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ABSTRACT
Effects of missing data and locational errors on spatial concentration measures based on Ripley’s K-function.

Spatial Economic Analysis. Measures based on Ripley’s K-function are the preferred tools to test the

concentration of individual agents in an economic space. In many empirical cases, however, the datasets

contain different inaccuracies due to missing data or uncertainty about the location of the agents. Little is

known thus far about the effects of these inaccuracies on the K-function. This paper sheds light on the

problem through a theoretical analysis supported by Monte Carlo experiments. The results show that

patterns of clustering or inhibition may be observed not as genuine phenomena but only as the effect of

data imperfections.

KEYWORDS
spatial microeconometrics; spatial concentration; Ripley’s K-function; geomasking; confidentiality; missing

spatial data

摘要

遗失数据和区位误差对于根据雷普力K函数的空间集中测量之影响。Spatial Economic Analysis. 基于雷普

利K函数的测量，是检验个别行动者在经济空间中的集中度时偏好的工具。但在诸多经验案例中，却因

遗失的数据或行动者地点的不确定性，导致数据集包含了各种不精确性。这些不精确性对K函数的影响

至今却所知甚少。本文透过由蒙地卡罗实验所支持的理论分析，对此一问题提出洞见。研究结果显示，

集群或抑制的模式，或许不应被视为真实的现象，而仅是数据不完美的影响。

关键词

空间微观计量经济; 空间集中度;雷普利K函数; 地理模糊处理;匿名性; 遗失的空间数据

© 2017 Regional Studies Association

CONTACT
a (Corresponding author) giuseppe.arbia@unicatt.it

Catholic University of the Sacred Heart, Rome, ItalyAQ1
¶

.
b giuseppe.espa@unitn.it

University of Trento, Trento, Italy.
c diego.giuliani@unitn.it

University of Trento, Trento, Italy.
d mariamichela.dickson@unitn.it

University of Trento, Trento, Italy.
Supplemental data for this article can be accessed 10.1080/17421772.2017.1297479

SPATIAL ECONOMIC ANALYSIS, 2017

http://dx.doi.org/10.1080/17421772.2017.1297479

5

10

15

20

25

30

35

40

45

50

5

10

15

20

25

30

35

40

45

50

RSEA1297479 Techset Composition India (P) Ltd., Bangalore and Chennai, India 3/29/2017



RÉSUMÉ
Effets de données manquantes et d’erreurs de localisation sur les mesures de concentration spatiale basées

sur la fonction K de Ripley. Spatial Economic Analysis. Les mesures fondées sur la fonction K de Ripley sont les

outils de choix pour tester la concentration d’agents individuels dans un espace économique. Toutefois, dans

un grand nombre de cas empiriques, les ensembles de données contiennent différentes inexactitudes

attribuables à des données manquantes ou des incertitudes concernant la localisation des agents. Jusqu’à

présent, les effets de ces inexactitudes sur la fonction K étaient bien peu connus. La présente

communication fait la lumière sur ce problème, par le biais d’une analyse théorique qui s’appui sur des

expériences de Monte Carlo. Les résultats indiquent que l’on peut observer des modèles de regroupement

ou d’inhibition non pas comme un authentique phénomène, mais simplement comme l’effet

d’imperfections des données.

MOTS-CLÉS
micro-économétrie spatiale; concentration spatiale; fonction K de Ripley; géo-masquage; confidentialité;

données spatiales manquantes

RESUMEN
Efectos de datos incompletos y errores de ubicación en las mediciones de concentración espacial basadas en

la función K de Ripley. Spatial Economic Analysis. Las mediciones basadas en la función K de Ripley son las

herramientas preferidas para comprobar la concentración de los agentes individuales en un espacio

económico. Sin embargo, en muchos casos empíricos los grupos de datos contienen diferentes

imprecisiones debido a una falta de datos o incertidumbre sobre la ubicación de los agentes. Hasta ahora

se sabe poco sobre los efectos de estas imprecisiones en la función K. Este artículo arroja luz sobre el

problema mediante un análisis teórico respaldado por experimentos de Monte Carlo. Los resultados

muestran que los patrones de aglomeración o inhibición se podrían observar no como un fenómeno

genuino sino como el efecto de las imperfecciones de los datos.

PALABRAS CLAVES
microeconometría espacial; concentración espacial; función K de Ripley; geo-enmascaramiento;

confidencialidad; datos espaciales incompletos

JEL C2; C21; O1; O12; R1; R12
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INTRODUCTION

The analysis of the spatial concentration of economic agents is central to many microeconomic
problems and may be invaluable in suggesting theoretical hypotheses concerning the role of econ-
omic agglomerations and the interactions among increasing returns, transportation costs and the
location of production factors. For instance, in the analysis of firm demography, firm clustering
can be explained by the Marshall–Arrow–Romer (MAR) externalities hypothesis (Arrow,
1962; Marshall, 1890; Romer, 1986), according to which the close proximity of similar firms
increases the chances of human interaction, labour mobility and knowledge exchange, which,
in turn, affect firm creation, development and survival. Most of the earlier empirical contributions
on spatial concentration have considered data aggregated at a regional level, resulting in different
ways of measuring the phenomenon (e.g., Arbia & Piras, 2009; Ellison & Glaeser, 1997; Maurel
& Sédillot, 1999) and contradictory empirical results (Henderson, 2003; Mansfield, 1995;
Rosenthal & Strange, 2003). In most of this literature, due to the aggregation of data at the
regional level, conclusions are based on arbitrary definitions of the adopted jurisdictional spatial
units, such that aggregating them in different ways produces different evidences. This is the
essence of the so-called modifiable areal unit problem (MAUP) (Arbia, 1989). Furthermore,
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theoretical models of the spatial behaviours of economic agents are generally grounded in the
behaviours of individual economic agents (e.g., Hopenhayn, 1992; Krueger, 2003; Lazear,
2005) and can be tested empirically on regional aggregates only under the unrealistic assumption
of homogeneous behaviours among regional agents. Indeed, the lack of theories to support
regional econometric modelling is one of the deepest criticisms of spatial econometrics inference
(Corrado & Fingleton, 2012; Pinkse & Slade, 2010), on the basis that, at most, regional data can
help identifying technical relationships, with little or no possibility of drawing conclusions about
cause–effect relationships.

