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Abstract. Let Ω be a bounded domain of R3 whose closure Ω is polyhedral, and let T be a triangulation

of Ω. We devise a fast algorithm for the computation of homological Seifert surfaces of any 1-boundary of T ;

namely, 2-chains of T whose boundary is γ. Assuming that the boundary of Ω is sufficiently regular, we provide

an explicit formula for a homological Seifert surface of any 1-boundary γ of T . It is based on the existence of

special spanning trees of the complete dual graph, and on the computation of certain linking numbers associated

with those spanning trees. If the triangulation T is fine, the explicit formula is too expensive to be used directly.

To overcome this difficulty, we adopt an easy and very fast elimination procedure, that sometimes fails. In such

a case a new unknown can be computed using the explicit formula and the elimination algorithm restarts. The

numerical experiments we performed illustrate the efficiency of the resulting algorithm even when the homology

of Ω is not trivial and the triangulation T of Ω consists of millions of tetrahedra.
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1. Introduction. A basic concept of knot theory is the one of Seifert surface. A Seifert

surface of a smooth knot of R3 is an orientable compact smooth surface of R3 having the knot as

its boundary (see [29]). If the Seifert surface has minimum area, then it is called minimal surface

of the knot. The notion of Seifert surface has a natural counterpart in simplicial homology

theory. Let Ω be a bounded domain of R3 whose closure Ω in R3 is polyhedral, and let T be

a triangulation of Ω. A 1-cycle γ of T is a formal linear combination (with integer coefficients)

of oriented edges of T with zero boundary. The 1-cycle γ is said to be a 1-boundary of T if it

is equal to the boundary of a 2-chain of T ; namely, equal to the boundary of a formal linear

combination S of oriented faces of T . If such a S exists, we call it homological Seifert surface of

γ in T .

Given an orientation of the edges and of the faces of the triangulation T of Ω, the problem

of constructing a homological Seifert surface of γ in T can be formulated as a linear system with

as many unknowns as faces and as many equations as edges of T . The matrix A of this linear

system is the incidence matrix between faces and edges of T . This matrix is very sparse because

it has just three nonzero entries per column and the number of nonzero entries on each row is

equal to the number of faces incident on the edge corresponding to the row. We are looking for

an integer solution of this sparse rectangular linear system. These kinds of problems are usually

solved using the Smith normal form, a computationally demanding algorithm even in the case

of sparse matrices (see e.g. [26] and [21, 17]). In this way, the natural linear algebra formulation

of the mentioned problem leads to a high complexity algorithm.

The aim of this paper is to devise a fast and robust algorithm to compute a homological Seifert

surface S of any given 1-boundary γ of T . Here we are not interested in questions concerning the

regularity or the minimality of S. Even if the 1-boundary γ of T is a polygonal knot (without

∗Dipartimento di Matematica, Università di Trento, Italy
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self-intersections), in general, our algorithm gives a homological Seifert surface of γ in T , which

is neither a genuine polyhedral Seifert surface (it may have self-intersections) nor a polyhedral

minimal surface in T . In fact, our motivations for studying homological Seifert surfaces are

completely different, as we explain below. However, we think that, in future investigations,

our approach could be taken as a new starting point to obtain polyhedral Seifert and minimal

surfaces.

The identification of homological Seifert surfaces is a fundamental task in very different fields.

Let us recall two remarkable examples.

They appear in Stokes’ theorem: given a sufficiently regular vector field Z defined in Ω and a

1-boundary γ of T , we have that
∮
γ
Z·ds =

∫
S

curlZ·ν, where S is any homological Seifert surface

of γ in T . As a consequence, homological Seifert surfaces are a powerful tool in computational

electromagnetism, in particular for the construction of vector fields with assigned discrete curl.

This is an initialization step required in many algorithms, because, thanks to Ampère’s law, we

know that the curl of the magnetic field equals the current density (see, e.g., [8, 19, 5]).

Homological Seifert surfaces are also a key point in the construction of bases of the relative

homology group H2(Ω, ∂Ω;Z). Let {σ′m}gm=1 be 1-boundaries of T contained in ∂Ω whose homo-

logy classes in R3 \ Ω form a basis of the first homology group of R3 \ Ω (for a construction of

such a basis see, e.g., [20] and [4]). If Sm is a homological Seifert surface of σ′m in T for each

m ∈ {1, . . . , g}, then the Poincaré-Lefschetz and the Alexander duality theorems ensure that the

relative homology classes [Sm] of the Sm’s form a basis of H2(Ω, ∂Ω;Z). We refer the reader to

[10, 19] for the possible applications of the surfaces Sm’s.

There is extensive literature concerning the construction of minimal surfaces, which is a

more difficult problem (see [13, 14, 15]). In [31], Sullivan formulated this problem as a linear

programming problem. This idea was developed by Dey, Hirani and Krishnamoorthy in [12]

and by Dunfield and Hirani in [18] (see also [27, 28]). However, in the two possible applica-

tions of homological Seifert surfaces described above regarding Stokes’ theorem and the bases of

H2(Ω, ∂Ω;Z), the computation of genuine Seifert surfaces or of minimal surfaces does not offer

any advantage. On the contrary, the inevitable increase of the computational cost needed to

obtain such types of surfaces may prevent their effective use in the mentioned applications.

Even if the question of computing homological Seifert surfaces is very natural and significant,

there are relatively few works on efficient and general algorithms to compute such surfaces. To the

best knowledge of the authors, the first papers on this subject are those of Allili and Kaczynski

[3, 22] (see also [24]). There the motivation for studying this problem is the computation of

the homomorphism induced in homology by a continuous map, which is an important tool in

the theory of dynamical systems (see [2]). In [3], the authors consider a d-dimensional cycle

γ of a rectangular domain Ω of Rn, equipped with a cubical subdivision. Taking advantage

of the product structure of such a domain and of such a subdivision, they obtain an efficient

algorithm to compute a (d+ 1)-chain S in Ω with boundary equal to γ. The algorithm proposed

by Kaczynski in [22] works in polyhedral domains of Rn with trivial homology. It is based on

a reduction strategy introduced in [23], and hence the coefficients used belong to a field, and

not to Z. The computational complexity of this algorithm is expected to be at most cubic in

the number of edges of the triangulation of Ω. Potentially, this complexity is linear in some

particular cases (for example, when γ is a trivial polygonal knot in a triangulated cube Ω of R3).

However, numerical experiments are not reported.

The novelty of the algorithm that we propose and analyze in the sequel is the use of a
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combinatorial technique, instead of an algebraic one, to greatly improve computational time. It

works in general polyhedral domains of R3 (with ∂Ω satisfying a mild regularity condition) and

it uses integer coefficients. The theoretical worst-case complexity is cubic. However, making

use of breadth-first spanning trees, the complexity turns out to be linear in all the numerical

experiments we performed (see Section 5). It avoids any reduction strategies that are, in fact,

quite time consuming (see [16] for some numerical experiments comparing different state-of-

the-art reduction strategies). Another feature of our algorithm is that it can be immediately

vectorized: if many homological Seifert surfaces are required on the same triangulation T of Ω,

then all the surfaces can be generated at once. Finally, the algorithm can also be used to detect

if a 1-cycle of T is a 1-boundary of T or not (see Remark 14).

Let Ω be a bounded domain of R3 whose closure Ω in R3 is polyhedral, let T be a triangulation

of Ω and let γ be a 1-boundary of T . A first difficulty to devise a general and efficient algorithm

to compute a homological Seifert surface S of γ in T is that this problem does not have a unique

solution. Indeed, the kernel of the edge-face incidence matrix A of T is never trivial. If t is the

number of tetrahedra of T and Γ0,Γ1, . . . ,Γp are the connected components of ∂Ω, then ker(A)

is a free abelian group of rank t + p ; namely, ker(A) is isomorphic to Zt+p. One of its bases

is given by the boundaries of tetrahedra of T and by the 2-chains γ1, . . . , γp associated with

the triangulations of Γ1, . . . ,Γp induced by T . This follows easily from the fact that the third

homology group of Ω is null and the 2-chains γ1, . . . , γp represent a basis of the second homology

group of Ω (see Remark 9 below).

A natural strategy to obtain a unique solution S is to add t+p equations, by setting equal to

zero the unknowns corresponding to suitable faces f1, . . . , ft+p of T . From the geometric point of

view, this is equivalent to imposing that the homological Seifert surface S of γ does not contain

the faces f1, . . . , ft+p. Now the problem is to understand how to choose such faces. Our idea to

make this choice is to use a suitable spanning tree of the dual complex of T . More precisely, we

introduce the complete dual graph of T denoted by A′. Let F be the set of faces of T , F∂ the set

of faces of T contained in ∂Ω and E∂ the set of edges of T contained in ∂Ω. The dual edge ε′f of a

face f ∈ F and the dual edge ε′` of an edge ` ∈ E∂ are defined in the following way. If f ∈ F∂ , then

it is contained in a unique tetrahedron t and ε′f := {B(f), B(t)}, where B(f) is the barycenter

of f and B(t) the barycenter of t. If f is an internal face of T (namely f ∈ F \ F∂), then it

is the common face of exactly two tetrahedra t1 and t2, and ε′f := {B(t1), B(t2)}. Similarly, if

` ∈ E∂ , then it is the common edge of exactly two faces f1, f2 in F∂ , and ε′` := {B(f1), B(f2)}.
The vertices of A′ are the barycenters of tetrahedra of T and the barycenters of faces in F∂ ,

and the edges of A′ are the dual edges {ε′f}f∈F and {ε′`}`∈E∂
. Let B′ be a spanning tree of A′.

Denote by NB′ the number of faces of T whose dual edge belongs to B′; namely, the number of

edges of B′ not contained in ∂Ω. It is not difficult to see that, for all spanning trees B′ of A′,
NB′ ≥ t + p. The equality holds true if and only if, for each i ∈ {0, 1, . . . , p}, the graph induced

by B′ on Γi is a spanning tree of the graph induced by A′ on Γi (see Remark 9). If the spanning

tree B′ of A′ has the latter property of induced graphs, then we call it Seifert dual spanning tree

of T (see Definition 8).

Our main result, Theorem 10, shows that if B′ is a Seifert dual spanning tree, then, for

every 1-boundary γ of T , there exists a unique homological Seifert surface S of γ in T , which

does not contain faces of T whose dual edges belong to B′. Furthermore, if f is a face of T
whose dual edge ε′f does not belong to B′, then f appears in S with a coefficient equal to the

linking number between γ (suitably retracted inside Ω) and the unique 1-cycle σB′ (ε
′
f ) of A′ with
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all the edges except ε′f contained in B′. As a byproduct, in Theorem 12, we solve the related

problem concerning the existence and the construction of internal homological Seifert surfaces

of γ; namely, homological Seifert surfaces of γ formed only by internal faces of T .

