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Abstract

Chemotherapy-resistant urothelial carcinoma (UC) has no uniformly curative therapy. 

Understanding how selective pressure from chemotherapy directs UC’s evolution and shapes its 

clonal architecture is a central biological question with clinical implications. To address this 

question, we performed whole-exome sequencing and clonality analysis of 72 UCs including 16 

matched sets of primary and advanced tumors prospectively collected before and after 

chemotherapy. Our analysis provided several insights: (i) chemotherapy-treated UC is 
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characterized by intra-patient mutational heterogeneity and the majority of mutations are not 

shared, (ii) both branching evolution and metastatic spread are very early events in the natural 

history of UC; (iii) chemotherapy-treated UC is enriched with clonal mutations involving L1-cell 

adhesion molecule (L1CAM) and integrin signaling pathways; (iv) APOBEC induced-mutagenesis 

is clonally-enriched in chemotherapy-treated UC and continues to shape UC’s evolution 

throughout its lifetime.

Introduction

Urothelial carcinoma (UC) results in 15,000 deaths annually in the United States1. 

Individuals with metastatic UC are standardly treated with platinum-based chemotherapy2–5. 

However, nearly all will progress and develop chemotherapy resistance3,6,7. Ultimately, the 

majority of patients will die of metastatic chemotherapy-resistant UC2,3,5. Little is known 

about the clonal architecture of advanced chemotherapy-treated UC or the evolutionary 

dynamics that lead to metastasis and chemotherapy resistance. Large genomic studies like 

The Cancer Genome Atlas (TCGA) have focused only on untreated primary tumors8. In 

particular, the extent to which chemotherapy-treated tumors share the genetic profile of the 

primary tumor remains unknown.

To understand the relative contributions of different subclones and the effects of 

chemotherapy as a selective pressure in UC, we performed whole exome sequencing and 

clonality analysis of matched sets of primary, metastatic and germline samples. Because 

cancers are genetically heterogeneous, we set out to address two fundamental questions: (i) 

what is the degree of clonal divergence between primary and metastatic UC? (ii) How does 

chemotherapy impact the genomic landscape of tumor cell populations in advanced and 

metastatic UC?

We employed the computational framework of CLONET (CLONality Estimate in Tumors) 

we developed previously9 (online methods) to adjust genomic events for tumor purity and 

ploidy, and then determine the relative abundance of tumor cell subpopulations through 

clonality analysis of genomic lesions. By comparing the frequency and patterns of 

CLONET-adjusted events between primary and metastatic tumors obtained from different 

anatomical sites and at different time points over each patient’s clinical course, we were able 

to reconstruct phylogenetic trees and compare clonal evolutionary patterns across the study 

cohort. We then proceeded to examine the clonally-enriched genomic signatures and trace 

the evolutionary footprints of mutagenesis mechanisms including the APOBEC3 family of 

cytidine-deaminases during each cancer’s evolution.

Results

Clonal mutational heterogeneity in chemotherapy-treated UC

To characterize the clonal architecture of advanced chemotherapy-treated UC, we performed 

whole exome sequencing of 72 prospectively collected urothelial tumors from 32 patients 

including 16 matched sets of primary, metastatic UCs and germline samples and two rapid 

autopsy cases (Fig. 1, Supplementary Table 1). The study was designed to enrich for patients 
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with advanced disease, 28/32 (88%) of patients either presented with or developed 

metastatic disease during the study period (Fig. 1, Supplementary Table 1). Overall, the most 

frequent mutations and copy number alterations in our cohort were consistent with the 

results of the TCGA dataset of untreated UC8 (Supplementary Fig. 1, Supplementary Table 

2). We observed no statistically significant difference in the number of SNVs between pre-

chemotherapy and post-chemotherapy tumors (Supplementary Fig. 2).

To compare the clonal structure of pre-chemotherapy and post-chemotherapy tumors across 

the study cohort, we investigated the number of private and shared mutations between the 

pre-chemotherapy and post-chemotherapy tumors within each patient as a fraction of the 

total mutational burden (Fig. 2a). On average, only 28.4% (range 0.2%–76.4%) of mutations 

were shared between pre- and post-chemotherapy samples (Fig. 2a). This effect was 

consistent across primary-primary tumor pairs and primary-metastatic tumor pairs (p=0.17, 

Wilcoxon test) (Fig. 2a). Surprisingly, even mutations in previously reported driver genes10 

including PIK3CA, KMT2D (MLL2), ATM and TP53 were not consistently shared between 

matched pre-chemotherapy and post-chemotherapy tumors (Fig. 2b). We confirmed these 

findings with targeted sequencing of 250 common driver genes achieving an average 

coverage of 400x and an excellent concordance with variant allele frequencies obtained from 

whole exome sequencing (Pearson correlation = 0.93, P<10−171) (Supplementary Fig. 3). 

Some post-chemotherapy tumors even evolved to develop different mutations in the same 

key gene. For example, in patient WCM077, the primary pre-chemotherapy tumor and the 

pelvic post-chemotherapy lymph node metastasis shared a TP53 p.Y234C mutation while 

the post-chemotherapy lung metastasis had a separate private TP53 p.G266V mutation that 

was not shared with the primary tumor (Fig. 2b, Supplementary Fig. 4). Taken together, our 

results demonstrate significant mutational heterogeneity in tumor samples from the same 

patient and suggest that chemotherapy is associated with a significant change in the 

mutational landscape of advanced urothelial carcinoma.

Early branching evolution in chemotherapy-treated UC

We conducted a phylogenetic analysis of 21 sets of matched tumors from patients from 

whom at least two tumor samples were available per patient using the parsimony ratchet 

method11 (Fig. 3, Supplementary Fig. 5). This analysis revealed a pattern of early branching 

evolution with several successive waves of clonal expansion occurring early in each patient’s 

UC. In every reconstructed evolutionary tree, the primary tumor was positioned as a branch 

indicating that the ancestral clone gave rise to multiple cell populations that evolved in 

parallel during the early stages of tumor evolution.