The search for a statistical solution to the MAUP has led in recent years to an increasing inter-
est in the use of micro-data and establishment-level information, thus eliminating the problem of
defining a priori the level of geographical partition. This approach allows the use of individual-
level variability in spatial concentration in order to test the various economic theories and to recon-
cile the contrasting empirical evidence found at the aggregate level. In this respect, the use of point
pattern analysis methods (initially proposed by Ripley, 1977, and originally applied to epidemio-
logical and ecological phenomena; Diggle, 2003; Getis & Boots, 1978; Getis & Franklin, 1987)
was more recently extended to the analysis of economic phenomena by the contributions of Mar-
con and Puech (2010), Duranton and Overman (2005), and Arbia, Espa, and Quah (2008),
amongst others. This gave rise to a new branch of econometrics sometimes referred to as spatial
microeconometrics (Dubé & Legros, 2014). The use of micro-data in spatial microeconomics has
also been fostered by the large and increasing availability of detailed georeferenced databases.
For instance, the US Census Bureau’s Longitudinal Business Database (LBD) contains annual
observations for approximately 4 million firms and 70 million employees (Glaeser & Kerr,
2009). Similarly, the recently launched Billion Prices Project (Cavallo & Rigobon, 2016) collects
daily geolocated retail prices from a large number of global retailers. However, while solving the
MAUP, the use of granular micro-data raises entirely new problems of data quality that require
proper evaluation. Indeed, when using individual geocoded data, we almost invariably encounter
various forms of data imperfections (e.g., data based on a sample, missing data and data containing
attribute and/or local errors) that can mask the real phenomena, even to the point of dramatically
distorting inferential conclusions. This paper seeks to describe the effects of these imperfections in
studying the spatial concentration of economic agents using state-of-the-art microgeographic
measures, such as Duranton and Overman’s (2005) and Marcon and Puech’s (2010) indices.
Since these measures are essentially extensions of Ripley’s basic K-function, for simplicity and
without loss of generality, we focus our discussion mainly on this tool. Consequently, the paper
is structured as follows. The next section contains a short description of the K-function as a
tool for testing the null hypothesis of random spatial distribution versus the alternative hypotheses
of concentration or dispersion. The third section describes in more detail the data-quality issues
that will be analysed, namely: missing data and locational errors. The fourth section discusses
some of the theoretical expectations of estimating a K-function in the presence of data inaccura-
cies. The fifth section reports the results of a series of Monte Carlo simulations to support the
theoretical expectations.

MEASURING SPATIAL CONCENTRATION USING MICROGEOGRAPHIC
DATA: THE K-FUNCTION

Generally, in spatial statistics a point process is almost completely identified by its first- and
second-order properties. The first-order properties can be described by the so-called intensity
function l(x), defined as:

l(x) = lim
|dx|"0

{(E[N (dx))]/(|dx|)},
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where x denotes the coordinates of an arbitrary point; N (·) denotes the number of points in
an infinitesimal area; and |.| denotes the surface area (Diggle, 2003). The second-order prop-
erties, in turn, can be described by the so-called second-order intensity function l2(x, y),
defined as:

l2(x, y) = lim
|dx|,|dy|"0

{(E[N (dx)N (dy)])/(|dx||dy|)},

where x and y denote the coordinates of two distinct and arbitrary points.
Formally, the K-function is an alternative description of the second-order properties of a

spatial point process that can be adopted under the assumption of stationarity and isotropy
(Diggle, 2003). A stationary and isotropic spatial point process is such that l2(x, y) = l2(d ),
where d = x− y is the Euclidean distance between the arbitrary locations x and y. A process
of this kind is, therefore, characterized by the fact that the spatial interactions among points
(which may identify the locations of certain kinds of economic agents) depend only on their
distance and not on their specific positions. Furthermore, the second-order properties of such
a process can be properly described by the K-function, which can be heuristically defined as fol-
lows:

K (d ) = l−1E{number of further points falling at a distance ≤ d from an arbitrary point}

(1)

where l denotes the first-order intensity (which is constant because of the stationarity assump-
tion), which corresponds to the mean number of events per unitary area. Therefore, lK (d ) indi-
cates the expected number of farther points up to a distance d of a typical point (Ripley, 1977).
In the empirical economic analyses, in which the data-generating point process is stationary and
isotropic (i.e., when the territory is essentially homogeneous), the K-function properly quantifies
the mean (global) level of spatial interactions among economic agents (e.g., firms or consumers)
at each distance d .

