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Abstract

Finite renormalization freedom in locally covariant quantum field theo-
ries on curved spacetime is known to be tightly constrained, under certain
standard hypotheses, to the same terms as in flat spacetime up to finitely
many curvature dependent terms. These hypotheses include, in particu-
lar, locality, covariance, scaling, microlocal regularity and continuous and
analytic dependence on the metric and coupling parameters. The ana-
lytic dependence hypothesis is somewhat unnatural, because it requires
that locally covariant observables (which are simultaneously defined on all
spacetimes) depend continuously on an arbitrary metric, with the depen-
dence strengthened to analytic on analytic metrics. Moreover the fact that
analytic metrics are globally rigid makes the implementation of this re-
quirement at the level of local ∗-algebras of observables rather technically
cumbersome. We show that the conditions of locality, covariance, scaling
and a naturally strengthened microlocal spectral condition, are actually
sufficient to constrain the allowed finite renormalizations equally strongly,
thus eliminating both the continuity and the somewhat unnatural analyt-
icity hypotheses. The key step in the proof uses the Peetre–Slovák theo-
rem on the characterization of (in general non-linear) differential operators
by their locality and regularity properties.

1 Introduction

Perturbative ultraviolet renormalization of locally covariant quantum field the-
ories in (globally hyperbolic) curved spacetime is a well established topic of
algebraic quantum field theory, especially for scalar fields [5, 6, 13, 14]. It essen-
tially deals with two classes of objects: Wick polynomials and time ordered Wick
polynomials. Exactly as in flat spacetime, these objects can be considered as
the building blocks of the whole renormalization procedure. Smeared versions
of Wick polynomials, of their time ordered products and of their derivatives
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generate an algebra W(M,g), for a given spacetime (M,g), enlarged in a con-
trolled way from the algebra of products of smeared linear fields. This enlarged
algebra then includes physically fundamental observables, such as the stress-
energy tensor, which is necessary, for instance, to evaluate the energy densities
and fluxes of physical processes in curved spacetimes like particle creation or
Hawking radiation. The stress-energy tensor is also needed to compute the back
reaction of the quantum matter on the background geometry.

This paper deals only with Wick polynomials, or more precisely just Wick
powers with all results easily extended to all Wick polynomials by linearity,
though the presented results could in principle be adapted to deal also with
their derivatives and their time ordered products. In curved spacetime, Wick
polynomials have to satisfy stronger locality and covariance requirements than
in flat spacetime. These requirements are conveniently stated in the language
of category theory introduced in [7], which we also use here. We should stress,
though, that the categorical language primarily serves to compress somewhat
long lists of hypotheses into concise statements. Existence of locally covari-
ant Wick polynomials and their time ordered products was established in the
seminal works of Hollands and Wald, respectively in [13] and [14]. It is well
known that, in flat spacetime, time ordered Wick polynomials are not uniquely
defined. This fact survives the passage to curved spacetime. However, unlike
in flat spacetime, the absence of a preferred reference state means that Wick
polynomials are themselves not uniquely defined. The ambiguities involved with
the definition of these two classes of fields are physically interpreted as finite
renormalizations or renormalization counterterms, upon adopting the natural
locally covariant generalization of Epstein–Glaser approach to renormalization.

Exactly as in flat spacetime, each fixed type of (either Wick or time-ordered)
polynomial admits a finite-dimensional class of independent counterterms. In
curved spacetime, this class is much larger than in Minkowski space, because of
the possible dependence of counterterms on background curvature. While this
class may no longer be finite-dimensional, it is still finitely generated or quasi-
finite-dimensional in a precise sense, because the counterterms may depend only
polynomially on the curvature scalars up to a certain dimension. This remark-
able result, in the case of Wick polynomials, presented in [13, Thm. 5.1] and
summarized before the statement of our Theorem 3.1, is arrived at by impos-
ing severe constraints on Wick polynomials in addition to those of locality and
covariance. These requirements are of various kinds. Some arise from heuristic
properties of quantum free fields, e.g., Hermiticity and commutation relations.
Other requirements concern microlocal features which, loosely speaking, extend
to curved spacetime the structure of Fourier transforms of the relevant Green
functions on Minkowski space. Another requirement regards the behaviour of
Wick polynomials under a rescaling of the metric and the parameters m2 and
ξ of the free theory, which describe the field’s mass1 and its coupling to the
curvature. Finally there are the technically delicate requirements of continu-
ous and analytic dependence on the metric. The two latter requirements play
a crucial role in [13] in their proof of the strong restrictions on possible finite
renormalization counterterms that was mentioned above.

The main difficulty with defining a suitable notion of the continuous depen-

1As in [13], we will always treat m2 as a real number, which could be either positive, zero,
or even negative, as ultraviolet renormalization is not sensitive to the sign of m2.
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dence of an element of the algebra W(M,g) on the metric g (and the other pa-
rameters m2 and ξ) is that, continuously changing the metric g 7→ g′, the whole
algebra W(M,g) changes correspondingly and algebras W(M,g) and W(M,g′)
associated with different metrics are not canonically isomorphic. Therefore even
just stating the condition of continuous dependence on g requires some finesse.
Locality can be turned into an advantage in this context [13]. One may restrict
attention to metric variations in a spacetime region O ⊂ M with compact clo-
sure. If g agrees with g′ outside O, essentially exploiting a suitable version of the
time slice axiom, it is possible to naturally identify an element of W(M,g) with
a corresponding element in W(M,g′), when both are supported in O. Hence,
a local version of the continuity requirement can be imposed by means of this
canonical identification.

The requirement of analytic dependence is even trickier to state. It is argued
in [13] that analytic dependence is necessary because the remaining requirements
would not be able to rule out the undesirable infinite family of non-polynomial
in curvature counterterms that were considered in [25]. There is an important
subtle technical issue that arises in stating this analytic dependence condition.
The way followed for stating the continuity dependence requirement in a local
region O faces here an insurmountable obstruction: analytic metrics are rigid
and if they coincide outside O they must coincide also in O. The ingenious but
cumbersome strategy elaborated in [13] makes use of a special class of Hadamard
states over the considered algebras. Since no local analytic variations of the
metric are possible, they consider a joint analytic family g(s) of the metric on
O and a corresponding analytic family of quasifree Hadamard states ω(s) on
W(M,g(s)). Then they require that the distributions obtained by composing
ω(s) with the local Wick polynomials (or their time ordered products) varies
analytically with s in a suitable analytic and microlocal sense (see the discussion
starting on p. 311 in [13]).

Continuous and analytic dependence on the parameters m2 and ξ is there
treated similarly, with both parameters taken to be functions onM , rather than
just constants, at intermediate stages of the arguments.

The main result of this work establishes that the technically cumbersome
and somewhat unnatural analytic dependence requirement is in fact not nec-
essary to achieve the classification theorem [13, Thm. 5.1]. Our classification
result, Theorem 3.1, is essentially identical, though it is slightly more general
because it allows smooth (rather than just analytic) dependence on the dimen-
sionless curvature coupling ξ. In our proof, we make no use of the continuous
and analytic dependence requirements of [13]. Instead, leaving all the other
requirements on Wick powers the same, we appeal to a strengthened (more
precisely, parametrized) version of the microlocal spectrum condition, which we
believe is natural from both the physical and geometrical points of view. This
modification of the axioms on Wick powers is sufficient to achieve the desired
classification. Also, echoing the original (rather implicit) arguments of [13],
we believe that it is very likely that our version of the axioms are satisfied by
the standard locally covariant Hadamard parametrix prescription for explicitly
constructing Wick powers, which would mean that our classification results are
non-vacuous. However, we leave a detailed verification of this claim to future
work.

The key tool exploited in our proof is a theorem that characterizes (gener-
ally non-linear) differential operators in terms of their locality and regularity
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properties. This theorem, known as the Peetre–Slovák theorem (or sometimes
the non-linear Peetre theorem), in its most elementary version (Proposition 2.2;
see also Appendix A for a more general statement) states the following: any
map D, that associates smooth sections ψ : M → E of a bundle E → M to
smooth sections D[ψ] : M → F of another bundle F → M in such a way that
D[ψ](x) depends only on the germ of ψ at x for any point x ∈ M , is necessar-
ily a differential operator of locally bounded order, smoothly depending on its
arguments and their derivatives. The Ck coefficients that characterize renormal-
ization counterterms of Wick polynomials precisely map sections of the bundle
of metrics and parameters, m2 and ξ, to scalar valued distributions on a space-
time M . The microlocal conditions ensure that these distributions are actually
smooth functions, while the locality requirement implies that the Ck satisfy the
hypotheses of Peetre–Slovák’s theorem and hence must be differential operators.
A combination of the scaling and covariance requirements then shows that the
differential order of the Ck is globally bounded and that their dependence on
the metric, m2 and the derivatives of all the parameters is polynomial, with
coefficients smoothly depending on ξ. Further, covariance also dictates that the
derivatives of the metric necessarily group into curvature scalars.

Notably, the analytic dependence requirement is not exploited in estab-
lishing the above result. Within the context of our proof, counter terms like
mkF (R/m2), where R is the Ricci scalar and F is any smooth function with
strong decay near 0 and ±∞, as considered in [25], are excluded because they
violate the microlocal requirement: there exists a choice of a spacetime (M,g)
and of a scalar field m2 such that the counterterm is not smooth and hence has
non-empty wavefront set and the Wick polynomials modified by adding these
counterterms do not satisfy the microlocal requirement (neither the original,
nor our strengthened version).

This paper is organized as follows. Our main theorem and its proof are pre-
sented in Sect. 3. The proof is somewhat lengthy, but straight forward. It relies
on some preliminary definitions and results discussed in Sect. 2. In particular
our basic version of Peetre–Slovák’s theorem is stated in Sect. 2.3 after a quick
summary of elementary facts about jet bundles in Sect. 2.2, where we also
introduce some useful coordinate systems. Sect. 2.4 is devoted to introducing
our notion of scaling which is more precise but substantially equivalent to the
one employed in [13]. However, we are careful to identify two different kinds of
scalings (physical and coordinate), which were mixed in [13] by the introduction
of Riemann normal coordinates. The remainder of Sect. 2 deals with notions
and results, especially on GL(n) representation theory, which are useful for im-
posing the covariance requirement. After recalling the definition and properties
of Wick polynomials, and the more general notion of locally covariant quantum
field, with the appropriate categorical language, we state and prove our main
result in several steps in Sect. 3. Sect. 4 concludes the paper with a discussion
of the results and directions for future work. Appendix A illustrates a more gen-
eral version of Peetre–Slovák’s theorem, which applies to differential operators
with parameters.
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2 Geometry of scaling and general covariance

In this section we discuss some aspects of the geometry of the higher derivatives
(jets) of metric and scalar fields under the action of scaling and diffeomorphism
transformations. These properties will be crucial in the characterization of finite
renormalizations in locally covariant quantum field theory in Sect. 3.

2.1 Coordinates on jets

In differential geometry, jets [18, 16] are a geometric way of collecting infor-
mation about higher derivatives of functions (or bundle sections) on manifolds,
similar to what the tangent and cotangent bundles do for first derivatives. Jets
have an invariant geometric meaning even on manifolds without a preferred
metric or connection. Further, a choice of a coordinate chart on a manifold
induces a choice of adapted coordinates on the corresponding jet bundle. One
advantage of working with jets is that certain calculations are very conveniently
performed in such an adapted local coordinate chart, yet also lead to global and
geometrically invariant conclusions. Below, we briefly discuss some variations
on adapted local coordinate systems on the space of jets of bundle of metrics
with some scalar fields.

Consider a smooth map f : Rm → Rn, such that f(0) = 0. The germ of
f at 0 ∈ Rm is the equivalence class of smooth maps f ′ : Rm → Rn that agree
with f on some neighborhood of 0 ∈ Rm. The r-jet of f at 0 ∈ Rm is the
equivalence class of all smooth maps f ′ : Rm → Rn that have the same Taylor
expansion at 0 as f to order r, denoted jr0f . Obviously, the germ contains more
information than a jet of any order. These definitions are clearly local, both on
the domain and the target of a smooth map, and are invariant under C∞-changes
of coordinates. Thus, these definitions easily translate to maps between smooth
finite-dimensional (smooth) manifolds M , N replacing 0 ∈ Rm and 0 ∈ Rn,
respectively, by generic points x ∈ M , y ∈ N . In particular, with the said M
and N , we denote by Jr(M,N) the set of all distinct jets jrxf of all smooth
maps f : M → N for all x ∈ M . Also, if E → N is a smooth bundle over N ,
then we denote by JrE or, for emphasis, by Jr(E → N) ⊂ Jr(N,E) the subset
of jets of smooth sections f : N → E. Both Jr(M,N) and Jr(E → N) can be
given structures of smooth manifolds. A fiber (JrE)x at x ∈ N is diffeomorphic
to Ex × R

sr , where Ex is the fiber of E and sr counts the components of all
(symmetrized) partial derivatives up to order r. In fact, by projection onto the
target of each jet, JrE → E → N is an iterated smooth bundle. Given a section
ψ : N → E, we can collect the r-jets of ψ over each point of N into a section
jrψ : N → JrE called the r-jet extension of ψ.

Let (xa, vi) be a local adapted coordinate chart on a bundle F →M , where
(xa) serve as coordinates on a domain U ⊆M and (xa, vi) serve as trivializing
coordinates on the fibers of the domain V ⊆ F over U . For example, if T pqM →
M is the bundle of (p, q)-tensors we can choose coordinates (xa, t

a1···ap
b1···bq

) on the
projection pre-image V of U , such that a section τ : T pqM → M could locally
be written as

τ(x) = t
a1···ap
b1···bq

(τ(x)) dxb1 · · · dxbq ∂

∂xa1
· · · ∂

∂xap
. (1)

The local chart (xa, vi) then induces an adapted coordinate system (xa, viA) on
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the domain V r ⊆ JrE that is the projection pre-image of V and is diffeomorphic
to V r ∼= V ×Rsr , with sr as discussed above. Each A = a1 · · · al, standing in for
an unordered (equivalently, fully symmetrized) collection of base manifold co-
ordinate indices, is a multi-index of size |A| = l, with the range l = 0, 1, . . . , r.
The defining property of these coordinates is the identity

viA(j
rψ(x)) = ∂Av

i(ψ(x)) =
∂

∂xa1
· · · ∂

∂xal
vi(ψ(x)), (2)

for any section ψ : M → F . Given such a coordinate system, for brevity, we use
the notation ∂a = ∂/∂xa and ∂Ai = ∂/∂viA for corresponding coordinate vector
fields.

2.2 Coordinates on jets of metric and scalar fields

If M is a n-dimensional smooth manifold, let us now fix the bundle BM → M
given by the bundle product of the bundle S̊2T∗M of (smooth) Lorentzian metric
(0, 2)-tensors over M and the trivial bundle R ×M → M of (smooth) scalar
fields over M . Let us denote the sections of this bundle by (g, ξ) : M → BM .
There are several local coordinate systems on JrBM , of various merits, which
we discuss below.

Covariant coordinates. Given a local coordinate chart (xa) on U ⊆ M , we
define the corresponding adapted coordinates (xa, gab, z) on V ⊆ BM , which in
turn induce the covariant coordinates

(xa, gab,A, zA) on V r ⊆ JrBM . (3)

Notice that only n(n+1)/2 components of gab take part in the above coordinates,
in view of the symmetry of the metric.

