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Abstract

Harmonic axial waves in quasiperiodic-generated structured rods are investi-
gated. The focus is on infinite bars composed of repeated elementary cells designed
by adopting generalised Fibonacci substitution rules, some of which represent ex-
amples of one-dimensional quasicrystals. Their dispersive features and stop/pass
band spectra are computed and analysed by imposing Floquet-Bloch conditions and
exploiting the invariance properties of the trace of the relevant transfer matrices.
We show that for a family of generalised Fibonacci substitution rules, correspond-
ing to the so-called precious means, an invariant function of the circular frequency,
the Kohmoto’s invariant, governs self-similarity and scaling of the stop/pass band
layout within defined ranges of frequencies at increasing generation index. Other
parts of the spectrum are instead occupied by almost constant ultrawide band
gaps. The Kohmoto’s invariant also explains the existence of particular frequen-
cies, named canonical frequencies, associated with closed orbits on the geometrical
three-dimensional representation of the invariant. The developed theory represents
an important advancement towards the realisation of elastic quasicrystalline meta-
materials.

Keywords: generalised Fibonacci sequence, quasiperiodic material, phononic crystal,
metamaterial, band gap, Kohmoto’s invariant.

1 Introduction

Controlling waves with mechanical metamaterials is an established research field that has
reached a certain degree of maturity. Two approaches are mainly followed to achieve the
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goal: one is based on the investigation of dispersion properties of periodic structures com-
posed of specifically designed unit or elementary cells (Lin, 1962; Sigalas and Economou,
1992; Kushwaha et al., 1993); the other relies on mathematical transformations that dic-
tate the local features of the metamaterial necessary, for instance, to steer waves along
predetermined paths (Milton et al., 2006; Norris, 2008; Brun et al., 2009; Farhat et al.,
2009; Parnell et al., 2012; Maldovan, 2013; Colquitt et al., 2014, 2017).

With reference to the first approach, a possible way to conceive the unit cell is that
based on quasiperiodic sequences. These are formed by a set of –typically two– homoge-
neous parts combined to create non-periodic patterns which can be generally described
through deterministic rules (commonly known as generation or substitution rules). De-
pending on the properties of these laws, two distinct classes of quasiperiodic structured
media can be identified: quasicrystalline structures (Levine and Steinhardt, 1984) and
non-quasicrystalline deterministic systems (Huang et al., 1992). In the one-dimensional
setting, a rigorous method of classification for the different quasiperiodic patterns was
proposed by Kolar (1993). Based on this criterion, we define a one-dimensional quasiperi-
odic chain composed of two distinct elements, say L and S, generated according to the
generic substitution rule

L → ς(L) = Mαβ(L, S), S → ς(S) = Nγδ(L, S), (1)

where Mαβ(L, S) and Nγδ(L, S) are two building blocks consisting of a certain permu-
tation of α+ β and γ+ δ elements, respectively. Parameters α and β denote the number
of elements L and S in ς(L), respectively, whilst γ and δ are their counterpart in ς(S).
Introducing the structure parameter w = βγ − αδ, the condition for having a quasicrys-
talline system is w = ±1. Quasicrystalline media possess very peculiar characteristics
that make them an intermediate class of structured materials between periodic ordered
crystals and random media (Steurer, 2004; Steurer and Deloudi, 2008). A typical ex-
ample of one-dimensional quasicrystalline pattern is represented by the Fibonacci golden
sequence for which α = β = γ = 1 and δ = 0, while in plane problems an example of a
quasicrystalline tessellation is the Penrose tiling (Penrose, 1974). Conversely, an example
of non-quasicrystalline deterministic system whose properties are more similar to those
of a random media is represented by the so-called Thue-Morse chain (Tamura and Nori,
1989).

The electromagnetic behaviour of one-dimensional quasicrystalline electronic, optical
and magnetic media has been extensively studied both theoretically (Kohmoto et al.,
1983, 1987; Kolar and Ali, 1989b) and experimentally (Laruelle and Etienne, 1988). All
these investigations have shown that although quasicrystalline systems are not periodic,
their features can be described using quasiperiodic approximants. Moreover, their elec-
tronic and optical spectra possess a self-similar ordered layout characterised by scaling
laws which cannot be observed in periodic or purely random media (Kohmoto and Oono,
1984).
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In mechanics, despite a few attempts to study dispersion properties of elastic Fibonacci-
generated waveguides (King and Cox, 2007; Gei, 2010; Zhao et al., 2013), the understand-
ing of these scaling phenomena has not yet been satisfactorily addressed for quasicrys-
talline and general quasiperiodic structures. An investigation is therefore required to
reveal the basic features of dynamic spectra and provide the necessary guidelines for
their possible exploitation in the design of novel architectured materials whose stop and
pass band topology can be easily modulated and controlled.

In this paper, waves in one-dimensional phononic quasicrystalline systems for appli-
cations in structural mechanics are thoroughly studied. In particular, our goals are:

• to provide a general framework to analyse axial harmonic wave propagation of
quasicrystalline generalised Fibonacci rods;

• to highlight the role of trace mapping and that of an invariant function, the
Kohmoto’s invariant, in determining the properties of harmonic dynamics of such
structures;

• to study the scaling properties of the dynamic spectra exploiting the features of
the Kohmoto’s invariant;

• to investigate the occurrence of ultrawide stop bands occurring in the dynamic
spectra;

• to introduce a special class of quasicrystalline structures, named canonical struc-
tures, that display special conservation properties in the stop/pass band diagram.

The outcome of this paper sets out a methodology to be applied to the mechanics of
quasicrystalline-generated beams, plates and composite materials.

2 One-dimensional generalised Fibonacci structures

We introduce a particular class of infinite, one-dimensional, bi-component quasiperiodic
structures. Its elements are composed of a repeated elementary cell where two distinct
elements, say L and S, which can be springs, rods or supported beams, are arranged in
series according to the generalised Fibonacci sequence (Poddubny and Ivchenko, 2010).
The repetition of such quasiperiodic fundamental cells implies global periodicity along the
axis and then the possibility of applying the Floquet-Bloch technique in order to study
harmonic wave propagation in these systems. The generalised two-component Fibonacci
sequence is based on the following substitution rule (Kolar and Ali, 1989b):

L → ς(L) = LmSℓ, S → ς(S) = L, with m, ℓ ≥ 1, (2)

where the exponent indicates the times the base is repeated, i.e. Lm = LLL . . . (m
times). In terms of the general definition (1), the parameters of the substitutive relation
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(2) are given by α = m, β = ℓ, γ = 1, δ = 0 and w = ℓ. Expression (2) implies that the
finite generalised Fibonacci sequence of the i−th order (i = 0, 1, 2, . . . ), here denoted by
Fi, obeys the recursive rule

Fi = Fm
i−1F ℓ

i−2, with m, ℓ ≥ 1, (3)

where the initial conditions are F0 = S and F1 = L. The total number of elements of Fi

corresponds to the generalised Fibonacci number ñi given by the recurrence relation

ñi = mñi−1 + ℓñi−2, with i ≥ 2, (4)

and ñ0 = ñ1 = 1. The limit σ of the ratio ñi+1/ñi for i → ∞ is

σ = lim
i→∞

ñi+1

ñi

=
m+

√
m2 + 4ℓ

2
. (5)

The standard Fibonacci sequence is obtained from the substitution rule (2) setting
m = ℓ = 1, for which σ corresponds to the golden mean (GM) σ = σg = (1 +

√
5)/2 ∼=

1.618, and the recurrence relation (4) becomes the expression for the Fibonacci number
ni = ni−1 + ni−2 (i ≥ 2). The structures generated assuming m = 2 and ℓ = 1 are
the so-called silver mean (SM) chains, whose limit (5) corresponds to the silver mean
σ = σs = (1+

√
2) ∼= 2.414, whereas form = 3 and ℓ = 1 the bronze mean (BM) recursion

rule is obtained with σ = σb = (3 +
√
13)/2 ∼= 3.303. Generalised Fibonacci structures

realised setting m = 1, ℓ = 2 and m = 1, ℓ = 3 are commonly known respectively as
copper and nickel mean chains, and their application to the modelling of quasiperiodic
electronic and magnetic systems has also been studied (Gumbs and Ali, 1988; Kolar and
Ali, 1989a). The limit (5) of the former is the copper mean σ = σc = 2, whereas that of
the latter is the nickel mean σ = σn = (1 +

√
13)/2 ∼= 2.302.