The K-function is easier to estimate than l(d ) and can be used to develop a formal test for the
presence of spatial concentrations of points (e.g., firms) in a study area. When points are distrib-
uted at random in a study area, we say that they represent the hypothesis of complete spatial ran-
domness (CSR). Formally, an observed CSR pattern is considered a realization of a homogeneous
Poisson process (Diggle, 2003). Then, the K (d ) function is simply equal to the surface area of a
circle of radius d . Consequently, the benchmarking value K (d ) = pd2 represents the null hypoth-
esis of a random spatial distribution of points. Significant deviations from this reference value
would favour the alternative hypothesis of spatial dependence. In particular, when K (d ) . pd2,
we have a positive spatial dependence, or concentration, in which points tend to attract one
another. Conversely, when K (d ) , pd2, we have evidence of a negative dependence and,
hence, an inhibition or over-dispersion, in which points tend to inhibit one other (Figure 1).
An unbiased estimator for K (d ) can be defined as follows:

K̂ (d ) =
|A|

n(n− 1)

∑

ki,jl

∑

kl ,ml=ki,jl

I (dki,jl,kl ,ml , d )w−1
ki,jl,kl ,ml (2)

where |A| is the total surface of the study area A; n represents the number of observed points;
dki,jl,kl ,ml is the distance between the coordinate point ki, jl and the coordinate point kl , ml; and
I (dki,jl,kl ,ml , d ) is an indicator function, such that I = 1 if dki,jl,kl ,ml , d , and 0 otherwise. The
weight wki,jl,kl ,ml is the proportion of the circumference of the circle centred on the coordinate
point ki, jl and passing through the coordinate point kl , ml, which lies within the study area
(Boots & Getis, 1988). It must be introduced to mitigate any edge effects arising from the
finite quality of the study area. A significance test to determine whether the events of interest
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tend to concentrate in space may involve verifying whether, for some distance d , the functional
K (d ) estimated on the observed point pattern is significantly different from pd2. Since the
exact distribution of K (d ) is unknown, the test of the null hypothesis of the absence of spatial
concentration is based on Monte Carlo-simulated confidence envelopes (Besag & Diggle,
1977).

Figure 1. Map representation (first column) and corresponding K-function (second column) of three

stylized spatial patterns of points in a unit square area: roes (a) complete spatial random pattern; (b)

clustered pattern; and (c) inhibition pattern.
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MISSING SPATIAL DATA, UNCERTAIN GEOCODING AND ARTIFICIALLY
INDUCED LOCATIONAL ERROR

When dealing with spatial micro-data, researchers often face datasets affected by inaccuracies in
spatial information. On this topic, we often observe a certain degree of ambiguity in the literature,
which requires some clarification. Indeed, in practical cases, problems of accuracy manifest in
many different ways (Arbia, Espa, & Giuliani, 2016; Zimmerman, 2008): three of them are
addressed here. First, the missing spatial data problem refers to a situation in which both the
location and some measurements are unknown. We know of the presence of some individuals
in a certain area, but we ignore exactly where they are and lack information about some or all
their characteristics. Some individuals are simply not observed on the study area map. This situ-
ation is not uncommon in surveys in developing countries.

Second, intentional locational errors emerge when both the locations and the measurements of
single individuals are known, but their position are geomasked a posteriori in order to preserve
respondents’ confidentiality.

Finally, unintentional positional errors (Arbia et al., 2016) refer to situations in which obser-
vations of individuals are available, but the individuals’ locations are not known with certainty.
For instance, we have a list of firms in a small area (e.g., a census tract) and observations on
some of their statistical characteristics, but we do not know their exact addresses within the
area. In such cases, it is common to assign individuals to the centroid of each area; however,
this procedure generates uncertainty in the geocoding, producing positional errors.

The use of the K-function, as well as its more recent extensions, to characterize the spatial con-
centrations of economic agents is obviously affected by these data-quality issues. The aim of this
paper is to make researchers aware of these problems and to understand how they can mask and
distort real phenomena in practical cases. As far as we known, apart from an interesting study by
Fehmi and Bartolome (2001) in the context of ecological analysis, no systematic study has yet been
conducted on this topic.

SOME THEORETICAL RESULTS

The effect of missing data points at random
In order to examine the effects of missing data on the estimation of the K-function, consider two
generic points observed on the real plane, characterized respectively by the coordinates ki, jl and
kl , ml, so that the true pairwise inter-point Euclidean squared distances between the two generic
points can be defined as d2

ki,jl,kl ,ml
= (i − l )2 + (m− j)2. Also, define the sample average distance

as:

!d
2
=

∑

ki,jl

∑

kl ,ml d
2
ki,jl,kl ,ml

n(n− 1)/2
(3)

Furthermore, consider first a case in which the observed points form a CSR pattern and the
process of data elimination is completely random. Also assume, without loss of generalities,
that we observe a random realization within a study area represented by a unitary quadrat defined
with x–y coordinates ranging between –0.5 and 0.5. In this case, it can be proven that (see Appen-
dix A1 in the supplemental data online for a proof):

E(!d
2
) =

1

3
(4)
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and, under the (often admittedly unrealistic) assumption of the independence of the distances:

Var(!d
2
) '

7

90

2

n(n− 1)
(5)

The presence of a positive correlation among the distances would further increase the variance and,
consequently, the uncertainty. Finally, due to the central limit theorem, we also have:

!d
2
≈ N

1

3
;

7

90

2

n(n− 1)

( )

. (6)

Equations (4) and (5) show that the expected sample distance is a constant determined by the
space characteristics, while the variance decreases with the square of the sample size. The form
of the variance expressed by equation (5) is a mere approximation of the actual variance, as it
neglects the correlations among the (1/2)n(n− 1) distances, but negatively depends on n. The
effects of missing data correspond to a case in which the sample size is reduced from n to, say,
m units (m , n). In this sense, equation (5) shows that if we reduce n by eliminating m obser-
vations at random, Var(!d

2
) will increase, as could be expected due to the reduction of information

and the consequent increase in uncertainty. This result is in line with Lang and Marcon’s (2013)
derivation of the variance of the K-function in the context of rectangular study regions, which
showed that the variance decreases as the number of missing points increases.

