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Abstract

Associative learning is a fundamental ability biological systems possess in order
to adapt to a nonstationary environment. One of the core aspects of associative
learning theoretical frameworks is that surprising events drive learning by
sgnal ling the need to update the system
governing stimuli associations. Specifically, temtral neural systegenerates
internal predictions t@nticipate the causes of its perceptual experience and
compute a pradtion error to update its generative model of the environment,

an idea generally known as the predicteeling frameworkHowever, it is not

clear whether the brain generates these predictions only forogeated
behavior or they are more a generahretteristic of the brain functioin this

thesis, | explored the role of task relevance in modulating brain activity when
exposed to sensory associative learning task. In the first study, participants were
asked to perform a perceptual detection tasdendnidiovisual stimuli were
presented as distractors. These distractors possessed a probability structure that
made some of them more paired than others. Results showed that occipital
activity triggered by the conditioned stimulus was elicited just bef@rarrival

of the unconditioned visual stimulus. Moreover, occipital activity after the onset

of the unconditioned stimulus followed a pattern of preciswenghted
prediction errors. In the second study, two more sessions were added to the task
in the pevious study in which the probability structure for all stimuli
associations was identical and the whole experiment was spanned in six days
across two weeksResults showed difference in the modulation of the beta
band induced by the presentation @ timconditioned stimulus preceded by the
predictive and unpredictive conditioned auditory stimuli by comparing the pre
and post sessions activity. In the third study, participant were exposed to a
similar task respect to the second study with the modificdahat there was a

condition in which the conditionedncoditioned stimulus association was task



relevant, thus allowing to directly compare taslevant and taskrelevant
associations. Results showed that both types of associations had similaspatter
in terms of activity and functional connectivity when comparing the brain
responses to the onset of the unconditioned visual stimulus. Taken togheter,
these findings demonstrate irrelevant associations rely on the same neural
mechanisms of relevant onekhus, even if task relevance play a modulatory
role on the strenght of the neural effects of associative learning, predictive

processes take place in sensory associative learning regardless of task relevance.
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Thesis Outline and Chapter Summary

The aim of this thesis was to assess the rotasif relevance in the modulation

of brain dynamicsluring sensorgassociative learning, using a combination of
computationamodelsof associative learningndmultivariate pattern analysis
with machine learning models applied to the collected neuroimaging data
(Electroencephalography and Magnetoencephalographdy) range of
associative learning tasks was used wdlifferent protocols of classical
conditioning procedures and probability stiwres This thesis is organized as

follows:

Chapter 1. General Introduction i In the first chapter, there is a brief
overview of the field of associative learning, starting from the early works of
Pavlovand discussesrucial experiments that influencéte current theoretical

view of the mechanisms underlying associative learning. In particular, the focus
is on the role of the stimulesimulus contingency on the associability between
two stimuli or, in other words, how prediction and surprise drivecaastve
learning.In addition, there is a review of the major evidence about the neural
mechanisms of associative learning from the micro level, such as the role of the
dopamine neurotrasmitter, to the macro level, such as how brain areas interact
during sensory associations. Finally it is introduced some literature about how

task relevance influences stimustsmulus associations.



Chapter 2: Stimulus-independent visual cortex activity induced by implicit
auditory conditioning 1 In this chapter, thers reported the first study of this
thesis about the modulation of the visual cortex by auditory activity during task
irrelevant associative learning. Participants were asked to perform a detection
task while audievisual stimuli were presented as distoaist These distractors
possessed a probability structure that made some of them more paired than
others. Results showed that participants learned theseirrgskant
associations even without being aware of them. Moreover, we observed an
occipital activty triggered by the conditioned auditory stimulus just before the
arrival of the visual outcome and that occipital activity after the onset of the
unconditioned visual stimulus followed a pattern of precisi@mghted
prediction errors estimated using ateal Bayesian observer computational

model.

Chapter 3: Task-irrelevant sensory associations modulate visual oscillatory
activity in the beta bandi In this chapter, there is reported thecondstudy

in which we investigatedime-frequency representatisrof the EEG signal
underlying taskrrelevantassociationsWe presented to the participants audio
visual associationswhile performing a perceptual detection task, thus
intentionally directing their attention away from the audsual associations
and naking them irrelevant for the task they were instructed to perfsame

as the first study)in this study, we added two more sessions in which the
probability structure for all stimuli associations was identical before and after
the main task and spanned the whole experiment in six days across two weeks.
We found that participants learned thesssociations without being aware,
confirming the findings of the first study¥he key finding of this studyvas a

difference in the modulation of the beta band induced by the presentation of the



unconditioned visual stimulus preceded by the predictive wanmutedictive
conditioned auditory stimuli by comparing the pre and post sessions activity.
Therefore, we demonstrated that tas&levant associations are captured by the

brain even when spread across a long time range such as in this experiment.

Chapter 4: Revealing the similarity of relevant and irrelevant associations
induced brain dynamicsi In thischapter, there is reported the third study in
which we investigatedhe timelocked activity and functional connectivity
networks of the MEG signalundelying taskrelevant and taskirrelevant
associationsParticipants were exposed &m audicvisual stream of stimuli

while performinga perceptual detection taskwhich they had to press a button
when perceiving the visual targéhus intentionally decting their attentioto

the cuetarget association and makinthe other audikvisual associations
irrelevant for the task they were instructed to perfo@ne of these pairings

had the same probability structure of the -target association across the
experimental sessions, while the other had a uniform probability structure across
the entire experiment. Results showed that relevant and irrelevant associations
had similar patterns of activation when comparing the brain responses to the
onset of the visal stimulus. This can be interpreted as evidence that prediction

errors are computed similarly regardless of the task relevance.