We observe that σg, σs and σb correspond to the first three terms of the continuative
fraction whose parametric representation can be defined by setting ℓ = 1 in expression
(5). Further in the text, adopting the nomenclature proposed by Holzer (1988a,b), we
will refer to these values as precious means and call collectively the associated structures
precious mean structures. Specularly, σc, σn and all values of ratio (5) obtained assuming
ℓ > 1 will be referred to as metal means, and the corresponding structures will be called
metal mean structures. By remembering the general criterion introduced by Kolar (1993)
reported in the Introduction, it is important to note that for all precious mean structures

we have w = ℓ = 1, while for copper and nickel mean structures w = ℓ = 2 and
w = ℓ = 3, respectively. Therefore, the former are quasicrystalline, whereas the latter
group are deterministic non-quasicrystalline, quasiperiodic systems.

3 Axial waves in a quasicrystalline rod

The focus of the paper is on axial waves in quasicrystalline waveguides, however the
content of this section is also valid for more general quasiperiodic-generated rods. Let us
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Figure 1: Axial waves in a quasicrystalline structured rod: elementary cells for infinite structures
based on Fibonacci GM chains F3 = (LSL) (top) and F4 = (LSLLS) (bottom). Symbols r and l
denote respectively right and left-hand boundaries of the cell.

consider then a quasiperiodic bi-phase structured rod whose elementary cell is generated
adopting the generalised Fibonacci sequences (in Fig. 1, the GM sequences F3 and F4

are displayed)1. The lengths of the two segments L and S are indicated respectively
with lL and lS, while AX , EX , and ρX (X ∈ {L, S}) denote cross-section area, Young’s
modulus and mass density per unit length of each element, respectively.

For both elements, we define the displacement function along the rod u(z) and the
axial force N(z) = EAu′(z), where z is the longitudinal axis. The field equation of
harmonic waves assumes the form

u′′(z) +Qω2u(z) = 0, (6)

where Q = ρ/EA, ω is the circular frequency (simply the ‘frequency’ in the following),
and the solution is given by

u(z) = C1 sin(
√

Qωz) + C2 cos(
√

Qωz). (7)

It is worth pointing out that eq. (6) is the one-dimensional Helmholtz equation which
governs several dynamics problems in solid mechanics such as shear waves in antiplane
elasticity and in-plane compressional and shear waves in two-dimensional elasticity (see
Ewing et al. (1956); Graff (1975)).

To obtain the dispersion diagram of the periodic rod, displacement and the axial force
at the right-hand boundary of the elementary cell, respectively ur and Nr, have to be
given in terms of those at the left-hand boundary, ul and Nl, as

U r = T iU l, (8)

1Henceforth, the notation Fi will indicate both the sequence and the elementary cell of the structured
rod.
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where U j = [uj Nj]
T (j = r, l) and T i is a transfer (or transmission) matrix of the cell

Fi. This matrix is the result of the product T i =
∏ñi

p=1
TX , where TX (X ∈ {L, S}) is

the transfer matrix relating quantities across a single element given by

TX =







cos(
√
QX ωlX)

sin(
√
QX ωlX)

EXAX

√
QX ω

−EXAX

√
QX ω sin(

√
QX ωlX) cos(

√
QX ωlX)






. (9)

Matrices T i have some important properties that can be exploited: i) they are unimod-
ular, i.e. detT i = 1, and ii) follow the recursion rule

T i+1 = T ℓ
i−1T

m
i , (10)

with T 0 = TS and T 1 = TL.
The Floquet-Bloch condition requires that U r = exp(iK)U l (here i denotes the

imaginary unit), so that, combining this with (8), the dispersion equation takes the form

det[T i − eiKI ] = 0. (11)

The solution of the dispersion relation (11) provides the complete Floquet-Bloch spec-
trum, and allows to obtain the stop/pass band distribution associated with the quasiperi-
odic rods here considered (stop bands are also named band gaps throughout the paper).

Alternatively, we can study the dispersion properties of these structures by evaluating
the eigenvalues of the transfer matrix. As T i is unimodular, it turns out that the
characteristic equation of the quasiperiodic rod is given by

det[T i − λI ] = 0 ⇒ λ2 − λ trT i + 1 = 0. (12)

Substituting eiK = λ in eq. (12) and multiplying it by e−iK , the condition eiK + e−iK −
trT i = 0 is achieved, leading to 2 cosK − trT i = 0, and finally to the alternative
expression for the dispersion relation

K = arccos

(

trT i

2

)

, (13)

that is a real quantity if |trT i| ≤ 2. By observing eq. (13), we can easily deduce that
all the information concerning wave propagation in a structure whose elementary cell is
generated according to the arbitrary sequence Fi is contained in the trace trT i of the
corresponding transfer matrix.

The transfer matrix method has been extensively used to study the dynamics of
periodic laminates (Willis, 2016), multilayered materials with structured interfaces (Brun
et al., 2010) and phononic crystals (Wu et al., 2009; Nemat-Nasser et al., 2015). It has
been extended to multi-phase flexural systems by Romeo and Luongo (2002); Carta and
Brun (2015); Shmuel and Pernas-Salomon (2016).
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4 Dynamical trace mapping for precious mean struc-

tures

In this Section we analyse the properties of the trace trT i associated with precious

mean sequences, and discuss how these features affect waves in precious mean structures.
Nonlinear recursive relationships connecting those traces for consecutive sequences are
derived. Through the linearisation of these maps, analytical scaling factors which govern
self-similarity of stop and pass band pattern of golden, silver and bronze mean structures
(GMSs, SMSs and BMSs, respectively) will be obtained.