Contravariant coordinates. Recall that a Lorentzian metric g : M → S̊2T ∗M
is invertible and hence defines a section g−1 : M → S̊2TM . The components
of the inverse metric can be extracted by functions gab defined on all of V ⊆
BM , such that gab(g−1(x)) = gab(g(x)), which induce the functions gabA on
V r that satisfy gabA (jrg(x)) = ∂Ag

ab(g(x)). Then, using the notation gAB =
ga1b1 · · · galbl , for |A| = |B| = l, we define the following functions

g = |det gab| , gab,A = gABgabB , zA = gABzA, (4)

where, by invertibility of Lorentzian metrics, the function g−1 is well defined
on all of V r, since g = |det gab| is never zero. These functions make up the
alternative set of local contravariant coordinates

(xa, gab,A, zA) on V r ⊆ JrBM , (5)

with the caveat that as the set of functions (g, gab) is only functionally indepen-
dent up to the identity g−1 =

∣

∣det gab
∣

∣, for instance, one of the contravariant
coordinates gab can be replaced by g. These coordinates have convenient scaling
properties that will be exploited in Sect. 2.4.

Rescaled contravariant coordinates. Another coordinate system that we in-
troduce on V r ⊆ JrBM , the rescaled contravariant coordinates, is a suit-
able rescaling of the previous one. Namely, we introduce various factors of gα

in the latter coordinates (n being the dimension of M):

(xa, g, g−
1
n gab, g

1
n
+ 1

n
|A|gab,A, g

s
2n+ 1

n
|A|zA), (6)
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where one of the n(n+1)/2 functions g−
1
n gab is omitted and replaced by g. This

is because the functions g−
1
n gab are not functionally independent because of the

relation | det g− 1
n gab| = 1.

Curvature coordinates. Recall also that, given a Lorentzian metric g, we
can always define the corresponding covariant derivative, or Levi-Civita connec-
tion, ∇ and the Riemann tensor R. Using well known formulas, we can define
functions Γabc and R̄abcd on V r ⊆ JrBM that correspond to the coordinate
components of the Christoffel symbols and the fully covariant Riemann tensor.
Define also the fully contravariant tensor S with components

S̄abcd = gaa
′

gbb
′

R̄a′
(c
b′
d) = gab,cd − gb(c,d)a − ga(d,c)b + gcd,ab + l.o.t, (7)

where l.o.t stands for terms that involve only coordinates of lower derivative
order. Finally, let Γabc,A denote the components of the coordinate ∂A deriva-

tives of Γabc, let S̄
abcd,A denote the components of the symmetrized contravari-

ant ∇A = ∇(a1 · · · ∇al) derivatives of S, and let z̄A the components of the
symmetrized contravariant ∇A derivatives of the scalar field ξ. It is well-
known [15, 2]2 that

(xa, gab,Γ
a
(bc,A), S̄

ab(cd,A), z̄A) (8)

also defines a coordinate system on V r ⊆ JrBM , which we shall call cur-
vature coordinates. Note that the barred coordinate functions correspond
to components of fully contravariant tensors. These coordinate have conve-
nient transformation properties under diffeomorphisms that will be exploited in
Sect. 2.5.

Rescaled curvature coordinates. The final coordinate system that we intro-
duce on V r ⊆ JrBM , the rescaled curvature coordinates, merges some
of the properties of the systems (xa, g−

1
n gab, g

1
n
+ 1

n
|A|gab,A, g

s
2n+ 1

n
|A|zA) and

(xa, gab,Γ
a
(bc,A), S̄

ab(cd,A), z̄A). Namely, we again introduce various factors of g
in the curvature coordinates:

(xa, g, g−
1
n gab,Γ

a
(bc,A), g

3
n
+ 1

n
|A|S̄ab(cd,A), g

s
2n+ 1

n
|A|z̄A), (9)

where, again, one of the n(n + 1)/2 functions g−
1
n gab is omitted and replaced

by g.

2.3 Locality and the Peetre–Slovák theorem

It is well known that linear differential operators have the property that they
are support non-increasing. The powerful, original result of Peetre [19, 20]
shows that this property is sufficient to characterize them in the context of
C∞ differential geometry. A similar characterization holds even for non-linear
differential operators [23, 16, 17], a version of which we present below.

Before proceeding, we need a robust geometric notion of what a differential
operator is. Often, differential operators are defined by their expressions in
coordinate charts. Any such definition is necessarily coordinate dependent and
must be checked to agree on chart overlaps. On the other hand, we can give a

2On page 490 of [2], the unpublished report [1] is used as the main reference for the
properties of these coordinates. In [26] it is explained further that their origin goes back to
at least [21] and even earlier to [24].
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coordinate independent and global definition of differential operators using jets
and the r-jet extension map jr defined earlier in Sect. 2.2.

Given a smooth bundle E → N , recall that the r-jet extension acts as a map
jr : Γ(E → N) → Γ(JrE → N), where as usual Γ(G→ L) denotes the space of
smooth sections of the bundle G→ L. For our purposes, the map jr will serve
as a universal differential operator of order r in the following sense.

Definition 2.1. Let E → N and F → M be smooth bundles, and consider a
map D : Γ(E) → Γ(F ).

(a) D is a differential operator of globally bounded order if there exists
an integer r ≥ 0, the order, and a smooth function d : Jr(E → N) →
F , considered as a bundle map (i.e., fiber preserving), such that for any
section ψ ∈ Γ(E) we have an associated section of the form D[ψ] = d ◦
jrψ ∈ Γ(F ).

(b) D is a differential operator of locally bounded order if it satisfies
a similar condition locally. Namely, for any point of y ∈ N and section
φ ∈ Γ(E), there exists a neighborhood U ⊆ N of y with compact closure,
together with an integer r ≥ 0, an open neighborhood V r ⊆ Jr(E → N) of
jrφ(U) projecting onto U , and a smooth function d : V r → F that respects
the projections V r → U and F →M , such that D[ψ](x) = d ◦ jrψ(x) for
any x ∈ U and any ψ ∈ Γ(E) with jrψ(U) ⊂ V r.

If E → M and F → M are vector bundles over the same base manifold
M and D : Γ(E) → Γ(F ) is a linear map such that φ(x) = D[ψ](x) depends
only on the germ of ψ at x ∈ M then it is clear that D will be support non-
increasing. Elementary reasoning shows that a linear, support non-increasing
map will also only depend on germs. So, another way to rephrase the Peetre
theorem for linear differential operators is as follows, where the dependence on
the germ replaces the support non-increasing property.

Proposition 2.1 (Linear Peetre’s Theorem [19, 20]). Let E →M and F →M
be vector bundles and D : Γ(E) → Γ(F ) a linear map such that φ(x) = D[ψ](x)
depends only on the germ of ψ at x ∈ M . Then D is a linear differential
operator of locally bounded order (with smooth coefficients in view of the above
definition).

In other words, despite the fact that germs potentially contain much more in-
formation that jets, such a linear map that depends only on germs in fact sees
only jets.

Phrased as above, in terms of germs, the hypotheses of Peetre’s theorem
are immediately adaptable to the case when the map D is non-linear and acts
on sections of (non-vector) smooth bundles. We will only require an additional
regularity3 hypothesis.

Definition 2.2. Given smooth bundles E → N and F → M , a smooth (k-
dimensional) family of sections of E → N is a smooth section of the pullback
bundle π∗E → Rk ×N (cf. Eq. (71)), where π : Rk ×N → N is the projection

3In an earlier version of the manuscript, we mistakenly omitted the regularity hypothesis
from the statement of the Peetre–Slovák theorem. We thank the anonymous referee for
bringing that to our attention.
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onto the second factor, and similarly for families of sections F → M . A map
D : Γ(E → N) → Γ(F → M) is regular if it maps smooth families of sections
to smooth families of sections. A smooth family σ : Rk ×N → π∗E is called a
compactly supported variation if there exists a compact subset O ⊂ N such
that σ is constant along the Rk factor on the complement Rk×N \π−1(O). The
map D is weakly regular if it maps smooth compactly supported variations
to smooth compactly supported variations.

Proposition 2.2 (Peetre–Slovák’s Theorem). Let E → M and F → M be
smooth bundles and D : Γ(E) → Γ(F ) a map such that φ(x) = D[ψ](x) depends
only on the germ of ψ at x ∈ M . If in addition D is weakly regular, then it is
a (non-linear) differential operator of locally bounded order.

This proposition will be sufficient for our purposes. However, in the standard
literature [23], [16, § 19], this result is stated in much greater generality. In fact,
that level of generality can obscure the meaning and significance of the theorem.
Though, it should be noted that a simplified statement of the theorem, essen-
tially identical to the one above, together with a straight-forward self-contained
proof recently appeared in [17]. Note that these standard references usually
require regularity instead of weak regularity, but a slight modification of the
proof given in [17] makes it clear that only weak regularity is necessary. This
point is discussed in Appendix A. Also in Appendix A, we briefly introduce the
language needed to state a more general version, Proposition A.1. The above
simpler version becomes a special case of Proposition A.1 once it is trivially
checked that D is id-local, where id : M ∼= M is the identity map. The more
general result given in Appendix A serves two purposes. The first is that it
introduces the language in which the Peetre–Slovák theorem and its proof ap-
pear in the standard literature [16, §19], which also refers to it as the non-linear
Peetre theorem. Second, it allows the treatment of differential operators with
parameters. For instance, later in Sect. 3, we treat the mass m2 of a scalar field
and its coupling to curvature ξ as space-time dependent background fields. If
they were treated as necessarily spacetime-constant parameters, we would need
to substitute Proposition A.1 for the simpler Proposition 2.2 in the proof of our
main Theorem 3.1.

2.4 Physical scaling

Referring to the already introduced bundle BM →M , sections (g, ξ) ∈ Γ(BM)
consist of a smooth Lorentzian metric g and a smooth scalar field ξ on M . We
consider the following scaling transformation (g, ξ) 7→ (λ−2g, λsξ) on sections.
We call this transformation a physical scaling, in contrast to a different kind
of scaling to be introduced in Sect. 2.5. We will need the following rather general
recursive definition, where R+ := (0,+∞),

Definition 2.3. Consider a linear representation of the multiplicative group
R+ on a vector space W , written as W ∋ F 7→ Fλ ∈ W , for every λ ∈ R+.

(a) An element F ∈ W is said to have homogeneous degree k ∈ R if

Fλ = λkF for all λ ∈ R
+ . (10)
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(b) An element F ∈ W is said to have almost homogeneous degree k ∈ R

and order l ∈ N if l ≥ 0 is an integer such that (the sum over j is omitted
if l = 0)

Fλ = λkF + λk
l
∑

j=1

(logj λ)Gj , for all λ ∈ R
+, (11)

and for some Gj ∈ W depending on F , which have respectively almost
homogeneous degree k and order l − j.

The definition is recursive, with higher orders defined in terms of lower ones.
Clearly, an element that is almost homogeneous of order l = 0 is simply homo-
geneous.

Remark 2.1. Besides almost homogeneous, other common names found in the
literature include poly-homogeneous, associated homogeneous and even quasi
associated homogeneous. We are mostly interested in the case when W is some
function space and the action of R+ is induced from an action on the domain of
the functions. Reference [22] reviews several definitions leading to this class of
functions and lists relevant earlier works. In the context of distribution theory,
the terminology of associated homogeneous is prevalent and goes back to the
seminal references [10, § 1.4] and [11, Ch.I §4]. Our Definition 2.3 coincides
with [22, Def. 5.2].

The physical scaling transformation on the sections Γ(BM) can be im-
plemented by post-composing a section with a bundle map BM → BM :

BM ∋ (p,g(p), z(p)) 7→ (p, λ−2g(p), λsz(p)) ∈ BM , (12)

where the real λ ∈ R+ defines the scaling transformation. This representation
of the multiplicative group R+ is globally defined, however this global action
can be written in adapted local coordinates, as discussed in Sect. 2.2, and looks
like

xa 7→ xa, gab 7→ λ−2gab, z 7→ λsz. (13)

This global transformation lifts to a global transformation of the jet bundle
JrBM . In the corresponding induced local coordinates, the lifted action reads

gab,A 7→ λ−2gab,A, zA 7→ λszA. (14)

We are interested in applying Definition 2.3 to W = C∞(JrBM) and the R+

action induced by the lift of physical scalings to JrBM . Moreover, we will
need to consider also smaller domains V r ⊆ JrBM for these functions, with V r

themselves not invariant under physical scalings. Thus, it is more convenient to
refer to the infinitesimal version of these transformations, which are effected by
the following vector field

e = −2gab,A∂
ab,A + szA∂

A
z , (15)

in the sense that the induced action on scalar functions on JrBM satisfies

d

dλ

∣

∣

∣

∣

λ=1

Fλ = LeF. (16)

(In the rest of the paper ifX is a vector field on JrBM , LX denotes the standard
Lie derivative so that, in particular LX(F ) := X(F ) if F : V r ⊆ JrBM → R
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is a smooth function.) Notice that, as the physical scaling transformation is
globally defined, e turns out to be globally defined on JrBM and (15) is just
its expression in local coordinates. We have a first elementary result stated
within the following lemma. We will essentially show later that the converse
implication holds as well.

Lemma 2.3. A smooth function F : JrBM → R that has almost homogeneous
degree k and order l, according to Definition 2.3, when the action F → Fλ is
the one induced by physical scaling transformations, satisfies the following local
infinitesimal version

(Le − k)l+1F = 0 . (17)

Proof. It is sufficient to make use of equation (16) and recall the obvious identity
(λd/dλ − k)l+1λk logl λ = 0.

This lemma is essentially a restatement of Theorem 5.2 and Remark 5.1
from [22]. It now permits us to give a definition of almost homogeneity under
infinitesimal scaling for functions defined on subsets of jets of dimensionful bun-
dles. The advantage of using infinitesimal scaling is that the domain on which
it is defined need not actually be invariant under finite scaling.

Definition 2.4. A smooth function F : V r ⊆ JrBM → R, where V r is an
open subset which may coincide with all of JrBM , is said to have almost
homogeneous degree k ∈ R and order l ∈ N (with l ≥ 0) under physical
scalings if it satisfies the identity

(Le − k)l+1F = 0. (18)

If l = 0, F is said to have homogeneous degree k ∈ R.

To investigate the local structure of F above we initially use an open subset
V r equipped with the contravariant coordinates (xa, gab,A, zA) introduced in
Sect. 2.2. In these coordinates, finite and infinitesimal physical scalings take
the form

xa 7→ xa, g 7→ λ−2ng, gab,A 7→ λ2+2|A|gab,A, zA 7→ λs+2|A|zA, (19)

e = (2 + 2|A|)gab,A∂ab,A + (s+ 2|A|)zA∂zA , (20)

where we have also described the action of rescaling on g which, as already
remarked, can be used as an alternative coordinate in place of one of the gab.
As e does not vanish anywhere, JrBM and hence the domain V r are foliated
by integral curves of the vector field e. Moreover, the identity Leg−

1
2n = g−

1
2n

means that g restricts to a global coordinate on each orbit of e. Thus, the level
sets of g constitute another foliation of JrBM and V r, transverse to the inte-
gral curves of e. These observations suggest to study the structure of (almost)
homogeneous functions of degree k in the rescaled contravariant coordinates

(xa, g, g−
1
n gab, g

1
n
+ 1

n
|A|gab,A, g

s
2n+ 1

n
|A|zA), (21)

that were introduced in Sect. 2.2. Note that each of these functions but g is
invariant under physical scalings. We have the following result.
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Lemma 2.4. Suppose that V r ⊆ JrBM is an open set equipped with either co-
ordinates (xa, gab,A, zA) or some other coordinate system introduced in Sect. 2.2,
and F : V r → R is a smooth function that has almost homogeneous degree k and
order l with respect to physical scalings, as in Definition 2.4. Then there exist
homogeneous of degree 0 functions Hj : V

r → R, for j = 0, 1, . . . , l, such that

F = g−
k
2n

l
∑

j=0

logj(g−
1
2n )Hj . (22)

In particular, using rescaled contravariant coordinates, each Hj can be taken
independent of g and written in the form

Hj = Hj(x
a, g−

1
n gab, g

1
n
+ 1

n
|A|gab,A, g

s
2n+ 1

n
|A|zA). (23)

Proof. In the simplest l = 0 case, we can define H = g
k
2nF and show that

LeH = 0 because Leg−
1
2n = g−

1
2n . This means that, in rescaled contravariant

coordinates, H is independent of g and hence (23) holds, with H in place of

Hj . Next, the general l ≥ 1 case can be treated as follows. Let G := g
k
2nF ,

which implies that Ll+1
e G = g

k
2n (Le − k)l+1F = 0. Now, note the identity

Lje logj(g−
1
2n ) = j!. So, if Hl :=

1
l!LleG and Gl−1 := G − logl(g−

1
2n )Hl, then

LeHl = 0 and LleGl−1 = 0. In other words, starting with Gl = G, we can

recursively define Hj := 1
j! log

j(g−
1
2n )LjeGj and Gj−1 := Gj − logj(g−

1
2n )Hj ,

finding LeHj = 0 at each step. The procedure stops for j = 0 when it gives
G0 = H0, so that Gj<0 = Hj<0 = 0, proving (22).

