state in [Barsalou, 1999]). A perceptual
state is the initial cognitive encoding of an object encountered by the agent in the
external environment. S is a set of all such perceptual states represented within
KR'. ¢! is the representational unit of KR’ that [20] calls substance concept
and defines as ‘nodes that help in storing knowledge and information arriving
at the sensory surfaces’ [23]. For our purposes, ¢! is a symbol in KR! that
groups perceptual states together as being from the same object in the external
environment [11]. C7 is the set of such substance concepts in KR'. While the
simple formalization above suits the purposes of our paper, in practice we expect
KR! to be more complex and fine-grained both for biological and artificial agents.
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We model classificational representation (KR®) as follows:
KR® = (5,C% {(i,c)}) (2)

where ¢ € I are instances, i.e., representations of occurrences of a given object
[14], and ¢© € C¢ are classes. Here we commit on the classical definition of class
provided in [1], taken as a set of instances. A true classificational KR may be a
superset of this minimal modelling, e.g., based on first-order logic.

It is important to notice that the difference between instance and class (e.g.,
‘cat” and ‘my cat Misty’), pivotal in classificational knowledge, does not occur in
the identificational knowledge: both always map into a substance concept [14].

A teleosemantic cognitive device can be modelled as a pair consisting of a
knowledge representation and a cognitive function: D = <KRD , fD>. Accord-
ingly, the classification and identification devices are composed, respectively, as
D¢ = <KRC,fc> and DT = <KRI,fI>, where f¢ and f! correspond to the
cognitive functions of classification and identification.

We model identification (f!) as the function:

f1:(S,KR") — C1 (3)

that assigns perceptual states resulting from an encounter to a given substance
concept. For example, recognising a black shape on a photo as ‘a cat’ or ‘my cat
Misty’ is an act of identification.

We model classification (f€) as the function:

f€: (I, KR®) — C© (4)

that assigns the instances of a given classification to a given class. The statement
‘cats are mammoals’, where the mammal is applied to cat, both defined within
KRC. is an example of classification.

The representation of identificational knowledge via the substance concept
strongly relates, in our view, to what in cognitive linguistics is called basic level
category. As shown in Eleanor Rosch’s experiments, the power of identifying
something (such as a cat or my cat) depends highly on the ability to mirror the
structure of information perceived in the world [27], and this key indicator can
be tuned through the accumulation of new information.

Despite the fundamental differences, classification and identification heav-
ily rely on each other. On the one hand, teleosemantics states that the act of
recognising is necessarily prior to the act of classifying [20]. On the other hand,
the means employed in identification are often heavily influenced by organised
classificational knowledge. For instance, the phrase ‘lynzes are large-sized wild
cats” may help someone in correctly recognising a cat-like creature in the forest
as a lynx. In this particular example, natural language is used to vehicle clas-
sificational knowledge that the receiver can use to improve their identification
abilities. Language, for humans, is on par with other perceptual ways of acquir-
ing information, such as vision or hearing [21,22]. We adopt this point of view
for artificial agents in our case study, where we process semi-formal language as
a particular form of perceptual input.
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3 Classification and Identification in Al

The findings of teleosemantics bear a high relevance to computational models
of intelligence. While AI communities have not always been defining the terms
classification and identification in exactly the same manner as above, the respec-
tive functions do have AI equivalents. In this section, we map a few important
existing AI approaches and tasks to either of these two functions, explaining
their differences in the light of teleosemantics. We also show examples of com-
plementary use of identificational and classificational knowledge in existing Al
solutions.

In computational systems, classifications are crucial for reasoning, the shar-
ing of knowledge, standardisation, and are generally widely used as vehicles of
semantic interoperability, e.g., for data integration. In Al, and in particular in the
field of KR, several kinds of representational systems were developed to model
classifications as formal and machine-readable grid or tree structures: semantic
networks such as in KL-ONE [6] or top-level and domain ontologies (e.g., Dolce
[12] or FOAF [7], respectively).

Identification being such a crucial function in processing sensory input in
living beings, it is no surprise to find it playing a central role in Al as well. Ma-
chine learning (ML) has proven successful for identificational tasks, especially
on unstructured ‘sensory-like’ input such as images or spoken or written nat-
ural language [16,25,28]. ML classifiers expect such input to be pre-processed
(‘perceived’) as features (that map to S in equation 1) and produce classes or
clusters as output (that map to C?) [5]. ML models, that map to KR!, are
built through the accumulation of input associated to hypotheses (‘training’),
as foreseen by teleosemantics for identificational representations, instead of the
clear-cut classes of classificational KR.