The construction of Seifert dual spanning trees of T is quite easy and the computation of

the linking number between two simplicial 1-cycles of R3 can be performed in a very accurate

and efficient way (see [6]). However, for a fine triangulation T , the number of faces whose dual

edge does not belong to a given Seifert dual spanning tree of T is very large: it is equal to

e − v + 1 − g ≥ 1
2v + 1 − g, where e is the number of edges of T , v is the number of vertices of

T , and g is the first Betti number of Ω (see Section 4). Thus, the use of the explicit formula in

terms of linking number turns out to be too expensive. To overcome this difficulty, we adopt an

elimination procedure, similar to the one proposed by Webb and Forghani in [32] for the solution

of three-dimensional magnetostatic problems. When this procedure fails, one can compute a

new unknown by using the explicit formula and then restart the elimination algorithm. Most

often, the elimination procedure itself computes directly the homological Seifert surfaces. In

the numerical experiments we performed, the elimination procedure fails only in one example

where the computational domain is the complement of a thickened trefoil knot in a cube and the

boundary γ embraces two branches of the knot. In this example it is enough to use the explicit

formula once to restart the elimination algorithm (see Section 5.3).

We remark that what developed in this paper for simplicial complexes extends to general

polyhedral cell complexes; namely, finite regular CW complexes.

The remainder of the paper is organized as follows. In Section 2, we specify the topological

requirements on the domain Ω, recall some classical homological notions and constructions, and

introduce some new geometric concepts, such as corner edge, coil, and plug. Section 3 is devoted

to the presentation and the proof of our main theoretical result (Theorem 10) and of some of

its consequences (Theorem 12 and Corollary 13). In Section 4, we describe the above mentioned

elimination algorithm to improve the implementation of our main theorem. Finally, in Section

5, we perform several numerical experiments with the algorithm.

2. Preliminary homological notions. Throughout the remainder of this paper, Ω will

denote a bounded polyhedral domain of R3 whose boundary ∂Ω is locally flat; that is, for every

point x ∈ ∂Ω, there exists an open neighborhood Ux of x in R3 and a homeomorphism φx :

Ux −→ R3 such that φx(Ux ∩ ∂Ω) = P , where P is the coordinate plane {(x, y, z) ∈ R3 | z = 0}
(see [9, 7]). This kind of domains includes all Lipschitz polyhedral domains, but also domains

like the crossed bricks (see, e.g., Fig. 3.1 in [25]).

2.1. Cycles, boundaries, and homological Seifert surfaces. We recall some notions

of homology theory. Most of them are classical and well-known (see, e.g., [26]), but we recall

them in order to fix the notation for the introduction of new concepts such as corner-free 1-chain

and internal homological Seifert surface.

The basic concept is that of a chain. A 0-chain of R3 is a finite formal linear combination∑n
i=1 pivi of points vi ∈ R3 with integer coefficients pi. We denote by C0(R3,Z) the abelian

group of 0-chains of R3.

Given two different points a,b in R3, we denote by [a,b] the oriented segment of R3 from a to

b. The segment of R3 with vertices a, b is called the support of [a,b] and it is denoted by |[a,b]|.
The unit tangent vector τ ([a,b]) of the oriented segment [a,b] is given by τ ([a,b]) := b−a

|b−a| .

A (piecewise linear) 1-chain of R3 is a finite formal linear combination
∑m
i=1 aiei of oriented
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segments ei = [ai,bi] of R3 with integer coefficients ai. We identify [b,a] = −[a,b] and we

denote by C1(R3,Z) the abelian group of 1-chains in R3.

Analogously, if a, b, c are three different non-collinear points in R3, we denote by [a,b, c]

the oriented triangle of R3. The triangle of R3 with vertices a,b, c is called the support of

[a,b, c] and it is denoted by |[a,b, c]|. The unit normal vector ν([a,b, c]) of the oriented triangle

[a,b, c] is obtained by the right hand rule: ν([a,b, c]) := (b−a)×(c−a)
|(b−a)×(c−a)| . A (piecewise linear)

2-chain of R3 is a finite formal linear combination
∑p
i=1 bifi of oriented triangles fi = [ai,bi, ci]

of R3 with integer coefficients bi. If ρ : {a,b, c} −→ {a,b, c} is a permutation, we identify

[ρ(a), ρ(b), ρ(c)] = [a,b, c] if ν([ρ(a), ρ(b), ρ(c)]) = ν([a,b, c]), and [ρ(a), ρ(b), ρ(c)] = −[a,b, c]

if ν([ρ(a), ρ(b), ρ(c)]) = −ν([a,b, c]). We denote by C2(R3,Z) the abelian group of 2-chains

in R3.

Finally, if a, b, c, d are four different non-coplanar points in R3, we denote by [a,b, c,d]

the oriented tetrahedron of R3. The tetrahedron of R3 with vertices a,b, c,d is called the

support of the oriented tetrahedron [a,b, c,d] and it is denoted by |[a,b, c,d]|. A (piecewise

linear) 3-chain of R3 is a finite formal linear combination
∑q
i=1 diti of oriented tetrahedra

ti = [ai,bi, ci,di] of R3 with integer coefficients di. If ρ : {a,b, c,d} −→ {a,b, c,d} is a

permutation, we identify [ρ(a), ρ(b), ρ(c), ρ(d)] = [a,b, c,d] if ρ is an even permutation and

[ρ(a), ρ(b), ρ(c), ρ(d)] = −[a,b, c,d] if ρ is an odd permutation. We denote by C3(R3,Z) the

abelian group of 3-chains in R3.

We remark that, if all the coefficients in one of the preceding finite formal linear combinations

are equal to zero, then we obtain the null element of the corresponding abelian group.

Let k ∈ {0, 1, 2, 3} and let c =
∑r
i=1 cizi be a k-chain of R3, where the ci’s are integers

and the zi’s are points, oriented segments, oriented triangles, or oriented tetrahedra of R3 if

k = 0, 1, 2 or 3, respectively. Denote by Ic the set of indices i ∈ {1, . . . , r} such that ci 6= 0. The

support |c| of c is the subset of R3 defined as the union
⋃
i∈Ic |zi|. In particular |c| = ∅ if c = 0.

Moreover |zi| = {zi} (and hence |c| = {zi ∈ R3 | ci 6= 0}) if k = 0.

For every k ∈ {1, 2, 3}, let us define the boundary operator ∂k : Ck(R3;Z) −→ Ck−1(R3;Z).

For every oriented segment e = [a,b], for every oriented triangle f = [a,b, c], and for every

oriented tetrahedron t = [a,b, c,d] of R3, we set ∂1e := b− a, ∂2f := [b, c]− [a, c] + [a,b] and

∂3t := [b, c,d]− [a, c,d] + [a,b,d]− [a,b, c]. Now we extend these definitions to all the k-chains

of R3 by linearity. The reader observes that ∂1(∂2f) = (b− a) + (c− b)− (c− a) = 0. In this

way, by linearity, we have that ∂1 ◦ ∂2 = 0 on the whole C2(R3;Z). Analogously, we have that

∂2 ◦ ∂3 = 0 on the whole C3(R3;Z).

A 1-chain γ of R3 is called 1-cycle of R3 if ∂1γ = 0. The 1-chain γ is said to be a 1-boundary

of R3 if there exists a 2-chain S of R3 such that ∂2S = γ. In this situation, we say that S is

a homological Seifert surface of γ in R3. Since ∂1 ◦ ∂2 = 0, every 1-boundary of R3 is also a

1-cycle of R3. Actually, R3 is contractible (namely, it can be continuously deformed to a point)

and hence the converse is true as well: every 1-cycle of R3 is also a 1-boundary of R3. In other

words, a 1-chain of R3 has a homological Seifert surface in R3 if and only if it is a 1-cycle of R3.

Let Y be a subset of R3 and let η be a 1-cycle of R3 with |η| ⊂ Y . We say that η bounds in

Y if η admits a homological Seifert surface S in R3 with |S| ⊂ Y . Given another 1-cycle η′ of

R3 with |η′| ⊂ Y , we say that η and η′ are homologous in Y if η − η′ bounds in Y .

Let Ω be a fixed bounded polyhedral domain of R3 with locally flat boundary and let T =

(V,E, F,K) be a finite triangulation of Ω, where V is the set of vertices, E the set of edges, F
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the set of faces and K the set of tetrahedra of T .

Let us fix an orientation (namely, an ordering of vertices) of each edge, face, and tetrahedron

of T . This can be done as follows. Choose a total ordering (v1, . . . ,vv) of the elements of V . If

e = {vi,vj} ∈ E is an edge of T with vertices vi,vj with 1 ≤ i < j ≤ v, then e determines the

oriented segment [vi,vj ] of R3. Analogously, the face f = {vi,vj ,vk} ∈ F of T with vertices

vi,vj ,vk with 1 ≤ i < j < k ≤ v and the tetrahedron t = {vi,vj ,vk,vl} ∈ K of T with

1 ≤ i < j < k < l ≤ v determine the oriented triangle [vi,vj ,vk] of R3 and the oriented

tetrahedron [vi,vj ,vk,vl] of R3, respectively. In what follows, we denote again by e, f , and t,

an oriented edge of T , an oriented face of T , and an oriented tetrahedron of T , respectively. We

indicate by E , F , and K the sets of oriented edges, oriented faces and oriented tetrahedra of T ,

respectively.

A k-chain of T is a formal linear combination of vertices in V , oriented edges in E , oriented

faces in F , and oriented tetrahedra inK for k = 0, 1, 2, and 3, respectively. We denote by Ck(T ;Z)

the abelian subgroup of Ck(R3;Z) consisting of all k-chains of T . Observe that the boundary

operators ∂k preserve the chains of T ; namely, ∂k(Ck(T ;Z)) ⊂ Ck−1(T ;Z) if k ∈ {1, 2, 3}.
A 1-chain γ of T is called 1-cycle of T if ∂1γ = 0, and it is called 1-boundary of T if there

exists a 2-chain S of T such that ∂2S = γ.

Let T∂ = (V∂ , E∂ , F∂) be the triangulation of ∂Ω induced by T . Denote by E∂ and F∂ the

sets of oriented edges and of oriented faces of T determined by the edges in E∂ and the faces in

F∂ , respectively. We have:

E∂ =
{
e ∈ E

∣∣ |e| ⊂ ∂Ω
}

and F∂ =
{
f ∈ F

∣∣ |f | ⊂ ∂Ω
}

.

A 1-chain of T∂ is a formal linear combination of oriented edges in E∂ and a 2-chain of T∂ a

formal linear combination of oriented faces in F∂ . We denote by Ck(T∂ ;Z) the abelian subgroup

of Ck(T ;Z) consisting of k-chains of T∂ for k = 1, 2. The notions of 1-cycle and of 1-boundary

of T∂ can be defined in the natural way: a 1-chain γ of T∂ is a 1-cycle of T∂ if ∂1γ = 0, and it is

a 1-boundary of T∂ if there exists a 2-chain S of T∂ such that ∂2S = γ.

Let us introduce the notions of corner edge, of corner face, and of corner tetrahedron of

T . Let e = {v,w} be an edge of T . We say that e is a corner edge of T if e ∈ E∂ and there

exist two distinct vertices z∗ and z∗∗ in V∂ \ {v,w} such that the 3-sets f∗ = {v,w, z∗} and

f∗∗ = {v,w, z∗∗} are faces of T in F∂ , and the 4-set t∗ = {v,w, z∗, z∗∗} is a tetrahedron in T .