The effect of missing clustered data points
In real cases, the hypothesis of data missing completely at random is sometimes implausible, since
missing data are often spatially clustered. This is because in many social surveys entire portions of
space (e.g., neighbourhoods) cannot be observed and, in general, the difficulties encountered in
collecting accurate data change smoothly over space. When missing data are spatially clustered,
the effects on the K-function are easier to describe. In fact, in this case, groups of points observed
at small distances are systematically erased, and the K-function can be described as a truncatedAQ2

¶ CDF with a left truncation at d . t, where t is a threshold distance corresponding to the cluster
dimension. In the presence of missing clustered data, the K-function will show the emergence of
spurious inhibitory patterns at low distances below the truncation point t, which are compensated
by spurious clustered patterns at high distances.

The effects of intentional locational error
An intentional locational error, as previously mentioned, emerges when, in the effort to preserve
respondents’ confidentiality, data that are precisely geocoded during a survey are then geomasked,
assuming a certain random criterion. For example, the Demographic and Health Surveys (DHS)
programme (USAID, 2013) collects household data and georeferences the locations of the obser-
vational units using GPS receivers with a positional accuracy of 15 m or less. However, to preserve
confidentiality, the coordinates are then misdisplaced according to a random mechanism. A com-
mon procedure used in these circumstances is known as the random direction, random distance
method (Collins, 2011; USAID, 2013) or uniform geomasking (Arbia, Espa, & Giuliani,
2015). This mechanism involves transforming an individual’s coordinates by displacing them
along a random angle (say u) and a random distance (say d), both obeying a uniform probability
law diid ≈ U (0, d∗) and uiid ≈ U (0, 360o), with d∗ representing the maximum distance error and
with d and u being mutually independent. If d2 is the generic true square distance between two
points, the error-contaminated squared distances (say d∗2) under this hypothesis can be proved
to be (see Appendix A2 in the supplemental data online for the proof):

E(d∗2) = d2 2

3
d∗2 (8)
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Equation (8) shows that an intentional locational error produces an expectation of an increase in
the pairwise distances. By increasing the inter-point distances on which the calculation of the K-
function is based, the introduction of an intentional locational error will thus produce spurious
inhibitory patterns at all distances and the cancellation of true clustered patterns at small distances.
The effect is expected to increase monotonically (i.e., with the maximum displacement distance in
the random geomasking mechanism) with d∗.

The effect of unintentional locational error
Finally, consider the case of unintentional locational errors, which emerge when data are available
in a small area (e.g., a census tract), but the exact position of each individual within the study area
is unknown. In such cases, a common procedure is to solve the problem by assigning each indi-
vidual to the centroid of his or her area. For instance, in Italy, the National Statistical Institute
(ISTAT) collects and disseminates data related to active firms (the ASIA archive; Cozzi & Filip-
poni, 2012), including information on a set of economic variables and the geographical locations
(in terms of latitude–longitude spatial coordinates) of the plants. Spatial coordinates are identified
automatically based on street addresses; however, in some instances, they contain location errors.
For example, during 2004–09, 15% of plants could not be precisely geocoded and had to be
assigned to approximated geographic locations: 12% to the centroids of their municipalities (aver-
age surface 37 km2) and 3% to the centroids of the census tracks (the more accurate solution; aver-
age surface 1 km2). To study the effect of this procedure, we can approximate the district to which
points are allocated (i.e., the census tract) to a square of side l =

$$

S
√

, where S is the surface area of
the district. The observed distance following reallocation to the centroid (called d∗2), thus, intro-
duces a maximum error of l

����

1/2
√

. As a consequence, from equation (8), the expected contami-
nated distance is d∗2 ≈ U (0, l

����

1/2
√

). Following the same reasoning presented above, this
produces an inhibitory effect at small distances, approximately given by:

E( d
2
) = d2 +

2

3
l

��

1

2

√

= d2 +
l
��

2
√

3

with the effect increasing proportionally to l. Similarly, if we approximate the district using circles,
the result is d∗2 ≈ U (0, r). Here, r represents the radius of the circle, which can be approximately
given by r = S/2p, where S is the surface area of the district. This produces an inhibitory effect
governed by:

E( d
2
) = d2 +

2

3
r

with the effect increasing proportionally with r.
However, the reallocation of points to the centroids of the districts also produces a clustering

effect, since agents located at different points within the same district are all concentrated in the
same centroid. This effect also increases with l (or r). In fact, when a geographical system com-
prises a small number of large districts, l (and r) will be larger, and several points will be concen-
trated in the same centroid. Thus, we expect the clustering effect to prevails on the inhibitory
effect. The magnitude of the effect obviously also depends on the proportion of points affected
by unintentional error.