4.1 Nonlinear maps and Kohmoto’s invariant

General recursive relations for the traces of unimodular 2 × 2 transfer matrices of gen-
eralised Fibonacci chains have been derived by Kolar and Ali (1989b) and Kolar and
Nori (1990) in terms of Chebyshev polynomials of first and second kind. Specialising
these expressions to the case of GMSs (m = ℓ = 1 in eq. (10)), we derive the following
recursive rule

xi+1 = xi−1xi − xi−2, with i ≥ 2, (14)

where we have introduced the notation xi = trT i, and the initial conditions are given by

x0 = 2 cos
(
√

QSωlS
)

,

x1 = 2 cos
(
√

QLωlL
)

,

x2 = 2 cos
(
√

QSωlS
)

cos
(
√

QLωlL
)

−A2
SE

2
SQS + A2

LE
2
LQL

ASESALEL

√
QSQL

sin
(
√

QSωlS
)

sin
(
√

QLωlL
)

. (15)

Defining ti = tr(T i−2T i−1), for SMSs (m = 2 and ℓ = 1) the pair of equations
{

xi+1 = xiti+1 − xi−1,
ti+1 = xixi−1 − ti,

with i ≥ 2, (16)

are determined; similarly, for BMSs (m = 3 and ℓ = 1),
{

xi+1 = (x2
i − 1)ti+1 − xixi−1,

ti+1 = xixi−1 − ti,
with i ≥ 2. (17)

Let us introduce now the new set of variables

x̃i = ti+2, ỹi = xi+1, z̃i = xi, (18)

where it is important to remember that for GM sequences, ti+2 = tr(T iT i+1) = trT i+2 =
xi+2. Substituting coordinates (18) into expression (14), the following nonlinear map
determining the evolution of xi for GMSs is obtained

Tg(x̃i, ỹi, z̃i) = (x̃i+1, ỹi+1, z̃i+1) = (x̃iỹi − z̃i, x̃i, ỹi). (19)
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Adopting the same procedure, for SMSs and BMSs we have

Ts(x̃i, ỹi, z̃i) = (x̃i+1, ỹi+1, z̃i+1) =
(

x̃iỹ
2

i − ỹiz̃i − x̃i, x̃iỹi − z̃i, ỹi
)

, (20)

and

Tb(x̃i, ỹi, z̃i) = (x̃i+1, ỹi+1, z̃i+1) =
(

x̃iỹ
3

i − ỹ2i z̃i − 2x̃iỹi + z̃i, x̃iỹ
2

i − ỹiz̃i − x̃i, ỹi
)

, (21)

respectively. Since (19)–(21) are differentiable maps of the type Tg,s,b : R
3 → R3, their

Jacobians, namely

J =
∂(x̃i+1, ỹi+1, z̃i+1)

∂(x̃i, ỹi, z̃i)
=





















∂x̃i+1

∂x̃i

∂x̃i+1

∂ỹi

∂x̃i+1

∂z̃i

∂ỹi+1

∂x̃i

∂ỹi+1

∂ỹi

∂ỹi+1

∂z̃i

∂z̃i+1

∂x̃i

∂z̃i+1

∂ỹi

∂z̃i+1

∂z̃i





















, (22)

can be evaluated showing that for all the three maps detJ = −1. Through a little
algebra we can also demonstrate that the quantity

I(ω) = x̃2

i + ỹ2i + z̃2i − x̃iỹiz̃i − 4 =

=
(A2

LE
2
LQL − A2

SE
2
SQS)

2

A2
SE

2
SA

2
LE

2
LQSQL

sin2
(
√

QSωlS
)

sin2
(
√

QLωlL
)

(23)

is an invariant for all the three maps. This means that, for precious mean rods, at a
given frequency ω, the value I(ω) is independent of the order i of the sequence Fi. In
the three-dimensional space spanned by the orthogonal system Ox̃ỹz̃,

x̃2 + ỹ2 + z̃2 − x̃ỹz̃ − 4 = I(ω) (24)

is the cartesian equation of a two-dimensional manifold, then it is a surface. The points
obtained by iterating maps (19)–(21) are all confined on this surface. Consequently, for
any given frequency ω, all points, detected by the triad Ri = (x̃i, ỹi, z̃i) and generated
through (19)–(21) can be mapped onto a surface defined by eq. (24). For GM rods, all
three coordinates x̃i, ỹi and z̃i represent values of traces corresponding to three ‘adja-
cent’ sequences. Conversely, for SM and BM, x̃i = tr(T iT i+1) is an auxiliary variable
introduced respectively in the recurrence relations (16) and (17), therefore only ỹi = xi+1

and z̃i = xi refer to traces of transfer matrices and can be mapped on the curve obtained
by the intersection between the surface (24) and the plane x̃i = 0.

The sets of points generated iterating maps (19)–(21) define orbits which are also
fully confined on the surface (24). This surface was first introduced by Kohmoto and
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Figure 2: Kohmoto’s manifolds for GM rods for
√
QLωlL = 0.1 (on the left) and

√
QLωlL = 3π/2

(on the right). Yellow surfaces denote loci of points for which {|x̃|, |ỹ|, |z̃|} ≤ 2. Red ones denote loci of
points for which the frequency is in a band gap for at least one of the cells Fi+2, Fi+1 and Fi (i.e. at
least one of the inequalities |x̃i| ≥ 2, |ỹi| ≥ 2 and |z̃i| ≥ 2 is satisfied).

Figure 3: Kohmoto’s manifolds for SM rods for
√
QLωlL = 0.1 (on the left) and

√
QLωlL = 3π/2

(on the right). The yellow regions denote loci of points for which {|ỹ|, |z̃|} ≤ 2. Red ones denote loci
of points for which the frequency is in a band gap for at least one of the cells Fi+1 and Fi (i.e. either
|ỹi| ≥ 2 or |z̃i| ≥ 2 –or both– is satisfied).

Oono (1984) while investigating the spectrum of Schrödinger equations in quasiperiodic
potential wells generated according to the GM rule. In recognition of the contribution to
the field by M. Kohmoto, I(ω) will be called Kohmoto’s invariant and the surface (24)
Kohmoto’s surface or manifold.

Two examples of the manifold defined by eq. (24) are shown in Fig. 2 for GMSs
(ρL/ρS = 2, lL/lS = σg, ES = EL and AS = AL), for the normalised frequencies√
QLωlL = 0.1 and 3π/2. In each chart, we have highlighted in yellow portions of

the surface belonging to the three-dimensional interval {|x̃|, |ỹ|, |z̃|} ≤ 2, while the red
areas represent parts of the surface where at least one of the inequalities |x̃| ≥ 2, |ỹ| ≥ 2
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and |z̃| ≥ 2 is satisfied. Taking eq. (13) as a reference, on the one hand, if a point
Ri = (x̃i, ỹi, z̃i) lies on a yellow zone, at this frequency waves propagate along all the
three rods composed of the three elementary cells Fi, Fi+1 and Fi+2 (the frequency be-
longs to a pass band for all the three sequences). On the other hand, if Ri belongs to a
red region, for at least one of the three elementary cells described by its coordinates the
investigated frequency lies on a band gap. In Fig. 3, Kohmoto’s surfaces corresponding
to SMSs are reported for the same normalised frequencies and constitutive parameters
assumed for the GM case. In analogy with Fig. 2, we have highlighted in yellow portions
of the manifolds for which |ỹ| ≤ 2 and |z̃| ≤ 2, while in red those for which both or at
least one of the following inequalities, |ỹ| ≥ 2 and |z̃| ≥ 2, is satisfied. In this case, if
a point Ri = (x̃i, ỹi, z̃i) lies on a yellow zone, at this frequency waves propagate along
both the two rods generated by Fi and Fi+1. Conversely, if the point belongs to a red
region, for at least one of the two elementary cells described by the coordinates z̃i and ỹi
the investigated frequency is in a band gap. The difference in the use of the Kohmoto’s
surface to illustrate the propagation and band gap regions in GMSs and SMSs is given
by the fact that for SM (and BM) cases the coordinate x̃i does not represent the trace of
a transfer matrix, and then, differently from |ỹ| ≥ 2 and |z̃| ≥ 2, the condition |x̃| ≥ 2
is not associated with a band gap of a structure generated using this sequence.