ML is far from being the sole example of identification in AI. Schema/ontology
matching or entity matching, crucial tasks in practical applications such as data
integration, involve identification that maps one or more incoming structures
to a set of reference structures. While the inputs of these matching tasks are
typically classificational and not perceptual, most matchers analyse them using
techniques common for unstructured input, e.g., the extraction of ‘features’ from
ontology labels via NLP [26,4] and then perform a similarity-based (but not
necessarily learning-based) analysis of such features. Note that our teleosemantic
model of identification considers the matching of schemas/classes on the one
hand and instances on the other hand as essentially the same task over data
of different levels of granularity, as opposed to state-of-the-art approaches that
regard them as distinct tasks [10]. The need for unifying these tasks has already
been recognised in Al in the field of Structured Machine Learning [9].

There have been efforts in Al for the mutual reuse of classificational KRs
for identificational purposes and vice versa. Statistical Relational Learning [13]
applies ML to classificational structures. In OntoClean [15], a lot of work has
been devoted to defining identifying (i.e., rigid) properties for instances of a
certain class (e.g., for an instance of the class Person, the birth date is an iden-
tifying property while profession is not as people can change their jobs). In this
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approach, identificational knowledge is fixed by design as part of classificational
knowledge, instead of being derived by gradual accumulation of information. In
ontology matching, relying on classificational background knowledge is a com-
mon technique for improving precision and recall [10]. Likewise, reusing symbolic
knowledge in learning-based (e.g., neural) applications has been a challenging
research topic in AI [1,17,30,29]. Giunchiglia and Fumagalli [14] motivate the
need for two distinct data layers for the two kinds of knowledge in a context of
an ontology built for recognition.

The other direction, namely using identification for building classifications, is
manifest in ontology learning from unstructured, e.g., textual input [8], ontology
matching combined with repair [19], and Inductive Logic Programming [24]. The
latter constructs classificational knowledge by learning from examples, without,
however, the use of separate identificational knowledge.

4 The Teleo-KR Architecture

This section aims to formalise the principles of teleosemantics, presented in sec-
tion 2, as a high-level Teleo-KR architecture. We intend the architecture as a
frame of reference for interpreting and structuring AI solutions that combine
the two essential—classificational and identificational—functions of cognition.
The approach is demonstrated in a concrete Al use case in section 5.

Figure 2 shows a high-level schema of the architecture. Rounded boxes cor-
respond to teleological devices, and arrows represent the flow of information.
Devices fall into one of three general functional areas or layers, modelled within
a classic perceptual-cognitive paradigm:

— the perceptual layer contains devices that take various forms of input from
the outside world: sensory, structured data, unstructured text, etc.;

— the cognitive layer with devices that collect and organise information about
the world;

— and the behavioural layer with devices that act upon the world: moving the
agent, communicating with other agents, etc.

The contributions of this paper mostly concern the cognitive layer. As shown
in figure 2, the two pivotal devices of teleological representational systems,
namely classification and identification, play the role of connecting environmen-
tal inputs to behavioural outputs. (Other devices may also be part of this layer,
such as one for linguistic reasoning, but they are out of scope for our paper.)
Perceptual input first enters into the cognitive layer through the identification
device. This design choice encodes the teleosemantic hypothesis that identifica-
tion precedes classification and, more generally, other cognitive and behavioural
acts. The fact that in our architecture identification acts as a bridge between
perception and other cognitive functions reflects neuroscientific evidence on the
complex transition between perception and cognition and is in line with com-
bined perceptual-conceptual theories of knowledge [3].
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Fig. 1. The Teleo-KR architecture, showing the two pivotal teleosemantic cognitive
devices and their relation to perception and behaviour. The schema does not aim an
exhaustive description of intelligent agents, hence the inclusion of ‘other’ devices.
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On the other hand, as shown by the architecture, both forms of knowledge
play a role in controlling the agent’s behaviour. For instance, a communica-
tive act may either be the direct result of instinctive recognition (e.g., shouting
upon seeing something frightening) or the vehicle of knowledge in an organised
manner.