We will also need the following basic result regarding products of vectors
with almost homogeneous degree as in Definition 2.3. Due to the generality of
Definition 2.3 we must clarify the meaning of product. If W and W ′ are two
vector spaces, by a product between them, we mean any fixed bilinear map
W ×W ′ → V , where V is another vector space. If F ∈ W and F ′ ∈ W ′ the
corresponding element in V , their product, will be simply denoted by FF ′ ∈ V .

Lemma 2.5. Referring to Definition 2.3, consider a pair of vector spaces W,W ′

endowed with corresponding representations of R+. Concerning (b) below, as-
sume also that there is a product W ×W ′ → V such that (i) V admits a repre-
sentation of R+ and (ii) the map W ×W ′ → V is equivariant: FλF

′
λ = (FF ′)λ

for F ∈W , F ′ ∈ W ′ and λ ∈ R+.

(a) A linear combination of two elements F, F ′ ∈ W of almost homogeneous
degree k and order l is of almost homogeneous degree k and order l.

(b) A product of an element F ∈ W , of almost homogeneous degree k and
order l, and an element F ′ ∈ W ′, of almost homogeneous degree k′ and
order l′, has almost homogeneous degree k + k′ and order l + l′.

Proof. Part (a) is trivial, because the defining identity 11 is linear.
We will prove part (b) by double induction on the pair of orders (l, l′).
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Consider the identity

(FF ′)λ = FλF
′
λ = λk+k

′

FF ′

+ λk+k
′

l
∑

j=1

(logj λ)GjF
′ + λk+k

′
l′
∑

j′=1

(logj
′

λ)FG′
j′

+ λk+k
′

l
∑

j=1

l′
∑

j′=1

(logj+j
′

λ)GjG
′
j′ . (24)

From this formula, it is clear that, to show that FF ′ has almost homogeneous
degree k + k′ and order l + l′, it is sufficient to establish that the coefficients
of the logarithmic terms, GjF

′, FG′
j′ and GjG

′
j′ , either do not appear or are

themselves almost homogeneous of the right degree and order. Thus, to establish
the case (l, l′), it is sufficient to have all of the (j, l′), (l, j′) and (j, j′) cases, with
j < l and j′ < l′, already established. We shall refer to this last remark as the
primary inductive step.

The case (l, l′) = (0, 0) follows immediately from Eq. (24), since no log-
arithmic terms appear. Next, we establish the following secondary inductive
step. Assuming that, given some m ≥ 0, all cases (l, l′) with l, l′ ≤ m hold,
then actually all cases (l, l′) with l, l′ ≤ m + 1 hold as well. To see that, note
that the case (m+ 1, 0) holds, because in (24) we need only consider the terms
GjF

′, which correspond to the inductively covered cases (m + 1 − j, 0) with
j ≥ 1. Then, using the primary inductive step, all the cases (m + 1, l′) with
1 ≤ l′ ≤ m follow as well. The cases (l,m+ 1) with 0 ≤ l ≤ m, are completely
analogous. Finally, one more appeal to the primary inductive step establishes
the case (m+ 1,m+ 1).

Iterating the secondary inductive step completes the proof of part (b).

2.5 Diffeomorphisms and coordinate scalings

Because the sections (g, ξ) ∈ Γ(BM) are tensor fields, there is a well defined
action of the group Diff(M) of diffeomorphisms χ : M → M on them by pull-
back (g, ξ) 7→ (χ∗g, χ∗ξ). This action of course can be implemented at the
level of the bundle itself, χ∗ : BM → BM and of course lifted to the jet
bundle jrχ∗ : JrBM → JrBM . We are interested in the structure of func-
tions F : JrBM → R that are invariant under the action of Diff(M). We
could also consider invariance only under the subgroup Diff+(M) of orienta-
tion preserving diffeomorphisms in an essentially analogous way. For this pur-
pose, it is convenient to make use of the local adapted curvature coordinates
(xa, gab,Γ

a
(bc,A), S̄

ab(cd,A), z̄A) on a domain V r ⊆ JrBM defined in Sect. 2.2.

The domain V r itself may not be invariant under Diff(M), because our
coordinates are adapted to a single coordinate chart (xa) on U ⊆ M . On the
other hand, having already chosen our coordinate system, we can phrase the
requirement that F : V r → R is the restriction of a Diff(M)-invariant function
(necessarily defined on a possibly larger Diff(M)-invariant domain) to V r in the
following way: (a) ∂

∂xaF = 0, where the vector fields ∂
∂xa are the infinitesimal

generators of diffeomorphisms that restrict to coordinate translations on U , and
(b) the restriction Fx : V

r
x ⊆ JrxBM → R of F to the fiber of JrBM over any

one point x ∈ M is invariant under the action of the subgroup Diff(M,x) ⊂
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Diff(M) that fixes x. Clearly we can take V rx to be invariant under Diff(M,x).
An immediate simplification based on requirement (a) is that our function is
expressible as F = Fx(gab,Γ

a
(bc,A), S̄

ab(cd,A), z̄A), that is, it is independent of the

base coordinates (xa). Next, we examine the consequences of requirement (b).
The action of Diff(M,x) on r-jets is not faithful. In fact, it has a large

kernel, so that the action on JrxBM factors through the homomorphic projection
Diff(M,x) → Grn, where G

r
n is a finite-dimensional Lie group known as the r-jet

group [16, § 13]. Thus, we need only consider the invariance of Fx under Grn.
The r-jet groups come with natural projections Grn → Gr−1

n , corresponding to
the equivariant projection JrxBM → Jr−1

x BM , and it is easily seen that G1
n
∼=

GL(n). Analogously, for orientation preserving diffeomorphisms, we denote the
corresponding projections as Diff+(M) → G+r

n → GL+(n).
The curvature coordinates (gab,Γ

a
(bc,A), S̄

ab(cd,A), z̄A) are used specifically for
their transformation properties under Grn. Note that, without loss of generality
but after a possible small restriction of V rx , we can factor V rx

∼= Rγ×W r, where
the projection onto the Rγ factor is effected by the (Γa(bc,A)) coordinates and the
projection onto the W r factor is effected by the remaining coordinates. This
factorization respects the action of Grn in the sense that the projection V rx →
W r induces a well-defined action of Grn and W r. The action on W r actually
factors through the projection Grn → G1

n
∼= GL(n), since it is coordinatized by

components of tensors. Moreover, for any w ∈ W r, the isotropy subgroup of
w in Grn acts transitively on the fiber Rγ over w. In the orientation preserving
case, the same is true of the corresponding actions of G+r

n and GL+(n). The fact
that Grn (and also G+r

n ) acts transitively on the Rγ fibers that are coordinatized
by the derivatives of the Christoffel symbols (Γa(bc,A)) means that an invariant
function Fx cannot depend on these coordinates, which is a well-known result
that is sometimes known as the Thomas replacement theorem [15, 2]. Let us
rephrase it slightly below.

The above factorization V r ∼= Rγ ×W r is also compatible with the rescaled
curvature coordinates

(xa, g, g−
1
n gab,Γ

a
(bc,A), g

3
n
+ 1

n
|A|S̄ab(cd,A), g

s
2n+ 1

n
|A|z̄A), (25)

that were introduced in Sect. 2.2. Recall that in our notation the functions
(g−

1
n gab) are functionally independent only up to the identity | det(g− 1

n gab)| =
1. The main distinction is that these coordinates, other than (xa,Γa(bc,A)), are
no longer components of tensors, but rather of tensor densities, which also
transform under GL(n) (cf. Sect. 2.6). Using these coordinates, together with
the preceding discussion, we can simplify a Diff(M)-invariant F as follows:

Proposition 2.6 (Thomas replacement theorem). Let F : V ′r
x ⊆ JrBM → R

be a Diff(M)-invariant function defined on a Diff(M)-invariant domain. In the
coordinate system (25) defined on the domain V r ⊆ V ′r, the restriction of F to
V r must be expressible as

F = G(g, g−
1
n gab, g

3
n
+ 1

n
|A|S̄ab(cd,A), g

s
2n+ 1

n
|A|z̄A), (26)

where the function G is invariant under the action of GL(n) on its arguments.

At this point, we have reduced the invariance of F under Diff(M) to the
invariance of the function G, from Proposition 2.6, underGL(n) (obtained as the
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projection Diff(M,x) → GL(n)), which follows from the preceding discussion.
Analogous statements hold for Diff+(M), Diff+(M,x) and GL+(n). We now
single out a specific subgroup of GL+(n) (and hence also of GL(n)) that we shall
call the group of coordinate scalings. It consists of matrices of the form µIn ∈
GL(n), where µ is a positive real number and In is the n×n identity matrix. The
name refers to the fact that µIn is the image of a diffeomorphism that restricts to
a uniform scaling of the coordinates (xa) centered at x ∈ U ⊆M , with of course
many other possible pre-images, under the projection Diff+(M) → GL+(n).
These transformations should be contrasted with the distinct group of physical
scalings introduced in Sect. 2.4.

Coordinate scalings act on the components of tensor densities appearing in
the coordinate system (25) as follows:

g 7→ µ2ng, g
3
n
+ 1

n
|A|S̄ab(cd,A) 7→ µ2+|A|g

3
n
+ 1

n
|A|S̄ab(cd,A), (27)

g−
1
n gab 7→ g−

1
n gab, g

s
2n+ 1

n
|A|z̄A 7→ µs+|A|g

s
2n+ 1

n
|A|z̄A. (28)

We stress a fundamental difference between coordinate scalings and the pre-
viously introduced physical scalings : coordinate scalings are induced from the
action of the diffeomorphism group, while the physical ones are not.

2.6 Equivariant and isotropic tensors

In this section, we present some basic facts about equivariant maps between
spaces that carry certain representations of GL(n).

In particular, consider the space Bn of bilinear forms on Rn, and the natural
linear action of GL(n) thereon. The subset Ln ⊂ Bn of non-degenerate bilinear
forms of Lorentzian signature (−+· · ·+) is invariant and hence inherits an action
of GL(n) itself. If η ∈ Ln is the canonical Lorentzian form, defined by the
matrix diag(−1, 1, . . . , 1) referring to the canonical basis of Rn, the subgroup
O(1, n−1) ⊂ GL(n) is defined as the isotropy group of η. We could also restrict
the action on Ln to the subgroup GL+(n) ⊂ GL(n) of orientation preserving
transformations. With this choice, the isotropy group of η turns out to be
SO(1, n− 1) = O(1, n− 1) ∩GL+(n).

Remark 2.2. Ln consists of a single orbit and is in fact isomorphic to the ho-
mogeneous space GL(n)/O(1, n − 1). Similarly, Ln is also isomorphic to the
homogeneous space GL+(n)/SO(1, n − 1). The fact that the action of GL(n)
(resp. GL+(n)) is transitive on Ln implies, as a general well-known fact, that
the isotropy group of any g ∈ Ln is isomorphic to O(1, n−1) (resp. SO(1, n−1)).

Definition 2.5. LetMp
n be the space of p-multilinear forms on Rn and consider

the natural linear action of GL(n) thereon. Let T be a finite-dimensional real
vector space carrying a representation of GL(n).

(a) T is a (covariant) tensor representation if it is the restriction of the
action of GL(n) on Mp

n with respect to some linear embedding T →֒ Mp
n

as an invariant subspace. We call p the tensor rank of T .

(b) T a (covariant) tensor density representation if T is as in (a) but
the action of GL(n) ∋ u 7→ ρ(u) on T is given by a tensor representation
up to a multiplication by |detu|s, where s is the tensor weight of T .
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Of course, we obtain similar definitions by substituting GL+(n) for GL(n),
and also O(1, n− 1) or SO(1, n− 1), when a particular Lorentzian bilinear form
g is fixed. Of course, in the case of O(1, n − 1) and SO(1, n − 1), there is no
distinction between tensor and tensor density representations.

Finally, it is useful to consider the one point space ∗ ∼= R0 with the trivial
action of GL(n) or any of its subgroups thereon.

Definition 2.6. Let X and Y be spaces carrying respective actions ρ(X) and
ρ(Y ) of the group G. A map f : X → Y is said to be equivariant if it commutes
with the action of G:

f ◦ ρ(X)
u = ρ(Y )

u ◦ f for every u ∈ G . (29)

Consider the special case where X := ∗, Y := T as in (a) in Definition 2.5,
and G := O(1, n − 1). The image of an equivariant map ∗ → T is called an
O(1, n − 1)-isotropic tensor. The space of O(1, n − 1)-isotropic tensors in T
will be denoted by IT .

An SO(1, n− 1)-isotropic tensor is defined similarly, replacing O(1, n− 1)
by SO(1, n − 1) everywhere. The space of SO(1, n − 1)-isotropic tensors in T
will be denoted by ĨT .

Remark 2.3.

(1) The embedding T →֒ Mp
n is an evident example of equivariant map for

GL(n) (and every subgroup) by definition.

(2) As f : ∗ → T is completely defined by its image f(∗) = t ∈ T the definition
states that a tensor t ∈ T is isotropic if it is invariant under the relevant
action of O(1, n− 1) (or SO(1, n− 1)) on T .

(3) The space of isotropic tensors for different Lorentzian bilinear forms are
clearly isomorphic.

It is well known that the subspaces of isotropic tensors IT ⊂ T and ĨT ⊂ T
can be fully characterized as in the proposition below. In the following, ǫ ∈Mn

n

denotes the canonical Levi-Civita tensor, that is, the fully anti-symmetric
form uniquely fixed by the value of its component ǫ1···n = 1, with respect to the
canonical basis of Rn. Also, Ipn ⊂ Mp

n will denote the subspace spanned by all
possible tensor products of the canonical Lorentzian form η ∈ Ln that create a
p-multilinear form. More precisely, Ipn is spanned by elements of the form

(ησ)i1i2···ip−1ip = ησ(i1)σ(i2) · · · ησ(ip−1)σ(ip), (30)

where σ ∈ Sp is any permutation. Similarly, Ĩpn ⊂ Mp
n denotes the subspace

spanned by all possible tensor products of η and ǫ that create a p-multilinear
form.

Proposition 2.7. Given a real vector space T carrying a tensor representation
of GL(n) and identifying T with its image with respect to the embedding α :
T →֒Mp

n, the following facts hold.
(a) The subspace IT ⊂ T is given by IT ∼= α(T ) ∩ Ipn.
(b) The subspace ĨT ⊂ T is given by ĨT ∼= α(T ) ∩ Ĩpn.
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An elementary proof of such a characterization of O(n)- and SO(n)-isotropic
tensors can be found in [3], which generalizes straightforwardly to O(1, n − 1)
and SO(1, n−1). More generally, this kind of result is sometimes known as first
fundamental theorem of invariant theory [27, 12] for the corresponding group.