SIMULATION EXPERIMENTS

Missing data
In this section the theoretical results presented above will be substantiated by a set of Monte
Carlo experiments. First, in order to assess the consequences of clustered missing data on the
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estimation of the K-function and the performance of the CSR test, 1000 complete spatially
random point patterns of economic activities distributed on a unit square were generated as
independent realisations of a homogenous Poisson process conditioned on 100 points. Setting
the size of each pattern equal to a fixed number of economic activities makes the patterns
directly comparable. In fact, simulating the homogenous Poisson process conditioning on a
fixed total number of points actually yields the simulation of a binomial point process,
which is a suitable approximation of the CSR hypothesis. From each of these artificial point
patterns, which represent the unobserved point processes, new random datasets affected by
missing spatial locations are obtained by erasing points from the clean point patterns according
to a random mechanism mimicking missing clustered data. Specifically, locations are deleted
randomly with a probability proportional to the values generated by a Gaussian random field
with a variance of 0.5 and the exponential covariance function r(d ) = exp(− d/0.25), where
d represents distance (Figure 2).

For each missing dataset thus obtained, we estimate K (d ) and perform the CSR test at a 1%
significance level. We then compute the bias and root mean square error (RMSE) of K̂ (d ) with
respect to the true values and the type I error rate for the null hypothesis of CSR. In particular, if
we use  K i =

∑

d Ki(d ) to denote the sum over d of all values of K̂ (d ) for the i-th simulated pattern
affected by missing locations, and  KTRUE =

∑

d pd
2 to denote the sum over d of all values of

K (d ) for the true ‘clean’ CSR pattern, we can define the bias and RMSE as follows:

Bias =
∑

i (  K i −  KTRUE)

1000
, RMSE =

���������������������

∑

i (  K i −  KTRUE)
2

1000

√

.

The type I error rate is computed at a significance level of 1% as the proportion of simulated
patterns with missing locations for which K̂ (d ) deviates the 1% CSR confidence bands at some
values of d.

C
o
lo
u
r
o
n
lin
e,
B
/W
in
p
ri
n
t

Figure 2. Pattern of clustered missing points in a unit square area. Crossed points are unobservable. In
this simulation, when a point is randomly deleted, other points in the neighbourhood are also cancelled

with a probability proportional to r(d) = exp(− d/0.25).
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To illustrate visually the effects of missing clustered data, Figure 3 compares the graphs of the
CSR test based on the K-function for both a simulated pattern and the same pattern affected by
clustered missing data with a given proportion of missing points (PMP). Confirming the above
theoretical findings, the graphs suggest that the presence of clustered missing data does not pro-
duce any significant effects in the estimation of the K-function when PMP = 0.1; however, when
PMP = 0.4, it tends to overestimate the K-function at high distances and, as a consequence, tends
to suggest the presence of spurious patterns of spatial concentration. The expected emergence of
spurious inhibitory patterns at low distances (see above) is less evident within our simulation par-
ameters and does not produce significant results.

Table 1 summarizes the main simulation results for different levels of PMP and shows that
the presence of missing data leads to an overestimation of the K-function. Both the bias and
the RMSE of the estimated K-function increase with the percentage of missing points,
while the type I error rate is substantially unaffected by the presence of missing data. This result
reflects the particular random mechanism chosen for the missing data, which tends to create
‘holes’ of points in the patterns. While the number of holes affects the precision of the esti-
mates, it does not alter the global spatial pattern and, hence, does not influence the type I
error rate.

Figure 3. Effects of missing clustered data on the K-function. Empirical K-function and simulated 1%

confidence bands: (a) true pattern; and (b) pattern with missing locations.
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Intentional locational error
To corroborate the above findings concerning the effects of intentional locational errors on the
estimation of the K-function and the associated inference, we again generate 1000 complete
spatial random point patterns of 100 points each on a unit square. In this case, however, for
each artificial ‘true’ point pattern we displace the observations using a random mechanism. In
particular, we use a procedure that replicates the method described by, for example, USAID
(2013). In each simulated point pattern, for each point’s location we select a random angle
and a random distance. The random angle is generated according to a uniform distribution
U (0, 3600), while the random distance is extracted from a uniform distribution U (0, d∗),
where δ* is a simulation parameter that can vary over a fixed range. In our simulations, we
let δ* vary between 0.05 and 0.25, considering that, in the unit square, the maximum inter-
point distance equals the diagonal, or

��

2
√

. Thus, the maximum displacement errors we consider
range between approximately 3% and 17% of the maximum distance. As in case of missing data,
for each geomasked point pattern, we estimate K (d ) and perform a Monte Carlo-based CSR test
at a 1% significance level. We then compute the RMSE of K̂ (d ) obtained over the simulation
runs. From the above, we expect the RMSE to increase with the maximum displacement dis-
tance. Similarly, in order to analyse the effects of geomasking on the CSR test, for each simu-
lation run we calculate the significance of the test and again reject the null if a ≤ 0.01. We can
then compute the number of times we wrongly reject the true null hypothesis K (d ) = pd2 and
monitor how the type I error rate, thus evaluated, changes by increasing the parameter δ*. Figure
4 illustrates the effects of locational errors due to intentional geomasking for two different values
of the maximum displacement distance; Table 2 summarizes all the results of the Monte Carlo
experiments.