In this model, classificational knowledge is generated through a process of
formalization, which we model as a function f¥ : KRT — KR® by which classi-
ficational knowledge is derived from identificational knowledge.

Formalisation synthesizes information coming from the external environment,
collected through identification during encounters, obtained through various per-
ceptual devices, into a theory about the world. For example, a biologist may
observe a living organism from diverse points of view, using an array of sensory
inputs (his or her own eyes and hearing, the image provided by a microscope,
etc.), before concluding on having discovered an individual of a new species. In
the knowledge representation community, this process is known as ontological
commitment.

Classifications and deductive thought processes may, in turn, play a role
in revising the hypotheses within identificational knowledge, as in the example
of the lynx in section 2. Accordingly, we model revision as a function fF# :
KR® — KR! by which classificational knowledge is used to update identificational
knowledge.

The two processes that interconnect the two forms of reasoning—jformalisa-
tion and revision—hide deep open questions about both biological and artificial
cognitive systems. Formalisation, i.e., converting a set of incomplete and po-
tentially contradictory hypotheses into a representation of formal classes and
relations, amounts to ‘making sense’ of identification results in a conscious and
fine-grained manner. In the context of Al, it is an instance of the semantic gap
problem that remains only partially solved, especially in the case of deep learning
approaches to identification. Likewise, the process of revision, i.e., controlling the
inductive process of identification using formally organised rational knowledge,
remains ill-understood: one of the major challenges in current AT research is to
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find efficient ways for plugging in formal knowledge into learning-based systems.
These two functions within the Teleo-KR architecture map to an important set
of open problems in AI that will remain subject to extensive research in the near
future.

5 Case Study

The goals of our case study are: (1) to demonstrate the conceptual power of
the Teleo-KR architecture by applying it to a well-known Al task, showing how
the latter can be solved through combining classificational and identificational
knowledge; and (2) to propose and test a novel idea on the large-scale reuse of
existing classificational knowledge for identificational purposes.

The underlying scenario can be described as the identification of data schemas:
given a set of input attributes (or properties), find the schema that matches them
best. It is a sub-problem of the well-known schema alignment problem, used in
applications of semantic interoperability, such as data integration or dynamic
data matching.

We map this problem onto the Teleo-KR architecture by building a ‘teleolog-
ical Al agent’. We use this agent to simulate a ‘cognitive cycle’ that starts from
perception, identifies the input, builds identificational and classificational knowl-
edge through accumulation and formalisation, respectively, and finally performs
a revision of its identificational knowledge to optimise its abilities. We cover the
entire cycle through four successive experiments.

Input. As input classificational knowledge we used schemas collected from 15 re-
sources from Linked Open Vocabularies' (details will be given in each experi-
ment). A major role of such vocabularies, as explained in section 2, is to com-
municate conventions for interoperability. It thus makes sense to consider them
as natural language input received by an intelligent agent through perception,
also considering the commitment of teleosemantics on language being on par
with other forms of perceptual input (see section 2).

Perceptual preprocessing. We consider the preprocessing of linguistic input
as part of perception before identification. Its goal is to generate the percep-
tual states (see section 2 above) that constitute the input of identification.
We filtered the input classificational knowledge to retain only (Schema, at-
tributey, ..., attributey) relations of labels, e.g., Person or dateOfBirth. We
did not consider attributes inherited from ancestors in order not to bias results
by the inheritance hierarchy. Perceiving attribute names as natural language
text, we converted them to lowercase, and discarded frequent or meaningless
stop words, e.g., dateOfBirth — {date, birth} . The goal was to eliminate sur-
face variations related to orthography, word order, etc. The final output was,
for each schema, a bag-of-words vector representation of its corresponding at-

tribute words Schema; — (wlattr’ wdttr wﬁttr). In machine learning terms,

! https://lov.linkeddata.es
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Table 1. Accuracies of identificational devices trained (down) and tested (across) on
three schema resources.

TEST
Schema.org DBpedia SUMO

Schema.org 63.77% 2.11% 1.46%
DBpedia 4.19% 9442% 7.42%
SUMO 1.90% 5.82% 93,38%

TRAINING

we consider the words in attributes names as the features used by the subse-
quent identification function. While we could just as well have used a different
set of features, optimising this aspect of the setup any further was irrelevant
with respect to our experiments.