In order to better understand the pattern of clonal evolution during the course of 

chemotherapy, we followed another individual with UC from the time of diagnosis through 

death over a period of 16 months. We collected a total of 12 samples from 8 anatomical sites 

and at three different time-points: the primary untreated tumor obtained by transurethral 

resection of bladder tumor (TURBT) acquired at initial diagnosis, four areas of residual 

primary bladder tumor and one pelvic lymph node obtained by radical cystectomy and 

lymph node dissection following four cycles of gemcitabine-cisplatin chemotherapy, and six 

metastases obtained at time of rapid autopsy after docetaxel-ramucirumab therapy (4 distant 
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lymph nodes, 2 liver metastases) (Fig. 4a). We analyzed the genomes of these tumors to 

characterize the full evolutionary arc of the cancer from the time of diagnosis to death. 

Metastatic tumors obtained at autopsy harbored high clonal fractions (i.e. the percentages of 

clonal alterations compared to all alterations in a sample) (mean 83%, range 69%–91%) 

(Fig. 4b). Allele-specific copy number analysis identified a sub-clonal heterozygous deletion 

of the tumor suppressor CDKN2A in the primary tumor that evolved into a homozygous 

clonal deletion in the distant metastatic lymph nodes and liver lesions obtained from the 

autopsy. This was confirmed by fluorescence in-situ hybridization (FISH) (Fig. 4c) 

suggesting that CDKN2A loss was selected as the tumor evolved under pressure from 

chemotherapy. Comparison of clonality-adjusted frequencies of somatic alterations across all 

tumor samples from this patient revealed substantial heterogeneity. This heterogeneity 

followed several distinct patterns. Certain subclonal mutations (i.e. RYR2, ANKRD62, 
NCOA3 and LSS) were present in the primary tumor persisted and became enriched in the 

chemotherapy-treated metastatic lesions. Other subclonal mutations (i.e. POLD2, FOXP1, 
FGFR4, TRRAP, and EGFR) present in the primary were not observed in the metastatic 

lesions and were considered “private” to the primary tumor. We also observed other private 

mutations, which were present exclusively in the metastatic lesions (Fig. 4d). In fact, each 

tumor in this patient harbored a unique set of private mutations (mean 26.3, range 5–138) 

that was not shared with any of the other tumors (Fig. 4d).

Using clonally adjusted non-silent mutations from each tumor, we reconstructed the 

evolutionary tree of this patient’s UC (online methods) (Fig. 4e). This reconstruction 

revealed a complex branching evolutionary pattern. Early truncal mutations (RYR2, 
ANKRD62, NCOA3 and LSS) were present in the initial founder clone and shared by all 

descendent clones. At each clonal divergence node, additional mutations were acquired 

including mutations in driver genes such as TP53 and TSC1. Surprisingly, at the time of the 

patient’s initial cancer diagnosis, at least 5 waves of clonal expansion (each represented by a 

branching node, numbered 1–5) (Fig. 4e) had already occurred from the lowest common 

ancestor as observed in the mutational analysis of the TURBT tumor. This pattern suggests 

that branching evolution was a very early event in this tumor’s development. While the 

untreated TURBT tumor had a high fraction of tumor cells harboring founder mutations 

(Fig. 4e), it also had the farthest genetic distance from all other tumors. We attributed this 

long genomic distance to the high number of private mutations in the TURBT primary tumor 

sample (138 mutations) (Fig. 4d, Supplementary Table 3), many of which involve genes 

implicated in cellular responses to cisplatin including POLD2 and FOXP112–15. After 

neoadjuvant chemotherapy, these mutations disappeared from the evolutionary record when 

the cancer cells harboring them were likely eradicated by treatment and thus were not 

observed subsequently in any of the other tumors (Fig. 4d, 4e).

Interestingly, one of the earliest cancer cell clades had already separated at the first 

divergence node resulting in a population that metastasized to a pelvic lymph node (Fig. 4e). 

This lymph node was later dissected and removed at the time of radical cystectomy. Surgical 

removal of this lymph node possibly eliminated mutations from this particular clade from 

entering the genetic pool that later contributed to the development of additional distant 

metastases. On the other hand, by the time cystectomy took place, distant metastatic spread 
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had already occurred originating from a different cancer cell clade that branched at 

divergence node 5 to give rise to both bladder tumor #2 and all the lymph node and visceral 

distant metastases that were later collected at the time of the rapid autopsy. This transition 

from the primary to the metastatic state was marked by the acquisition of a non-silent 

mutation in tetraspanin8 (TSPAN8), a well-recognized pro-metastatic and angiogenesis-

promoting gene16–18(Fig. 4d, 4e). This sequence supports a possible role for this mutation as 

a key driver event underlying the metastatic spread of this patient’s UC. Altogether, our data 

strongly suggests that both branching evolution and metastatic spread are very early events 

in the natural history of UC.

Heterogeneity in copy number alterations

To understand how copy number alterations (CNA) evolve throughout the lifetime of UC 

and during chemotherapy, we conducted a detailed analysis of somatic genomic aberrations. 

Hierarchical clustering of 44 tumor samples based on allele-specific copy number alterations 

(online methods) showed two distinct clusters (Fig. 5a). Cluster A was defined by 9p21 

(CDKN2A, CDKN2B and MTAP) deletions in the setting of euploid copy number 

background. Cluster B was characterized by several enriched amplifications including 

1q21.1 (SETDB1 and MLLT11) amplifications, (P=0.0002, Fisher’s exact test) and 6p22.3 

(E2F3) amplifications, (P=0.001, Fisher’s exact test) (Supplementary Table 4). This cluster 

was also enriched with TP53 mutations (P=0.0001, Fisher’s exact test). The same CNAs 

clusters are consistently observed when extending our cohort with TCGA untreated UC10 

(Supplementary Fig. 6). We also observed an enrichment of tumors belonging to the TCGA 

bladder cancer cluster III (‘basal/squamous-like’)10 in our copy number cluster A (Fisher’s 

exact test P=0.02) (Supplementary Fig. 7). There was no statistically significant differential 

enrichment in the number of metastatic samples or chemotherapy treated-samples between 

the two clusters suggesting that these clusters may reflect a relatively stable feature of UC 

biology that is independent of treatment effects or disease stage. Overall, tumor samples 

from the same patient tended to cluster in the same group despite the presence of private 

CNAs. To quantify the degree of intra- and inter-patient heterogeneity, we interrogated 

CNAs from a panel of more that 30000 genes from the Ensembl catalog19. For each pair of 

tumor samples, we computed the Hamming Distance (HD) as the ratio between the number 

of genes that have different discrete copy number and the total number of genes analyzed. 