If e has this property, then we call f∗ and f∗∗ corner faces of T associated with e, and t∗ corner

tetrahedron of T associated with e, see Figure 2.1. A corner face of T associated with some

corner edge of T is called a corner face of T . Similarly, a corner tetrahedron of T associated

with some corner edge of T is called a corner tetrahedron of T .

We denote by E∠
∂ , F∠

∂ , and K∠
∂ the sets of corner edges, of corner faces, and of corner

tetrahedra of T , respectively. Moreover, we indicate by E∠
∂ the sets of oriented edges in E∂

determined by the corner edges of T . Given a 1-chain γ =
∑
e∈E aee of T , we say that γ is

corner-free if it does not contain any corner oriented edge; namely, if ae = 0 for every e ∈ E∠
∂ .

Moreover, we call γ internal if it does not contain any boundary oriented edge; namely, if ae = 0

for every e ∈ E∂ . Evidently, if γ is internal, then it is also corner-free. Similarly, given a 2-chain

S =
∑
f∈F bff of T , we say that S is internal if it does not contain any boundary oriented

face; namely, if bf = 0 for every f ∈ F∂ . The reader observes that, if T is the first barycentric

subdivision of some triangulation of Ω, then E∠
∂ = ∅ and hence every 1-chain of T is corner-free.

On the other hand, there are examples in which E∠
∂ 6= ∅: if Ω is a tetrahedron of R3 equipped

with its natural triangulation T , then E∠
∂ = E∂ 6= ∅.
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Fig. 2.1. The corner edge e and the corner faces f∗ and f∗∗.

We conclude this subsection by introducing the notions of homological Seifert surface and of

internal homological Seifert surface.

Definition 1. Given a 1-boundary γ of T , we say that a 2-chain S of T is a homological

Seifert surface of γ in T if ∂2S = γ. If, in addition, S is internal, then we call S internal

homological Seifert surface of γ in T .

2.2. Complete dual graph, coils, and plugs. We begin by describing parts of the closed

block dual barycentric complex of T (see [26, Section 64] for the general definition).

Denote by B : V ∪ E ∪ F ∪ K −→ R3 the barycenter map: if v ∈ V , ` = {v,w} ∈ E,

g = {v,w,y} ∈ F , and t = {v,w,y, z} ∈ K, then we have B(v) = v, B(`) = (v + w)/2,

B(g) = (v + w + y)/3, and B(t) = (v + w + y + z)/4. Extend B to the oriented edges in E and

to the oriented faces in F in the natural way: if e = [v,w] ∈ E and f = [v,w,y] ∈ F , then we

set B(e) := (v + w)/2 and B(f) := (v + w + y)/3.

Let us recall the definitions of dual vertices, of dual edges, and of dual faces of T . We equip

the dual edges and the dual faces with the natural orientation induced by the right hand rule.

• For every tetrahedron t ∈ K, the dual vertex D(t) of T associated with t is defined as

the barycenter of t: D(t) := B(t).

We denote by V ′ the set {D(t) ∈ R3 | t ∈ K} of all dual vertices of T .

• For every oriented face f = [v,w,y] ∈ F , the oriented dual edge D(f) of T associated

with f is the element of C1(R3;Z) defined as follows: if K(f) denotes the set
{
t ∈

K
∣∣ {v,w,y} ⊂ t

}
; namely, the set of tetrahedra of T incident on f , we set

D(f) :=
∑

t∈K(f)

sign
(
ν(f) · τ ([B(f), B(t)])

)
[B(f), B(t)],

where sign : R \ {0} −→ {−1, 1} denotes the function given by sign(s) := −1 if s < 0

and sign(s) := 1 otherwise.

D(f) can be described as follows. If the (oriented) face f is internal, then f is the

common face of two tetrahedra t1 and t2 of T , and the support of D(f) is the union

of the segment joining B(f) with B(t1) and of the segment joining B(f) and B(t2), see

Figure 2.2 (on the left). If f is a boundary face, then f is face of just one tetrahedron t,

and the support of D(f) is the segment joining B(f) with B(t), see Figure 2.2 (on the

right). In both cases, D(f) is endowed with the orientation induced by f via the right

hand rule.
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y

v

B(f)

t1 B(t2)

w

B(t1)

t2

f
y

v

w

∂Ω

t

B(f)

B(t)

f

D(f)
D(f)

Fig. 2.2. The dual edge D(f) in the case of an internal face (on the left) and in the case of a boundary face

(on the right).

We denote by E ′ the set {D(f) ∈ C1(R3;Z) | f ∈ F} of all oriented dual edges of T .

Moreover, we call a (non-oriented) dual edge of T a 2-subset {v′, w′} of R3 such that

{v′, w′} = |∂1e′| for some e′ ∈ E ′. We indicate by E′ the set of all (non-oriented) dual

edges of T .

• For every oriented edge e = [v,w] ∈ E , the oriented dual face D(e) of T associated with

e is the element of C2(R3;Z) defined as follows: if F (e) denotes the set
{
f ∈ F

∣∣ {v,w} ⊂
f
}

, namely, the set of oriented faces of T incident on e, then we set

D(e) :=
∑

f∈F (e)

∑

t∈K(f)

sign
(
τ (e) · ν([B(e), B(f), B(t)])

)
[B(e), B(f), B(t)],

see Figure 2.3. The reader observes that the support of D(e) is the union of triangles

of R3 with vertices B(e), B(f), and B(t), where f varies in F (e) and t in K(f). Such

triangles are oriented by e via the right hand rule.

B(f)

B(t)

B(e)
D(e)

t

f

e

∂Ω

B(f)

B(t)

B(e)
D(e)

t

f

e

Fig. 2.3. The dual face D(e) in the case of an internal edge together with its boundary ∂2D(e) in red (on

the left) and in the case of a boundary edge (on the right).

We denote by F ′ the set {D(e) ∈ C2(R3;Z) | e ∈ E} of all oriented dual faces of T .

The preceding three definitions determine the bijection D : K ∪F ∪ E −→ V ′ ∪ E ′ ∪F ′ such

that D(K) = V ′, D(F) = E ′, and D(E) = F ′.
8



We need also to describe part of the closed block dual barycentric complex of the triangulation

T∂ of ∂Ω induced by T . Recall that V∂ , E∂ , and F∂ denote the sets of vertices, of oriented edges,

and of oriented faces of T∂ , respectively.

Let us define the dual vertices and the oriented dual edges of T∂ .

• For every oriented face f ∈ F∂ , the dual vertex D∂(f) of T∂ associated with f is defined

as the barycenter of f : D∂(f) := B(f).

We denote by V ′∂ the set {D∂(f) ∈ R3 | f ∈ F∂} of all dual vertices of T∂ .

• For every oriented edge e ∈ E∂ , the oriented dual edge D∂(e) of T∂ associated with e is

the element of C1(R3;Z) defined as follows. Let f1 and f2 be the oriented faces in F∂
incident on e, and let n(f1) and n(f2) be the outward unit normals of ∂Ω at B(f1) and

at B(f2), respectively. Then we set

D∂(e) :=

2∑

i=1

sign
(
τ (e) · (n(fi)× τ ([B(e), B(fi)]))

)
[B(e), B(fi)].

D∂(e) can be described as follows. By interchanging f1 with f2 if necessary, we can

suppose that f1 is on the left of e and f2 on the right of e with respect to the orientation

of ∂Ω induced by its outward unit vector field. Then we have:

D∂(e) = [B(f1), B(e)] + [B(e), B(f2)],

see Figure 2.4.

∂Ω B(f2)
B(f1)

B(e)

D∂(e)

f1
n(f1)

n(f2)

f2

e

Fig. 2.4. The boundary dual edge D∂(e).

We denote by E ′∂ the set {D∂(e) ∈ C1(R3;Z) | e ∈ E∂}; namely, the set of all oriented

dual edges of T∂ . Moreover, we call a (non-oriented) dual edge of T∂ a 2-subset {v′,w′}
of V ′∂ such that {v′,w′} = |∂1e′| for some e′ ∈ E ′∂ . We indicate by E′∂ the set of all

(non-oriented) dual edges of T∂ .

Let us give four definitions, which will prove to be useful later.

Definition 2. We call A′ := (V ′ ∪ V ′∂ , E′ ∪ E′∂) complete dual graph of T . A 1-chain of

A′ is a formal linear combination of oriented dual edges in E ′ ∪ E ′∂ with integer coefficients. A

1-chain γ of A′ is called 1-cycle of A′ if ∂1γ = 0. We denote by C1(A′;Z) the abelian subgroup

of C1(R3;Z) consisting of all 1-chains of A′, and by Z1(A′;Z) the abelian subgroup of Z1(R3;Z)

consisting of all 1-cycles of A′.
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Definition 3. For every e ∈ E, we define the coil of e (in T ), denoted by Coil(e), as the

1-cycle of A′ given by Coil(e) := ∂2D(e).

In Figure 2.3 above, in red, we show the coil of an internal edge on the left and of a boundary

edge on the right. The reader observes that, for every e ∈ E∂ , Coil(e) − D∂(e) is a 1-chain of

A′, whose expression as a formal linear combination contains only oriented edges in E ′; namely,

Coil(e) − D∂(e) =
∑
e′∈E′∪E′∂ ae

′e′ for some (unique) integer ae′ such that ae′ = 0 for every

e′ ∈ E ′∂ .

Let us introduce the notion of plug of T .

Definition 4. Given a dual edge e′ ∈ E′, we say that e′ is a plug of T if there exists a

face f ∈ F∂ such that e′ = {B(f), B(t)}, where t is the unique tetrahedron in T containing f .

Such a plug e′ is said to be induced by f . The plug e′ is called corner plug of T if it is induced

by a corner face f ∈ F∠
∂ , see Figure 2.5 (on the right). On the contrary, if the face inducing e′

belongs to F∂ \ F∠
∂ , then e′ is called regular plug of T , see Figure 2.5 (on the left).

Let JT be the set of all plugs of T , and let J∠
T and JrT be the subsets of JT consisting of

corner plugs and of regular plugs of T , respectively.

e∗

w

B(f∗)B(t∗)

e∗∗t∗ B(f∗∗)

∂Ω

f∗ ∈ F∠
∂

f∗∗ ∈ F∠
∂

y

v

w

∂Ω

t

B(f)

B(t)

f ∈ F∂ \ F∠
∂

e′

Fig. 2.5. A regular plug e′ (on the left) and two corner plugs e∗ and e∗∗ (on the right).

Definition 5. Given a subset J of JT , we say that J is a plug-set of T if, for every

e′, e′′ ∈ J with e′ 6= e′′, e′ and e′′ do not have any vertex in common; namely, e′ ∩ e′′ = ∅.
Moreover, we say that such a plug-set J is maximal if there is no plug-set of T that strictly

contains J .