As expected from the theoretical findings, Figure 6 clearly shows the presence of spurious
inhibitory patterns at different distances when a location error is introduced and the maximum
displacement distance is d∗ = 0.25. Similarly, Table 2 provides evidence that the empirical bias
is negative for all values of the geomasking maximum displacement distance, d∗, thus confirming
that errors due to intentional geomasking tend to underestimate the degree of spatial concen-
tration and to introduce spurious patterns of inhibition. As expected, increasing the maximum dis-
placement distance increases both bias and RMSE in absolute terms. Furthermore, the probability
of type I errors almost doubles when moving from d∗ = 0.05 to 0.25. As a consequence, preser-
ving confidentiality by means of a random displacement mechanism has the potential to conceal
the presence of spatial clusters and to provide inaccurate evidence toward inhibitory patterns.

Figure 6(d) suggests, however, that the effects of these kinds of locational errors on the esti-
mate of K (d ) may mitigate when d . d∗, since it shows that K̂ (d ) returns within the confidence
bands as d approaches the value of d∗.To explore this issue better, the results of the simulations are
also analysed separately below and over the geomasking distance. In particular, Table 3 reports the
type I error rates of the CSR test, computed distinctly for the two cases, and confirms that the

Table 1. Empirical bias, root mean square error (RMSE) of the K-function estimator and type I error rate

for the complete spatial randomness (CSR) test with clustered missing data.

PMP

Missing spatial information

Bias RMSE Type I error rate

0.1 0.148 1.648 0.345

0.2 0.240 1.875 0.317

0.3 0.441 2.325 0.345

0.4 0.919 2.808 0.303
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consequences for inference are less dramatic. This evidence is interesting because it suggests that
even when data are affected by locational errors at small distances, the analysis at wider distances
may still be valid.

Figure 4. Effects of intentional locational errors on the complete spatial randomness (CSR) test. Empiri-

cal K-function and simulated 1% confidence bands: (a) true pattern; and (b) pattern intentionally

geomasked.

Table 2. Empirical bias, RMSE of the K-function estimator and type I error rate for the CSR test under

locational errors generated by random geomasking.

d
∗

Intentional locational error

Bias RMSE Type I error rate

0.05 –0.447 1.487 0.379

0.10 –1.368 2.066 0.435

0.15 –2.814 3.275 0.560

0.20 –4.518 4.838 0.609

0.25 –6.110 6.380 0.668
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Unintentional locational error
Finally, to assess the consequences of uncertain geocoding on the estimation of theK-function and
the performance of the CSR test, we follow a procedure similar to that used above. First, we gen-
erate 1000 CSR point patterns, each with 100 points. Then, from each of these artificial patterns
we obtain a new dataset by selecting a proportion of cases (PMP) affected by unintentional loca-
tional error and assign each of the selected points to the centroid of its original subarea. The sub-
areas are defined by partitioning the unit area into a 4 × 4 regular square lattice grid. Again,
locations affected by the unintentional locational error are randomly selected with a probability
proportional to the values generated by a Gaussian random field with a variance of 0.5 and the
exponential covariance function r(d ) = exp(− d/0.25), where d represents distance (Figure 4).
However, instead being simply deleted, the points are reassigned to the centroid. We then
again estimate the K (d ) function and perform the Monte Carlo-based CSR test at a 1% signifi-
cance level. Figure 5 compares the CSR test in a simulated ‘true’ pattern with its counterpart in a
pattern affected by unintentional locational errors. The graphs suggest that in our Monte Carlo
experiment the tendency to create spurious clustering patterns prevails over the opposite tendency
to produce inhibition patterns due to the use of coarse partitioning in which all affected points
concentrate around only 16 centroids. The effect is obviously clearer when PMP = 0.4, in
which case we move 40 points and distribute them across only 16 centroids.

Table 4 summarizes the main Monte Carlo results for different proportions of relocated points
(PMP). Apart from the usual (and theoretically hypothesized) result of an increase in PMP
increasing the absolute bias and the RMSE, Table 4 also shows that in our simulation experiment
the consequences of unintentional locational errors are more severe than those observed with miss-
ing data and intentional locational errors. Specifically, the type I error rate for the CSR test
increases nearly to 1 when 20% of points are reallocated to the centroids of the square lattice
grid. This happens when the reference partition is very coarse, as in our simulation experiment.

However, Figure 5(d) suggests that the undesirable effects of unintentional locational errors on
K̂ (d ) may decrease as d increases over the order of magnitude of the errors. In this simulation’s
settings, in which error-affected locations are moved to the centroids of their respective squared
subareas, the maximum possible locational error is equal to half the diagonal of the squared sub-
area. Since the subareas are here defined by partitioning the larger unit area into a 4 × 4 regular
square lattice grid – and, hence, consist of squares sized 0.25 × 0.25 – the maximum possible loca-
tional error is (1/4

��

2
√

)/2 ' 0.177. Figure 5(d) shows, indeed, that K̂ (d ) returns within the con-
fidence bands after approximately this value. Corroborating this insight, Table 5 reports the type I
error rates of the CSR tests for d ≤ 0.177 and d . 0.177. The results summarized have important
practical consequences since they indicate that analyses at distances consistently greater than the
locational error may produce valid inferences.

Simulation experiments with real data
The simulation experiments conducted in the previous sections are based on simplified stylized
spatial distributions of events. While they are useful for supporting the theoretical arguments

Table 3. Type I error rate for the CSR test under locational errors generated by random geomasking

computed distinctly for d ≤ d∗ and d . d∗

d
∗ Type I error rate d ≤ d

∗ Type I error rate d . d
∗

0.05 0.259 0.232

0.10 0.346 0.229

0.15 0.438 0.208

0.20 0.556 0.194
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Figure 5. Effects of unintentional locational errors on the CSR test. Empirical K-function and simulated

1% confidence bands: (a) true pattern; and (b) pattern with uncertain locations assigned to the

centroid.