We note that the quantity (23) plays an important role also for metal mean quasiperi-
odic structures. For these, which can be described by non-conservative maps (Kolar and
Ali, 1990), I(ω) represents a pseudo-invariant and the surface corresponding to I(ω) = 0
is an attractor.

4.2 Orbits on Kohmoto’s surface

Using the terminology provided by renormalization theory (Kohmoto and Oono, 1984),
the maps (19)–(21) can be regarded as ‘scale transformations’. As we have just discussed,
at a given circular frequency ω, the orbits given by the successive iterations are confined
on the surface uniquely determined by the values of I(ω). As a consequence, I(ω) is a
‘scale invariant’ of the model.

With reference to all precious mean rods, there are four kinds of orbits which can be
followed increasing the index of variables (18) on the Kohmoto’s surface:

a) periodic orbits;
b) non-periodic bounded orbits;
c) escaping orbits with limi→∞ |xi| ≤ 2;
d) fully escaping orbits with limi→∞ |xi| > 2, where xi represents a generic coordinate

x̃i, ỹi or z̃i for GM rods, and ỹi or z̃i for both SM and BM counterparts.
The type of orbit is uniquely determined by the initial point R0 = (x̃0, ỹ0, z̃0). In

detail, if the orbit is periodic [case a)], after a certain number N of iterations the triple
(x̃i, ỹi, z̃i) assumes again the values of the initial point R0, and then for this value of ω
the same sequence of stop and pass bands is observed every N iterations. Differently,
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non-periodic bounded orbits [case b)] are relative to cases where Ri never assumes the
initial position again at increasing index, and then the trajectory defined by the successive
points is open, remaining confined to the central body of the Kohmoto’s surface (see Fig.
2) without reaching the lateral tails of the manifold at any iteration.

Concerning the escaping cases, if the orbit is fully escaping [case d)], xi increases at
each iteration and the orbits evolve on the lateral tails of the manifold, sketched in red
in Fig. 2. Therefore, the value of ω associated with the Kohmoto’s surface is here in a
band gap for all rods of the sequence beyond a certain index i. Conversely, if the orbit
is simply escaping [case c)], |xi| assumes values alternatively greater and lesser than 2.
As a consequence, for a given frequency ω it is possible to have some cells in a band gap
followed by others where, instead, waves are transmitted.

The connection between orbits on the Kohmoto’s surfaces generated by iterating maps
(19)–(21) and the stop/pass band diagrams is illustrated in Fig. 4 for three prototype
waveguides. In Fig. 4/a), the stop/pass band pattern of GM sequences F2 to F7 is
illustrated for lS = lL/σg and ρS = ρL/2 (pass band: blue line; stop band: white gap).
The three values of the normalised frequency

√
QLωlL = 0.15, 1.25, 2.5, respectively

indicated as b), c) and d) consistently with labels of the remaining three charts of the
same figure, are identified using vertical red lines. The Kohmoto’s surfaces corresponding
to these values of the normalised frequency are shown respectively in Figs. 4/b), /c) and
/d). The sketched black dots denote the points Ri = (x̃i, ỹi, z̃i) = (xi+2, xi+1, xi) mapped
on the surface for the first iterations of the transformation (19). It is observed that
each of the three cases displays a different type of trajectory due to the different initial
condition R0. With reference to Fig. 4/a), it is important to note that the portion Ω of
the spectrum occupied by band gaps increases monotonically at increasing index i. For
our prototype structure, Ω goes from 0.8428 for F2 to 1.2929 for F5 to 1.6307 for F7. As
a consequence, although initial conditions for a given frequency correspond to those of
a propagating case, after several iterations the same frequency will likely be in a band
gap. The meaning is that most of the initial conditions lead to an escaping [case c)] or
a fully escaping [case d)] orbit on the Kohmoto’s surface.

For
√
QLωlL = 0.15 (Fig. 4/b)), a bounded orbit confined to the yellow portion of

the surface {|x̃|, |ỹ|, |z̃|} ≤ 2 [case b)] is obtained, then at this frequency wave propaga-
tion is assured in structures generated by all first eight GM sequences. Conversely, for√
QLωlL = 0.25 (Fig. 4/c)) the orbit is an escaping one [case c)] for which the trace passes

several times from a pass to a stop band and vice versa. Finally, for
√
QLωlL = 2.5 (Fig.

4/d)) the orbit is fully escaping [case d)] for which the value of the trace xi increases at
each iteration and the orbit moves to lateral tails of the manifold ({|x̃|, |ỹ|, |z̃|} > 2).

4.3 Linearisation of the maps about saddle points

Both non-periodic bounded trajectories, as those shown in Fig. 4/b) [case b)], and
escaping trajectories, as those illustrated in Figs. 4/c) and /d) [cases c) and d)], can be

11
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Figure 4: Traces of the transfer matrices corresponding to elementary cells F2 −F7 of GMSs mapped
on the Kohmoto’s manifold. In part a) the full stop/pass band layout is shown and the positions of
the three selected frequencies b), c) and d) are identified by the three lines. In parts b), c) and d), the
sets of points generated by iterating map (19) and defining the orbits for

√
QLωlL = 0.15, 1.25 and 2.5

(lS = lL/σg and ρS = ρL/2) are sketched on the corresponding surface. Points R6 in b), R3 in c) and R5

in d) lie on a hidden part of the surface; R6 in d) is on the lateral tails, out of the represented domain.

described as perturbations of the periodic orbit [case a)] on the Kohmoto’s manifold at a

12



given ω. In order to introduce this important reference orbit, it is instrumental to refer
to some relevant properties of the Kohmoto’s surface.

Each manifold I(ω) = 0 possesses six saddle points Pj (j = 1, . . . , 6) which are in
antipodal positions in pairs. For GM and BM sequences, these points are connected to
the periodic orbit [case a)] obtained, respectively, through the six-cycle transformations
T 6
g and T 6

b

P1(0, 0, a)
Tg,b−−→ P2(−a, 0, 0)

Tg,b−−→ P3(0,−a, 0)
Tg,b−−→ P4(0, 0,−a)

Tg,b−−→ P5(a, 0, 0)
Tg,b−−→ P6(0, a, 0)

Tg,b−−→ P1, (25)

where a =
√

4 + I(ω). T 6
g and T 6

b define a six-point periodic orbit for maps (19) and
(21). Conversely, SM sequences are characterised by the four-cycle transformation T 4

s

P1(0, 0, a)
Ts−→ P3(0,−a, 0)

Ts−→ P4(0, 0,−a)
Ts−→ P6(0, a, 0)

Ts−→ P1, (26)

which identifies a four-point periodic orbit for (20). It is important to highlight that
Pj (j = 1, ..., 6) are periodic points of maps (19) and (21) and fixed points of T 6

g and T 6
b ,

whereas elements of the set {P1, P3, P4, P6} are periodic points of (20) and fixed points
of T 4

s . Being periodic orbits, the starting point in both (25) and (26) can be any saddle
point of the relevant transformation.