Definition 2.7. Given a real vector space T with a tensor density representa-
tion of GL(n) (resp. GL+(n)) and the natural representation on Ln, we will refer
to an equivariant map t : Ln → T as a GL(n)-equivariant tensor density,
and similarly for GL+(n)-equivariant tensor densities.

The space of GL(n)-equivariant tensor densities will be denoted by ET and
the space of GL+(n)-equivariant tensor densities will be denoted by ẼT .
Remark 2.4. Even if the functions belonging to ET and ẼT are not required to
be linear, these spaces enjoy a natural structure of real vector space, just in view
of the fact that the equivariant tensor densities are maps with values in the real
vector space T .

The following lemma characterizes the space of equivariant tensor densities
(in the sense of equivariant maps) in terms of isotropic tensors (in the sense of
the subspaces IT ⊆ T (resp. ĨT ⊆ T ) defined earlier).

Lemma 2.8. Let T be a finite-dimensional real vector space carrying a tensor
density representation of GL(n), resp. GL+(n), and assume that Ln is equipped
with the natural representation.

(a) The space of GL(n)-equivariant, resp. GL+(n)-equivariant, tensor den-
sities is isomorphic the subspace of O(1, n−1)-isotropic tensors, resp. SO(1, n−
1)-isotropic tensors, in T . More precisely, the isomorphism is defined by

ET ∋ t 7→ t(η) ∈ IT (resp. ẼT ∋ t 7→ t(η) ∈ ĨT ). (31)

(b) For a given t ∈ ET , we have

t(g) = |det g|s P (g) for all g ∈ Ln , (32)

where P (g) is a homogeneous T valued polynomial in the components of g (with
respect to the canonical basis of Rn), and s is some real number fixed by weight
of the tensor density representation of GL(n).

(c) For a given t ∈ ẼT , we have

t(g) = |det g|s P (g, ε(g)) for all g ∈ Ln , (33)

where P (g, ε(g)) is a homogeneous T valued polynomial in the components of g
and the components4 of ε(g) :=

√
det g ǫ (with respect to the canonical basis of

Rn in both cases), and s is some real number fixed by the weight of the tensor
density representation of GL+(n).

Remark 2.5. Since, in view of this Lemma, an equivariant tensor density t(g) is
a homogeneous function, say of degree k, of g up to a power of |deg g|, it could
always be rewritten as

t(g) = |det g|
k
n t(|det g|−

1
n g). (34)

This observation will be later useful in the proof of Theorem 3.1.

4The homogeneous degree of P (g, ε(g)) counts the components of g with degree 2 and the
components of ε(g) with degree n.
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Proof. We deal with the GL(n)-equivariant case, the GL+(n)-equivariant case
being completely analogous. The action of GL(n) on both Ln and T is linear,
so we denote it as u · x, for u ∈ GL(n) and x in either Ln or T .

The first crucial observation, as Ln consists of a single orbit of GL(n), is
that equivariance allows us to fully fix t : Ln → T provided that we know its
value on η ∈ Ln, by the formula

t(g) = t(ug · η) = ug · t(η), (35)

for any g ∈ Ln and ug ∈ GL(n) such that g = ug · η. The second crucial
observation is that, to make sure that the values of t are assigned consistently,
t(η) must be invariant under the isotropy subgroup of η, namely O(1, n− 1). In
other words, t(η) must belong to IT , with respect to the induced representation
of O(1, n − 1) on T . The formula (35) clearly defines mutually inverse maps
ET → IT and IT → ET , thus establishing the isomorphism ET ∼= IT claimed in
part (a).

Let us now prove part (b). Fix an (equivariant) embedding α : T → Mp
n.

Since t(η) is an element of IT , from the characterization of isotropic tensors in
Proposition 2.7, it must be of the form

t(η) = α−1





∑

σ∈Sp

cσησ



 , (36)

where cσ are some scalar coefficients. Then for any g ∈ Ln and a corresponding
ug ∈ GL(n) such that g = ug · η,

t(g) = ug · t(η) = α−1



|detug|r
∑

σ∈Sp

cσ(ug · ησ)





= |det g|r/2 α−1





∑

σ∈Sp

cσgσ



 , (37)

where r is the density weight of the representation T and where we have used
the notation

gσ = gσ(i1)σ(i2) · · · gσ(ip−1)σ(ip) (38)

for the corresponding monomial on Ln in terms of the components of g with
respect to the canonical basis on Rn. Clearly, the above formula can be rewritten
as t(g) = |det g|s P (g), with s := r/2. We observe that, from (37), that P is
an homogeneous polynomial (of degree p/2) in the components of the metric,
completing the proof of part (b).

The proof of (c) is strictly analogous, taking into account the identity ug ·ǫ =
ε(g), for any ug ∈ GL+(n) such that, ug · η = g.

3 Characterization of Finite Renormalizations

of Wick Polynomials

We generalize the discussion of local covariant fields from [13], where only metric
dependence was allowed, to a more general context where other background
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fields are allowed in addition to the metric g on a spacetime M . In order to
simplify the presentation, we will restrict the extra background fields to two
scalar functions m2 and ξ, which appear in the description of a scalar quantum
field.

Generally speaking, background fields are described by sections h of suitable
bundles HM → M over the manifolds M we consider. Covariance requires us
to deal with all such bundles simultaneously and coherently. In other words we
deal with an assignment of a bundle HM → M to every manifoldM and require
that any embedding χ : M →M ′ must give rise to a corresponding well-defined
pullback map χ∗ : Γ(HM ′) → Γ(HM). This picture can be phrased properly
with the language of category theory by means of the notion of natural bundle.
Before giving the definition, we would like to require a bit more geometric struc-
ture from the bundles of background fields that interest us. A bundle F →M is
dimensionful if there it has an action R+×F → F of the multiplicative group
R+ of positive real numbers, called (physical) scaling, which acts by a diffeo-
morphisms that fix each fiber of F → M . Any vector bundle is automatically
dimensionful, by virtue of having a well-defined multiplication by scalars on its
fibers, although we will not always use this particular scaling action. To avoid
confusion, we should mention that a dimensionless bundle would be a special
kind of dimensionful bundle, where scaling transformations act trivially.

A natural (dimensionful) bundle is a functor H : Man → Bndl from the
category of smooth manifolds (where objects are connected, have fixed dimen-
sion n and morphisms are embeddings, which are necessarily local diffeomor-
phism) to the category of dimensionful smooth bundles (where morphisms are
bundle maps, i.e., fiber preserving, equivariant with respect to scaling), such
that a morphism χ : M → M ′ induces a morphism Hχ : HM → HM ′ that is
itself a local diffeomorphism. The required pullback χ∗ : Γ(HM ′) → Γ(HM) is
then implicitly defined by h′ ◦χ = Hχ◦ (χ∗h′), when h′ ∈ Γ(HM ′). The equiv-
ariance of the morphism Hχ ensures that scaling commutes with the pullback,
χ∗(h′

λ) = (χ∗h′)λ, for λ ∈ R
+.

One elementary example of a natural bundle is the functor M 7→ R ×M ,
the trivial scalar bundle, whose sections we call scalar fields, with scaling being
simple multiplication. Another relevant example is M 7→ S̊2T ∗M , the bundle
of Lorentzian metrics; we will denote a section of S̊2T ∗M → M by g. Other
examples are are M 7→ T ∗M and M 7→ Λ2M , the cotangent bundle and the
bundle of 2-forms, whose sections could be interpreted as background electro-
magnetic fields, in the vector potential or field strength forms. All of these
bundles are dimensionful, by virtue of being vector bundles, with the exception
of S̊2T ∗M , which inherits a scaling action from being considered as a scaling
invariant sub-bundle of the vector bundle S2T ∗M .

Remark 3.1. In the rest of the paper, focussing on the theory of a real quantum
scalar field, ϕ, we make a more precise choice of the natural functor H . We
suppose that the manifolds of the category Man are connected, n-dimensional
(for a fixed n ≥ 2), and the functor H assigns M 7→ HM = S̊2T ∗M × R × R,
with a morphism χ : M →M ′ inducing the standard tensor push-forwardHχ =
χ∗ : HM → HM ′. Then, the sections M → HM are triples h = (g,m2, ξ),
scaling as (g,m2, ξ) 7→ (λ−2g, λ2m2, ξ), always consisting of:

(a) a Lorentzian metric, g, making (M,g) a (smooth) Lorentzian spacetime
of fixed dimension n ≥ 2,
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(b) the pair of real scalar fieldsm2 and ξ overM , with the respective physical
meaning of the squared mass of the scalar field and a factor describing the
coupling with the scalar curvature.

We stress that, exactly as in [13], we assume that the parameters m2 and ξ
are actually functions on M . Quantum field theory in curved spacetime is well-
defined for both constant or variable m2 and ξ. There is of course no obstacle
in restricting them to constant functions, as we note in Remark 3.4. Moreover,
as in [13], m2 and ξ are allowed to have any real value.

Definition 3.1. Let us fix the natural bundle H : Man → Bndl as in Re-
mark 3.1. A background field is a section h : M → HM and we call the pair
(M,h) a background geometry, provided h = (g,m2, ξ) is such that (M,g)
is a time-orientable globally hyperbolic spacetime. Furthermore we define the
following categories.

(a) BkgG is the category of background geometries, having time-
oriented background geometries as objects and morphisms given by smooth
embeddings χ : M → M ′ that preserve the background fields, χ∗h = h′ on M ′,
the time orientation, and causality, meaning that every causal curve between
χ(p) and χ(q) in M ′ is the χ-image of a causal curve between p and q in M .

(b) BkgG+ is the category of oriented background geometries having
oriented and time-oriented background geometries as objects and morphisms as
in BkgG, but also required to preserve the spacetime orientation.

Since the natural bundle H is dimensionful, scaling transformations also act
on these categories by (M,h) 7→ (M,hλ), for any λ ∈ R+, which by equivari-
ance of the pullback of background fields act as functors, BkgG → BkgG and
BkgG+ → BkgG+ respectively.

To describe the algebras of observables on background geometries, we need
the notion of a net of algebras (or pre-cosheaf of algebras).

Definition 3.2. A net of algebras (of observables) is an assignment of
a complex unital ∗-algebra W(M,h) for every background geometry (M,h)
in BkgG together with an assignment of an injective unital ∗-algebra homo-
morphism ιχ : W(M,h) → W(M ′,h′) for every morphism in BkgG, respecting
compositions. In other words W : BkgG → Alg is a functor from the category of
background geometries into the category of (complex) unital ∗-algebras whose
morphisms are injective unital ∗-algebra homomorphisms. Further, we require
that W respects scaling and the time slice axiom.

(i) Scaling transformations (M,h) 7→ (M,hλ) result in ∗-algebra isomor-
phisms σλ : W(M,h) → W(M,hλ). Scaling transformations act as natu-
ral isomorphisms σλ : W → Wλ between the ∗-algebra valued functors W
and Wλ, the latter defined by Wλ(M,h) = W(M,hλ).

(ii) Given a morphism χ : (M ′,h′) → (M,h) of background geometries, if the
image χ(M ′) ⊆M contains a Cauchy surface for (M,g), then the induced
∗-homomorphism ιχ : W(M ′,h′) → W(M,h) is a ∗-isomorphism.

We refer to a functor W : BkgG+ → Alg with the same properties as a net of
algebras as well.
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The algebras of observables W(M,h) are intended to be the algebras of
Wick products, whose construction and the fact that they satisfy all the desired
properties are discussed in detail in [13, Sec. 2], cf. their Lemma 4.2 in particular,
where they define the scaling isomorphism σλ. However, we shall not touch upon
these details and rely only on the properties of the W functor as axiomatized
above and also below in the definition of Wick powers.

Having defined a net of algebras, respecting local covariance and scaling, we
are in a position to state our definition of a locally covariant (almost) homoge-
neous quantum field which somewhat extends and generalizes [13, Def. 3.2].

Definition 3.3. A locally covariant scalar quantum field Φ is an assign-
ment of an algebra-valued distribution5 Φ(M,h) : D(M) → W(M,h) to each
background geometry (M,h) that satisfies the following identity for each mor-
phism χ : (M ′,h′ = χ∗h) → (M,h):

ιχ(Φ(M,χ∗h)(f)) = Φ(M,h)(χ∗f) , for any f ∈ D(M ′). (39)

In other words, Φ is a natural transformation Φ: D → W between the functor
of test functions6 and the net of algebras of observables (thus, another name for
Φ could be a natural scalar quantum field).

The reason that a quantum field Φ, even on a fixed spacetime (M,g), is
associated with an algebra-valued distributions is the usual heuristic according
to which pointlike fields Φ(x) are too singular to be evaluated directly, while its
smearing with a test function f ∈ D(M),

Φ(f) =

∫

M

Φ(x)f(x) dg(x), (40)

where dg(x) is the volume form induced by the metric g, is a legitimate ob-
servable. Where appropriate, we will use the distributional notation Φ(x) as
well.

Note the most trivial example of a locally covariant scalar quantum field,
which we may call the unit c-number field 1, defined by the formula

1(M,h)(f) := 1

∫

M

f(x) dg(x), (41)

where 1 ∈ W(M,h) is the algebra unit. If C[h] is any function that maps a
background geometry on M to a distribution on M and satisfies the identity
χ∗C[h] = C[χ∗h] for any morphism χ : (M ′, χ∗h) → (M,h), then the product
C1 functor defined by the formula

C1(M,h)(f) = 1

∫

M

C[h](x)f(x) dg(x), (42)

is also a locally covariant scalar quantum field that we refer to as a c-number
field.

5For every Hadamard quasifree state ω over W (M,g) the map D(M) ∋ f 7→ ω(Φ(f))
is a distribution in the proper sense. A weaker requirement allowing to smear fields with
distributions of a suitable wavefront set can be given exploiting the so called Hörmander
pseudotopology [13], but it is irrelevant for this work.

6Note that D : Man → LCV is a (covariant) functor from manifolds to locally convex
topological vector spaces. It assigns the space of complex valued test functions D(M) to
a manifold M and maps a morphism χ : M → M ′ to the induced extension by zero map
χ∗ : D(M) → D(M ′).
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Remark 3.2.

(1) In [13], h is nothing but the Lorentzian metric of the spacetime and the
parameters m2 and ξ appearing in the definition of the quantum fields
generated by KG fields are considered external parameters. Here instead
we explicitly include them in h. It is very easy to prove that the concrete
locally covariant quantum fields appearing in [13] (scalar KG field and
associated Wick polynomials, time-ordered Wick polynomials and their
derivatives) satisfy our somewhat more general definition locally covariant
quantum fields.

(2) Definition 3.2 includes two distinct though related notions: locality and
covariance, both illustrated by the condition (39). Locality corresponds
to the case where χ describes the inclusion χ : M ⊂ M ′, while covariance
corresponds to an arbitrary allowed χ.

In [13, Sec. 2], the algebras W(M,h) are constructed explicitly for the case
of the quantization of a Klein–Gordon scalar field ϕ, with mass m2 and coupled
with the scalar curvature through the constant ξ, whose equation of motion is

�gϕ−m2ϕ− ξRgϕ = 0. (43)

In that context, the basic example of a locally covariant scalar field is the Klein–
Gordon field ϕ itself. Since we are not dealing with such explicit constructions,
we simply encapsulate the needed properties of ϕ in the definition below.

Definition 3.4. Given a net of algebras W on BkgG or BkgG+, a linear
quantum scalar field ϕ is a locally covariant quantum scalar field that satisfies
the following kinematic completeness property: For any (M,h), an element
a ∈ W(M,h) satisfies [a, ϕ(M,h)(f)] = 0 for every f ∈ D(M) iff a = α 1, with
α ∈ C and 1 the unit element of the algebra.