We identified a significant difference between intra-patient tumor pairs (median HD=0.20) 

and inter-patient pairs (median HD=0.53) (P=0.00000003, Wilcoxon test) (Fig. 5b). This 

limited intra-patient heterogeneity with respect to inter-patient heterogeneity suggests that 

each patient’s cancer is relatively stable during evolution at the copy number level.

We investigated the frequency of combined copy number alterations and mutations 

constituting the ATM/RB/FANCC signature that was previously associated with 

chemotherapy response in the neoadjuvant setting20. We identified this signature in 11/15 

(73.3%) in our pre-chemotherapy tumors and 11/29 (37.9%) (p=0.05) in post-chemotherapy 

tumors supporting the hypothesis that clones harboring these molecular alterations are likely 

to disappear after treatment and are superseded by tumor clones with wild-type ATM/RB/

FANCC that eventually progress to metastatic chemotherapy-resistant disease.
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Clonal enrichment of mutations in chemotherapy-treated UC

We hypothesized that the evolution of chemotherapy-treated UC would proceed in a 

direction that ultimately leads to the selection of mutations conferring proliferative or 

chemotherapy-resistance advantages. Using density analysis of CLONET-adjusted variant 

allele frequencies between pre-chemotherapy and post-chemotherapy tumors, we observed a 

significant increase in the number of clonal mutations in the post-chemotherapy samples 

across the study cohort (P=0.0134, Fisher’s exact test) (Fig. 6a, Supplementary Fig. 8) 

confirming the association between chemotherapy and increased clonality. To dissect the 

functional impact of these clonally enriched mutations, we conducted gene set enrichment 

analysis (GSEA) to identify enriched pathways in post-chemotherapy samples (Fig. 6b). 

This analysis showed a clonal enrichment of mutations in pathways involved in the trans-

membrane transport of small molecules (odds ratio = 1.9, FDR = 0.002) suggesting that 

mutations in multi-drug resistance genes may play a role in the progression of advanced 

chemotherapy-treated UC. In addition, GSEA demonstrated a significant enrichment in 

mutations mediating L1-cell adhesion molecule (L1CAM) (odds ratio = 1.9, FDR = 0.12), 

and integrin signaling pathways (odds ratio = 2.8, FDR = 0.02). The majority of mutations 

identified in the L1CAM and integrin signaling pathways (83% and 90% respectively) were 

missense mutations which can conceivably lead to gain-of-function molecular changes that 

activate these pathways. These results suggest a prominent role for mutations in L1CAM 
and integrin signaling pathways in conferring a selective advantage for resistance to 

chemotherapy in UC. Mutations in these pathways may also provide a potential mechanistic 

link between metastatic spread, tumor microenvironment, and drug-resistance that cooperate 

to promote tumor survival21–25.

Mutagenesis mechanisms driving the evolution of UC

To characterize the evolution of mutational signatures in advanced chemotherapy-treated 

UC, we examined the six possible single-base substitutions (C>A, C>G, C>T, T>A, T>C, 

and T>G). We identified significant differences in these mutational patterns between 

chemotherapy-naïve and chemotherapy-treated tumors with a statistically significant 

enrichment of C>A and C>G changes in the chemotherapy-treated tumors (Fig. 7a).

To distinguish between potential mutagenic mechanisms responsible for these changes, we 

matched mutational patterns derived from statistical analysis of nucleotide changes to well-

defined signatures of potential mutagens. We observed a significant increase in C>A 

nucleotide substitutions in tumors treated with cisplatin-based chemotherapy consistent with 

the specific mutagenesis signature induced in C. elegans genome after cisplatin 

treatment26,27. Further analysis of context motifs of various base substitutions showed 

enrichment in the (C> T or G changes at the TCW motifs, W–A or T) (Fig. 7b) which is 

highly suggestive of APOBEC-induced mutagenesis28,29. To confirm this finding, we 

compared the signature in our cohort to previously reported Sanger signatures28–30 (online 
methods). We observed 4 distinct signatures in our cohort (Fig. 7c). The first signature was 

very similar to Sanger signatures 2 and 13, attributed to APOBEC mutagenesis28–31. We 

detected three additional signatures corresponding to previously described mutagenic 

processes associated with age, smoking and ERCC2 mutations28,30. The low frequency of 

ERCC2 mutations in our cohort of chemotherapy-treated UC (Supplementary Fig. 1) is 
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consistent with previous reports suggesting that ERCC2 mutations are enriched in 

responders to cisplatin-based chemotherapy32,33 and likely selected against in tumors that 

progress through chemotherapy.

Because of the prominence of APOBEC-induced mutagenesis in UC, we focused on 

understanding how APOBEC-induced mutations evolve during chemotherapy by comparing 

the frequency of APOBEC-induced mutations in chemotherapy-naïve and chemotherapy-

treated tumors. We observed a significant enrichment in the APOBEC3-induced mutagenesis 

(C > T or G changes at the TCW motifs, W–A or T) in post-chemotherapy tumors (Fig. 7d). 

To dissect the relative contributions of individual members of APOBEC3 cytosine-

deaminases to this enrichment, we examined the preferred motif contexts favored by 

individual APOBEC enzymes for mutating respective cytosines34,35. APOBEC3A favors 

YTCA, while APOBEC3B favors RTCA motifs (wherein Y = pyrimidine, R = purine)34. 