Remark 6. Notice that a regular plug does not intersect any other plug so if E∠
∂ = ∅ (or,

equivalently, if K∠
∂ = ∅), then all the plugs of T are regular and hence the set JT itself is the

unique maximal plug-set of T . Suppose E∠
∂ 6= ∅. In this case, a subset J of JT is a maximal

plug-set of T if and only if it can be constructed as follows. For every t ∈ K∠
∂ , choose one of

the corner faces of T contained in t and denote it by f∠
t . Define F∠ := {f∠

t ∈ F∠
∂ | t ∈ K∠

∂ } and

indicate by J ′ the set of corner plugs of T induced by the corner faces in F∠. Then J = JrT ∪J ′.
In Figure 2.6 we consider a mesh where there are no regular plugs, JrT = ∅. On the left we

show the set JT with 12 elements. On the right we show a maximal plug-set; it has 4 elements

that are one plug for each one of the corner tetrahedra of the mesh.

2.3. Linking number and retractions. We begin by recalling the notion of linking num-

ber. See, e.g., Rolfsen [29, pp. 132–136], Seifert and Threlfall [30, Sects. 70, 73, 77].
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(a) (a)

Fig. 2.6. The whole set of plugs (on the left) and a maximal plug set (on the right).

Consider two 1-cycles γ and η of R3 with disjoint supports; namely, |γ| ∩ |η| = ∅. A possible

geometric way to define the linking number κ̀(γ, η) between γ and η is as follows. Choose a

homological Seifert surface Sη =
∑k
q=1 bqfq of η in R3. It is well-known (and easy to see) that

there exists a 1-cycle γ̂ =
∑h
p=1 âpêp homologous to γ in R3 \ |η| (and “arbitrarily close to γ”

if necessary), which is transverse to Sη in the following sense: for every p ∈ {1, . . . , h} and for

every q ∈ {1, . . . , k}, the intersection |êp|∩ |fq| is either empty or consists of a single point, which

does not belong to |∂1êp| ∪ |∂2fq|.
For every p ∈ {1, . . . , h} and for every q ∈ {1, . . . , k}, define Lpq := 0 if |êp| ∩ |fq| = ∅ and

Lpq := sign(τ (êp) · ν(fq)) otherwise. The linking number κ̀(γ, η) between γ and η is the integer

defined as follows:

κ̀(γ, η) :=

h∑

p=1

k∑

q=1

âpbqLpq. (2.1)

This definition is well-posed: it depends only on γ and η, not on the choice of Sη and of γ̂. The

reader observes that the preceding construction fully justifies the usual heuristic description of

the linking number between γ and η as the number of times that γ winds around η.

The linking number has some remarkable properties. It is “symmetric”, κ̀(γ, η) = κ̀(η, γ),

and “bilinear”, κ̀(aγ, η) = a κ̀(γ, η) for every a ∈ Z and, if γ∗ ∈ Z1(R3;Z) with |γ∗| ∩ |η| = ∅,
κ̀(γ + γ∗, η) = κ̀(γ, η) + κ̀(γ∗, η).

The linking number is a homological invariant in the following sense: if a 1-cycle γ∗ of R3 is

homologous to γ in R3 \ |η|, then

κ̀(γ, η) = κ̀(γ∗, η). (2.2)

In particular, we have:

κ̀(γ, η) = 0 if γ bounds in R3 \ |η|. (2.3)

The linking number can be computed via an integral formula. Write γ and η explicitly: γ =∑n
i=1 aiei and η =

∑m
j=1 cjgj for some integers ai, cj and for some oriented segment ei = [ai,bi]

and gj = [cj ,dj ] of R3. The following Gauss formula holds:

κ̀(γ, η) =
1

4π

n∑

i=1

m∑

j=1

aicj

(∫ 1

0

∫ 1

0

ei(r)− gj(s)
|ei(r)− gj(s)|3

× ~ei
)
· ~gj dr ds, (2.4)
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where ~ei := bi − ai, ~gj := dj − cj and ei(r) := ai + r~ei, gj(s) := cj + s~gj for r, s ∈ [0, 1]. The

computational cost is of the order of the product of the number of edges in the support of the

two 1-cycles, namely, nm.

Retractions. Now we define two “retraction operators” R+ : Z1(T ;Z) −→ Z1(R3;Z) and

R− : Z1(A′;Z) −→ Z1(R3;Z), and we prove a useful invariance property of certain linking

numbers with respect to the application of such “retractions”.

Let us define R+. For every oriented edge e = [v,w] in E∂ , choose a tetrahedron te ∈ K
incident on e (namely, {v,w} ⊂ te), denote by de the barycenter of the triangle of R3 of vertices

v, w, B(te), and define the 1-chain r+(e) of R3 and the oriented triangle Se of R3 by setting

r+(e) := [v,de] + [de,w] and Se := [v,de,w].

The reader observes that ∂2Se = r+(e)− e, see Figure 2.7.

∂Ω
B(te)

de

te

r+(e)
Se

e
v

w

∂Ω B(f2)
B(f1)

B(e)

e′ ∈ D∂(e)

f1

xe′

f2

e

r−(e′)S′e′

Fig. 2.7. On the left is the 1-chain r+(e) and the oriented triangle Se. On the right is the 1-chain r−(e′)

and the 2-chain S′
e′ .

Given ξ =
∑
e∈E αee ∈ Z1(T ;Z), we define:

R+(ξ) :=
∑

e∈E\E∂
αee+

∑

e∈E∂
αer+(e).

Evidently, R+(ξ) belongs to Z1(R3;Z) and R+(ξ)− ξ is a 1-boundary of R3:

R+(ξ)− ξ = ∂2
(∑

e∈E∂ αeSe
)
. (2.5)

Now we introduce R−. First, we recall that since ∂Ω is assumed to be locally flat, we know

that it has a collar in R3 \ Ω (see [9]); namely, there exists an open neighborhood U of ∂Ω in

R3 \ Ω and a homeomorphism ψ : ∂Ω × [0, 1) −→ U , called collar of ∂Ω in R3 \ Ω, such that

ψ(x, 0) = x for every x ∈ ∂Ω.

Let e′ ∈ E ′∂ . By definition of E ′∂ , there exist unique e ∈ E∂ and f1, f2 ∈ F∂ such that

e′ = D∂(e) = [B(f1), B(e)] + [B(e), B(f2)]. Thanks to the existence of a collar of ∂Ω in R3 \ Ω,

one can choose a point xe′ ∈ R3 \ Ω arbitrarily close to B(e) with the following property: if S′e′
is the 2-chain of R3 defined by setting

S′e′ := [B(f1),xe′ , B(e)] + [B(e),xe′ , B(f2)], (2.6)
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then Ω∩|S′e′ | = |e′|. Denote by r−(e′) the 1-chain [B(f1),xe′ ]+[xe′ , B(f2)] of R3, see Figure 2.7.

Observe that ∂2S
′
e′ = r−(e′)− e′.

For every ξ′ =
∑
e′∈E′∪E′∂ α

′
e′e
′ ∈ Z1(A′;Z), we define:

R−(ξ′) :=
∑

e′∈E′
α′e′e

′ +
∑

e′∈E′∂

α′e′r−(e′). (2.7)

We remark that R−(ξ′) is a 1-cycle of R3 and R−(ξ′)− ξ′ is a 1-boundary of R3:

R−(ξ′)− ξ′ = ∂2

(∑
e′∈E′∂ α

′
e′S
′
e′

)
. (2.8)

The following result holds true.

Lemma 2.1. For every ξ ∈ Z1(T ;Z) and for every ξ′ ∈ Z1(A′;Z), we have: κ̀
(
R+(ξ), ξ′

)
=

κ̀
(
ξ,R−(ξ′)

)
.

Proof. First, observe that |R+(ξ)| ∩ |ξ′| = ∅, |ξ| ∩ |R−(ξ′)| = ∅ and hence the linking

numbers κ̀(R+(ξ), ξ′) and κ̀(ξ,R−(ξ′)) are defined. Moreover, we have:

|R+(ξ)| ∩
⋃

e′∈E′∂

|S′e′ | = ∅ (2.9)

and

|R−(ξ′)| ∩
⋃

e∈E∂
|Se| = ∅. (2.10)

By combining points (2.8) and (2.10), we obtain that ξ′ and R−(ξ′) are homologous in R3 \
|R+(ξ)|. Thanks to (2.2), we infer that κ̀(R+(ξ), ξ′) = κ̀(R+(ξ), R−(ξ′)). Similarly, points (2.5),

(2.9), and (2.2) ensure that κ̀(ξ,R−(ξ′)) = κ̀(R+(ξ), R−(ξ′)). It follows that κ̀(R+(ξ), ξ′) =

κ̀(ξ,R−(ξ′)), as desired. 2

Remark 7. We have introduced the retraction R− in order to simplify the proof of some

results. However, it will be never used in the construction of the homological Seifert surfaces

presented below.

We will provide an explicit formula for a homological Seifert surface where, roughly speaking,

the coefficients of the faces in the surface are the linking number between a 1-chain ξ of T and a

1-chain ξ′ of A′. If e ∈ E∂ belongs to ξ and e′ = D∂(e) belongs to ξ′, then |ξ| and |ξ′| intersect at

B(e) and it is necessary to replace e or e′ with its retraction. The previous Lemma shows that it

is equivalent to pull e inside the domain (see Figure 2.7 on the left) and to compute κ̀(R+(ξ), ξ′)
or to push e′ outside the domain (see Figure 2.7 on the right) and to compute κ̀(ξ,R−(ξ′)).

3. The main results.

3.1. The statements. Consider the complete dual graph A′ = (V ′ ∪ V ′∂ , E′ ∪ E′∂) of T .

Choose a spanning tree B′ = (V ′ ∪ V ′∂ , E′S) of A′ and denote by E ′S the set of oriented dual edges

in E ′ ∪ E ′∂ corresponding to E′S; namely, we set E ′S :=
{
e′ ∈ E ′ ∪ E ′∂

∣∣ |∂1e′| ∈ E′S
}

. We call E ′S set

of oriented dual edges of B′.
Fix a dual vertex a′ ∈ V ′ ∪ V ′∂ , which we consider a root of B′. Let us give the rigorous

definition of “(unique) 1-chain C ′v′ of B′ from the root a′ to another vertex v′”. Consider a dual

vertex v′ in V ′ ∪ V ′∂ . First, suppose v′ 6= a′. Since B′ is a tree, there exist, and are unique, a
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positive integer m and an ordered sequence (w′0,w
′
1, . . . ,w

′
m) of vertices in V ′ ∪ V ′∂ such that

w′0 = a′, w′m = v′, w′i 6= w′j for every i, j ∈ {0, 1, . . . ,m} with i 6= j and {w′k−1,w′k} ∈ E′S
for every k ∈ {1, . . . ,m}. In this way, for every k ∈ {1, . . . ,m}, there exist, and are unique,

e′k ∈ E ′S and δk ∈ {−1, 1} such that ∂1(δke
′
k) = w′k −w′k−1. We can now define C ′v′ ∈ C1(A′;Z)

as follows:

C ′v′ :=

m∑

k=1

δke
′
k. (3.1)

Evidently, we have ∂1(C ′v′) = v′ − a′. If v′ = a′, then we define C ′v′ as the zero 1-chain in

C1(A′;Z).