The above definition is rather minimal and, certainly, the linear KG field as
defined in [13, Sec. 2] satisfies several additional properties, but we have omitted
most of them. Below, we will define Wick powers ϕk, which will include the
linear field ϕ1 := ϕ as a special case. Within the definition to follow, we
will require further properties to hold for ϕk for each k, including k = 1, thus
imposing further axioms also on the linear field and bringing our axiomatization
closer to that of [13]. Thus, to avoid some repetition, we find it more economical
to state these axioms in a way that is uniform in k. As it is the main goal of
this work to remove it, the analyticity axiom will not appear below and the
continuity axiom will be suitably modified to compensate. On the other hand,
we will not make use of the on-shell condition, ϕ((�g − m2 − ξRg)f) = 0,
though the equations of motion appear implicitly through the time slice axiom in
Definition 3.2. We have excluded it because it plays no role in our analysis below,
since it is restricted to simple Wick powers. However, the on-shell condition will
have to be taken into account when expanding the analysis to more general Wick
and time-ordered products that involve derivatives of ϕ.

Before giving a precise axiomatic definition of Wick powers, we need to
address the technical question of how physical scalings and continuous variations
of the background geometry can be made to act on locally covariant scalar
quantum fields.
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First, we address scalings. Given a locally covariant scalar quantum field Φ,
we can define a new rescaled locally covariant scalar quantum field SλΦ by the
formula

(SλΦ)(M,h)(f) = σ−1
λ

(

Φ(M,hλ)(λ
nf)
)

, (44)

where λ ∈ R+, n = dimM , and σλ is the isomorphism realizing the action of
scalings on the net of algebras of observables. The extra factor of λn compen-
sates for the fact that integration against the test function f is done with respect
to the metric volume form dg, which scales as dg 7→ λ−ndg when g 7→ λ−2g.
Comparing this formula with [13, Eq. (48)], note that the direction of our iso-
morphism σλ is opposite. More formally, recall that σλ : W → Wλ is a nat-
ural isomorphism between two functors (defined on BkgG or BkgG+), while
Φ: D → W is another natural transformation. If we similarly define the natural
linear isomorphism µλ : D → D given by f 7→ λnf , the rescaled quantum field
is given by a composition of these natural transformations, SλΦ = σ−1

λ ◦Φ ◦µλ.
As such, we have defined a representation Sλ of the multiplicative group R+

on the vector space7 of natural transformations D → W , which opens the door
to using the generic notion of homogeneous and almost homogeneous elements
from Definition 2.3 to quantum fields.

Next, in order to address the continuity hypothesis, we must specify how to
identify the algebras of observables defined on different background geometries,
as was done in [13, Sec. 4.2]. Let (M,h1) and (M,h2) be two background
geometries that differ only inside a compact set O ⊂ M , recalling that hi =
(gi,m

2
i , ξi). It is a simple fact of Lorentzian geometry that the spacetimes

(M±,g±), with M− = M \ J+(O), M+ = M \ J−(O) and h± = h1|M± =
h2|M± , are globally hyperbolic spacetimes in their own right. Moreover, each
of the (M±,h±) contains a Cauchy surface in common with both (M,h1) and
(M,h2). Thus, denoting by χi± : (M±,h±) → (M,hi) the inclusion morphisms,
the time slice axiom of the net of the algebras observables gives us isomorphisms
ιχi

±
: W(M±,h±) → W(M,hi). These isomorphisms allow us to identify the

algebras of observables of background geometries (M,h1) and (M,h2) that differ
only inside a compact O ⊂ M in two ways, τret, τadv : W(M,h1) → W(M,h2),
where these ∗-algebra isomorphisms are defined by τret = ιχ−

2
◦ ι−1

χ−
1

and τadv =

ιχ+
2
◦ ι−1

χ+
1

. Below, we will only make use of τret, though choosing τadv would not

have lead to equivalent results.
Finally, we introduce an axiomatic definition of Wick powers, which will be

our main objects of interest. We deviate somewhat in our axiomatization from
the analogous one in [13, Sec. 4] for reasons expanded on below.

Definition 3.5 (Wick powers). Given a net of algebras W (Definition 3.2) on
the category of background geometries BkgG (or BkgG+) and a corresponding
locally covariant linear scalar quantum field ϕ (Definition 3.4), we define Wick
powers {ϕk} of ϕ, for k = 0, 1, 2, · · · , by the following axioms:

(i) Locality and Covariance. Each Wick power ϕk is a locally covariant
scalar quantum field (Definition 3.3), which for low powers agree with
ϕ0 = 1, the unit c-number field, and ϕ1 = ϕ, the linear field.

7We make the tacit and harmless assumption that we are working with small categories,
whose objects and morphisms constitute sets.
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(ii) Scaling. EachWick power ϕk is almost homogeneous of degree k(n−2)/2
(Definition 2.3) with respect to the action of physical scalings Sλ (Eq. (44))
on locally covariant fields. That is, there exists an integer l ≥ 0 and locally

covariant fields ψj such that Sλϕ
k = λk

(n−2)
2 ϕk+λk

(n−2)
2

∑l
j=1(log

j λ)ψj ,
where each ψj is itself almost homogeneous of degree k(n−2)/2 and order
l − j (as in Eq. (11)). In dimension n = 4, (n − 2)/2 = 1 gives the usual
scaling of a scalar field.

(iii) Algebraic. Each Wick power ϕk also satisfies the following properties:

Hermiticity:
ϕk(M,h)(f)

∗ = ϕk(M,h)(f
∗), (45)

where on the left ∗ denotes the corresponding operation in the ∗-
algebra W , while on the right ∗ denotes simple complex conjugation.

Commutator expansion:

[ϕk(M,h)(x), ϕ(M,h)(y)] = ikϕk−1(x)∆(M,h)(x, y), (46)

where ∆(M,h)(x, y) = G+
(M,h)(x, y)−G

−
(M,h)(x, y) is the difference be-

tween the retarded and advanced Green functions for the KG equa-
tion (43).

(iv) Parametrized microlocal spectrum condition. Consider any back-
ground geometry (M,h) and any smooth m-parameter family (M,Hs) of
compactly supported variations thereof (m ≥ 0). That is, h = H0, where
Hs(x) = H(s, x) with smooth H : Rm×M → HM , such that Hs, for any
s ∈ Rm, differs from h only on a compact subset O ⊂ M . Further, let us
implicitly identify each algebra of observables W(M,Hs) with W(M,h)
using the isomorphism τsret : W(M,Hs) → W(M,h) discussed earlier.

Then, for any quasi-free Hadamard state ω on W(M,h) with respect to ϕ
and each Wick power ϕk, the expectation value ω(ϕk(x)) is a distribution
on Rm×M with empty wavefront set, which hence can be represented by
a smooth function.

Remark 3.3. The above axioms for Wick powers differ in some aspects from
those given in [13, Sec. 4].

(a) Our scaling condition, which uses Definition 2.3, is slightly weaker than
Definition 4.2 of [13], but it will be sufficient for our purposes. The dif-
ference is in the notion of order of the logarithmic terms. The ‘order’ in
Definition 2.3 refers only to the scaling properties. On the other hand,
the ‘order’ of a quantum field used in [13, Def. 4.2] refers to the number of
iterated commutations with ϕ needed to annihilate that field. An induc-
tive argument (in k) shows that if a Wick power ϕk satisfied Definition 4.2
of [13], then the same Wick power satisfies also our Definition 2.3(b).

(b) The technical continuity and analyticity conditions were replaced by a
strengthened version of the microlocal scaling condition. Using the nota-
tion from the last point of Definition 3.5, the continuity condition in [13]
required τsret ◦ ϕk(M,Hs)

(f) ∈ W(M,h) to be continuous in s for any test

function f ∈ D(M) and any 1-parameter familyH(s, x), with the topology
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on the algebra W(M,h) left implicit. The analyticity condition required
the expectation values ωs(ϕk(M,Hs)

(x)) to be analytic in (s, x) whenever

the 1-parameter family H(s, x) is analytic (of course relaxing the require-
ment that the variations of the background geometry must vanish outside
a compact set) and is accompanied by a 1-parameter family of states ωs

analytic in s, with ωs quasi-free and Hadamard on W(M,h) and both
the linear structure and topology on the appropriate space of states left
implicit.

(c) Removing the analyticity condition is our main goal, so that change should
not be surprising. In the proof of Theorem 3.1 we will appeal to the
Peetre–Slovák theorem, instead of analyticity as was done in [13], to con-
clude that ambiguities in the Wick powers are characterized by differential
operators. Thus, the remaining technical continuity hypothesis is needed
only in as much as it helps meet the weak regularity hypothesis needed
for the application of the Peetre–Slovák theorem, which is the only one
not already covered by locality. However, using the notation from the
last point of Definition 3.5, the continuity of ϕk(M,Hs)

(f) ∈ W(M,h) as a

function of s, even with an opportune choice of topology on W(M,h), is
not sufficient to assure the needed weak regularity property of ϕk. What
would be needed instead is a technical infinite-dimensional smoothness
condition. Instead of going down that road, we simply strengthen the
original microlocal spectrum condition to cover parametrized families of,
instead of just individual, background geometries. This new parametrized
microlocal condition hypothesis then essentially directly yields the needed
weak regularity property of ϕk.

Along with the explicit construction of the algebras W(M,h) in [13], Hol-
lands and Wald also shows the existence of a family of locally covariant scalar
quantum fields that satisfy their version of the axioms of Wick powers, whose
difference from ours are discussed above. However, that given construction is
not the only way to satisfy these axioms. The lack of uniqueness is physi-
cally interpreted as the existence of some remaining degrees of freedom in the
renormalization procedure of Wick powers. The key result of [13] on finite
renormalizations of Wick powers is stated in [13, Thm. 5.1]. Any pair of fam-
ilies of Wick powers8 {ϕ̃k} and {ϕk} (k ∈ N) of the same Klein–Gordon field
ϕ = ϕ1 = ϕ̃1 satisfies the following relation, in our notation, for every fixed
background geometry (M,h):

ϕ̃k(M,h)(x) = ϕk(M,h)(x) +
k−2
∑

i=0

(

k

i

)

Ck−i[h](x)ϕ
i
(M,h)(x) , (47)

Above, the scalar coefficients Ck[h] are some scalar differential operators that
are tensorially constructed out of the metric, the curvature tensor and its deriva-
tives. These operators depend polynomially on the curvature tensor, its deriva-
tives and on m2, with coefficients that depend analytically on ξ. Moreover, the

Ck[h] scale as Ck 7→ λk
(n−2)

2 Ck when their arguments are rescaled as ξ 7→ ξ,
m2 7→ λ2m2, gab 7→ λ2gab and Rabcd 7→ λ−2Rabcd, with the same scaling weight

8The differences between the Hollands and Wald definition of Wick powers from ours is
detailed in Remark 3.3.
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for its derivatives. In dimension n = 4, the coefficients scale as Ck 7→ λkCk,
which is the expression that appears in [13].

As mentioned in the Introduction, the Analyticity requirement that distin-
guishes the Hollands andWald definition of Wick powers from ours (Remark 3.3)
is somewhat unnatural and technically difficult to handle, as was stressed in the
Introduction. We would like to demonstrate that Analyticity is not necessary
to prove a result that is essentially similar to the statement of [13, Thm. 5.1]
mentioned above. On the other hand, the Continuity requirement of Hollands
and Wald cannot be completely dispensed with, since some version of it must
survive to feed into the weak regularity hypothesis needed by the Peetre–Slovák
theorem. However, it seems difficult to find a simple modification of Continuity
that would do the job. Instead, we find it more useful to strengthen the usual
Microlocal Spectrum Condition to its Parametrized version (Definition 3.5(iv)).
We believe that this strengthened version is rather natural, encapsulating the
stability of the properties of Wick powers under variations of the parameters of
the background geometry in precise technical terms, without leaving the bounds
of smooth differential geometry.

In [13, Sec. 5.2], Hollands and Wald argue that the by now standard locally
covariant Hadamard parametrix prescription for defining Wick powers satisfies
all the requirements that we listed in Definition 3.5, with our Parametrized Mi-
crolocal Spectral condition replaced by the standard one and adding also their
Continuous and Analytic dependence requirements (Remark 3.3). It should be
noted that they left the arguments supporting Continuous and Analytic depen-
dence implicit, not giving a complete proof, which appeared later in [14]. Sim-
ilarly, we believe that the locally covariant Hadamard parametrix prescription
satisfies also our Parametrized Microlocal Spectral condition, but leave a de-
tailed complete proof of this claim to future investigations. Thus, by eliminating
both the Continuity and Analyticity requirements in favor of the Parametrized
Microlocal Spectrum Condition, we can achieve essentially the same result writ-
ten below into a more precise form:

Theorem 3.1. Let {ϕ̃k} and {ϕk} be two families (k ∈ N) of Wick powers, as in
Definition 3.5, with respect to a linear scalar quantum field ϕ (Definition 3.4) in
a net of algebras W (Definition 3.2, defined on either the category BkgG of non-
oriented background geometries or BkgG+ of oriented background geometries).

(a) If ϕ is defined with respect to the category BkgG, for every (M,h),
the difference between ϕ̃k and ϕk can be parametrized as in (47), where the
coefficients

Ck[h](x) = Ck
[

gab(x), Rabcd(x), . . . ,∇e1 · · · ∇ehRabcd(x),

ξ(x), . . . ,∇e1 · · ·∇er ξ(x),m(x)2, . . . ,∇e1 · · · ∇esm(x)2
]

(48)

are some scalar polynomials, tensorially formed from all of their arguments,
except ξ(x), and where Rabcd(x) denotes the Riemann tensor and ∇a the Levi-
Civita connection of gab at x ∈M .

(b) If ϕ is defined with respect to the category BkgG+, for every (M,h), we
have a variant of (47) with

Ck[h](x) = Ck
[

gab(x), εa1···an(x), Rabcd(x), . . . ,∇e1 · · · ∇ehRabcd(x),

ξ(x), . . . ,∇e1 · · ·∇er ξ(x),m(x)2, . . . ,∇e1 · · · ∇esm(x)2
]

(49)
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scalar polynomials, tensorially formed from all of their arguments, except ξ(x),
and now including the Levi-Civita tensor εa1···an(x) of gab at x ∈M .

In both cases (a) and (b), the coefficients of the polynomials are smooth
(instead of analytic) functions of ξ(x) whose functional form does not depend
on M .

Further, the Ck scale as Ck 7→ λk
(n−2)

2 Ck when their arguments are rescaled
as follows: ξ 7→ ξ, m2 7→ λ2m2, gab 7→ λ2gab, εa1···an 7→ λnεa1···an , Rabcd(x) 7→
λ−2Rabcd(x) and the covariant derivatives do not change this rescaling behaviour
as the coordinates are dimensionless. These rescaling properties fix the order of
the polynomial Ck.

Obviously all terms ∇e1 · · · ∇esξ(x) and ∇e1 · · ·∇esm(x)2 with s > 0 vanish
if, at the end of the computation, m2 and ξ are taken constant. Again, in
dimension n = 4, the scaling dimension of the scalar field reduces to the standard
(n− 2)/2 = 1.

The proof of our main Theorem 3.1 will be mainly geometric. However, we
will need an intermediate analytical result, which we encapsulate in the Lemma
below, which is a more detailed version of the first two paragraphs of the proof
of [13, Thm. 5.1]. Logically, this analytical result follows from the Parametrized
Microlocal Spectrum property, from the Locality and Covariance requirements
(cf. (2) in Remark 3.2) and from the Scaling requirement. And, obviously, we
make no use of either the Continuity or Analyticity requirements from [13],
as we have replaced both of those by our Parametrized Microlocal Spectrum
property.