APOBEC3G induces cytosine substitutions in the single stranded DNA overhang strand with 

a preference for the 5′-CCC-3′ motifs35,36. APOBEC3F preferentially mutates cytosines in 

the TTC motif (where the underlined C is the mutated nucleotide)37. We detected a 

significant enrichment in APOBEC3A-induced mutations (P=0.00001, Fisher’s exact test), 

and a similar enrichment of APOBEC3B mutagenesis (P=0.0395, Fisher’s exact test) in 

post-chemotherapy tumors. In contrast, APOBEC3G mutagenesis was substantially 

decreased in post-chemotherapy tumors (Fig. 7d). Furthermore, we observed a 

corresponding statistically significant increase in the clonality of APOBEC-induced 

mutations in post-chemotherapy tumors (Fig. 7e). Enrichment analysis of APOBEC-induced 

mutations highlighted key pathways involved in chemotherapy resistance including the ABC 

family of proteins (odds ratio=2.7, P=0.038, Fisher’s exact test) and homologous 

recombination DNA-damage repair (odds ratio=3.8, P=0.033, Fisher’s exact test) 

(Supplementary Table 5). Our findings suggest that the APOBEC mutational process is not 

merely a transient event in early UC oncogenesis but that it continues to shape the evolution 

of advanced UC and may promote clonal expansions of chemotherapy-resistant clones.

Discussion

Advanced chemotherapy-resistant UC remains a formidable clinical challenge with limited 

therapeutic options38. Whole-exome analysis of matched samples from the same patient 

from different anatomical sites and at sequential time points offers a unique opportunity to 

reconstruct the evolutionary dynamics and understand the mutagenic pressures shaping the 

evolution of primary untreated UC to advanced chemotherapy-treated UC.

Our analyses identified substantial spatial and temporal heterogeneity between tumors 

separated in time or by anatomical location within the same patient. The majority of 

mutations in the post-chemotherapy tumors were not shared with primary chemotherapy-

naive tumors. Branching evolution was the predominant path from primary chemotherapy-

naïve UC to advanced chemotherapy-treated UC. Very early in this path, several clonal 

waves separate from the original founder clone, many of which metastasize early in the 

tumor’s lifetime and continue to evolve in parallel with the primary tumor. Our findings shed 

light on the importance of addressing gaps in the existing knowledge of the clonality of early 

events in UC oncogenesis including multicentricity and malignant seeding, which could lead 
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to alternative interpretations of the phylogenetic trees. Additionally, our findings suggest that 

extensive heterogeneity and early branching evolution should be taken into consideration as 

additional layers of biological complexity that go beyond the traditional two-pathway UC 

oncogenesis model and potentially eclipse grade and stage classifciations39.

We demonstrate for the first time that chemotherapy-treated UC is significantly clonally 

enriched in mutations in L1CAM and integrin-signaling pathways. The majority of these 

mutations were missense mutations that could potentially lead to activation of these 

pathways but the precise functional impact of these mutations warrants future studies. Our 

results are consistent with data in pre-clinical models of other tumor types such as 

cholangiocarcinoma, ovarian carcinoma and pancreatic ductal adenocarcinoma 

demonstrating that L1CAM plays a key role in cisplatin-resistance and protecting cells from 

apoptosis40–43. L1CAM directly binds to integrin receptors via its RGD-motif in the sixth 

Ig-domain44,45 and there is considerable cross-talk between the two pathways46,47. Previous 

studies demonstrated that integrin-signaling plays important roles in overriding 

chemotherapy-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through 

activation of the PI3-kinase pathway48,49. Overexpression of Beta 1-integrin in 

hepatocellular carcinoma cell lines protected them against apoptosis induced by 

chemotherapeutic agents by activating MAP-kinase signaling50. Stimulating Beta1-integrin 

with an antibody ligand in leukemia cells prevented procaspase-8-mediated induction of 

apoptosis in a PI3K-dependent manner51. Collectively, these observations suggest that 

alterations in L1CAM and integrin signaling pathways potentially play a key role in 

chemotherapy-resistance in UC and provide a mechanistic intersection between the 

microenvironment and drug-resistance through cell-adhesion-mediated drug resistance 

(CAM-DR) phenomenon21,52,53. This phenomenon has been implicated in chemotherapy 

resistance in several malignancies54,55. L1CAM is potentially targetable with antibodies that 

have demonstrated efficacy in xenograft animal models of cholangiocarcinomas56,57, ovarian 

and pancreatic ductal carcinomas58. Focal Adhesion Kinase (FAK) inhibitors, which target 

integrin signaling, have been shown to profoundly sensitize cancer cells to chemotherapy 

and novel molecular therapeutics and are currently in early phase clinical trials59,60. Our 

results suggest that similar therapeutic approaches merit further study in chemotherapy-

resistant UC.

We clearly demonstrate an increase in APOBEC signatures in chemotherapy-treated tumors. 

One possible explanation for this interesting finding is that platinum-based chemotherapy 

increases the formation of APOBEC mutagenesis-prone single-stranded DNA (ssDNA)61,62. 

This ssDNA is formed during 5′→3′ resection that occurs at DNA double-strand-breaks 

during homology-directed repair 63. While allowing for error-free repair of these double-

strand-breaks DNA induced by the excision of platin-DNA adducts this process may 

potentially increase the availability of intermediary ssDNA to APOBEC mutagenesis63. Our 

results also suggest that APOBEC3A is the main enzyme responsible for mutagenesis in 

advanced chemotherapy-treated UC. This is in accordance with recent data suggesting that 