Even though periodic points depend uniquely on the property of the Kohmoto’s sur-
face, it may be interesting to note that for a real structure to follow the cyclic transfor-
mations (25) and (26) one of the following three conditions must be satisfied at a given
ω:

x̃0 = ỹ0 = 0, x̃0 = z̃0 = 0, ỹ0 = z̃0 = 0. (27)

This requirement can be observed only for a particular class of sequences, called here
the class of canonical sequences, and at particular values of the frequency, denoted as
canonical frequencies. For GMSs, conditions (27) imply that two of the expressions
(15) vanish, and then, substituting the latter into (27), the following relationships are
respectively derived

lS
lL

√

QS

QL

=
1 + 2j

1 + 2k
,

lS
lL

√

QS

QL

=
1 + 2j

2q
,

lS
lL

√

QS

QL

=
2q

1 + 2k
, with j, k, q ∈ N. (28)

By observing formulae (28), we can deduce that the main requirement to have a structure
generated with a canonical sequence is that (lS/lL)

√

QS/QL ∈ Q. Should this condition
be satisfied, ordered pairs of natural numbers (j, k), (j, q) or (q, k) can be found which
verify one of the relations (28). The corresponding canonical frequencies are then given
by

ωcj =
π

2lS
√
QS

(1 + 2j), ωck =
π

2lL
√
QL

(1 + 2k), with j, k ∈ N. (29)

13



More details regarding the properties of canonical sequences of GMSs are provided in
Appendix A.

As just anticipated, we can study the escaping and non-periodic bounded trajectories
of the traces on the Kohmoto’s surface as perturbations of the periodic orbits defined
by the cyclical transformations (25) and (26). Being a perturbative analysis, a reference
saddle point should be selected which is the closest to the initial point Ri, and then,
starting from this point, we can linearise the six- and four-cycle transformations (25)
and (26). In what follow, we have assumed P1 as the reference saddle point for the
linearisation procedure, yielding (see, for example, Ott (1993))

Ri+6 = T 6

g,b(Ri) ⇒ δr i+6 = Ag,bδr i, (30)

and
Ri+4 = T 4

s (Ri) ⇒ δr i+4 = Asδr i, (31)

respectively for T 6
g,b and T 4

s . In (30)–(31),

δr i = Ri − P1, (32)

Ag,b = J g,b(P6)J g,b(P5)J g,b(P4)J g,b(P3)J g,b(P2)J g,b(P1), (33)

As = J s(P6)J s(P4)J s(P3)J s(P1),

where J p(Pj) (p = g, s, b in the remaining part of the paper) represents the Jacobian of
maps (19)–(21) evaluated in the saddle point Pj using definition (22). The determinants
of matrices Ap are unitary. For all three classes of structures, one eigenvalue is equal to
one, i.e. κ0

p = 1, and the corresponding eigenvector is indicated with w 0
p. For GMSs, the

linearised transformation (30) has the additional pair of eigenvalues

κ±
g (ω) =

1

4

(

√

4 + (4 + I(ω))2 ± (4 + I(ω))
)2

, (34)

whereas for BM sequences the same pair is

κ±
b (ω) =

1

4

(

√

4 + (4 + I(ω))2(9 + 4I(ω))2 ± (4 + I(ω))(9 + 4I(ω))
)2

. (35)

Similarly, the linearised transformation (31) possesses the eigenvalues

κ±
s (ω) =

(

√

(3 + I(ω))2 − 1± (3 + I(ω))
)2

. (36)

For all pairs (34)–(36), κ+
p (ω) = 1/κ−

p (ω). They are associated with the eigenvectors w±
p

defined as
Apw

±
p = κ±

p w
±
p , (37)

where the dependence of eigenvalues on the circular frequency has been dropped.
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Ap are partitioned matrices2 with a symmetric 2×2 block such that w 0
p is orthogonal

to the Kohmoto’s surface at the point Pj, while the other two eigenvectors are in turn
orthogonal and span the tangent plane to the manifold, say πp,j. The set {w+

p ,w
−
p ,w

0
p}

defines a basis of the space where δr i is represented, and then we can express δr i for all
the three maps as

δr i = C+

p w
+

p + C−
p w

−
p + C0

pw
0

p. (38)

Applying the linearised transformations (30) and (31) to the vector (38), and recalling
the definition of eigenvector, we obtain

δr i+6 = Ag,bδr i = C+

g,bκ
+

g,bw
+

g,b + C−
g,bκ

−
g,bw

−
g,b + C0

g,bw
0

g,b, (39)

and
δr i+4 = Asδr i = C+

s κ
+

s w
+

s + C−
s κ

−
s w

−
s + C0

sw
0

s. (40)

By inspection of expressions (34)–(36), it can be verified that for any value of the fre-
quency, κ+

p ≫ 1 ≫ κ−
p (see also plots in Appendix B computed for a GM rod), and then

if we apply k times the linearized maps (39) and (40), the outcome is

δr i+6k = C+

g,b(κ
+

g,b)
kw+

g,b + C−
g,b(κ

−
g,b)

kw−
g,b + C0

g,bw
0

g,b ≈ (κ+

g,b)
kC+

g,bw
+

g,b, (41)

and
δr i+4k = C+

s (κ
+

s )
kw+

s + C−
s (κ

−
s )

kw−
s + C0

sw
0

s ≈ (κ+

s )
kC+

s w
+

s , (42)

for the two types of maps. From eqs. (41) and (42) we can deduce that, every six
iterations for GMSs and BMSs and four iterations for SMSs, the evolution of δr i can
be approximated counting only on the component of δr i lying respectively along the
eigenvectors w+

g , w
+

b and w+
s , which define the so-called unstable eigendirections (see,

for example, Arnold (1989)). Therefore, (41) and (42) are approximated by

δr i+6k ≈ (κ+

g,b)
kδr̂ i and δr i+4k ≈ (κ+

s )
kδr̂ i, (43)

where δr̂ i = C+

g,bw
+

g,b in the former and δr̂ i = C+
s w

+
s in the latter. It is worth recalling

that δr̂ i and the estimations of δr i+6k and δr i+4k provided by (43) all lie on the tangent
plane πp,j.

In line with the principles of renormalization theory, eqs. (43) provide the approx-
imate evolution of the position of Ri from the fixed point P1 in the case in which the
former is in the neighbourhood of the latter. This approach illustrates the scaling prop-
erties of non-periodic bounded orbits about the fixed points of the transformations that
is governed by the eigenvalue κ+

p of the relevant map. It is important to observe that,

2with the assumption of P1 as a saddle point, for GM rods,

Ag =





I(ω)2 + 7I(ω) + 13 (I(ω) + 4)3/2 0
(I(ω) + 4)3/2 I(ω) + 5 0

0 0 1



.
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i) if we study the evolution of δr i through the linearised analysis, the norm ||δr i+6k||
increases at each iteration for any set of initial conditions; then, at each iteration, the
distance between the transformed point and the fixed point Pj increases, and then the
orbits defined by the approximated maps are always open and never periodic, as most of
the orbits determined by the exact nonlinear transformations (19)–(20) and illustrated
by the examples reported in Fig. 4;

ii) taking into account cycles (25) and (26), it is clear that each application of the
generic operator J (Pj) in (33) projects the current vector δrh to the neighborhood of
the subsequent point of the cycle. As an example, J g(P3)J g(P2)J g(P1)δr 1 is a vector
that must be interpreted with reference to point P4.

5 Scaling, self-similarity of the spectrum and ultra-

wide band gaps

Scaling and self-similarity of the stop/pass band layout will be analysed in this section
for GM and SM rods for the same parameters adopted in Figs. 2 and 3 in the range of
frequencies 0 ≤ √

QLωlL ≤ 2π. The outcome is reported in Figs. 5 and 7, respectively,
where, similarly to Fig. 4, blue lines (white gaps) denote pass (stop) bands.