Lemma 3.2. For {ϕ̃k} and {ϕk} as in Theorem 3.1 and every fixed M , the
identity (47) holds with some smooth functions Ck[h], where the value Ck[h](x)
depends only on the germ of h at x ∈ M . Moreover, these functions are
locally covariant, so that χ∗Ck[h] = Ck[χ

∗h] for any morphism χ in BkgG

(resp. BkgG+), also the functions Ck are weakly regular in the sense of Defini-
tion 2.2 and Ck[h] scales almost homogeneously of degree k(n− 2)/2 under the
physical scaling transformation h = (g,m2, ξ) 7→ (λ−2g, λ2m2, ξ).

Proof of Lemma 3.2. The proof is inductive in k. The thesis holds for k = 1 and
C1 = 0, since ϕ1 = ϕ̃1 = ϕ. Next suppose that (47) holds for some functions
Ci : Γ(HM) → C∞(M), i = 1, 2, . . . , k − 1, that satisfy the desired properties.
Then Ci[h]1 defines a locally covariant c-number field, where 1 ∈ W(M,h) is
the identity of the given algebra. Define

Φk,(M,h)(x) := ϕ̃k(M,h)(x)−
(

ϕk(M,h)(x) +

k−2
∑

i=1

(

k

i

)

Ck−i[h](x)ϕ
i
(M,h)(x)

)

. (50)

By construction, Φk is a locally covariant quantum field as in Definition 3.3
and also satisfies the Algebraic, Scaling and Microlocal requirements of Def-
inition 3.5. The algebraic properties in particular require that Φk is Hermi-
tian and, on any given spacetime M , it satisfies [Φk,(M,h)(x), ϕ(y)] = 0 for all
x, y ∈ M , which means that it is a c-number field by the kinematic complete-
ness property of ϕ (Definition 3.4). In other words, Φk,(M,h) = Ck[h]1 where
Ck[h] : C

∞
0 (M) → R is a distribution.

Next, we appeal to the Parametrized Microlocal Spectrum condition. That
is, considering h itself as a 0-parameter family, we can conclude that Ck[h](x) =
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ω(Ck[h](x)1) is a smooth function of x for any Hadamard state ω, since ω(1) = 1
for any state and Hadamard states always exist. This establishes that we have
defined a map Ck : Γ(HM) → C∞(M). If we introduce an m-parameter family
of compactly supported smooth deformation Hs(x) = H(s, x) of H0 = h then
the same argument tells us that Ck[Hs](x) is also jointly smooth in (s, x). Thus,
according to Definition 2.2, the map Ck is weakly regular.

The locality requirement of Definition 3.3 (see (2) in Remark 3.2) entails
that χ∗Ck[h] = Ck[χ

∗h] for any inclusion χ : U ⊂ M . In other words, fixing
x ∈ M and taking the limit over decreasing neighborhoods U of x, the value
Ck[h](x) depends only on the germ of h at x.

The validity of the Scaling property for both ϕk and ϕ̃k imply that, by
the formula (50), Φk is a linear combination of products of terms with almost
homogeneous degrees that add up to k(n− 2)/2. Thus, by Lemma 2.5, Φk itself
has almost homogeneous degree k(n− 2)/2 and thus

SλΦk = λk
(n−2)

2 Φk + λk
(n−2)

2

∑

i

(logi λ)Ψi, (51)

where Sλ is the action of physical scalings on locally covariant scalar quantum
fields, with Ψi some other locally covariant quantum fields of almost homoge-
neous degree k(n − 2)/2. See Eq. (44), and the discussion below it, for the
definition of Sλ and in what sense locally covariant scalar quantum fields form
a vector space, so that Definition 2.3 is applicable to them. Again, from the
kinematic completeness of ϕ, it follows that Ψi,(M,h) = Di[h]1 are also all c-
number fields. On the other hand, unwrapping the definition of Sλ, we find that
Sλ(Ck[h]1) = Ck[hλ]1, and similarly for the Di. Hence, we find that

Ck[hλ] = λk
(n−2)

2 Ck[h] + λk
(n−2)

2

∑

i

(logi λ)Di[h] (52)

is an almost homogeneous element of degree k(n − 2)/2 of the space of maps
Γ(HM) → C∞(M) under the action D 7→ Dλ, with Dλ[h] = D[hλ].

In the proof of the main Theorem below, we systematically make use of
the geometric results summarized in Sect. 2. In particular, the Peetre–Slovák
theorem discussed in Sect. 2.3 brings in the key simplification in our proof in
comparison with the arguments of [13]. This theorem is well known in differ-
ential geometry but has not before been applied in this context. It states that,
under the conditions exhibited by Lemma 3.2, the Ck must be some (possibly
non-linear) differential operators of locally bounded order applied to the back-
ground fields g, m2 and ξ. It then remains only to call upon the Scaling and
Covariance properties to check that the Ck may only be of the form stipulated
in Eq. (48) or (49).

Proof of Theorem 3.1. In this proof, we carefully separate the hypotheses of lo-
cality, scaling and covariance. Locality allows us to conclude that the functions
Ck are differential operators. Scaling restricts their form and then covariance
restricts their form even further, to the desired result. Note that, unlike in [13]
we do not make use of Riemann normal coordinates. As a result, we invoke the
transformations properties of Ck under two different kinds of scaling transfor-
mations, which are mixed when normal coordinates are employed.
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1. Locality and the Peetre–Slovák theorem. The first step is to combine
the locality of the coefficients Ck of Eq. (47) with the Peetre–Slovák theorem
(Proposition 2.2) to conclude that in fact these coefficients are differential oper-
ators of locally bounded order (see Sect. 2.3 for details). To verify the hypotheses
of Proposition 2.2, take the bundle F ∼= R ×M → M , so that its sections are
just real valued functions Γ(F → M) = C∞(M). Finally, take the bundle
E ∼= HM → M . Lemma 3.2 shows that Ck : Γ(HM) → C∞(M) such that
Ck is weakly regular and Ck[h](x) depends only on the germ of h at x ∈ M .
Consequently, the Peetre–Slovák theorem gives us the desired result: for every
fixed M ∈ Man, Ck : Γ(HM) → C∞(M) is a differential operator of locally
bounded order, as defined in Sect. 2.3.

Although we treatm2 and ξ as spacetime-dependent fields, this is not crucial.
They could be treated as constant parameters from the start and the slight
modification of the proof, needed only at this point, is discussed in Remark 3.4.

2. Almost homogeneity under physical scaling. Consider a Lorentzian
metric g0 on M , as well as a point y ∈ M and an open neighborhood U of
y with compact closure, with a coordinate system (xa) centered at y. Since
Ck is a differential operator of locally bounded order, for any such g0, y and
U there exists9 an integer r ≥ 0 such that Ck is a differential operator on U
of local order r when acting on sections of HM close to (g0,m

2 = 0, ξ = 0),
in a precise sense that we discuss next. Naturally, the coordinates xa induce
(scaling) adapted local coordinates on the jet bundle JrHM , which we write as
(xa, g, gab, g

ab,A, wA, zA), recalling that the coordinates (g, gab) are functionally
independent up to the identity |det gab| = g. The notation and the meaning of
these coordinates are discussed in Sect. 2.2. The only difference is that we now
use two sets of coordinates, wA and zA, for the jets of the scalar fields, m2(x)
and ξ(x) respectively, instead of just one, and that w and z have corresponding
scaling degrees of s = 2 and s = 0, as used in Sect. 2.4. Then, by the bound
r on the local order of Ck at y, there exists a neighborhood V r1 ⊆ JrHM of
jry(g0,m

2 = 0, ξ = 0), projecting onto U , and a function Fk(x
a, g, gab,A, wA, zA)

defined on V r1 such that

Ck[h](x) = Fk(j
rh(x)), (53)

for any section h ∈ Γ(HM |U → U) such that jrh(U) ⊆ V r1 . Note that V r1
may be strictly smaller than JrH |U . Without loss of generality, but possibly
shrinking the domain of Fk, we can choose it such that V r1

∼= U ×W r
1 , where

the projection on the U factor is effected by the base coordinates (xa) and the
projection onto W r

1 is effected by the remaining fiber coordinates. The main
obstacle to increasing V r1 to all of JrHM is the possible need to increase the
order r on larger domains. At the moment, from the Peetre–Slovák theorem,
we know only that the order r of Ck is locally bounded, but may not have
a finite global bound. The subscript 1 on V r1 will increase in the subsequent
discussion as we use the properties of Ck to gradually enlarge the domain of
definition of the function Fk, while maintaining the identity (53), and thus the
bound r on the order of Ck. In the final step of the proof we will in fact show

9In principle, the hypothesis of locally bounded order tells us that this is true for a suffi-
ciently small neighborhood of y, with r possibly increasing on larger neighborhoods. However,
since such a neighborhood exists around any y ∈ U , a simple argument based on open covers
and the compactness of U shows that the order r can be chosen uniformly over an arbitrary
compact U .
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that differential order of Ck is actually globally bounded. With that in mind,
it is then consistent, on a first reading of the proof, to assume that r is globally
fixed and V r1 = JrHM , so that the parts dealing with enlarging V r could be
skipped.

Similar to Eq. (20), the vector field implementing infinitesimal physical scal-
ing transformations on V r1 ⊆ JrHM is

e1 = (2 + 2|A|)gab,A∂ab,A + (2 + 2|A|)wA∂wA + 2|A|zA∂zA. (54)

According to the last statement in Lemma 3.2 and an immediate application of
Lemma 2.3, the coefficient Ck and hence the function Fk scale almost homoge-
neously with degree k(n − 2)/2 with respect to the vector field e1. Therefore,
according to Lemma 2.4, there exists an integer l > 0 and function Hj on V r1 ,
for j = 0, . . . , l − 1, such that

Fk = g−
k(n−2)

4n

∑

j=0

logj(g−
1
2n )Hj , (55)

where each Hj is invariant under the action of e1 and hence can be written as

Hj = Hj(x
a, g−

1
n gab, g

1
2n+ 1

n
|A|gab,A, g

1
n
+ 1

n
|A|wA, g

1
n
|A|zA). (56)

At this point, we may extend the domain V r1 to V r2 ⊆ JrHM , which is in-
variant under physical scaling. That is, we can write V r2

∼= R
+ ×W r

2 , where
the coordinate g effects the projection onto the R+ factor and the coordinates
(xa, g−

1
n gab, g

1
2n+ 1

n
|A|gab,A, g

1
n
+ 1

n
|A|wA, g

1
n
|A|zA) effect the projection onto the

W r
2 factor, which includes at least the point (g−

1
n gab ◦ g0(y), 0, 0, 0). The func-

tion Fk extends from V r1 to V r2 in a unique way as an almost homogeneous
function of degree k(n− 2)/2.

Let us go into some of the details of the mentioned unique extension proce-
dure. So far, we could only presume that the identity (53) that expresses the
function Ck[h](x) in terms of the differential operator defined by the function
Fk holds only when the germ of h at x ∈M projects onto one of the jets in the
domain V r1 ⊆ JrHM of Fk. We have defined the extended domain V r2 to be
the smallest domain invariant under physical scaling and containing V r1 . The
function Fk, by using formula (55), has a unique almost homogeneous extension
to V r2 that scales almost homogeneously and agrees with the known values of Fk
on V r1 . Since any element of V r2 can be brought back to V r1 by a physical scaling
transformation and Ck[h] itself scales almost homogeneously, the identity (53)
must remain valid also for germs of h at x that project to jets in the extended
domain V r2 . Below, we use similar logic each time the domain of the function Fk
is expanded, eventually to all of JrHM , though possibly with a larger value of
r, thus showing that Ck[h] is actually a differential operator of globally bounded
order.

3. Diffeomorphism covariance and the Thomas replacement theorem. Now
we move on to the covariance property of the Ck under diffeomorphisms, which
will be used in several stages. First, fixing the previously made choice of y ∈M ,
we note that the preceding arguments using the Peetre–Slovák theorem can be
repeated for any pair of y′ ∈ M and g′

0 = χ∗g0, where χ : M → M is some
diffeomorphism such that χ(y′) = y, giving rise to differential orders r′ and
domains V ′r′

2 ⊆ Jr
′

HM . The diffeomorphism covariance of Ck then implies
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that all these differential orders are the same, r′ = r, and that the union V ′r
3 ⊆

JrHM of all the V ′r′

2 domains defines a neighborhood of the Diff(M)-orbit of
jr(g0, 0, 0) ∈ JrHM . In fact, V ′r

3 can itself be chosen to be Diff(M)-invariant
(for instance, by taking the union of all Diff(M) images of a non-invariant V ′r

3 )
and a function Fk satisfying (53) uniquely defined on it. The diffeomorphism
covariance of Ck then implies that Fk is itself Diff(M)-invariant on V ′r

3 , in the
sense described in Sect. 2.5. The case of Diff+(M) covariance is handled in
exactly the same way.

Since diffeomorphisms act transitively on M , a diffeomorphism invariant
V ′r
3 would then project down to all of M . Instead, motivated by the desire to

keep working in the coordinates adapted to the local chart (xa) on U ⊆M , we
choose V r3 instead to be the intersection of V ′r

3 and the pre-image of U under
the projection JrHM →M . Then, we have all the needed hypothesis to apply
Proposition 2.6 to eliminate the dependence of Fk, as a diffeomorphism invari-
ant function, on some of the coordinates on V r3 . Actually, part of the almost
homogeneous scaling property implies that the functions Hj from Eq. (56) are
each separately invariant under diffeomorphisms, so that we can apply Propo-
sition 2.6 to each of them individually. Therefore, we can conclude that

g−
k(n−2)

4n Hj(x
a, g−

1
n gab, g

1
n
+ 1

n
|A|gab,A, g

1
n
+ 1

n
|A|wA, g

1
n
|A|zA)

= g−
k(n−2)

4n Gj(g
− 1

n gab, g
3
n
+ 1

n
|A|S̄ab(cd,A), g

1
n
+ 1

n
|A|w̄A, g

1
n
|A|z̄A), (57)

where the notation used for the coordinates is explained in Sect. 2.5 and each

g−
k(n−2)

4n Gj , for j = 0, . . . , l − 1, is invariant under the natural action of either
GL(n) (or GL+(n), depending on which of the cases (a) or (b) we are dealing
with) on its arguments. Notably, Gj depends neither on the base (xa) nor on
the Christoffel coordinates (Γa(bc,A)).

The invariance properties of V r3 now tells us that it has the structure V r3
∼=

U × Ln × R
γ ×W r

3 , where the coordinates (xa) effect the projection onto the

U factor, the coordinates (gab) or (g, g
− 1

n gab) effect the projection onto the Ln
factor (the whole space of non-degenerate bilinear forms on Rn with Lorentzian
signature), the coordinates Γa(bc,A) effect the projection on the Rγ argument

and the remaining coordinates (g3̄n+
1
n
|A|S̄ab(cd,A), g

1
n
+ 1

n
|A|w̄A, g

1
n
+ 1

n
|A|z̄A) ef-

fect the projection on the W r
3 argument, which contains at least the point

(0, 0, 0) and is invariant under the corresponding action ofGL(n) (resp.GL+(n)).
4. Invariance under coordinate scaling. Next, recall the action of the sub-

group of GL(n) (resp. GL+(n)) that we called coordinate scalings in Sect. 2.5.
Notice that all the coordinates that the functions Gj depend on have positive

weight with respect to coordinate scalings, with the exception of (g−
1
n gab, z).