APOBEC3A-mediated mutagenesis is the key mutagenic cytidine deaminase in most tumor 

types because of its high proficiency in generating DNA breaks64. These findings suggest a 

potential mechanism by which chemotherapy acts to increase the genomic diversity of 

chemotherapy-treated tumors that requires future study. Our data demonstrate that the clonal 
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evolution of chemotherapy-treated UC is characterized by a dramatic divergence of the 

mutational landscape in the face of relative stability at the copy-number level over the 

lifetime of each tumor. This finding potentially reflects the dominance of APOBEC-induced 

mutagenesis in UC as a mechanism that preferentially induces single nucleotide changes 

throughout the tumors’ lifetime and during chemotherapy. An alternative explanation for the 

marked genomic alterations we observed in chemotherapy-treated samples is that a certain 

degree of genetic drift occurs over time irrespective of the effect of chemotherapy. However, 

it is unlikely that genetic drift is the sole mechanism accounting for the genetic 

heterogeneity we observed because chemotherapy is a potent selective pressure that is 

expected to alter the evolutionary dynamics affecting the pace and steering the direction of 

genetic drift. In fact, our results are consistent with evolutionary models suggesting that 

cancer’s adaptation ensues from the interaction between stochastic processes such as 

mutation generation and clonal selection, which is a deterministic phenomenon65. Our 

findings support this evolutionary model by demonstrating a complex and dynamic interplay 

between mutagenic mechanisms such as APOBEC-induced mutagenesis, and extrinsic 

selective pressures such as chemotherapy to constantly shape the clonal evolution of UC. As 

genetic information is passed from parent to progeny clones, each process leaves an 

evolutionary record of molecular alterations in descendent clones that allows reconstruction 

of the process. However, it is important to note that this record fully exists only in clones 

that survive selection. Unfit clones are eliminated from the record and can only be captured 

by serial sampling of cancer cells throughout the tumor’s lifetime whereas resistant clones 

are selected to expand and supersede previous clonal waves.

One major strength of our study is that it is the most comprehensive study of the clonal 

evolution of chemotherapy-resistant urothelial carcinoma. Limitations of our study include a 

small sample size. Of note, we included muscle invasive tumor samples from patients who 

were never treated with chemotherapy as controls.

Our findings have several potential clinical implications: First, genomic divergence between 

untreated and treated clones suggests that clinically actionable molecular targets in 

metastatic chemotherapy-treated tumors may be missed when relying only on biopsies of 

untreated primary tumors at the time of diagnosis, and that repeat metastatic biopsies during 

the course of clinical care would be needed to detect the most recent version of the rapidly 

changing molecular landscape of a given patient’s UC. Second, further study of the 

functional role of L1CAM and integrin-signaling in mediating chemotherapy-resistance in 

UC could lead to a potential strategy for reversing or preventing chemotherapy resistance by 

targeting these pathways. Third: despite its initial effectiveness in eliminating cancer cells, 

platinum-based chemotherapy is associated with unintended significant mutagenic editing of 

the genomic landscape of post-chemotherapy tumors. Our insight into the nature of these 

edits is crucial towards a complete understanding of the basis of chemotherapy-resistance in 

advanced UC, which may lay the foundation for the development of rational therapeutic 

strategies for preventing the emergence or reversing the chemotherapy-resistant state of UC.

In summary, our results demonstrate that advanced chemotherapy-treated UC undergoes 

extensive and dynamic clonal evolution throughout the lifetime of the tumor with significant 

genetic editing that continues during and after chemotherapy. Our findings lay the 

Faltas et al. Page 9

Nat Genet. Author manuscript; available in PMC 2017 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



foundation for an evolutionary understanding of advanced chemotherapy-treated UC and 

present opportunities for advancing cancer precision medicine.

Online Methods

Patient enrollment and tumor procurement

All experimental procedures were carried out in accordance with approved guidelines and 

were approved by the Institutional Review Board (IRB) at Weill-Cornell Medicine. Patients 

signed informed consent under (IRB) approved protocol (IRB #1305013903). Clinical 

information was collected from the chart. Smoking status was collected from self-

administered questionnaires. Tumor samples were obtained from patients through surgical 

resection or core biopsies.

Rapid autopsy procedures

The Englander Institute for Precision Medicine at Weill Cornell Medicine-New York 

Presbyterian has been established to promote personalized medicine focused on molecular 

diagnostics and therapeutics. Two patients in our series selected the option to be enrolled in 

the IRB-approved rapid autopsy program. In addition, patients’ next-of-kin provided written 

consent before autopsy. The WCM117 and WCM259 rapid autopsies were conducted within 

6 hours after death. A systematic autopsy protocol is followed where normal and malignant 

fresh tissue is collected, allocating samples to be snap frozen or formalin-fixed. The goal is 

to maximize the amount of tissue collected for research purposes. Once the tissue harvest is 

complete, the autopsy proceeds in accordance with the protocol established by the WCM 

Autopsy Service. For our current study, tissue samples from multiple sites were procured 

from each patient as detailed above. After H&E evaluation and frozen slide annotation, DNA 

was extracted for WES.

DNA extraction and next generation sequencing

In this study, we used a New York State approved whole exome sequencing assay developed 

in our CLIA laboratory called, EXaCT-11. After macro-dissection of target lesions, tumor 

DNA was extracted from FFPE or cored OCT-cryopreserved tumors using the Promega 

Maxwell 16 MDx (Promega, Madison, WI, USA). Germline DNA was extracted from 

peripheral blood mononuclear cells using the same method. Pathological review by one of 

the study pathologists (JMM, BR, MAR) confirmed the diagnosis and determined tumor 

content. A minimum of 200ng of DNA was used for whole exome sequencing. DNA quality 

was determined by TapeStation Instrument (Agilent Technologies, Santa Clara, CA) and was 

confirmed by real-time PCR before sequencing. Sequencing was performed using Illumina 

HiSeq 2500 (2x100bp). A total of 21,522 genes were analyzed with an average coverage of 

85x (range 60–102, Supplementary Table 6) using Agilent HaloPlex Exome (Agilent 

Technologies, Santa Clara, CA). We developed a targeted sequencing assay of 250 cancer 

genes (referred to as N250) using hybrid-capture SeqCap EZ Choice Enrichment Kits 

(Roche Sequencing, Pleasanton, CA) (Supplementary Table 7 and Supplementary Table 8). 