For every oriented dual edge e′ ∈ E ′ ∪ E ′∂ with ∂1e
′ = v′ −w′, we define the 1-cycle σB′ (e

′)
of A′ by setting σB′ (e

′) := C ′w′ + e′ − C ′v′ .
The reader observes that σB′ (e

′) depends only on B′ and on e′, and not on the chosen root

a′ of B′. Moreover, if e′ ∈ E ′S, then σB′ (e
′) = 0.

Denote by Γ0,Γ1, . . . ,Γp the connected components of ∂Ω. For every i ∈ {0, 1, . . . , p}, we

define V ′∂,i as the set of vertices in V ′∂ belonging to Γi, and E′∂,i as the set of dual edges {v′,w′}
in E′∂ such that {v′,w′} ⊂ Γi. Indicate by A′i the graph (V ′∂,i, E

′
∂,i). It is the graph induced by

A′ on Γi.

Definition 8. Let B′ = (V ′ ∪ V ′∂ , E′S) be a spanning tree of A′. We say that B′ is a

Seifert dual (barycentric) spanning tree of T if it restricts to a spanning tree on each connected

component Γi of ∂Ω; more precisely, if

(V ′∂,i, E
′
S ∩ E′∂,i) is a spanning tree of A′i for every i ∈ {0, 1, . . . , p}. (3.2)

This kind of dual spanning tree is also used in computational electromagnetism; see, for

instance, [1].

Remark 9. We pointed out in the introduction that, given a spanning tree B′ of A′, the

number NB′ of oriented faces of T whose dual edge belongs to B′ is ≥ t+p, where t is the number

of tetrahedra of T . Moreover, the equality holds if and only if B′ is a Seifert dual spanning tree of

T . The following simple argument of graph theory explains why. Let i ∈ {0, 1, . . . , p}. Indicate

by v′i the number of vertices of A′i or, equivalently, the number of faces of F∂ contained in Γi.

Evidently, the number of vertices of A′ is t +
∑p
i=0 v

′
i. Denote by B′i the graph induced by B′ on

Γi and by ki the number of connected components of B′i. Bearing in mind that B′ is a spanning

tree of A′, we infer at once that B′i is a subgraph of A′i with the same vertices as A′i, whose

connected components are trees. In particular, B′i is a spanning tree of A′i if and only if ki = 1.

Since in a finite tree the number of edges is equal to the number of vertices minus 1, we have

that the number of edges of B′ is (t +
∑p
i=0 v

′
i) − 1 and the number of edges of B′i is v′i − ki. It

follows that

NB′ = (t +
∑p
i=0 v

′
i)− 1−∑p

i=0(v′i − ki) = t− 1 +
∑p
i=0 ki ≥ t + p

and NB′ = t + p if and only if each ki is equal to 1 or, equivalently, if and only if the graph B′i
is a spanning tree of A′i for each i ∈ {0, 1, . . . , p}; namely, if B′ is a Seifert dual spanning tree

of T .
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The reader observes that a Seifert dual spanning tree of T always exists and it is easy to

construct. Indeed, it suffices to choose a spanning tree B′i of each A′i and to extend the union of

the B′i’s to a spanning tree of the whole A′.
Our main result reads as follows:

Theorem 10. Let B′ = (V ′ ∪ V ′∂ , E′S) be a Seifert dual spanning tree of T and let E ′S be

its set of oriented dual edges. Then, for every 1-boundary γ of T , there exists, and is unique,

a homological Seifert surface S =
∑
f∈F bff of γ in T such that bf = 0 for every f ∈ F with

D(f) ∈ E ′S. Moreover, we have:

bf = κ̀
(
R+(γ), σB′ (D(f))

)
. (3.3)

for every f ∈ F .

We consider also the problem of the existence and of the construction of internal homological

Seifert surfaces. To this end, we need a definition, in which we will employ the notion of maximal

plug-set of T introduced in Definition 5.

Definition 11. Given a spanning tree B′ = (V ′ ∪ V ′∂ , E′S) of A′, we say that B′ is a

strongly-Seifert dual (barycentric) spanning tree of T if it satisfies (3.2) and the set E′S of its

edges contains a maximal plug-set of T .

Once again, strongly-Seifert dual spanning trees of T always exist, and are easy to construct.

Let i ∈ {0, 1, . . . , p}. Choose a spanning tree B′i = (V ′∂,i, E
′
S,i) of each A′i. Denote by JrT,i the set of

regular plugs of T induced by the faces f ∈ F∂ \F∠
∂ with f ⊂ Γi. Let K∂,i be the set of tetrahedra

t ∈ K such that t contains at least one face in Γi and let K∠
∂,i := K∂,i ∩K∠

∂ . For every t ∈ K∠
∂,i,

choose one of the corner faces of T contained in t and denote it by f∠
t,i. Let J ′i be the set of corner

plugs of T induced by the chosen corner faces {f∠
t,i}t∈K∠

∂,i
, let J ′′i := JrT,i ∪ J ′i and let V ′′i be the

set of dual vertices of T of the form B(t) with t ∈ K∂,i; namely, V ′′i = {B(t) ∈ V ′ | t ∈ K∂,i}.
By construction, the graph B′′i := (V ′∂,i ∪ V ′′i , E′S,i ∪ J ′′i ) is a tree containing B′i. Moreover, it is

immediate to verify that, for every i, j ∈ {0, 1, . . . , p} with i 6= j, B′′i and B′′j have neither vertices

nor edges in common. In particular, the set
⋃p
i=0 J

′′
i is a maximal plug-set of T . Now one can

extend the union of the B′′i ’s to a spanning tree of A′, which turns out to be a strongly-Seifert

dual spanning tree of T .

The reader observes that the maximal plug-set of T contained in the set of edges of a given

strongly-Seifert dual spanning tree of T , which exists by definition, is unique.

As a consequence of Theorem 10, we have the following result, which settles the above-

mentioned problem of the existence and of the construction of internal homological Seifert sur-

faces.

Theorem 12. The following assertions hold.

(i) A 1-boundary of T has an internal homological Seifert surface in T if and only if it is

corner-free.

(ii) Let B′ = (V ′ ∪ V ′∂ , E′S) be a strongly-Seifert dual spanning tree of T and let E ′S be its set

of oriented dual edges. Then, for every corner-free 1-boundary γ of T , there exists, and

is unique, an internal homological Seifert surface S =
∑
f∈F bff of γ in T such that

bf = 0 for every f ∈ F with D(f) ∈ E ′S. Moreover, each coefficient bf satisfies formula

(3.3).

In particular, we have:

Corollary 13. The following assertions hold.
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(i) Every internal 1-boundary of T has an internal homological Seifert surface in T .

(ii) If T is the first barycentric subdivision of some triangulation of Ω, then every 1-boundary

of T has an internal homological Seifert surface in T .

3.2. The proofs. We begin by proving Theorem 10. First, we need three preliminary

lemmas.

Let B′ = (V ′ ∪ V ′∂ , E′S) be a Seifert dual spanning tree of T and let E ′S be its set of oriented

dual edges. We define G := {f ∈ F |D(f) 6∈ E ′S} and, for every f ∈ F , we simplify the notation

by writing σ(f) in place of σB′ (D(f)).

Lemma 3.1. For every f, g ∈ G, we have:

κ̀
(
∂2f,R−(σ(g))

)
=

{
1 if f = g

0 if f 6= g
.

Proof. Let f, g ∈ G and let v′,w′ ∈ V ′ ∪ V ′∂ such that ∂1D(g) = v′ − w′. By definition of

σ(g), there exist, and are unique, an integer ` ≥ 2, a (` + 1)-tuple of pairwise disjoint vertices

(p′0, p
′
1, . . . , p

′
`) of V ′ ∪ V ′∂ and, for every i ∈ {1, . . . , `}, δi ∈ {−1, 1}, and e′i ∈ E ′S such that

p′0 = v′, p′` = w′, ∂1(δie
′
i) = p′i − p′i−1 for every i ∈ {1, . . . , `} and σ(g) = D(g) +

∑`
i=1 δie

′
i.

There are only two cases in which the intersection |f | ∩ |R−(σ(g))| is non-empty, and hence

the linking number κ̀(∂2f,R−(σ(g))) may be different from zero.

Case 1: Assume f = g. In this case, we have that |f | ∩ |R−(σ(g))| = {B(f)}. We must

prove that κ̀(∂2f,R−(σ(g))) = 1. Suppose that f 6∈ F∂ . Observe that the intersection between

f and R−(σ(g)) is not transverse, because D(g) = [w′, B(f)] + [B(f),v′]. Let a′1 be a point of

the segment |[w′, B(f)]| different from B(f), let b′1 be a point of the segment |[B(f),v′]| different

from B(f) and let γ̂1 be the 1-cycle of R3 defined by setting

γ̂1 := [w′, a′1] + [a′1, b
′
1] + [b′1,v

′] +
∑̀

i=1

δir−(e′i) ,

see Figure 3.1 on the left. If a′1 and b′1 are chosen sufficiently close to B(f), we have that γ̂1
is homologous to R−(σ(g)) in R3 \ |∂2f |, it intersects f transversely in one point belonging to

|[a′1, b′1]| \ {a′1, b′1} and sign(τ ([a′1, b
′
1]) · ν(f)) = 1. By the definition of linking number, we infer

that κ̀(∂2f,R−(σ(g))) = 1.

Suppose now that f ∈ F∂ . Changing the orientation of f if necessary, we may also suppose

that v′ = B(f). It follows that p′1 is the barycenter of an oriented face f1 in E∂ having an

(oriented) edge e in common with f and hence δ1r−(e′1) = [v′,xe′1 ] + [xe′1 , p
′
1] for some point

xe′1 ∈ R3 \Ω close to B(e) (see Subsection 2.3 for the definition of r−). Let us proceed as above.

Choose a point a′2 ∈ |[w′,v′]| \{v′} close to v′ and a point b′2 ∈ |[v′,xe′1 ]| \{v′} close to v′. Then

the 1-cycle γ̂2 of R3 defined by setting

γ̂2 := [w′, a′2] + [a′2, b
′
2] + [b′2,xe′1 ] + [xe′1 , p

′
1] +

∑̀

i=2

δir−(e′i) ,

see Figure 3.1 on the right, is homologous to R−(σ(g)) in R3 \ |∂2f |, it intersects f transversely

in one point belonging to |[a′2, b′2]| \ {a′2, b′2} and sign(τ ([a′2, b
′
2]) · ν(f)) = 1. It follows that

κ̀(∂2f,R−(σ(g))) = 1, as desired.
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v′

B(f)
w′

a′1
b′1

f

γ̂1

∂Ω

v′

w′

f

xe′1

b′2

a′2

γ̂2

Fig. 3.1. The 1-cycles γ̂1 (on the left) and γ̂2 (on the right).