Identification. We modelled identification essentially as a machine-learning-
based supervised document classification task, KR! being the trained learning
model and f7 the learning algorithm. We pre-evaluated multiple algorithms, such
as mazimum entropy or decision trees; however, our tests showed that, while the
results changed in absolute terms, there was no effect on the overall trends and
insights gained. The optimisation of f not being of concern to this paper, we
finally settled for a decision-tree-based implementation. The training and test
sets were all based on the perceived input as described above, with schemas
corresponding to output classes and bags of attributes words being the input.

Formalisation. We provide examples to show how acquired identificational
knowledge can enrich classificational knowledge. As a form of ontology learn-
ing, we formalised similarities found among class definitions of various resources
by converting them into ontological knowledge of class equivalence, subsumption,
or semantic similarity.

Revision. To close the loop, we reused the newly created classificational knowl-
edge to revise identificational knowledge through the optimisation of training
data, and thus improve identification results.

Experiment 1: Identification Ability

In our first experiment we trained three identificational devices using three well-
known top-level classificational KR resources: SUMO? (178 schemas, 755 at-
tributes), Schema.org® (608, 877), and DBpedia* (775, 2861). We then eval-
uated each device with respect to their ability to identify schemas, both over
themselves (using the same data as for training) and over each other. These
evaluations, shown in table 1, quantify the ability of each resource to serve as
identificational knowledge.

2 http://www.adampease.org/OP/
3 https://schema.org/
* https://wiki.dbpedia.org/



10 Mattia Fumagalli et al.

83,33
83,33

25,73
59,37

& R
8 < S 9 SIS
8 s 9 X 9 -
e N X g 9 8 |8
2 S o & ) © hal &
o ¥ N8 % = &
b ) 8 S ¢ X 2
g o s ¥ T X
0 f NN ., 3695 51,38
448 S men Ca N @ .
o S3727 B s “
S e > : 29,91 | .7 ] 2818 0% 2214
s 2313 23,40 = pese 24,52 2977 ., 2543 2500 Fer
3 B 20,16
3 15,56 b
o0 IR IR (R 18 '8 'S (X 8| R 8 |8 8 R ¥ 88 8 8§ 8 % 9 LB,
JSES IR £S5 180 I8 18 (8| (8 '8 [R] & 'S & 8 8 X [8] ¥ 8 (8 8 wa.n.
MRSy
(A) (8) () (A) (B) () (A) (B) (c) (A) (8) (C) (A) (8) (¢ (A) (8 () (A) (B (0 (A (8B ()

Action Event Place Organization Person Vehicle CreativeWork Product

precision recall ** F1 Measure

Fig. 2. The effect of accumulation of training data on precision, recall, and F1 for eight
core types.

While identification did perform much better, as expected, when the train-
ing and test sets were identical, it is also clear that there can be major differ-
ences between resources in this respect. Schema.org thus fared much worse for
identifying its own schemas. On close analysis, this was due to major overlaps
between attribute sets of different schemas, such as the schemas T'VSeries and
RadioSeries whose attributes sets were almost identical. The very weak results
across resources are, in turn, explained by the relatively low overlap among the
schemas and their names (e.g., Film in DBpedia and Movie in Schema.org are
considered as distinct schemas). This experiment suggests the possibility of a
practical tool that evaluates the potential performance of an ontology or a set of
schemas in matching tasks. The results may be used, e.g., to finetune schemas
in an open-world data integration scenario.

Experiment 2: Knowledge Accumulation

This experiment investigates the effect of accumulation of training informa-
tion on identification results. We increased the size of training sets by merging
the three resources from the previous experiment: (A) Schema.org alone; (B)
Schema.org + DBpedia; (C) Schema.org + DBpedia+ SUMO. We tested the re-
sulting models on a new, more heterogeneous test set consisting of the fusion
of 12 vocabularies, some general and some domain-specific, retrieved once again
from LOV: Proton, Bibo, the Semantic Web for Research Communities, SwetoD-
blp, the Comic Book Ontology, Linked Earth, DNB Metadata Terms, Ontology
Design Patterns, PREMIS, EBU, Bio, and FOAF. We restricted the evaluation
to top-level schemas that were shared by most resources: Action, Fvent, Place,
Organization, Person, Vehicle, Creative Work, and Product.