Sequencing was performed using Illumina HiSeq 2500 (PE 2x75) achieving an average 

coverage of 400x.
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Study sample size definition

Our study includes 72 samples from 32 patients. However, patient WCM117 comprises 12 

samples (17% of the total) and to avoid possible statistical biases in the analysis, we utilized 

WCM117 (12 samples) only in Fig. 4, as a specific case study to better understand how 

chemotherapy shapes evolution. Finer analysis, as allele specific copy number (Fig. 5a) and 

SNVs clonality (Fig. 6a) also require an estimate of ploidy and purity. After manual 

inspection of CLONET outputs, we ended up with 44 samples in 25 patients with reliable 

ploidy and purity estimates. The exact number of samples and patients used in each figure is 

reported in Supplementary Notes.

Sequence data processing pipeline

All the study samples data were processed through the computational analysis pipeline of 

the Institute of Precision Medicine at Weill Cornell/New York Presbyterian Hospital (IPM-

Exome-pipeline)1. Raw reads quality has been assessed with FASTQC as described 

previously1. Multi-sample patient data were tested for genotype distance using SPIA2. 

Pipeline output includes segment DNA copy number data, somatic copy-number aberrations 

(SCNAs) (Supplementary Table 9), and putative somatic single nucleotide variants (SNVs) 

(Supplementary Table 10). Finally, to assess tumor ploidy and purity we applied CLONET3 

on segmented data and allelic fraction (AF) of germline heterozygous SNP loci (termed 

informative SNPs, see Allele specific copy number analysis). Upon visual inspection of 

CLONET output, 53 of 72 samples data were deemed appropriate for downstream copy 

number analysis; excluded samples data were not associated with chemotherapy treatment 

(p=0.4384) or biopsy site (p=1).

We have previously published on how EXaCT-1 was developed and optimized for use with 

FFPE and Frozen samples- in contrast to many research-grade assays1. To further ensure that 

our results reflect biological effects rather than technical variability between different 

sample types, we took special care to account for variations in tumor content for each 

sample in order to correctly map the clonal evolution of UC. In particular, we did not 

observe any significant difference (P=0.1, Wilcoxon test) when comparing FFPE and fresh 

samples purity (Supplementary Fig. 9a). Similarly, we did not detect differences (P=0.137, 

Wilcoxon test) in the numbers of identified non-silent SNVs between FFPE and fresh 

samples (Supplementary Fig. 9b).

Allele-specific copy number analysis

Somatic copy number altered regions are defined by the log2 of the ratio between the tumor 

and normal local coverage normalized by the global tumor and normal coverage ratio 

(named log2R). CLONET refines copy number data adjusting each log2R to account for 

both aneuploidy and tumor purity. Combining purified log2R values and AF of informative 
SNPs, CLONET assigns allele-specific copy number values, represented as a pair (cnA, 

cnB), to each genomic segment4. Quality filters require at least 10 informative SNPs and a 

mean coverage of 20 reads to call allele-specific values of a segment. If a segment does not 

pass filters, adjusted log2R values below −0.4 (above 0.4) were categorized as copy number 

loss (gain).
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Differential copy number analysis between pre- and post-chemotherapy has been performed 

on a set of 1160 genes selected among putative cancer genes [COSMIC5 and Intogen6] 

(cancerGenes) and bladder-specific genes (Supplementary Table 11).

Unsupervised clustering analysis was performed on allele-specific copy number of cancer 
Genes by means of hierarchical clustering. Briefly, each gene gID is represented as a pair of 

real values corresponding to the allele-specific copy number of the genomic segment 

comprising gID. Then, the Euclidean distance on allele-specific copy number calls is used as 

distance; this approach distinguishes between ambiguous cases such as copy number wild 

type status (allele-specific values (1,1)) and copy number neutral loss (2,0) both 

corresponding to log2R=0 leading to more informative clusters (Supplementary Table 4). 

Copy number based analysis identified two clusters that we named WCM_A and WCM_B 

(Fig. 5, Supplementary Fig. 6), which we compared with the original four TCGA clusters (I, 

II, III, IV) resulted from integrated analysis of mRNA, miRNA and protein data7 

(Supplementary Fig. 7). Given a TCGA cluster X, we tested the null hypothesis that clusters 

WCM_A and WCM_B contain the same proportion of samples from X using Fisher’s exact 

test (significance level = 0.05).

Single nucleotide variations analysis

To improve the quality of SNVs calls in targeted exons, we applied an integrated approach. 

We first ran both MuTect8 and SNVseeqer9 to nominate putative aberrant genomic positions. 

Then, closely looked at the identified positions by means of ASEQ10 in normal and germline 

samples executing pileup analysis; for each single nucleotide position identified as putative 

aberrant, ASEQ returns information about the read count for each of the 4 bases A, C, G, 

and T. To reduce false positives, we required base quality and read quality above 20. Finally, 

a genomic position is considered aberrant in a tumor sample, if the read count of the 

alternative base is 0 in the matched germline and 3 or more in the tumor. This step allows to 

(i) filter out remaining germline SNPs, that is, positions where the alternative base is present 

in the control sample; (ii) check for the presence of SNVs with low AFs in patient’s multiple 

samples data. This step is particularly relevant in this study, because SNVs identification 

methods are designed to work on a single normal-tumor pair, and they do not consider that 

samples from the same patient could share the same SNVs because they are not independent 

samples. Finally, we annotated genomic position with information relevant for cancer 

analysis with Oncotator11 (v1.8.0.0). We exploited the last Oncotator datasource corpus 

including annotations about gene/transcript names, functional consequence (e.g. missense or 

nonsense), the predicted impact on protein function, annotation from cancer specific 

resources as COSMIC or TCGAscape, and possible published results about the specific 

mutation (Supplementary Table 10). A full description of the resources used by Oncotator is 

available in the tool help page. We identified 13 possible functional consequences 

(Supplementary Fig. 10) described in the Sequence Ontology12. To avoid overestimating 

divergence among samples from the same patient, we were conservative in defining SNVs 

that more likely produce a change in the protein, i.e., they affect the phenotype, and we 

considered non-silent only mutation classified as missense, nonsense, splice_site, nonstop, 

and start codon. However, for the analysis described in Fig. 7, we included all the identified 

mutations (Supplementary Fig. 10) as mutational mechanisms also affect mutations with 
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neutral functional effects. To further confirm our findings and to check for possible biases 

introduced by the definition of silent mutations, we also performed the analysis of Figs. 2, 3, 

4, and 6 using both silent and non-silent SNVs obtaining comparable results (Supplementary 

Fig. 11, 12, 13 and 14).