Case 2. Assume that f 6= g, f ∈ F∂ and there exists h ∈ {1, . . . , ` − 1} such that p′h =

B(f) and both e′h and e′h+1 belong to E ′∂ . We know that δhr−(e′h) = [p′h−1,xe′h ] + [xe′h , p
′
h] and

δh+1r−(e′h+1) = [p′h,xe′h+1
] + [xe′h+1

, p′h+1] for some xe′h ,xe′h+1
∈ R3 \ Ω. In particular, we have:

R−(σ(g)) = c+ [p′h−1,xe′h ] + [xe′h , p
′
h] + [p′h,xe′h+1

] + [xe′h+1
, p′h+1],

where c := D(g) +
∑
i∈{1,...,`}\{h,h+1} δir−(e′i). Let a′3 ∈ |[xe′h , p

′
h]| \ {p′h}, let b′3 ∈ |[p′h,xe′h+1

]| \
{p′h} and let γ̂3 be the 1-cycle of R3 defined by setting

γ̂3 := c+ [p′h−1,xe′h ] + [xe′h , a
′
3] + [a′3, b

′
3] + [b′3,xe′h+1

] + [xe′h+1
, p′h+1],

see Figure 3.2. If a′3 and b′3 are chosen sufficiently close to p′h, then γ̂3 is homologous to R−(σ(g))

in R3 \ |∂2f | and it does not intersect |f |. It follows that κ̀(∂2f,R−(σ(g))) = 0.

∂Ω
p′h

p′h−1
p′h+1

xe′h xe′h+1

b′3a′3

f

γ̂3

Fig. 3.2. The 1-cycle γ̂3.

This completes the proof. 2

Lemma 3.2. Let ξ =
∑
e∈E αee be a 1-cycle of T . Then, for every e∗ ∈ E, we have:

κ̀
(
ξ,R−(Coil(e∗))

)
= αe∗ . (3.4)

In particular, ξ = 0 if and only if κ̀
(
ξ,R−(Coil(e∗))

)
= 0 for every e∗ ∈ E.

Proof. Fix e∗ ∈ E , a spanning tree (V,L) of the graph (V,E) such that |∂1e∗| 6∈ L and a

vertex a ∈ V , which is a root of (V,L). Denote by L the set of oriented edges in E determined by
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the corresponding edges in L; namely, L :=
{
e ∈ E

∣∣ |∂1e| ∈ L
}

. For every v ∈ V , denote by Cv

the (unique) 1-chain of T such that |Cv| ⊂
⋃
e∈L |e| and ∂1Cv = v − a. Given e = [ae,be] ∈ E ,

we denote by σe the 1-cycle of T given by σe := Cae
+ e− Cbe

.

By hypothesis, ξ is a 1-cycle of T and hence 0 = ∂1ξ =
∑
e∈E αe(be−ae) in C0(T ;Z). Since

Cae and Cbe depend only on ae and be, respectively, it follows that 0 =
∑
e∈E αe(Cbe −Cae) in

C1(T ;Z) as well. In this way, we obtain that

∑

e∈E
αeσe =

∑

e∈E
αe(Cae

+ e− Cbe
) = ξ −

∑

e∈E
αe(Cbe

− Cae
) = ξ.

Then κ̀
(
ξ,R−(Coil(e∗))

)
=
∑
e∈E αe κ̀

(
σe, R−(Coil(e∗))

)
. Thanks to the latter equality, it

suffices to show that

κ̀
(
σe, R−(Coil(e∗))

)
=

{
1 if e = e∗

0 if e 6= e∗
.

To do this, we use an argument similar to the one employed in the proof of the preceding lemma.

However, contrarily to such a proof, we omit the details concerning the construction of “small

deformations of σe” to obtain transversality. If e ∈ L, then e 6= e∗ (because e∗ 6∈ L), σe = 0 and

hence κ̀
(
σe, R−(Coil(e∗))

)
= 0. If e 6∈ L∪{e∗}, then |σe|∩|D(e∗)| = ∅, so κ̀

(
σe, R−(Coil(e∗))

)
=

0. Suppose e = e∗ ∈ E \ E∂ . In this case, we have that R−(Coil(e)) = Coil(e) = ∂2D(e) and

|σe|∩|D(e)| = {B(e)}. By Equation (2.1), it follows immediately that κ̀
(
σe, R−(Coil(e))

)
= ±1.

The sign of such a linking number is positive, because the triangles forming D(e) were oriented

by e via the right hand rule. Finally, consider the case in which e = e∗ ∈ E∂ . By construction

(see Definition 3 and points (2.6) and (2.7)), we have that R−(Coil(e)) = ∂2
(
D(e) +S′D∂(e)

)
and

|σe| ∩
∣∣D(e) + S′D∂(e)

∣∣ = {B(e)}. Once again, we infer that κ̀
(
σe, R−(Coil(e))

)
= 1. 2

Lemma 3.3. Let γ be a 1-boundary of T . Then, for every e′ ∈ E ′∂ , we have:

κ̀
(
γ,R−(σB′ (e

′))
)

= 0 .

Proof. If e′ ∈ E ′S, then σB′ (e
′) = 0 and the result is trivial. Choose e′ ∈ E ′∂ \ E ′S and indicate

by i the unique index in {0, 1, . . . , p} such that |∂1e′| ∈ E′∂,i or, equivalently, |e′| ⊂ Γi. Since

B′∂,i := (V ′∂,i, E
′
S ∩ E′∂,i) is a spanning tree of A′i, there exists a unique vertex b′i in V ′∂,i such

that |C ′b′i | ⊂
⋃
e′∈E′ |e′|; namely, in the expression of C ′b′i , the oriented dual edges in E ′∂ appear

with null coefficients (see (3.1) for the definition of C ′b′i). Let E ′∂,i be the set of oriented dual

edges in E ′∂ corresponding to the edges in E′∂,i; namely, E ′∂,i :=
{
e′ ∈ E ′∂

∣∣ |∂1e′| ∈ E′∂,i
}

. For

every v′ ∈ V ′∂,i, denote by c′i,v′ the unique 1-chain of B′∂,i from b′i to v′. Let e′ ∈ E ′∂,i with

∂1e
′ = v′ −w′. Observe that C ′v′ = C ′b′i + c′i,v′ , C

′
w′ = C ′b′i + c′i,w′ and hence

σB′ (e
′) = c′i,w′ + e′ − c′i,v′ .

It follows that |σB′ (e′)| ⊂ Γi and hence |R−(σB′ (e
′))| ⊂ (R3 \ Ω) ∪ V ′∂,i. Since ∂Ω has a collar in

R3\Ω, it is easy to find a 1-cycle η of R3 such that |η| ⊂ R3\Ω and η is homologous to R−(σB′ (e
′))

in (R3 \ Ω) ∪ V ′∂,i ⊂ R3 \ |γ|. Thanks to (2.2), we infer that κ̀
(
γ,R−(σB′ (e

′))
)

= κ̀(γ, η). On

the other hand, by hypothesis, γ bounds in Ω. Since Ω ⊂ R3 \ |η|, γ bounds in R3 \ |η| as well.

Equality (2.3) ensures that κ̀(γ, η) = 0, as desired. 2

We are now in position to prove our results.
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Proof of Theorem 10. We start by proving the uniqueness of the solution. Suppose that

S =
∑
f∈F bff is a homological Seifert surface of γ in T such that bf = 0 for every f with

D(f) ∈ E ′S; namely, for every f ∈ F \ G. We must show that bf = κ̀
(
R+(γ), σ(f)

)
for every

f ∈ G. The reader observes that, if f ∈ F \ G, then σ(f) = 0 and hence κ̀
(
R+(γ), σ(f)

)
is

automatically equal to 0 = bf . Choose f∗ ∈ G. By Lemma 2.1, we infer that κ̀
(
R+(γ), σ(f∗)

)
=

κ̀
(
γ,R−(σ(f∗))

)
= κ̀

(∑
f∈G bf∂2f,R−(σ(f∗))

)
=
∑
f∈G bf κ̀

(
∂2f,R−(σ(f∗))

)
.

Now Lemma 3.1 implies that
∑
f∈G bf κ̀

(
∂2f,R−(σ(f∗))

)
= bf∗ . In this way, we have that

κ̀
(
R+(γ), σ(f∗)

)
= bf∗ for every f∗ ∈ G, as desired.

It remains to prove that, if bf := κ̀
(
R+(γ), σ(f)

)
for every f ∈ G, then the boundary of

the 2-chain S :=
∑
f∈G bff of T is equal to γ. This is equivalent to showing that the 1-cycle

η := γ − ∂2S = γ −∑f∈G bf ∂2f of T is equal to the zero 1-chain of T . Thanks to Lemma 3.2,

this is in turn equivalent to showing that κ̀
(
η,R−(Coil(e))

)
= 0 for every e ∈ E .

Fix e ∈ E and write Coil(e) explicitly as follows: Coil(e) =
∑
e′∈E′∪E′∂ a

′
e′e
′ for some (unique)

integer a′e′ . For every e′ ∈ E ′ ∪ E ′∂ , denote by v′(e′) and w′(e′) the dual vertices in V ′ such that

∂1e
′ = v′(e′)−w′(e′). Since Coil(e) is a 1-cycle of A′ (a 1-boundary of A′ indeed), we have that

0 = ∂1Coil(e) =
∑
e′∈E′∪E′∂ a

′
e′(v

′(e′)−w′(e′)). It follows that
∑
e′∈E′∪E′∂ a

′
e′(C

′
v′(e′)−C ′w′(e′)) = 0

as well, and hence

Coil(e) =
∑

e′∈E′∪E′∂

a′e′e
′ −

∑

e′∈E′∪E′∂

a′e′(C
′
v′(e′) − C ′w′(e′)) =

∑

e′∈E′∪E′∂

a′e′σB′ (e
′). (3.5)

In this way, in order to complete the proof, it suffices to prove that κ̀
(
η,R−(σB′ (e

′)
)

= 0 for

every e′ ∈ E ′ ∪ E ′∂ .

We distinguish three cases: e′ ∈ E ′S, e′ ∈ E ′ \ E ′S, and e′ ∈ E ′∂ \ E ′S.

If e′ ∈ E ′S, then σB′ (e
′) = 0 and hence κ̀

(
η,R−(σB′ (e

′))
)

= 0.

If e′ ∈ E ′ \ E ′S, then e′ = D(f∗) for some (unique) f∗ ∈ G. Bearing in mind Lemma 3.1, we

obtain:

κ̀
(
η,R−(σB′ (e

′))
)

= κ̀
(
η,R−(σ(f∗))

)

= κ̀
(
γ,R−(σ(f∗))

)
−∑f∈G bf κ̀

(
∂2f,R−(σ(f∗))

)

= bf∗ − bf∗ = 0.

Finally, if e′ ∈ E ′∂ \ E ′S, then Lemma 3.3 ensures that κ̀
(
η,R−(σB′ (e

′))
)

= 0, because η is a

1-boundary of T . 2

We conclude with the proofs of Theorem 12 and of its Corollary 13.

Proof of Theorem 12. Let γ be a 1-boundary of T . It is evident that the boundary of any

internal 2-chain of T cannot contain oriented edges determined by corner edges of T . Hence if

γ admits an internal homological Seifert surface in T , then it must be corner-free.