For GMSs, the analysed sequences in Fig. 5 are F2 to F8. Here, we observe that
the set of stop/pass band diagrams exhibit a self-similar pattern as the generation in-
dex i increases. At each iteration, each pass band splits into a number of shorter pass
bands in the subsequent row that follow the recursive rule of Fibonacci numbers ni, i.e.
1, 1, 2, 3, 5, · · · . Moreover, the number of pass bands for a generic sequence Fi is equal to
ni+1, and the number of band gaps equals ni+1 − 1.

The graph is endowed with different properties.
1) Ultrawide band gaps: the chart in Fig. 5/a) clearly displays four intervals of

frequencies that are in a band gap for all cells generated by Fj+4 (j = 0, 1, 2, . . . ). These
intervals are definitely wider than other band gaps, and then further in the text we will
call them ultrawide band gaps. They are associated with fully escaping orbits [case d)].
Section 6 will be devoted to their analysis.

2) ‘Local’ scaling of the spectrum about some frequencies: outside the ranges of
frequencies affected by ultrawide band gaps, parts of the diagram for a given sequence
scale down at increasing index i.

3) Scaling of large portions of the dynamic spectrum: the layout in a relatively large
frequency range can be identified downscaled in the diagram obtained for a higher index
i.
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Figure 5: Stop/pass band diagram for rods generated by cells F2 to F8 of the GM sequence assuming
lS = lL/σg and ρS = ρL/2. The band gap in the diagram F8 detailed in a) is between

√
QLωA∗ lL = 4.477

and
√
QLωB∗ lL = 4.497. The close up view b) illustrates the diagram associated with the cells F5, F6

and F7 in the domain rescaled using the scaling factor λ̄g, that is the average value of λg =
√
κg evaluated

upon the range 0 ≤ √
QLωlL ≤ 2π.

5.1 ‘Local’ scaling of the spectrum about some frequencies

This type of scaling, that has a ‘local’ nature, is illustrated through an example involving
a narrow stop band for which it is shown the role of the eigenvalue κ+

p . A similar procedure
can be applied to other stop bands located outside ultrawide band-gap regions. Consider
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Figure 6: Kohmoto’s surface for
√
QLωlL = 4.487 in the neighborhood of the saddle point P1 for

the GM rods considered in Fig. 5. Point R8(ωB∗) is not visible. The tangent plane πg,1 has equation
z̃ = +a.

the stop band {ωA∗ − ωB∗} in the diagram for F8 centred at
√
QLωlL = 4.487 in Fig.

5/a)3. Points R8(ωA∗) and R8(ωB∗) are therefore on the boundary of a yellow region of
the Kohmoto’s surface for

√
QLωlL = 4.487, in this case in the neighbourhood of the

saddle point P1 (see Fig. 6). The positions of the two points with respect to P1 can be
approximated by two vectors, respectively δr 8(ωA∗) and δr 8(ωB∗), on the tangent plane
πg,1 of P1 whose equation is z̃ = +a. Then, eq. (43)1 can be invoked backwards with
k = 1 to yield, respectively,

δr̂ 2(ωA∗) =
δr 8(ωA∗)

κg

and δr̂ 2(ωB∗) =
δr 8(ωB∗)

κg

, (44)

where κg is the eigenvalue κ
+
g evaluated at

√
QLωlL = 4.487. The two new vectors are on

the same tangent plane πg,1, but they are much shorter than the parent vectors δr 8(ωA∗)
and δr 8(ωB∗). Their vertical projections to the surface identify approximated points
R2(ωA∗) and R2(ωB∗), respectively, whose coordinates z̃2(ωA∗) and z̃2(ωB∗) are greater
then 2, therefore the two frequencies are within a band gap for F2 (Fig. 6). Now, let us
write δr̂ 2(ωA∗) as

δr̂ 2(ωA∗) = ∆rA2 (ω)|ω=ωA∗
gA, (45)

where gA is a unit vector and assume that the function ∆rA2 (ω) can be expanded in
Taylor series about ωP1

retaining only the linear term, namely

∆rA2 (ω) ≈ D(ω − ωP1
) (D < 0). (46)

The approximate frequency ω̃A at the edge of a band gap for the sequence F2 is such
that ∆rA2 (ω̃A) matches the norm of vector δr 8(ωA∗), namely

∆rA2 (ω̃A) = ||δr 8(ωA∗)||. (47)

3We assume that in this range the Kohmoto’s invariant is constant, so we refer in this subsection to
the manifold for

√
QLωlL = 4.487.
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Figure 7: Stop/pass band diagram for rods generated by cells F2 to F5 of the Fibonacci SM sequence
assuming lS = lL/σg and ρS = ρL/2. The close up view b) illustrates the diagram associated with the
cells F4 and F5 in the domain rescaled using the scaling factor λ̄s, that is the average value of λs =

√
κs

evaluated upon the range 0 ≤ √
QLωlL ≤ 2π.

The use of (44)1 and (46) yields

D(ω̃A − ωP1
) = κgD(ωA∗ − ωP1

), (48)
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therefore, the following final result can be recorded

ωP1
− ωA∗ =

ωP1
− ω̃A

κg

. (49)

A similar procedure can be followed for δr̂ 2(ωB∗), obtaining ωB∗ − ωP1
= (ω̃B − ωP1

)/κg,
so that the following scaling law can be established

ωB∗ − ωA∗ =
ω̃B − ω̃A

κg

. (50)

The band gap {ω̃A − ω̃B} approximates the real one ({ωA − ωB}) in the F2 diagram,
depicted in Fig. 5/a). The quality of the scaling described by eq. (50) is remarkably
good: for the selected example, κg = 21.37, while the ratio (ωB − ωA)/(ωB∗ − ωA∗) is
equal to 22.43.

With the proposed example, we have shown how the ‘local’ scaling occurring between
parts of the diagrams of Fi and Fi+6 (in this case i = 2) is governed by (43)1, coherently
with the linearisation of the six-cycle transformation T 6

g . The same method can be ap-
plied to parts of the spectra computed for the other two types of sequences: in particular,
for SMSs, if relevant, the scaling applies between Fi and Fi+4.

With a similar approach, but without the full support of the theory leading to eq.
(43), we can give an explanation of the scaling between, again, {ωA∗ − ωB∗} and the
band gap {ωA′ −ωB′} in the diagram for F5, which contains the dimensionless frequency√
QLωlL = 4.487. In this case, we are able to establish a link between Fi and Fi+3.
Let us define the matrix governing the three-step linearised map, corresponding to

the second half of the six-step transformation (33) as

Bg,b = J g,b(P6)J g,b(P5)J g,b(P4)

(an analogous map can be defined for SMSs), and in our example, compute the approxi-
mate vectors

δr̂ 5(ωA∗) = B−1

g δr 8(ωA∗) and δr̂ 5(ωB∗) = B−1

g δr 8(ωB∗). (51)

According to the observation ii) made at the end of subsection 4.3, the two vectors
describe points that must be considered in relation to saddle point P4. Their vertical
projections to the Kohmoto’s surface in the neighborhood of P4 identify points that are
in a band gap. We can repeat a procedure similar to that developed for δr̂ 2(ωA∗) and
δr̂ 2(ωB∗) (based on eqs. (45) and (46)) to obtain

ωB∗ − ωA∗ =
ω̃B′ − ω̃A′

λg

, (52)

where ω̃A′ and ω̃B′ are the two approximate frequencies at the edge of the band gap for
the sequence F5. In our example, the parameter λg turns out to be 4.62, while for the
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actual gap {ωA′ − ωB′}, the ratio (ωB′ − ωA′)/(ωB∗ − ωA∗) is equal to 4.63, so the match
is again extremely good.