SNVs enrichment analysis

Gene Set Enrichment Analysis (GSEA) refers to a computational method that identifies set 

of genes that are statistically enriched for a given observable variable. In this study, we 

interrogated the REACTOME pathway database to search for pathways showing a 

significant increase in the number of SNVs. We applied Fisher’s exact test followed by FDR 

correction by Benjamin-Hochberg (BH) procedure. REACTOME pathways with FDR≤0.2 

are reported in Fig. 6b. We also checked if, among significant pathways, there is statistically 

significant difference between pre- and post-chemotherapy samples. Given a pathway P, 

Fisher’s exact test determines the probability that the number of SNVs in P is different when 

considering pre- and post-chemo samples. After FDR correction (BH procedure), we 

highlighted nodes in Fig.6b with FDR≤0.2.

Phylogenetic analysis

High-quality variants identified in the previous steps were used to re-construct the 

phylogenetic tree of each patient using the parsimony Ratchet method13 (Fig. 3, Fig. 4e and 

Supplementary Fig. 5). In this representation, each node models a population of tumor cells. 

Nodes with no children, named leafs, represent cell populations from a tumor sampling, i.e., 

a tumor biopsy. Internal nodes model inferred tumor cell populations from observed SNVs. 

The node named WT represents a hypothetical population of wild type cells (cells with no 

somatic aberrations). In phylogenetic trees, an edge connects two nodes; the length of an 

edge is proportional to the number of SNVs. For instance, in Fig. 4e, node 1 corresponds to 

the least common ancestor inferred from all the available biopsies with the number of 

mutations proportional to the length of the edge from WT to 1. Node 1 is also connected to 

the Pelvic LN met and to the inferred cell population 2. A branch represents a time point in 

the evolution of the tumor where two distinct cell populations emerge; the length of the 

branches models the number of SNVs that are private to each population. In Fig. 4e, we 

observed few private mutations in the Pelvic LN met with respect to the number of SNVs 

shared by all the other samples, as supported by heatmap in Fig. 4d.

Clonality of single nucleotide variants

Original CLONET implementation allows for the computation of the clonality of an SNV 

with copy number normal genomic segment, i.e. the segment has an allele-specific copy 

number (1, 1). Here we extended it to allow for SNV clonality estimation independently 

from the copy number status of the genomic segments in which the SNV lies. Given the 

tumor purity P, the allele specific copy number (cnA, cnB), and the number of reads nRef 
and nAlt supporting the reference and the alternative base, respectively, estimating the 

clonality of a SNV requires to compute expected AF. We observed that AF could assume 

only a finite number of values given the DNA copy number state. For instance, let’s assume 

that a locus is aberrant (mutated) in one allele and wild-type (not mutated) in two alleles, i.e. 
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SNV in a copy number aberrant segment (CN=3). In this case, with tumor cellularity equal 

to 100% and clonal SNV, the VAF would be equal to 1/3. Given the number of allele cnSNV 
harboring a SNV, the expected VAF is defined as

To estimate cnSNV, we followed parsimony approach assuming cnSNV that best explains 

VAF adjusted by DNA admixture, computed as previously described3. We computed the 

clonality of SNVs using the distance between the observed and expected VAF as

Complete proof in Supplementary Notes.

Single nucleotide variants signatures

SNVs are partitioned into six mutation classes (column “Mutation class”, Supplementary 

Table 10) corresponding to six types of base pair substitution, C>A, C>G, C>T, T>A, T>C, 

T>G. The null hypothesis that pre- and post-chemotherapy samples are equally likely to 

harbor SNVs of a specific mutation class is tested with Fisher’s exact test (Fig. 7a). The 

fingerprint of a SNV includes the two bases immediately 5′ and 3′ to each SNV position 

(column “Genomic context”, Supplementary Table 10) for a total of 96 possible mutation 

fingerprints14. Fisher’s exact test adjusted for multiple hypotheses testing with Benjamin-

Hochberg procedure returns the likelihood that a mutation fingerprint is enriched in pre- or 

post-chemotherapy samples (Fig. 7b). As the set of mutation fingerprints of a tumor sample 

is a proxy for the mutational processes that shape the cancer genome, we studied the 

mutational signatures of our study samples and compared them the with the Sanger 

signatures14 applying the same approach recently proposed15. Briefly, the Sanger signatures 

were obtained from the identification of 30 mutational processes signatures (named Sanger 
signatures) upon application of the original tool on more than 10,000 samples from 40 

distinct human cancer types14. In our dataset, we identify 4 mutational signatures (Fig. 7c); 

the Sanger signature analysis reveals that APOBEC proteins play a role in the mutational 

processes shaping UC genomes. We checked for statistically significant differences between 

pre- and post-chemotherapy of individual members of the APOBEC family using Fisher’s 

exact test followed by Benjamin-Hochberg FDR correction (Fig. 7d). To test if the clonality 

of APOBEC induced SNVs is enriched in post-chemotherapy samples, we dichotomized the 

SNV clonality levels (threshold 0.6) and then we applied Fisher’s exact test (Fig. 7e).

Fluorescence in situ hybridization

Two 4-μm-thick tissue sections from each block were cut for FISH analysis. CDKN2A 
deletion was determined using FISH probe (BAC clone RP11-149I2) and a reference probe, 

Faltas et al. Page 14

Nat Genet. Author manuscript; available in PMC 2017 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



located at 9p21. At least 100 nuclei were evaluated per sample using a fluorescence 

microscope (Olympus BX51; Olympus Optical).