For brevity, let us rewrite our coordinates as (g, g−
1
n gab, z, q

i), with the weight
of the coordinate qi under coordinate scalings denoted by di > 0. Then the in-
variance of the functions Fk on V

r
3 under diffeomorphisms, and hence coordinate

scalings, implies the identity

µk
(n−2)

2 Fk(g, g
− 1

n gab, z, q
i) = µk

(n−2)
2 Fk(µ

2ng, g−
1
n gab, z, µ

diqi)

= g−
k(n−2)

4n

l−1
∑

j=0

logj(µ−1g−
1
2n )Gj(g

− 1
n gab, z, µ

diqi)

(58)
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for any point of V r3 on its left hand side and any value of µ > 0. As described

above, the limit (g−
1
n gab, z, 0) of the arguments of the functions Gj as µ → 0

falls within the domain of the functions Gj . Therefore, while the limit of the
left-hand side of (58) converges to 0 as µ → 0, the right-hand side diverges

unless all Gj = 0 for j > 0, so that Fk = g−
k(n−2)

4n G0. The new identity implied
by invariance under coordinate scalings is then

g−
k(n−2)

4n G0(g
− 1

n gab, z, q
i) = µ−k (n−2)

2 g−
k(n−2)

4n G0(g
− 1

n gab, z, µ
diqi). (59)

Fix some values for the coordinates (g, g−
1
n gab, z) and recall that the point

(g−
1
n gab, z, 0) is part of the domain of definition of G0. Since G0 is smooth,

Taylor’s theorem allows us to write it as

G0(g
− 1

n gab, z, q
i) =

∑

|I|<N

AI(g
− 1

n gab, z)q
I +O(qN ), (60)

where I = i1 · · · im is a multi-index with respect to the coordinates (qi) and
N > 0 is an integer large enough so that 〈d, I〉 =

∑m
j=1 dij > k for any m =

|I| > N . Note that the error term O(qN ), for fixed (qi) mapped to (µdiqi) and
µ→ 0, is mapped to O(µk+1) by our choice of sufficiently large N . Thus, using
Taylor’s theorem, we can rewrite (59) as

g−
k(n−2)

4n G0(g
− 1

n gab, z, q
i) =

∑

|I|<N

g−
k(n−2)

4n AI(g
− 1

n gab, z)q
Iµ〈d,I〉−k (n−2)

2

+ µ− k(n−2)
2 O(µ

k(n−2)
2 +1). (61)

While the left-hand side of (61) is bounded as µ → 0, the right-hand side
diverges unless all AI = 0 for I such that 〈d, I〉 < k(n− 2)/2. If this vanishing
condition is satisfied, the µ → 0 limits of both sides of (61) exist and give the
identity

Fk = g−
k(n−2)

4n G0(g
− 1

n gab, z, q
i) =

∑

〈d,I〉=k(n−2)
2

g−
k(n−2)

4n AI(g
− 1

n gab, z)q
I . (62)

At this point, we can once more enlarge the domain of definition of the func-
tion Fk, where the identity (53) holds, from V r3 to V r4 ⊂ JrHM . The new
domain is isomorphic to V r4

∼= U × Ln × R × W4 × Rγ × Rδ, where the co-
ordinates (xa) effect the projection onto the U factor, the coordinates (gab)

or (g, g−
1
n gab) effect the projection onto the Ln factor, the coordinate (g

1
nw)

effects the projection onto the R factor, the coordinate (z) effects the projec-
tion onto the W4 factor (which at least contains the point (0)), the coordinates
(Γa(bc,A)) effect the projection onto the R

γ factor, and the remaining coordi-

nates (g
3
n
+ 1

n
|A|S̄ab(cd,A), g

1
n
+ 1

n
|A|w̄A, g

1
n
+ 1

n
|A|z̄A) effect the projection onto the

Rδ factor, where the coordinates involving w̄A and z̄A with |A| = 0 are obviously
excluded. Note that U × Ln × R ×W4 ⊆ HM and that V r4 is simply its pre-
image with respect to the bundle projection JrHM → HM . The function Fk
extends uniquely from V r3 to a function on V r4 that is invariant under coordinate
scalings. The reason we could extend the domain so much, essentially the factor
W r

3 got enlarged to R ×W4 × Rδ, is because almost all coordinates, those we

32



labeled by (qi) above, had positive degrees with respect to coordinate scalings.
The range of the (z) coordinate is limited to W4 because it is invariant under
coordinate scalings and even under the larger group GL(n) (resp. GL+(n)) that
acts on the other bundle coordinates. Also, note that according to Eq. (62)
the dependence of Fk on the R × Rγ × Rδ factor in V r4 , corresponding to the
coordinates we labeled by (qi) above, is polynomial.

5. GL(n)-equivariance and polynomial dependence on the metric. From
the preceding discussion, the function Fk, satisfying the identity (53), is de-
fined on the domain V r4 = U × V4 and depends only on the coordinates cor-
responding to the factor V4 = Ln ×W4 × Rδ (where we have grouped all the
R × R

γ × R
δ factors together into R

δ, implicitly redefining δ). Moreover, the
dependence on the coordinates on the Rδ factor is polynomial, while the coeffi-

cients g−
k(n−2)

4n AI(g
− 1

n gab, z) of these polynomials depend only on the Ln×W4

factor. It is also clear from the preceding discussion that each of the factors in V4
carries a tensor density representation of GL(n) (resp. GL+(n)) (cf. Sect. 2.6),
which happens to be trivial on W4. The space of functions on V4 then itself
carries a representation of GL(n) (resp. GL+(n)), induced by the pullback of
the action on V4, and the function Fk is invariant under this action. In the same
way, the space PNδ of polynomials of degree no greater than N on Rδ carries a
representation of GL(n) (resp. GL+(n)),

(uP )(ρ) = P (u−1ρ), for any u ∈ GL(n), P ∈ PNδ and ρ ∈ R
δ, (63)

which by elementary reasoning, within the representation theory of GL(n) [9],
is a direct sum of tensor density representations. Let us group these subrepre-
sentations by tensor rank and density weight. Therefore, PNδ =

⊕

j Tj, where
each Tj is a tensor density representation.

The form that we have reduced Fk to can be described as follows. Given

a point (g, ξ, ρ) ∈ V4, the A-coefficients g−
k(n−2)

4n AI(g
− 1

n gab, z) evaluated at
(g, ξ) ∈ Ln ×W4 give a polynomial in PNδ , which is then evaluated at ρ ∈ Rδ.
Thus we can think of the A-coefficients as a collection of functions Aj : Ln ×
W4 → Tj, with components given by

(Aj(gab, z))I = g−
k(n−2)

4n AI(g
− 1

n gab, z). (64)

The only way for Fk constructed in this way to be invariant under the action of
GL(n) is for the maps Aj to be equivariant (cf. Sect. 2.6), so that

Fk(ug, uξ, uρ) =
∑

j

Aj(ug, uξ)(uρ) =
∑

j

(uAj(g, ξ))(uρ)

=
∑

j

Aj(g, ξ)(u
−1uρ) =

∑

j

Aj(g, ξ)(ρ) = Fk(g, ξ, ρ), (65)

for any u ∈ GL(n) (resp. GL+(n)) and (g, ξ, ρ) ∈ V4.
We are finally in a position to conclude that, for a fixed ξ ∈ W4, the map

Aj(−, ξ) : Ln → Tj is an equivariant tensor density, in the sense of Definition 2.7,
and hence must be of the form dictated by Lemma 2.8, which characterizes all
such maps in a way, in view of Remark 2.5, compatible with our formula (64).
In other words, the coefficients of the polynomials Aj(g, ξ) depend themselves
polynomially on the components gab and εa1···an of the covariant metric and
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Levi-Civita tensors, up to an overall multiple of g = |det gab|. If Fk is invariant
under GL(n), then the dependence on εa1···an must be trivial, while it could in
general be non-trivial if Fk is invariant only under GL+(n). Expanding all the
polynomials in gab, εa1···an and qi, all the factors of powers of g must collectively
cancel to preserve invariance of Fk under GL(n) (resp.GL

+(n)). In other words,
we can conclude that

Fk =
∑

j

aj(z)Pj(gab, εa1···an , S̄
ab(cd,A), w̄A, z̄A), with |A| ≥ 1 in z̄A, (66)

where the sum is over a (necessarily finite) basis of polynomials Pj , which con-
sist of linear combinations of tensor contractions of products of their arguments,
with coefficients arbitrarily depending on the z coordinate. In this form, the
function Fk is manifestly invariant under GL(n) (resp. GL+(n)) transforma-
tions.

6. Global boundedness of differential order. To conclude the proof, it re-
mains only to extend the domain V r4 once more, this time to all of JrHM , for
an appropriate choice of r. It is well known that for a fixed weight s under
physical scaling, there is only a finite number of linearly independent polyno-
mials Pj of weight s constructed, as described above, from the metric and the
covariant derivatives of the scalar fields m2, ξ and the Riemann curvature tensor
in the form S̄abcd, even if the number of the derivatives r is allowed to be arbi-
trary10 [8]. Let rk be the maximum number of derivatives that appear in a basis
for these polynomials Pj when s = k(n − 2)/2. Then, no matter the original
choice of domain U ⊆ M , the differential operator Ck restricted to it must be
of order ≤ rk. Thus, we are justified in setting r = rk in all of the preceding
discussion. The only obstacle that may have prevented us from extending the
domain V r4 ⊆ JrkHM of the function Fk to all of the pre-image of U under
the projection JrkHM → M is the possibility that Ck would change order on
jets whose projections fall outside V rk4 . However, with the maximal possible
order of Ck bounded by rk, this obstacle is now absent. In other words, we can
safely presume that V rk4 is equal to the pre-image of U ⊆M with respect to the
projection JrkHM →M , with Fk retaining the form (66) on all of its domain.
A slightly more detailed version of this argument would note that the original
choice of the domain V r1 to be a neighborhood of a point jry(g0,m

2 = 0, ξ = 0)
in JrHM could have equally been chosen to be a neighborhood of the point
jry(g0,m

2 = 0, ξ0), without affecting any subsequent arguments. Piecing to-
gether Fk over the extensions of all such neighborhoods gives us a definition of
Fk on the entire pre-image of U under the projection JrkHM → M with the
same global order bound rk. Finally, covariance of Ck with respect to diffeomor-
phisms requires that the form (66) is also independent of the domain U ⊆ M .
Thus, we can conclude that there exists a globally defined smooth bundle map

10To see that, consider a monomial of the schematic form

(gab)
pg (εa1···an)

pε
∏

|A|

(S̄ab(cd,A))pS,|A|(w̄A)pw,|A| (z̄A)pz,|A| ,

necessarily with pz,0 = 0, and note that the p-exponents must satisfy the constraint
∑

|A|[(2+

|A|)pS,|A| + (1 + |A|)pw,|A| + |A|pz,|A|] = s, due to s-homogeneity with respect to physical
scalings and invariance with respect to coordinate scalings. Since each p-exponent is non-
negative, this implies a bound on the maximum value of |A| with a non-zero exponent.
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Fk : J
rkHM → R×M overM of the form (66) such that Ck[h](x) = Fk◦jrkh(x)

for any x ∈M and h ∈ Γ(HM), which concludes the proof.

Remark 3.4. We observe, by looking at the Locality and the Peetre–Slovák theo-
rem step of the above proof and also at the proof of Lemma 3.2, that one might
wonder at the need to take m2 and ξ as spacetime-dependent fields rather than
constants, as is usually the case. Our arguments still go through, with only two
changes. First, the microlocal hypothesis mentioned in 3.5 must be strength-
ened to require an empty wavefront set for ω(ϕk(x)) as a distribution onM×R2

(with the R2 factor standing for the parameter space of m2 and ξ) rather than
as a distribution on M for any fixed m2 and ξ. Note that the weaker microlocal
requirement does not exclude the infinite family of counterterms of [25] that
were discussed in the Introduction, while the stronger one does. Second, we
must make use of the more general version of the Peetre–Slovák theorem for
differential operators with parameters, as in Proposition A.1 in Appendix A.
To apply that result, we would need to let N = M and replace the spacetime
manifold M by P = M × R2, adding the (m2, ξ) parameter space. It would
then follow from known information about Ck that it is local with respect to
the natural projection P ∼= R2 ×M → M , hence satisfying the more general
Peetre–Slovák theorem.

We end this section with a couple of straight forward but noteworthy ob-
servations. First, it is a direct result of the proof of Lemma 3.2 that the set of
coefficients {Ck[h]} from Eq. (47) is determined jointly by the entire families
{ϕk} and {ϕ̃k} of Wick powers, rather than depending on each pair ϕk and ϕ̃k

individually. Second, the converse of Theorem 3.1 holds as well. That is, given
a family {ϕk} of locally covariant Wick powers and a set {Ck[h]} of satisfying
the conclusions of Theorem 3.1, the formula (47) defines another family {ϕk}
of locally covariant Wick powers.

4 Discussion

In this work, we have characterized admissible finite renormalizations of Wick
powers of a locally covariant quantum scalar field ϕ on curved spacetimes, with
possibly spacetime-dependent mass m2 and curvature coupling ξ. By local co-
variance, we mean the axioms of Brunetti, Fredenhagen and Verch [7]. Our
work is a significant technical improvement on the original work of Hollands
and Wald [13] on this subject. The main result (Theorem 3.1) is a slight gen-
eralization of that of Hollands and Wald, yet our hypotheses are significantly
more natural and the proof is greatly simplified and streamlined.

Under standard hypotheses, on Minkowski space, where the curvature cou-
pling ξ is absent, it is well known that the finite renormalizations of the Wick
powers ϕk are restricted to linear combinations of Wick powers of lower order,
with dimensionful coefficients that are polynomials in m2, with the total dimen-
sion matching that of ϕk. This is a strong constraint, because the resulting space
of possibilities is finite-dimensional. On curved spacetimes, as first proven by
Hollands and Wald in [13], adding local covariance and some further more tech-
nical hypotheses gives a result of comparable strength. The only modification is
that the coefficients of lower order Wick powers can also depend polynomially
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on curvature scalars and analytically on ξ, with the same restriction on their di-
mensions. The resulting possibilities no longer form a finite-dimensional space,
but a quasi-finite-dimensional one, in the sense that it is finitely generated under
linear combinations with coefficients analytic in ξ. It is worth noting that the
dependence of finite renormalization terms on the background metric is entirely
contained in the curvature scalars, while their ξ-dependent coefficients must be
assigned uniformly across all spacetimes to preserve local covariance.

The hypotheses of Hollands and Wald, briefly recalled in Definition 3.5, in-
clude the requirements of locality, microlocal regularity and of continuous and
analytic dependence on the background spacetime metric and coupling param-
eters. Unfortunately, while playing a crucial role in the existing proof, the
analytic dependence hypothesis has been long considered somewhat unnatural
and technically very cumbersome. We have found that, by using a standard
result of differential geometry (the Peetre–Slovák theorem, cf. Proposition 2.2
and Appendix A), in the presence of the remaining assumptions, the role of
both the continuity and analyticity hypotheses is completely subsumed by that
of locality and a strengthened version of the microlocal regularity condition. We
believe the strengthened, so-called microlocal spectral condition is natural from
both physical and geometrical points of view. Physically it encapsulates the
stability of the microlocal properties of Wick powers under smooth variations of
the background geometry. Geometrically, it provides just the right hypothesis
needed to prove the locality of finite renormalizations of Wick powers, with-
out leaving the realm of smooth differential geometry. Thus, by replacing the
continuity and analyticity requirements by a more natural hypothesis, our fi-
nal result on the characterization of finite renormalizations of Wick powers, as
stated in Theorem 3.1, is essentially identical to that of Hollands and Wald.
The main difference is that arbitrary smooth dependence on the coupling ξ is
now allowed, instead of just analytic dependence. Another difference is that
we have also explicitly considered weakening covariance to only under orienta-
tion preserving diffeomorphisms, which increases the renormalization freedom to
curvature scalars constructed also with the Levi-Civita tensor and not just the
metric. Finally, we explicitly treat m2 and ξ as possibly spacetime-dependent
parameters, rather than simple constants. The original proof of Hollands and
Wald also treated them as spacetime-dependent, while restricting to the case
of constants in the statement of their final result. We noted in Remark 3.4
how our arguments could be adapted to treating the parameters as constants
throughout.