Table 4. Empirical bias, RMSE of the K-function estimator and type I error rate for the CSR test under

unintentional location errors.

PMP

Uncertain spatial information

Bias RMSE Type I error rate

0.1 0.145 1.446 0.572

0.2 0.194 1.423 0.994

0.3 0.317 1.513 1

0.4 0.200 1.489 1

1.0 –1.086 1.964 1
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developed above, they do not properly represent real location patterns of economic agents. Indeed,
the CSR hypothesis clearly represents the null hypothesis of the absence of spatial interactions
amongst economic agents only under the assumption of spatial homogeneity, which is rarely
attainable in practice. For example, in the context of the locations of production plants of a specific
sector of activities, the locational choices of economic agents are typically constrained by environ-
mental, administrative and economic limits that lead to violations of the CSR hypothesis even in
absence of actual spatial concentrations or dispersions. In such cases, a more appropriate (and
commonly used) null hypothesis is the absence of relative concentration or dispersion (Marcon
& Puech, 2012). According to this benchmark, spatial concentration (or dispersion) of a specific
industry is detected when its plants are more concentrated (or dispersed) than those of the whole
economy. The most popular distance-based measures of relative spatial concentration in economic
geography and spatial economics are Duranton and Overman’s (2005) Kd and Marcon and
Puech’s (2010) M functions, which are essentially sophisticated extensions of the K-function to
inhomogeneous spatial point patterns.

In this section, in order to assess the effects of missing data and locational errors on more rea-
listic empirical situations, we consider the observed spatial distribution of the single-plant man-
ufacturing firms located in the province of Trento (Italy) in 2009 (Figure 6). In particular, we
assume that we are interested in studying the spatial pattern of the economic sector of food pro-
ducts (Figure 6(b)). Since the assumption of spatial homogeneity does not hold in this context, the
CSR hypothesis is not an appropriate null hypothesis for the absence of spatial interactions
amongst economic agents, and the K-function is not a suitable measure for detecting spatial con-
centration. Therefore, in order to detect the genuine spatial concentration generated by the inter-
actions among food production firms, while controlling for the heterogeneity of their geographic
territory, we must use the Kd orM functions, which use the spatial distribution of all manufactur-
ing (Figure 6(a) as the null distribution). The graphs reported in Figure 7 show the behaviour of
the estimated Kd (d ) and M(d ), along with the 99% confidence level simulation-based envelopes
referring to the null hypothesis of absence of spatial dependence. The computations are done using
the dbmss package (Marcon, Traissac, Puech, & Lang, 2015) of the R statistical software pack-
age.1We omit a detailed explanation and interpretation of the two methods while referring for this
to other papers.2 For the scope of the present paper it is sufficient to say that, like the CSR test
based on the K-function, upward (downward) deviations of the estimated Kd (d ) and M(d ) func-
tions indicate significant levels of relative spatial concentration. None of the graphs in Figure 7
shows significant deviations from the null hypothesis, implying that the spatial distribution of
food production firms is not significantly different (i.e., more concentrated or more dispersed)
from the spatial distribution of all manufacturing firms.

In order to evaluate the consequences of missing data on the estimation and inference of Kd

andM , we generate 1000 spatial point patterns of firms affected by missing spatial locations. Fur-
thermore, to control properly for the degree of missing data, each of these simulated patterns is
first obtained by randomly erasing a given proportion (PMP) of food-production firms from

Table 5. Type I error rate for the CSR test under unintentional location errors computed distinctly for

d ≤ 0.177 and d . 0.177.

PMP Type I error rate d≤ 0.177 Type I error rate d. 0.177

0.1 0.542 0.093

0.2 0.994 0.162

0.3 1 0.392

0.4 1 0.773

1.0 1 1
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Figure 6. Location of 1007 single-plant manufacturing firms in the municipalities of the province of

Trento (Italy) in 2009: (a) all manufacturing plants (1007 observations); and (b) plants from the food

product sector (106 observations).
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Figure 7. Behaviour of K̂d(d) and M̂(d) and the corresponding 99.9% confidence bands for the food

product sector in the province of Trento (Italy) in 2009.
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the observed dataset (Figure 6(b)). Then, we randomly remove the same proportion (PMP) of
firms from the other manufacturing sectors located in the same municipalities of the erased
food production firms. In this way the firms of interest and their benchmark (i.e., all manufactur-
ing firms) are affected by the same level of missing data within the same municipalities. Moreover,
for both spatial patterns, we use the same random missing mechanism employed above based on a
Gaussian random field.3

On the other hand, to evaluate the consequences of unintentional locational error, we create
1000 spatial point patterns of firms affected by uncertain geocoding by simply reassigning the pre-
viously erased firms to the centroids of the municipalities to which they belong.