Statistical analysis

For statistical tests, two-sided Mann–Whitney–Wilcoxon test (referred to as Wilcoxon test in 

the main text) was used to check for significant differences between two distributions. The 

two-sided Fisher’s exact test was applied to determine whether the deviations between the 

observed and the expected counts were significant. When appropriate p-values were adjusted 

for multiple hypotheses testing with Benjamin-Hochberg procedure. Boxplot statistics were 

computed with the function “boxplot” of R programming language. No statistical methods 

were used to predetermine study sample size.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clinical characteristics of study cohort
(a) Bar graph illustrating number of tumor samples sequenced from each study subject. 

Treatment status of each sample is color-coded within each bar (see inset). Gender, smoking 

status development of metastases and history of intravesical Bacillus Calmette-Guerin 

(BCG) for pre-existing non-muscle invasive bladder cancer are represented on the bottom 

(b) Schematic illustrating anatomical sites of primary and metastatic tumor samples.
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Figure 2. Clonal mutational heterogeneity in chemotherapy-treated UC
(a) Percentage of shared and unique SNVs in matched chemotherapy-naive and 

chemotherapy-treated UC tumors. (b) Discordance in the mutational status in selected driver 

genes between chemotherapy-naive and chemotherapy-treated UC tumors. Each column 

represents a paired set of pre- and post-chemotherapy tumors obtained from an individual 

subject. Individuals with more than one paired set of tumors are highlighted with matching 

color designations. Primary-primary tumors are represented on the left (vertical hatching) 

and primary-metastatic tumors are represented on the right (slanted hatching). Note: ERCC2 
missense mutations were identified in two tumor samples, WCM259_3 (p.Q755H) and 

WCM141_1 (p.T484M), matched pre- and post-chemotherapy samples were not available 

from either patient.
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Figure 3. Early branching evolution in UC
Phylogenetic trees (top), shared and private clonally-adjusted mutations (bottom) from 6 

patients with three or more tumor samples per patient. All cases showed early metastatic 

spread occurring as branching evolution occurred early in the natural history of the disease. 

All primary tumors temporally preceded the development of metastasis but were assigned 

“branch” values based on genomic distance suggesting early branching evolution and 

metastatic spread.
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Figure 4. Reconstructing the spatio-temporal evolution of UC over time and through different 
treatments
Analysis of 12 tumor samples collected during disease progression and at the time of death 

of patient WCM117 (a) (top) Circles represent sites of sequenced tumors. (bottom) Timeline 

and clinical course (vertical lines) in the natural history of the disease. (b) CLONET-

adjusted variant allele frequencies of selected mutations. Each dot represents the fraction of 

cells harboring the corresponding mutation. (c) Fluorescence in-situ hybridization for 

CDKN2A (red) and reference (green) probes in primary cystectomy tumor #4 (right) and 

right supraclavicular lymph node collected at time of autopsy (left) (scale bar 5 μm). Middle 

panel: allele-specific copy number. Axes correspond to different alleles. Dots represent 

CDKN2A allele-specific copy number. (d) CLONET-adjusted shared and private mutations. 
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Fractions of tumor cells harboring each mutation represented by shades of green (scale 

upper left corner of panel). Gray: clonality information was not available. (e) Reconstruction 

of evolutionary tree. WT: taken last ancestor with wild-type genome that acquires a series of 

mutations during oncogenesis. The length of the branches represents the distance between 

two tumors based on the number of shared mutations. Samples are color-coded consistently 

across panels: Yellow: primary pre-chemotherapy TURBT. Orange: 4 different areas of post-

gemcitabine cisplatin bladder tumors and pelvic lymph node metastatic lesion removed 

through cystectomy and lymph node dissection. Green: post-docetaxel-ramucirumab 

metastatic lesions removed during autopsy.
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Figure 5. Hierarchical clusters of 44 UC tumor samples by copy-number alterations
(a) Copy number gains are represented in red and copy number losses are represented in 

blue. Each column represents one tumor sample. Clinical annotations are represented on top. 

Matched samples from the same patient are represented in the same color in the “matched 

samples” annotation track. Selected genes harboring frequent copy number alterations are 

listed on the left. (b) Dots represent pairs of samples in Fig. 5a from the same patient (left) 

and from different patients (right). Left boxplot: median 0.2, IQR (0.13, 0.28), whiskers 

(0.05, 0.49). Right boxplot: median 0.53, IQR (0.42, 0.66), whiskers (0.07, 0.93).
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Figure 6. Clonal enrichment of mutations in chemotherapy-treated UC
(a) Density plot representing clonality of non-silent single nucleotide variants (SNVs) on the 

X-axis and the density distribution on the Y-axis. Pre-chemotherapy tumor samples are 

represented in blue color and post-chemotherapy tumor samples in green. Box plots (right) 

represent the percentage of clonal SNVs in pre-chemotherapy tumor and post-chemotherapy 

tumors demonstrating a significant increase in clonality in post-chemotherapy UC tumors. 

Left boxplot: median 0.5, IQR (0.41, 0.71), whiskers (0.24, 0.88). Right boxplot: median 

0.83, IQR (0.61, 0.89), whiskers (0.22, 0.94). (b) Results of Gene set Enrichment Analysis 

(GSEA) of mutations in chemotherapy-treated UC. Each node represents one REACTOME 

pathway. Node size represents number of genes in each pathway. Enriched pathways post-

chemotherapy samples are represented by nodes in red color.
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Figure 7. Mutagenesis in advanced UC is shaped by chemotherapy and APOBECs
(a) Composite bar graphs representing the distribution of all possible nucleotide 

substitutions in non-silent SNVs in sequenced pre-chemotherapy (left) and post-

chemotherapy (right) UC tumors. (b) Nucleotide motif contexts for each category of single 

nucleotide substitutions. Blue: pre-chemotherapy tumors, green: post-chemotherapy tumors. 

(c) Four mutational signatures identified in UC. (d) Significant enrichment of APOBEC 

signatures in post-chemotherapy tumors. (e) Significant increases in the clonality of 

APOBEC-induced mutations in post-chemotherapy UC. Number of SNVs, exact p-values, 

and total number of samples are reported in Supplementary Note.
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