As was already mentioned, our characterization of finite renormalizations
extends to theories that need only be covariant with respect to orientation
preserving diffeomorphisms. In particular, in even dimensions, chiral theories
(those not invariant under spatial parity transformations) could be admissi-
ble. While our result does not contain any surprises, it is important to have
a rigorous statement on the complete range of possibilities. In particular, sup-
pose that a classical parity invariant theory is perturbatively quantized using
a chiral renormalization scheme. The knowledge of a complete classification of
finite renormalizations is then required to decide whether there exists a different
renormalization scheme that gives a parity invariant quantization.

Another advantage of our proof is the clear separation between the appli-
cations of the locality, microlocal regularity, covariance and scaling hypotheses.
We make a particular distinction between physical scalings (those resulting from
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a rescaling of the metric) and coordinate scalings (those resulting from the local
action of some diffeomorphisms). We believe that structuring the proof in this
way makes it significantly easier to generalize the result to other types of tensor
or spinor fields, a task that is yet to be seriously taken up in the literature on
locally covariant quantum field theory, which is in significant part likely due to
the complexity of and the unnatural hypotheses needed in the original proof
of Hollands and Wald. In particular, it is likely that the crucial step in limit-
ing the finite renormalization freedom to a quasi-finite-dimensional space is to
carefully balance the covariance and scaling properties, such that there exists a
coordinate system on the jets of background fields, like the rescaled curvature
coordinates that we identified in Sect. 2.2, where all coordinates corresponding
higher derivatives have positive weight under a combination of the physical and
coordinate scalings.

Another direction in which our main result could be generalized is to con-
sider Wick powers that included derivatives of fields. Our proof should extend
without problems. The main difference would be that the finite renormaliza-
tion coefficients Ck could then be tensor- instead of scalar-valued, since Wick
powers with derivatives could themselves be tensor fields. This difference would
affect the part of our proof where we make use of GL(n)-equivariance to fix
the form of the Aj coefficients, which could be mixed densitized tensors. For-
tunately, the main technical result on the classification of equivariant tensor
densities, as stated in Lemma 2.8, is sufficiently general to apply to that case
as well, since introducing densitization erases the distinction between covariant
and contravariant indices.

Let us also say something about time-ordered products. Hollands and Wald
also gave a sketch of the proof of the characterization of finite renormalizations
of time-ordered products [13, Thm. 5.2], under the same hypothesis as their
result about Wick powers. As they point out, the main difference with the
case of Wick powers is in the structure of coefficients that are analogous to the
Ck, which become distributions on multiple copies of the spacetime manifold.
The arguments, which we encapsulated in Lemma 3.2, applying microlocal ar-
guments to restrict the wavefront set of these distributions would have to be
generalized accordingly. After that point, the proof of Theorem 3.1, would ap-
ply without essential modifications. Thus, our methods should generalize to
time-ordered products as well.

Finally, we note that, although we believe that our parametrized microlocal
spectral condition (Definition 3.5(iv)) does hold for standard locally covariant
Hadamard parametrix prescription for defining Wick powers, we have not given
a proof. In fact a complete proof of the validity of the continuous and analytic
dependence for the Hadamard parametrix prescription was not given in the
original work of Hollands and Wald either [13, Sec. 5.2] and only appeared
in the later work [14]. Closing this gap with a complete and precise proof
is a worthwhile goal for future work. In fact, to be of greatest use for the
characterization of finite renormalizations of time-ordered products and of Wick
products with derivatives, we would need a proof of validity of a parametrized
microlocal spectral condition for multi-local fields as well. Such a condition
might be reasonably stated as follows, echoing [13, Eq. (46)] which considered
a similar question for the analytic wavefront set. Let Φ(x1, . . . , xk) be a locally
covariant multi-local field that already satisfies the standard (unparametrized)
microlocal spectral condition. Then, let (M,h) be a background geometry and

37



let

ΓΦ(Mk,h) =
⋃

ω

WF(ω(Φ(M,h)(−)) \ {0} ⊆ (T ∗Mk) \ {0}, (67)

where the union is taken over all Hadamard states ω on W(M,h). Consider also
a smooth m-parameter compactly supported variation H(s, x) of h(x), together
with the accompanying algebra isomorphisms τsret : W(M,Hs) → W(M,h). If ω
is any Hadamard state onW(M,h), then we would like to require that the wave-
front set of EΦ

ω (s, x1, . . . , xk) = ω(τsret ◦ Φ(M,Hs)(x1, . . . , xk)) as a distribution

on Rm ×Mk satisfies

WF(EΦ
ω ) ⊆ {(s, σ, x1, p1, . . . , xn, pn) ∈ T ∗(Rm ×Mk)

| (x1, p1, . . . , xk, pk) ∈ ΓΦ(M,Hs)}. (68)

That is, Eϕω or any of its derivatives can be restricted to the submanifold of
Rm × Mk given by a fixed value of s, and that restriction has precisely the
wavefront set expected of a locally covariant field on (M,Hs) satisfying the
standard microlocal spectrum condition.

We now give a sketch of an argument for establishing the validity of our
parametrized microlocal spectrum condition in the simplest case of the Wick
monomial φ2H(x), as constructed using the Hadamard parametrix regulariza-
tion method by Hollands and Wald. (The authors are grateful to an anonymous
referee for suggesting it.) In this elementary situation, the only thing to prove
is the joint smoothness of ωs(φ

2
Hs

(x)) as a function of the position x and the
parameters s, with Hs the local Hadamard parametrices of the compactly sup-
ported background geometry variationHs and the Hadamard states ωs = ω◦τsret
are defined as in the preceding paragraph. As a matter of fact, one could more
generally prove that f(s, x, y) := ωs(φ(x)φ(y)) − Hs(x, y) is a jointly smooth
function of s, x, y, since ωs(φ

2
Hs

(x)) is obtained just by taking x = y in the
difference above. The 2-point function ωs(φ(x)φ(y)) is a global distributional
bisolution, while the symmetric distribution Hs(x, y) is locally defined through
a well-known procedure and, as a parametrix, only satisfies the Klein–Gordon
equation (in either x or y) up to a smooth error term, which we would need to
show is also jointly smooth in s. So, the function f(s, x, y) will satisfy a pair of
Klein–Gordon equations,

(�Hs
−m2 − ξRHs

)xf(s, x, y) = g(s, x, y) (69)

and (�Hs
−m2 − ξRHs

)yf(s, x, y) = g(s, y, x), (70)

with some jointly smooth g(s, x, y) defined on the same neighborhood of the
diagonal x = y as Hs(x, y). The argument would conclude by determining
a precise form of f(s, x, y) near a Cauchy surface in the past of the compact
region O ⊂M , where the variation Hs differs from the reference geometry H0,
and showing the existence of a unique solution of the above equations, which is
moreover jointly smooth in s, x and y and necessarily coincides with f(s, x, y).

We should note that, though the main ideas are clear, the above argument
features some technical difficulties that it would take a separate paper to fully
explore. For instance, it is not immediately clear which result from PDE theory
would assure the existence, uniqueness and smooth parameter dependence of
the solutions of Eqs. (69) and (70), all rather delicate questions, especially
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in the context of partial rather than ordinary differential equations. In fact
even establishing the joint smoothness of g(s, x, y) goes beyond elementary facts
about Hadamard parametrices (though some relevant arguments were already
provided in [14, Prop. 4.1] and [28, App. A]). Also, even if the preceding issues
are resolved by a clever use of standards results for hyperbolic PDEs, the domain
on which Eqs. (69) and (70) are defined may not be globally hyperbolic in any
meaningful way, because g(s, x, y) would be defined only on a neighborhood of
the diagonal in M ×M .

Thus, we leave the investigation of the above generalized parametrized mi-
crolocal spectral condition, of more general types of fields, of Wick powers with
derivatives and of time-ordered products for future work.
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A Peetre–Slovák’s theorem with parameters

Below, we first make some remarks about how the weak regularity hypothesis
(Definition 2.2) in Proposition 2.2 can be justified, despite the stronger regu-
larity hypothesis that is usually required [23, 16, 17]. Then, we state a more
general version of Proposition 2.2, in which the notion of locality is generalized
to accommodate parameters. The usually complicated way in which this more
general locality condition is stated is clarified through examples.

The paper [17] gives an excellent, self-contained and straight-forward proof
of the version of the Peetre–Slovák theorem [17, Thm. 3.1] that we state in
Proposition 2.2, with the exception that it requires the stronger regularity in-
stead of the weak regularity hypothesis. There, the regularity hypothesis is used
in exactly two places: (a) It is used once directly in the proof of Theorem 3.1,
to show that the map D[φ] = d ◦ jkφ factors through a smooth map d on the
space of k-jets. In that instance, the smooth “universal family of k-jets”, which
establishes the smoothness of d all at once, can easily be replaced by a related
smooth compactly supported variation that establishes the smoothness of d in
a compact neighborhood of any point of its domain. However, since that can
be done for any point in the domain of d, the desired global smoothness of d
is immediate. (b) Regularity is used once more in the proof of the intermedi-
ate Lemma 2.4, to show that D[φ] = d ◦ jkφ factors through some finite order
jet space. There, regularity is called upon when D acts on smooth families of
sections f and h that have been constructed to have controlled behavior on a
compact set K by appealing to the Whitney extension theorem [17, Sec. 1.2],
where K = {zk}∞k=0 consists of the points of a convergent sequence. Note that
proof of that Lemma 2.4 goes through even with only weak regularity, provided
that f and h could be constructed as smooth compactly supported variations,
rather than smooth families. The Whitney extension theorem, as stated in [17,
Sec. 1.2], which constructs smooth extensions of consistently specified jet data on
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an arbitrary compact set, can only produce families of sections rather than com-
pactly supported variations. However, it is well known that Whitney’s extension
theorem can be strengthened [4] to construct smooth extensions of consistently
specified jet data on arbitrary closed rather than just compact sets. Using this
strengthened version, it is easily seen that the above mentioned f and h can be
constructed as smooth compactly supported variations with specified behavior
both on the compact set K and on the complement of any open neighborhood
of K with compact closure, thus showing that the proof of [17, Lem. 2.4] can
be completed with only weak regularity.

The Peetre–Slovák theorem stated in Proposition 2.2 may be made signif-
icantly stronger by generalizing the admissible notion of locality. Let us now
introduce the language needed to state the stronger version in a precise form.
In the following, σ : E → N and ρ : F → M , are two smooth bundles, where
we have explicitly written the canonical projections, and we consider a map
D : Γ(E → N) → Γ(F → M) between smooth sections of these bundles. We
intend here to give a precise mathematical meaning to the statement that D is
local. Before defining the most general version of locality (cf. [16, § 18.16]), we
consider several motivating cases of increasing complexity.

Case N = M . We say that D is local when the value φ(x), for φ = D[ψ] ∈
Γ(F → M), depends only on the germ of ψ ∈ Γ(E → M) at x ∈ M . This
version of locality is already sufficient for Propositions 2.1 and 2.2. We can
loosen this notion of locality in several ways.

Case N 6= M . We may agree that φ(x), for φ = D[ψ] ∈ Γ(F → M) and
x ∈ M , may depend only on the germ of ψ ∈ Γ(E → N) at y ∈ N , with some
fixed relationship y = χ(x), where χ : M → N is some diffeomorphism. We then
say that D is χ-local.

Case N 6= M and D depends on external parameters. We can introduce a
bundle π : P →M , where the manifold P is interpreted as “M with parameters.”
Then, allowing D to depend on parameters means that D really maps sections
of E → N to sections of the pullback bundle π∗F → P , interpreted as “F with
parameters.” Let us briefly recall that, given a bundle F → M and a map
π : P → M , the pullback bundle π∗F → P is uniquely defined by the existence
of a bundle morphism π̃ : π∗F → F that is a fiber-wise isomorphism and that
makes the following diagram commute

π∗F F

P M

π̃

π

π

. (71)

Pre-composing a section of π∗F → P with a section of P → M then yields
a section of F → M given by a particular choice of parameters. Denoting
η = χ ◦ π, we call the map D : Γ(E → N) → Γ(π∗F → P ) η-local when
φ(x, p) = D[ψ](x, p), with (x, p) ∈ P and π(x, p) = x ∈M , depends only on the
germ of ψ at y = η(x, p) = χ(x) ∈ N . Note that the total space of the bundle
“F with parameters” can be expressed as the fibered product π∗F ∼= F ρ×πP
over M (where we have explicitly named the ρ : F → M bundle projection),
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which completes the pullback diagram

F ρ×πP P

F M

π

ρ

. (72)

We can illustrate all of the above maps in the diagram

E F ρ×πP F

N P M

ρ
ψ

πη

φ = D[ψ]

χ

τ φ ◦ τ
, (73)

where all the solid arrows commute, the dotted arrows denote bundle sections,
with τ : M → P denoting a particular “choice of parameters,” and φ ◦ τ was
silently composed with the projection F ρ×πP → F .

General case. Finally, it is possible to relax the requirement that the map
η : P → N factors as illustrated in diagram (73). The dimension of P could
exceed that of N and η need not be a surjection, not even a submersion. Omit-
ting the structure of the right square of diagram (73), we also replace F ρ×πP
by a simple bundle F → P , without requiring it to have the structure of a
fibered product. So, given bundles E → N and F → P , together with a
smooth map η : P → N , a map D : Γ(E → N) → Γ(F → P ) is called η-local if
φ(x) = D[ψ](x), x ∈ P , depends only on the germ of ψ at y = η(x) ∈ N . We
can illustrate this situation by the diagram

E F

N P
ψ

η

φ = D[ψ]
, (74)

which should be thought of as exactly analogous to diagram (73), but with the
right square missing. This the rather weak notion of η-locality, with a small
additional hypothesis (η non-locally constant), together with the condition of
weak regularity (Definition 2.2) is actually sufficient for the more general version
of Peetre–Slovák’s theorem.

Proposition A.1 (Peetre–Slovák’s Theorem [16, § 19.10]). Let F → P , E → N
be smooth bundles and η : P → N a non-locally constant11 smooth map, with the
interpretation as in diagram (74), and D : Γ(E → N) → Γ(F → P ) be an η-local
and weakly regular map. Then, for every compact K ⊆ P and ψ ∈ Γ(E → N),
there exists an integer r, an open neighborhood U ⊆ Jr(E → N) of jrψ(N) ⊂ U ,
with UK ⊆ U the subset projecting onto η(K), and a function d : UK → F that

11By non-locally constant we mean that for every open U ⊆ P the image η(U) contains at
least two points.
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commutes with all the projections, as illustrated by the diagram

Jr(E → N) ⊇ UK F |K

N ⊇ η(K) K ⊆ P

d

η

, (75)

such that D[ξ](x) = d◦jrξ(x) for any ξ ∈ Γ(E → N) with jrξ(N) ⊂ U . In other
words, D is a differential operator of locally finite order, where locality is with
respect to compact subsets of P and compact open neighborhoods in Γ(E → N).

Sketch of proof. With the definitions as discussed above, the proposition is es-
sentially a restatement of Theorem 19.10 of [16], which follows directly from
Theorem 19.7 and Corollary 19.8 that precede it. We refer the reader to the
book [16] for full details. Let us simply mention that, in general outline, the
proof proceeds by contradiction. If D depended non-trivially on an infinite
number of derivatives of its argument, then it would be possible to engineer a
smooth section ψ such that D[ψ] could not itself be smooth. While the proofs
in [16] rely on regularity instead of weak regularity, the weaker hypothesis is
actually sufficient, as we have discussed earlier.
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