Results can be seen in fig. 2. While accumulation improves the identification
of Action, Event, and Place, the improvement is only partial for Organization and
Person, and a deterioration is observed for Vehicle, Creative Work, and Product.
The most salient observation we can make is one well known to the machine
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Table 2. Formalisation results: equivalence classes of schemas from Schema.org, de-
rived from identificational similarity scores.

Similar schemas Similarity
Apartment, SingleFamilyResidence 1.00
Accommodation, House 1.00
Authorize-, Donate-, Give-, Pay-, Return-, TipAction 1.00
Inform-, Invite-, Join-, LeaveAction 1.00
Insert-, Move-, TransferAction 1.00
Comment-, Order-, Reply-, TrackAction 1.00
PropertyValue, QuantitativeValue 0.98
TvSeries, RadioSeries 0.96

learning community: more training data does not systematically lead to higher
accuracy. The latter greatly depends on a number of other factors such as input
data quality and relevance with respect to the task, how features are defined,
the learning algorithm, or the structure of the hypothesis space. In our case, we
attribute the low overall scores and the lack of salient improvement of results
after accumulation to the high level of heterogeneity of input KRs with respect
to the amount of training data.

In conclusion, in a scenario of sparse and heterogeneous identificational knowl-
edge, alternative ways to improve f! need to be considered beyond the accumu-
lation of more evidence. The Teleo-KR achitecture suggests us the improvement
of perception (e.g., through feature engineering) but also the cyclic revision of
KR! using knowledge from KR®. Our two last experiments illustrate the latter
process.

Experiment 3: Knowledge Formalisation

This experiment demonstrates formalisation by reusing the output of identifi-
cation to enrich classificational knowledge. This operation is analogous to the
ontology repair or ontology learning step that is a regular post-processing feature
of many ontology matchers [19].

Table 2 shows sets of schemas from Schema.org that were found to be iden-
tical or very similar by f! due to overlapping attributes. The high number of
shared attributes found across schemas (the table only shows the tip of the
iceberg, as we used a similarity cutoff of 0.95) explains the relatively low iden-
tificational power of Schema.org in experiment 1. Formalisation converts these
observed similarities into acquired classificational knowledge of equivalence, e.g.,
TV Series = RadioSeries. With a larger-scale analysis that includes property
set containment, subsumption relations could also be discovered. Note that in
this experiment we only consider extensional similarity based on shared at-
tributes. Possible intensional similarities and differences could also be taken
into account in a more sophisticated formalisation approach that, for example,
would consider the semantics of schema names.
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Experiment 4: Knowledge Revision

Knowledge revision updates KR! by classificational knowledge, in our case by
the axioms formalised in the previous experiment. We re-trained the Schema.org-
based model of experiment 1 with schemas found equivalent in step 3. In the
training data we replaced each schema with a single one representing their equiv-
alence class, e.g., TVRadioSeries or AccommodationHouse. We then re-ran eval-
uations of the retrained Schema.org over the original (unmodified) data, and
obtained an overall accuracy increase of 2.61%, from 63.77% to 66.38%. With a
more aggressive approach to formalisation that does not stop at the similarity
threshold of 0.95, accuracy could be increased up to 96.52%. This demonstrates
the importance of the formalisation-revision cycle as a means to improve the
overall cognitive abilities of the artificial agent.

6 Conclusion and Perspectives

Our paper aimed to reframe a range of tasks and open issues of Al with respect
to the functions of classification and identification. Building on the results of
teleosemantics, we defined the two notions, clarified their difference based on
analogous functions of natural agents, and demonstrated their pivotal role in
AT. Our Teleo-KR architecture proposed a schematic model for Al agents based
on the combination of these two functions through formalisation and revision.
We demonstrated the use of the architecture on a set of Al tasks inspired from
the well-known problems of schema identification and repair. The case study also
introduced a novel idea for the large-scale reuse of symbolic knowledge resources
for identification and learning tasks in general.

Among the potential paths of research opened up by our results, we now
present two areas of future work. A first perspective concerns the testing of
Rosch’s seminal hypotheses on the relatedness of identification with basic level
categories. We plan to verify her results through computational experimenta-
tion using the Teleo-KR framework. A second perspective concerns the notion
of reward, a central tool of teleosemantics for the evolution and stabilisation of
accumulated knowledge. We wish to formalise reward within the Teleo-KR ar-
chitecture and investigate parallels with results in Al on reinforcement learning.
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