We note that with very good agreement, λg ≃ √
κg. Actually, this is not surprising

as λg governs the scaling of the initial band gap of the example after the application of
three of the six multiplicative steps of application (33).

5.2 Scaling of large portions of the dynamic spectrum
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Figure 8: Study of the downscaling of the dynamic spectra for GM rods with lS = lL/σg and ρS = ρL/2.
On the left, plot of x5(ω) (magenta dashed line) and x2(λ̄gω) (blue solid line). On the right, functions
x8(ω) (magenta dashed line) and x2(κ̄gω) (blue solid line) are displayed.

A different type of scaling is introduced now and involves a large portion of the
dynamic spectrum. In Figs. 5/a) and 7/a), the red contours highlight the downscaling
of the whole frequency range 0 ≤ √

QLωlL ≤ 2π. This portion of the spectrum is zoomed
in in parts b) of the two figures. In the re-scaled domain of Fig. 5/b), the stop/pass band
layout of F5 is very similar to that of F2 in the wider interval. A similar behaviour is
identified in Fig. 7/b) for the diagrams for F4 and F5 with respect to those for F2 and
F3, respectively.

The downscaling is related to the property

xi+3(ω) ≈ xi(λ̄g,b ω) (53)

for GMSs and BMSs, and
xi+2(ω) ≈ xi(λ̄s ω) (54)

for SMSs, where λ̄p is the average value of the parameter λp introduced in the previous
subsection4 upon a given frequency range. The choice of this range is not unique as,
alternatively, we can see the wider domain 0 ≤ √

QLωlL ≤ 2π as the result of an upscal-
ing of the frequency interval corresponding to the red contours5. Whatever the choice,

4actually, only λg was defined, but both λb and λs can be introduced in a similar way.
5in the range 0 ≤ √

QLωlL ≤ 2π, λ̄g =
√
κg = 4.37, whereas for the red contour domain, 0 ≤√

QLωlL ≤ 1.4, λ̄g =
√
κg = 4.29.
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however, the variation in the parameter λ̄p is very limited. The panel on the left of
Fig. 8 shows numerically the correspondence (53) for i = 2 computed for λ̄g = 4.40 (the
magenta dashed line represents the function x5(ω), while the solid blue line is the graph
of x2(λ̄gω)). This value has been selected to show the almost perfect match between the
stationary points of the two functions; nevertheless, by comparing the diagram for F2

in part a) to that for F5 in part b) of Fig. 5, we note that the two band gaps are not
perfectly aligned.

On the panel on the right, the property xi+6(ω) ≈ xi(κ̄g ω) is demonstrated on the
scaled domain 0 ≤ √

QLωlL ≤ 0.33 obtained by adopting κ̄g = 18.90, confirming that the
type of scaling addressed in this subsection is also valid when a complete six-step cycle
is considered.

6 Ultrawide band gaps

We now propose a heuristic strategy to predict the position of ultrawide band gaps within
the spectrum studying the local maxima and minima of a properly defined approximant
function. Let us introduce the function H(ω) = x2(ω)x3(ω) and recall the recursive
relations (14), (16) and (17), valid for GM, SM and BM rods, respectively. For the GM
case, consider now a frequency ω∗ associated with a local maximum or minimum of the
function H(ω) such that |H(ω∗)| ≫ 2. At the order i = 4, the relation (14) can be
approximated as

x4(ω
∗) = x2(ω

∗)x3(ω
∗)− x1(ω

∗) ≈ x2(ω
∗)x3(ω

∗) = H(ω∗), (55)

where we have used the following property of the trace corresponding to the elementary
cell of the sequence: |x1(ω

∗)| ≤ 2 (see eq. (15)2). It is important to note that as
|H(ω∗)| ≫ 2, the assumption of expression (55) implies automatically that ω∗ is in a
band gap for the cell F4. Moreover, using (55) as a starting point and assuming that
xi+5 ≈ xi+4xi+3, traces of the transfer matrices associated with orders higher than 4 can
be approximated by

xj+5(ω
∗) ≈ (H(ω∗))nj+2

(x2(ω∗))nj
, with j ≥ 0. (56)

We focus now on the denominator of eq. (56). Due to the properties of expression
(15)3, 0 ≤ |x2(ω)| ≤ xmax

2 , with xmax
2 � 2. As a consequence, since |H(ω∗)| ≫ 2 and

nj+2 > nj, x
max
2 ≤ |H(ω∗)|, and then

2 <

∣

∣

∣

∣

(H(ω∗))nj+2

(x2(ω∗))nj

∣

∣

∣

∣

< +∞, with j ≥ 0. (57)

From relation (57), assuming for ω = ω∗ the approximated expressions (55) and (56), we
obtain

2 < |xi+5(ω
∗)| < +∞, with j ≥ 0. (58)
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Figure 9: Ultrawide band gaps for GM (left column) and SM (right column) structures for lL/lS = σg.
In parts a) and b) sector plots of the function |H(ω)| are shown. The regions where |H(ω)| ≥ 2 are
highlighted in light blue, whereas the white regions correspond to |H(ω)| < 2, and the thin blue curves
denote the local maxima. The dark blue straight line indicates the value ρS/ρL = 1/2 assumed in the
evaluation of |trT 7| (magenta line) and |trT 5| (orange line) plotted in parts c) and d). Ultra-wide band
gaps are localized in proximity of the maxima of |H(ω)| (black lines) for values greater than 2.

Recalling that for a cell Fi a frequency is in a band gap if |xi(ω)| > 2 (see eq. (13)), eq.
(58) implies that for ω = ω∗ all the GMSs whose elementary cells are generated by Fj+5

(j ≥ 0) are in a stop band, and then ω∗ is associated with one of the ultrawide band gaps
identified in Figs. 5/a) and 7/a). Similar results can be obtained for both BMSs and
SMSs by approximating relations (16)2 and (17)2 at the order i = 4 for ω = ω∗ as follows:
t4(ω

∗) ≈ x2(ω
∗)x3(ω

∗) = H(ω∗). Consequently, we can state that for all precious mean
structures, if H(ω) possesses a local stationary point ω = ω∗ such that |H(ω∗)| ≫ 2, this
value of the frequency lies in a ultrawide band gap. Therefore, the position of these large
stop bands inside the spectrum can be predicted studying the local maxima of |H(ω)|.
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Figure 10: Sector plots of the quantity |H(ω)| corresponding to GMSs for ρS = ρL/2, reported for
several values of the ratio lL/lS . The regions where |H(ω)| ≥ 2, that give an estimate of the position of
ultrawide band gaps, are highlighted in light blue, and the thin blue lines correspond to local maxima
of the same function.
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Figure 11: Sector plots of |trT i| (i = 2, . . . , 7) for GMSs evaluated assuming lS = lL/σg and ρS = ρL/2.
The band-gap regions (|trT i| ≥ 2) are highlighted in light blue. The thin blue lines denote the local
maxima of |H(ω)|.
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Figure 12: Sector plots of |trT i| (i = 2, . . . , 5) for SMSs evaluated assuming lS = lL/σg and ρS = ρL/2.
The band-gap regions (|trT i| ≥ 2) are highlighted in light blue. The thin blue lines denote the local
maxima of |H(ω)|.