Suppose γ is corner-free. Let B′ = (V ′ ∪ V ′∂ , E′S) and E ′S be as in the statement of point (ii),

and let J be the maximal plug-set of T contained in E′S. Write J as in Remark 6: J = JrT ∪ J ′,
where J ′ is the set of corner plugs of T belonging to J . Denote by F∠ the set of corner faces of

T inducing the corner plugs in J ′.

By Theorem 10, there exists, and is unique, a homological Seifert surface S =
∑
f∈F bff of

γ in T such that bf = 0 for every f ∈ F with D(f) ∈ E ′S. Moreover, each bf satisfies formula

(3.3).
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We must prove that S is internal; namely, bf = 0 for every f ∈ F∂ . Since J ⊂ E′S, it

suffices to show the following: if g is an oriented face in F∂ such that the corresponding (non-

oriented) face belongs to F∠
∂ \ F∠, then bg = 0. Let g be such an oriented face in F∂ . Then

there exist vertices v,w, z∗, z∗∗ ∈ V∂ ∩ Γi for some (unique) i ∈ {0, 1, . . . , p} such that the

tetrahedron {v,w, z∗, z∗∗} of T is a corner tetrahedron, its face {v,w, z∗} belongs to F∠ and

the oriented face in F corresponding to {v,w, z∗∗} is equal to g. Indicate by f the oriented face

in F corresponding to {v,w, z∗}, by e the oriented edge in E∂ corresponding to {v,w}, by e′

the oriented dual edge D∂(e) in E ′∂ and by v′,w′ the vertices in V ′∂ such that ∂1(e′) = v′ −w′.
Observe that there exist, and are unique, s1, s2 ∈ {−1, 1} such that

Coil(e) = e′ + s1D(f) + s2D(g). (3.6)

For instance, in Figure 3.3 we have f = [v,w, z∗] and g = [w,v, z∗∗] so s1 = 1 and s2 = −1.

e w

v

z∗∗

z∗

t∗

∂Ω

f

g

e′
D(f) v′

w′

e′

D(g)

Fig. 3.3. The coil of the corner edge e in terms of e′, D(f) and D(g).

In particular, since ∂1(Coil(e)) = 0, we have:

v′ −w′ = ∂1(−s1D(f)− s2D(g)). (3.7)

By hypothesis, B′∂,i := (V ′∂,i, E
′
S ∩ E′∂,i) is a spanning tree of A′i. In this way, there exists a

unique 1-chain C in B′∂,i such that ∂1(C) = w′ − v′. It follows that σB′ (e
′) = e′ + C. Moreover,

by combining (3.7) with the fact that D(f) ∈ E ′S, we infer at once that

σ(g) = −s2(−s1D(f)− s2D(g) + C) = D(g) + s1s2D(f)− s2C.

On the other hand, by Equation (3.6), we have also that −s1D(f)− s2D(g) = e′ − Coil(e) and

hence

σ(g) = −s2(e′ − Coil(e) + C) = −s2
(
σB′ (e

′)− Coil(e)
)

= −s2σB′ (e′) + s2Coil(e). (3.8)

By Lemma 3.3, we know that κ̀(γ,R−(σB′ (e
′))) = 0. Moreover, since γ is corner-free and

e ∈ E∠
∂ , Lemma 3.2 ensures that κ̀(γ,R−(Coil(e))) = 0. In this way, bearing in mind (3.8) and

Lemma 2.1, we have:

bg = κ̀(R+(γ), σ(g)) = −s2 κ̀(R+(γ), σB′ (e
′)) + s2 κ̀(R+(γ),Coil(e)) =

= −s2 κ̀(γ,R−(σB′ (e
′))) + s2 κ̀(γ,R−(Coil(e))) = 0,
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as desired. This completes the proof. 2

Proof of Corollary 13. (i) An internal 1-boundary of T is corner-free and hence it has an

internal homological Seifert surface in T by Theorem 12.

(ii) As above, this point follows immediately from Theorem 12. Indeed, if T is the first

barycentric subdivision of some triangulation of Ω, then K∠
∂ = ∅ and hence every 1-boundary of

T is corner-free. 2

4. An elimination algorithm. Let γ =
∑
e∈E aee be a given 1-boundary of T . A 2-chain

S =
∑
f∈F bff of T is a homological Seifert surface of γ in T if its coefficients {bf}f∈F satisfy

the following equation in C1(T ;Z):

∑

f∈F
bf∂2f =

∑

e∈E
aee. (4.1)

Let us write this equation more explicitly as a linear system with as many equations as edges

and as many unknowns as faces of T . Given e ∈ E , let F(e) be the set
{
f ∈ F

∣∣ |e| ⊂ |f |
}

of

oriented faces in F incident on e and let oe : F(e) −→ {−1, 1} be the function sending f ∈ F(e)

into the coefficient of e in the expression of ∂2f as a formal linear combination of oriented edges

in E . Equation (4.1) is equivalent to the linear system

∑

f∈F(e)

oe(f)bf = ae if e ∈ E ,

where the unknowns {bf}f∈F are integers. Theorem 10 ensures that, if B′ = (V ′ ∪ V ′∂ , E′S) is a

Seifert dual spanning tree of T and E ′S is its set of oriented dual edges, then the linear system

∑
f∈F(e) oe(f)bf = ae if e ∈ E (4.2)

bf = 0 if D(f) ∈ E ′S (4.3)

has a unique solution given by the formula:

bf = κ̀
(
R+(γ), σB′ (D(f))

)
(4.4)

for every f ∈ G, where G = {f ∈ F |D(f) 6∈ E ′S}.
As we have just recalled in the introduction, the linking number can be computed accurately.

However, the use of formula (4.4) is too expensive if T is fine. In fact, if v is the number of

vertices of T , g is the first Betti number of Ω and ]G is the cardinality of G, then ]G is greater

than or equal to 1
2v+ 1− g, which is usually huge if T is fine. Let us explain the latter assertion.

Let e, f, and t be the numbers of edges, of faces, and of tetrahedra of T , respectively. Let us

prove that ]G = e− v + 1− g ≥ 1
2v + 1− g. We know that ]G = f− (t + p) (see Remark 9). The

Euler characteristic χ(T ) = v− e + f− t of T is equal to the sum
∑3
j=0(−1)jrj , where rj is the

rank of the jth homology group Hj(T ;Z) of T . Since r0 = 1, r1 = g, r2 = p, and r3 = 0, we

infer that v− e+ f− t = 1− g+ p and hence ]G = e− v+ 1− g. Recall that, in a finite graph, the

sum of degrees of its vertices equals two times the number of its edges. Apply this result to the

graph A = (V,E). Since each vertex v in V belongs to at least one tetrahedron of T , the degree

of v, as a vertex of A, is ≥ 3. It follows that e ≥ 3
2v and hence ]G ≥ 1

2v + 1− g.

We present below a simple elimination algorithm that simplifies drastically the construction

of homological Seifert surfaces given by Theorem 10. Let us denote by R the set of oriented faces

21



f in F for which the corresponding coefficient bf is already known. Initially, thanks to (4.3), we

have that R = F \ G. If there exist edges e such that exactly one oriented face f∗ ∈ F(e) does

not belong to R; namely, if there exist equations of linear system (4.2) with just one remaining

unknown, then we compute the coefficients bf∗ via such equations and update R. If there are

no such edges and R 6= F , then we pick an oriented face f ∈ F \ R, compute bf using explicit

formula (4.4) and update R. More precisely, the algorithm reads as follows:

Algorithm 1.

1. R := F \ G, D := E.

2. while R 6= F
(a) nR := card(R)

(b) for every e ∈ D
i. if every oriented face of F(e) belongs to R

A. D = D \ {e}
ii. if exactly one oriented face f∗ ∈ F(e) does not belong to R

A. compute bf via (4.2)

B. R = R∪ {f}
C. D = D \ {e}

(c) if card(R) = nR
i. pick f 6∈ R and compute bf = κ̀(R+(γ), σB′ (D(f)))

ii. R = R∪ {f}
It is always possible to choose a Seifert dual spanning tree B′ of T in such a way that, for

some e ∈ E , exactly one oriented face f∗ ∈ F(e) does not belong to E ′S. In fact, in many of the

numerical experiments we have considered, including knotted 1-boundaries and homologically

non-trivial computational domains, when we use breadth-first spanning trees (BFS) [11], the

elimination algorithm determines the homological Seifert surface directly, without computing

any linking number. The only experiment in which the elimination procedure fails is the one

with a computational domain that is a cube with a cavity following a trefoil knot and a 1-

boundary γ embracing the cavity. However, to compute the homological Seifert surface, it is

enough, in this case, to use once the explicit formula bf = κ̀(R+(γ), σB′ (D(f))).

Concerning the complexity of this algorithm, if the elimination procedure does not fail, it is

linear in the number of faces of the mesh. However the computational cost of a linking number

is, in the worst case, of the order of the product of the number of faces times the number of edges

and the (non-realistic) worst scenario corresponds to a spanning tree B′ that requires the explicit

computation of the coefficient bf for each f with D(f) 6∈ E ′S. In this case, the computational cost

is of the order of the square of the number of faces times the number of edges.

Remark 14. The reader observes that Algorithm 1 works also if γ is an arbitrarily 1-cycle

of T . In this way, the 1-cycle γ of T is a 1-boundary of T if and only if the 2-chain S of

T computed by the algorithm applied to γ has γ itself as its boundary; namely, if and only if

∂2S = γ.

5. Numerical results. In this section we illustrate the performance of the method analyzed

in the previous sections. We consider three sets of test problems. In the first set we focus on

the simplest situation: the computational domain is a cube and the considered 1-boundary is a

trivial polygonal knot. Then, we present two more complicated benchmark problems where the

computational domain is still a cube but the 1-boundary is a non-trivial knot or a link. In the last
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set of tests the computational domain is homologically non-trivial: first a torus with a concentric

toroidal cavity and second a cube with a knotted cavity. In the first case the 1-boundary γ

that we consider has two connected components that are circumferences, one on the external

boundary of the computational domain and the other one on the boundary of the cavity. In the

second case γ is a trivial polygonal knot embracing two branches of the cavity.

As we anticipated at the end of the previous section, in all these examples but the last one,

the elimination procedure in Algorithm 1, 2.(b).ii.A, provides the homological Seifert surface.

Only in the last example it is necessary to use once the explicit formula bf = κ̀(R+(γ), σB′ (D(f)))

in Algorithm 1, 2.(c).i.

The algorithm has been implemented in Fortran 90 compiled with Intel Visual Fortran. All

the numerical computations have been performed by a Intel Core i7-3720QM, with a processor

at 2.60 GHz in a laptop with 16 GB of RAM.

We adopt the following strategy for the construction of a Seifert dual spanning tree B′ of T
containing a maximal plug-set J ; namely, a strongly-Seifert spanning tree (see Definition 11):

1. Using a breadth-first search (BFS) [11] build a spanning tree on each graph A′i induced

by A′ on the connected component Γi of ∂Ω. (We remark that this step is usually not

required in practice as indicated in Remark 15.)

2. Build a maximal plug-set J . That is, for each tetrahedron with at least one face in F∂ ,

add exactly one plug induced by one of its faces in F∂ .

3. Form a tree in (V ′, E′) with the BFS strategy, by using all tetrahedra with at least one

face in F∂ as root.