For every spatial pattern of food production firms with missing and uncertain locations, we
estimate Kd and M and perform the corresponding test of absence of spatial interactions at a
1% significance level. We then compute the type I error rate for the null hypothesis as the pro-
portion of spatial patterns for which the spatial localization tests wrongly reject the hypothesis
of absence of spatial dependence. In this case, the bias and RMSE are not appropriate measures
of estimation uncertainty, since the values of Kd cannot be meaningfully interpreted and can only
be used to perform the graphical test. Table 6 summarizes the results for different levels of PMP
and shows that the effects of missing data are still important, though less severe, even in the con-
text of a real distribution of firm data that does not follow the CSR hypothesis. In particular, the
M function is quite robust to missing data and provides a largely reliable inference, as can be
observing the type I error rates that are not very high in this case. If both the locations of interests
and the benchmark locations are affected by the same mechanism for generating missing data (a
fairly realistic situation), the effects tend to compensate for the data deficiencies and the conse-
quences are limited.

With regard to the case of unintentional locational error, the simulation results suggest the
same conclusion drawn above. The effects of uncertain geocoding are more serious than those
of missing data. As a consequence, exploiting coarsened areal spatial information and assigning
the missing locations to the centroids of their corresponding subareas is not more efficient than
simply neglecting the points, because this strategy tends to create spurious spatial clustering.

Finally, to evaluate the consequences of intentional locational errors, we replicate the simu-
lation experiment for the analysis of CSR patterns. Therefore, we again generate 1000 geomasked
versions of the observed pattern of single-plant manufacturing firms (where all the 1007 locations
are randomly displaced) for each given value of the geomasking maximum displacement
distance d∗.

Table 7 presents the results for the type I error rate of the spatial localization test for the food
product sector based on the use of Kd and M according to several geomasking maximum displa-
cement distances (namely, d∗ = 1, 5, 10, 15 and 20 km). Even in this case, the effects of locational

Table 6. Type I error rate for the localization test based on the use of Kd andM under missing clustered

data unintentional location errors.

PMP

Missing spatial location Uncertain geocoding

Type I error rate of the test
based on…

Type I error rate of the test
based on…

Kd M Kd M

0.1 0.516 0.214 0.601 0.495

0.2 0.550 0.166 0.597 0.554

0.3 0.504 0.177 0.551 0.629

0.4 0.525 0.203 0.578 0.636
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errors on the validity of inferential conclusions based on the Kd and M functions are less serious
(although still relevant) than those obtained when the localization test is based on the simple Rip-
ley’s K-function. This is certainly due to the fact that the former functions constitute relative
measures of spatial concentration where the locational errors affecting the spatial distributions
of the sector of interest and other economic activities tend to compensate. This compensation
effect seems to become stronger when the maximum displacement distance increases.

SUMMARY AND CONCLUSIONS

Spatial microeconometric approaches (inconceivable until only a few decades ago) are now
increasingly feasible due to the availability of very large georeferenced databases on individual
agents that are no longer limited to the archives, administrative records or panels traditionally
employed in official surveys, but also increasingly include alternative data sources, such as satellite
and aerial photographs, drones, crowd sourcing, cell phones and many others. The availability of
these detailed geographical databases makes it possible now (and increasingly so in future) to
model individuals’ economic behaviour in space, thus improving our ability to forecast economic
trends. The use of micro-data, however, hides pitfalls connected to the presence of non-sampling
errors of various natures. This paper aims to shed light on the dangers of drawing inferences based
on the spatial concentration features of maps of economic agents using Ripley’s K-function and
related measures (such as Duranton and Overman’s Kd and Marcon and Puech’s M functions)
when datasets are affected by the presence of missing data and/or intentional and unintentional
locational errors. The main results for Ripley’s K-function are as follows:

. The presence of randomly missing data introduces spurious clustered patterns at all distances.

. The presence of clustered missing data introduces both spurious inhibitory patterns at low dis-
tances and spurious clusters of points at high distances.

. When individuals’ locations are geomasked for confidentiality, spurious inhibitory patterns
emerge at all distances, as do cancellations of true clustered patterns at small distances.

. If individuals’ locations are uncertain and individual points are allocated to the centroids of their
districts, we observe two contrasting effects whose weights depend on the dimension of the dis-
trict and the proportion of points (PMP) affected by uncertainty. In very large districts with
large PMPs, the dominating effect is the creation of spurious clusters around the centroids.
Conversely, in very small districts with more precise allocations, there is a prevalence of inhibi-
tory patterns created by points’ reallocations.

Moreover, on the basis of a simulation study of a real georeferenced dataset of economic activi-
ties, it is also possible to conclude that the previous conclusions can be largely extended to the Kd

Table 7. Type I error rate for the localization test based on the use of Kd and M under intentional

location errors (geomasking).

d
∗

Type I error rate of the
test based on Kd

Type I error rate of the
test based on M

1 km 0.471 0.417

5 km 0.192 0.335

10 km 0.173 0.263

15 km 0.158 0.255

20 km 0.137 0.243
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and M functions. However, since the Kd and M functions are both relative measures of concen-
tration based on comparisons of a specific pattern of interest and a benchmark distribution, the
effects of missing data, intentional and unintentional locational errors are slightly mitigated by
the compensation effects of the errors affecting the two patterns under consideration.

The results obtained should increase researchers’ awareness of the possible dangers of incorrect
inferences, thus enhancing their consciousness when selecting the database on which they base
their empirical analysis. This study should also make data producers more conscious of the severe
consequences of their choices when reallocating uncertain data points or when geomasking them
with the intent to preserve confidentiality.

NOTES

1 For the dbmss package, freely download at https://CRAN.R-project.org/package=dbmss/.
2 For example, Marcon and Puech (2012) have an interesting critical overview of the main
distance-based approaches.
3 With a variance of 0.5 and the exponential covariance function r(d ) = exp(− d/0.25).
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