The validity of the proposed criterion is demonstrated by the plots reported in Fig. 9.
The sector plots of the function |H(ω)| are shown in Fig. 9/a) for GMSs and Fig. 9/b) for
SMSs (lL/lS = σg) in which normalised frequency

√
QLωlL and density ratio ρS/ρL are

reported on the horizontal and vertical axes, respectively. The regions where |H(ω)| ≥ 2
are highlighted in light blue, whereas the white regions correspond to |H(ω)| < 2; the
thin blue lines denote the local maxima of |H(ω)|. The thick, dark blue horizontal lines
reported for ρS/ρL = 1/2 indicate the value for the density ratio assumed in the evaluation
of the curves reported in Figs. 9/c) and 9/d). In Fig. 9/c), the quantity |x7| for the
GMSs is plotted as a function of the normalised frequency (magenta line) together with
|H(ω)| (black line). We note that the ultrawide band gaps of F7, revealed by |x7| ≫ 2,
correspond to the maxima of |H(ω)| for which |H(ω)| > 2. These maxima can be easily
identified in Fig. 9/a) at the intersection points between the horizontal thick blue line
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and the thin curved lines crossing the light-blue regions, which are indeed associated with
|H(ω)| > 2. The function |x5| for SMSs displays a similar behaviour (orange line in Fig.
9/d)) where |H(ω)| is again sketched with a solid black curve. Therefore, the light blue
regions in parts a) and b) provide a good estimate of the position of ultrawide band gaps
for different density contrasts at the selected ratio lL/lS.

Sector plots of |H(ω)| are shown in Fig. 10 for different values of the ratio lL/lS.
We observe that as this parameter increases, the number of regions where |H(ω)| ≥ 2,
highlighted in light blue, decreases. This means that when lL ≫ lS, the number of these
wide stop bands decreases in the same frequency range, while their density increases
when the two lengths are comparable.

Sector plots reported in Fig. 11 illustrate the whole stop/pass band arrangement
for GMSs generated according to sequences from F2 to F7 assuming lL/lS = σg. The
band-gap regions, where |xi| ≥ 2, are highlighted in light blue, whereas pass bands are
reported in white. As in the previous figures, the thin blue lines denote the local maxima
of |H(ω)|. Differently from Fig. 9/a), in Fig. 11 all band gaps are represented, including
both ultrawide and standard band gaps for which scaling applies. On the one hand, by
observing the sector plots associated with the different sequences, we note that only for
F2 and F3 a few large band gap areas appear, and then from F4 on these are localised
about local maxima of |H(ω)| and their position remains the same for all the successive
sequences. It is easy to recognise that these regions coincides with the ultrawide band
gaps. On the other, in the areas between the ultrawide gaps, we detect several smaller
light blue regions which become more numerous and narrower at increasing index i. They
are the standard band gaps whose ‘evolution’ is governed by the scaling feature described
in Section 5. As expected, in all the plots shown in Fig. 11, no stop bands are found for
ρS/ρL = 1, in which case both parts L and S are made up of the same material and then
all rods from F2 to F7 are homogeneous.

Similarly to Fig. 11, the sector plots in Fig. 12 show the stop/pass band regions for
periodic SMSs generated according to sequences from F2 to F5, assuming lL/lS = σg. As
just observed for GMSs, the regions occupied by the ultrawide band gaps are the same
for all the sequences following F4, whereas standard band gaps become more numerous
and narrower within them.

7 Conclusions

This work is concerned with the study of harmonic axial wave propagation in infinite
waveguides constructed by repeating a bi-phase elementary cell composed of two building
elements that are combined according to the generalised Fibonacci sequence. In particu-
lar, the class of precious mean quasicrystalline sequences has been thoroughly analysed.
The core of the investigation has focused on the properties of the arrangements of stop
and pass bands obtained in the same frequency interval for different indices of the se-
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quence. The main outcome of the paper is the illustration of the role of an invariant
function of the circular frequency, named the Kohmoto’s invariant, in determining those
properties.

More in detail,
– we have exploited a dynamical trace mapping procedure to reveal how the proper-

ties of the transfer matrices correlate to the graphical representation of the Kohmoto’s
invariant; on this manifold, different kinds of orbits have been classified;

– the dynamical trace mapping reveals the existence of a special class of quasicrys-
talline rods, named canonical structures, that display special conservation properties in
the pass/stop band layout at well defined canonical frequencies;

– the linearisation of the dynamical trace mapping about characteristic periodic points
explains the scaling and self-similarity features of the dynamic spectra and the stop and
pass band diagrams at varying generation index;

– ultrawide band gaps in the spectra have been analysed.
The results achieved in this paper provide the necessary insight to start a research pro-

gramme in quasicrystalline metamaterials. The established methodology will be extended
to investigate the dynamics of quasicrystalline beams, plates and composite materials.
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Appendix A

Traces trT i (i = 0, . . . , 5) of GMSs generated by two different canonical sequences are
reported in Figs. 13 and 14. The traces associated with the initial point R0 are reported
in the first plot of both figures, and then the other graphs show the traces involved
in R1 = (x3, x2, x1). Fig. 13 is for EL = ES, AL = AS, lS/lL = 1/2, ρL/ρS = 1/4,
(lS/lL)

√

QS/QL = (lS/lL)
√

ρS/ρL = 1/4, so that condition (28)2 is verified. Fig. 14
is computed for EL = ES, AL = AS, lS/lL = 1/2, ρL/ρS = 4, (lS/lL)

√

QS/QL =
(lS/lL)

√

ρS/ρL = 1, which verify condition (28)1. Note that in this case, trT 0 = trT 1

for each value of the dimensionless frequency. In both figures, canonical frequencies are
marked by dot-dashed vertical lines.
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Figure 13: Plot of trT i for GM canonical structures corresponding to (lS/lL)
√

QS/QL =

(lS/lL)
√

ρS/ρL = 1/4 vs dimensionless frequency. On the left, trT 0 (black solid line), trT 1 (magenta
dotted line) and trT 2 (blue dashed line) are reported. On the right, trT 1 (magenta dotted line), trT 2

(blue dashed line) and trT 3 (orange dash-dotted line) are displayed. The black vertical lines indicate
the canonical frequencies.
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Figure 14: Plot of trT i for GM canonical structures corresponding to (lS/lL)
√

QS/QL =

(lS/lL)
√

ρS/ρL = 1 vs dimensionless frequency. On the left, trT 0 (black solid line), trT 1 (magenta
dotted line) and trT 2 (blue dashed line) are reported. On the right, trT 1 (magenta dotted line), trT 2

(blue dashed line) and trT 3 (orange dash-dotted line) are displayed. The black vertical lines indicate
the canonical frequencies.

Appendix B

Plot of functions κ+
g (ω) and κ−

g (ω) are reported in Fig. 15 for lS = lL/σg and ρS = ρL/2.
We note that both κ+

g and κ−
g are characterised by small oscillations and that κ+

g ≫ 1 ≫
κ−
g for any frequency.
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Figure 15: Plot of functions κ+
g (ω) and κ−

g (ω) in a graph where the abscissa reports the dimensionless

frequency
√
QLωlL. The calculations are for lS = lL/σg and ρS = ρL/2.
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