4. If ∂Ω has more than one connected component, the preceding steps return a forest. To

obtain a spanning tree of A′, one may run the Kruskal algorithm [11] starting from the

forest already constructed.

5.1. Trivial polygonal knot in a cubic computational domain. We start with a toy

problem obtained by triangulating a cube using just 48 tetrahedra, see Figure 5.1 (a). A possible

maximal plug-set for the toy problem is represented in Figure 5.1 (b). In the same picture,

the dotted dual edges represent the plugs induced by corner faces whose plugs do not belong

to the maximal plug-set J . The tree extended to the interior of the domain by running the

BFS algorithm is represented in Figure 5.1 (c). We consider first (Example 1) the 1-boundary γ

represented in Figure 5.1 (a). By running Algorithm 1, one obtains the 2-chain S, whose support

is represented in Figure 5.1 (d). Then we consider (Example 2) the 1-boundary γ represented

in Figure 5.2 (a) obtaining the 2-chain illustrated in 5.2 (b). For Example 2 we repeat the

computation using a finer mesh with 479,435 tetrahedra obtaining now the homological Seifert

surface in Figure 5.2 (c). It is worth noticing that for both Example 1 or Example 2 the surface

obtained is non-self-intersecting.

Table 5.1 contains the information about the number of geometric elements of the triangula-

tion T and of the edges belonging to the support of the 1-boundary γ. It also shows the number

of faces contained in the support of the homological Seifert surface obtained by the elimination

procedure of Algorithm 1 with a strongly-Seifert dual spanning tree, together with the time (in

milliseconds) required to obtain them.

5.2. Link and knot in a cubic computational domain. Now we present results for more

complicated benchmark problems. First we take γ as the non-trivial knot 821 inside a cube, see

Figure 5.3 (a) (see also [29, p. 394]). Figure 5.3 (b) represents a zoom on γ, while Figure 5.3
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(a) (b) (c) (d)

Fig. 5.1. Example 1: (a) A toy problem is obtained by triangulating a cube using 48 tetrahedra. Thicker

edges represent the support of the 1-boundary γ, whereas thin edges represent the edges of the triangulation of the

cube contained in its boundary. (b) Continuous dual edges represent a maximal plug-set J, whereas the dotted

dual edges are the plugs induced by corner faces that do not belong to J. (c) The tree is completed in the interior

of the triangulation by a BFS strategy (the tree in A′0 is not shown). (d) The support of the homological Seifert

surface obtained with Algorithm 1, which appears to be minimal in this case.

(a) (b) (c)

Fig. 5.2. Example 2. (a) The 1-boundary γ is represented by the thicker edges. (b) The support of the

2-chain obtained for the coarse mesh. (c) The support of the 2-chain obtained for the fine mesh.

(c) illustrates the support of the 2-chain obtained by the elimination procedure of Algorithm 1

with a strongly-Seifert dual spanning tree. Then we consider γ as the Hopf link inside a cube,

see Figure 5.3 (d); in this case the support of γ has two connected components. Figure 5.3 (e)

represents a zoom on γ. Figure 5.3 (f) shows the support of the obtained homological Seifert

surface.

As in the previous set of tests, Table 5.2 contains the information about the number of

geometric elements of the triangulation T and of the edges belonging to the support of the

1-boundary γ. It also shows the number of faces contained in the support of the computed

homological Seifert surface, together with the time (in milliseconds) required to obtain them.

It is worth noticing that, in a mesh with more that 800,000 tetrahedra, Algorithm 1 computes

the homological Seifert surface of a Hopf link in under half a second. In these two examples the

computed homological Seifert surface is self-intersecting.

5.3. Non-trivial computational domain. The last set of test problems concerns compu-

tational domains that are topologically non-trivial. First we consider a toric shell (a solid torus

with a concentric toroidal cavity) and a 1-boundary γ given by two disjoint circumferences, one

in the exterior boundary of the computational domain and the other one in the boundary of

the cavity, see Figure 5.4 (a). The support of the homological Seifert surface computed using

Algorithm 1 with a strongly-Seifert dual spanning tree is illustrated in Figure 5.4 (b). It is worth

noticing that it is non-self-intersecting.

24



Name Tetrah. Faces Edges Vertices |γ| |S| Time

Example 1 48 120 98 27 8 8 < 1

Example 2 48 120 98 27 12 28 < 1

Example 2 479,435 973,963 583,183 88,656 341 15,023 233
Table 5.1

Cubic computational domain with a 1-boundary that is a trivial polygonal knot. Column |γ| reports the

number of edges in the 1-boundary γ and column |S| the number of faces in the computed homological Seifert

surface. The computational time in the last column is expressed in milliseconds.

(c)(b)

(a)

(f)(e)

(d)

Fig. 5.3. A non-trivial knot in a cube (top): (a) the support of the 1-boundary γ is a 821 knot placed inside

a box outlined in the picture, (b) a zoom on γ, (c) the support of the homological Seifert surface. The Hopf link

in a cube (bottom): (d) the 1-boundary γ is a Hopf link placed inside a cube, (e) a zoom on γ, (f) the support of

the homological Seifert surface.

Second, we consider a cube with a knotted cavity, a thickened trefoil knot, and a 1-boundary

γ that is a trivial polygonal knot embracing two branches of the cavity, see Figure 5.5 (a). Figure

5.5 (b) represents a zoom on γ. For this test case the support of the homological Seifert surface

computed is illustrated in Figures 5.5 (c) and 5.5 (d). Also in this case, it is non-self-intersecting.

Topologically it is a torus without a disk. It is in fact a genuine Seifert surface of the polygonal

knot γ in Ω of minimal genus; namely, genus 1. (It is like a ”swollen” version of the surface in

Figure 5.7 (f) in order to obtain an internal homological Seifert surface).

The geometrical information and the computational time for these two examples are sum-

marized in Table 5.3. Again these two experiments illustrate the effectiveness of Algorithm 1: in

the first one the algorithm computes the homological Seifert surface in a mesh with 1.8 millions

tetrahedra under a second; in the second one, even if the elimination algorithm fails and it is

necessary to use once the explicit formula bf = κ̀(R+(γ), σB′ (D(f))), Algorithm 1 is extremely

fast. In fact, it takes less than 10 milliseconds in a mesh with 8,000 tetrahedra and 0.3 seconds

in a mesh with half a million of tetrahedra.

Concerning the computational cost of Algorithm 1, in Figure 5.6 we plot computational time

versus the number of tetrahedra of the meshes with more than 10,000 tetrahedra to illustrate
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Name Tetrah. Faces Edges Vertices |γ| |S| Time

821 knot 87,221 175,317 102,212 14,117 170 2663 37

Hopf link 800,020 1,600,537 937,631 137,115 235 4841 407
Table 5.2

A non-trivial knot and the Hopf link in a cube. Column |γ| reports the number of edges in the 1-boundary

γ and column |S| the number of faces in the computed homological Seifert surface. The computational time in

the last column is expressed in milliseconds.

(a) (b)

Fig. 5.4. Toric shell: (a) The support of the 1-boundary γ is a pair of disjoint circumferences, outlined in

the picture, placed on the boundary of the toric shell (namely, the difference between two coaxial solid tori); (b)

the support of the computed homological Seifert surface.

(a) (b) (c) (d)

Fig. 5.5. Knotted cavity: (a) The support of the 1-boundary γ is a trivial polygonal knot embracing two

branches of the cavity, (b) a zoom on γ, (c), and (d) two different views of the support of the computed homological

Seifert surface.

the linear trend (for meshes with less than 10,000 tetrahedra the computational time is under

10 milliseconds). We also plot the regression line for the four examples with more than 10,000

tetrahedra where the elimination procedure success. For the considered examples, we can clearly

see the linear behavior when the elimination procedure succeeds and the minor influence in the

computational time of the computation of a linking number in the one example where it is

required.

5.4. Using a Seifert dual spanning tree without a maximal plug-set. To conclude

this section on numerical experiments we show, in Figure 5.7, the homological Seifert surfaces

computed with Algorithm 1 using a Seifert dual spanning tree that does not contain a maximal

plug-set. The meshes and the 1-boundaries considered are the same as in the previous examples,

the difference is just in the choice of the spanning tree.

To construct this non-strongly-Seifert dual spanning tree we proceed (heuristically) in this

way:

1. Build a BFS spanning tree on each graph A′i induced by A′ on the connected component
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Name Tetrah. Faces Edges Vert. |γ| |S| Time

Toric shell 1,851,494 3,871,379 2,419,350 399,465 176 1662 961

Knotted cavity 8,267 16,913 10,187 1,551 13 225 < 10

Knotted cavity 529,664 1,065,104 626,566 91,127 52 10,407 309
Table 5.3

The number of geometric elements of the triangulation and of the edges belonging to the support of the

1-boundary γ.

Fig. 5.6. Computational complexity: computational time versus the number of tetrahedra of the mesh and

the regression line for the examples where the elimination procedure succeeds.

Γi of ∂Ω. We remark that this step is usually not required in practice as indicated in

Remark 15.

2. Build an “internal” spanning tree of the graph (V ′, E′).
3. For each Γi, add exactly one plug induced by a face in Γi.

It is worth noticing that, as proved in Theorem 12, when using a strongly-Seifert dual

spanning tree, Algorithm 1 computes an internal homological Seifert surface but this is no longer

true when considering a Seifert dual spanning tree that does not contain a maximal plug-set.

In Figure 5.7 we show the homological Seifert surface computed using a Seifert dual spanning

tree of this kind and the surfaces computed in Example 1, Example 2 and the two examples in

non-trivial computational domains are not internal surfaces, (see Figure 5.7 (a), (b), (e), and

(f) respectively). It can also be noticed that, in general, the strongly-Seifert dual spanning

tree provides homological Seifert surfaces with reduced support with respect to the Seifert dual

spanning tree without a maximal plug-set. The unique exception is the last example; compare

Figure 5.5 (c) or (d) and Figure 5.7 (f).

Notice that when many homological Seifert surfaces are required on the same triangulation,

Algorithm 1 can be vectorized in such a way that all surfaces are generated at once.

Remark 15. It is worth noticing that in all but one of the examples considered (the exception

is the example concerning a cubic domain with a knotted cavity), Algorithm 1 is able to construct

the homological Seifert surface without the computation of any linking number. Therefore, there

is no need to compute a spanning tree of each graph A′i and even to consider the dual graph
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(a) (b)
(c)

(f)(d)

(e)

Fig. 5.7. Homological Seifert surfaces computed using a Seifert dual spanning tree without a maximal

plug-set. (a) Example 1. (b) Example 2. (c) A non-trivial knot in a cube. (d) The Hopf link in a cube. (e)

A 1-boundary γ with two connected components in a toric shell. (f) A trivial polygonal knot embracing two

branches of a knotted cavity.

(V ′∂ , E
′
∂) on the boundary of Ω. In fact, in the elimination step 2.(b), only E ′S ∩ E ′ is used. The

complete knowledge of E ′S; namely, the construction of B′i for every i ∈ {0, 1, 2, . . . , p}, is required

just in the direct computation step.
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