Chapter 5. General Discussiori This chapter provides a general discussion
and the conclusions of this work, presenting tstabutions to the field of
associative learning as well as it limitations and suggests directions for future

research.
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Chapter 1: General Introduction

11

A brief history of Associative Learning

Learning is thebility to acquire, stor@and retrieve information. It is nowadays
considered the hallmark of cognition since every physical system, either
biological or artificial, that is able to learn is regarded as a cognitive system. In
the scientific community studying haw provide cognitive abilities to artificial
systems, the importance of learning was only recently recognized. Now the
majority of the researchers in that field consider learning as the fundamental
step to achieve artificial general intelliger{derdan & Mitchell, 2015)On the

other hand, the study of learning in biological systems has more than a century
of scientific research. It has beeneof the central fieldsn disciplines such as
Psychology and Cognitive Neuroscience since their foundation. In biological
systems, the process of learning is almaisiquitously undertaken by the
nervous system. In particular, in recently evolved nervous systems there are
some narons specialized to handle specific aspects of the learning process. The
peripheral nervous systenogether with the sensory areas of the central
nervous systems mainly assigned to the process of acquiring information from
the external world and aldoom the internal states of the organism, a process
referredto as perception. @ntrarily to the process of perception that is largely
known and well understood, the ability to store the acquired information is not
so clear. The traditional view of the neuroscientific community on this topic is
that the information is encoded in the strendtthe synapses connecting all the
neurons in the brain. This theory has recently been debated by some empirical
evidence that posit the ramification of the dendritesragncoding mechanism

that can be complementary to the synaptic mechagiguner et al., 2003;
Ryan et al., 2015Nevertheless, a robust finding of the literature on memory

abilities is that the hippocampusg,brain structure embedded deep in the
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temporal lobe of each cerebral cortesccrucially responsible for the encoding

of the information, especially for the lottigrm stability of the encoding. One

of the key evidence in favor of this notion is the caddasfry Gustav Molaisgn

also known as H.M(Squire, 2009) who hada bilateral medial temporal
lobectomy to surgicallyemovethe anterior twethirds of his hippocampi,
parahippocampal cortices, entorhinal cortices, piriform cortices, and amygdalae
to curean intractableform of epilepsy After the surgery, H.M. developex
severe anterograde amnesia. He was completely unable to form new semantic
knowledge. He had also mild retrograde amnesia meaning that he could not
remember most of the memories encoded up to two years before the surgery.
Finally, the ability to retrievéhe encoded information is mainly understood as
the process of functionally reactivating the neural pattern storing that
information. This is also generally orchestrated by the hippocampus, although
the structure of the connectome plays a significantirotee efficiency of the
retrieval proceduréBrodt et al., 2018; Frankland et al., 201Bherefore, if two
neural patterns representing two different information are encoded irsleage

brain networks that are very interconnectedween each other, the act of
retrieving one information will be more efficient if the other one is already
functionally activatedHistorically, the study of learning in animals and humans
has been divided fo nonassociative and associative learning. Taemer

refers to a change in the strength of response to a stimulus depetted
exposure.Non-associative learning can be distinguished abituation and
sensitizationtwo terms usually used to denote, respectively, the decrease and
the increase of the respongessociativelearning refers to the process of
establishing an association between two or more events or s{Daldimater

& Matthew Lattal, 2014; Pearce & Bouton, 200lt)encompasses, in practice,
most of the learning phenomena that we encounter in everyday life or

experimental settings. One of the first researchers that started to investigate
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sysematically associative learning waslward Thorndike He, n his 1898
dissertation on animal intelligengaroposed a theory of associatiearning in
animals thesoc al | ed 61 a(Whormaike, 1898)advocatingthat
learninginvolvesthe establishment of associations that @estitutedwhen
responses are followed by rewartisthe same period, lvan Pavlov, a Russian
physiologist, was conducting an experiment in dogs to sthdydigestive
system and the chemical composition of saliva. He accidentally discovered that
after some time he delivered the food to the dog, the dog started to salivate
before the presentation of the fo@hvlov, 1927)Upon closer examinatiome
realized thaactually, the dog was salivating when his assistant was ringing a
bell to indicate that the food was rea®urprised by this phenomenon, he left
the investigation of the digestive
secretiono r e edpito This eew line ©f rdsearcht was tarmed
classical conditioning or Pavlovian conditioning, in his honour. In Pavlovian
conditioning, a biologically salientunconditioned stimulus (USoften also
termedireinforcen) such as the food deliverglicits anunconditioned response
(UR), the salivatior(Pavlov, 1927)When a neutral conditioned stimulus (CS)
suchas thering of the bellregularly precedes the US, the CS will eventually
also elicit salivation as a conditioned response (ORjs form of associative
learning was conceived as a stimugitsnulus association, to distinguish it from
operant or instrumental conditioning in which the association is between a
stimulus and an action selected by the organism, i.e. a stiredpense
association. The importanoéstimulusstimulus associations was immediately
recognized by the scientific community that studied animal and human behavior
at that time and the study of classical conditioning immensely flourished. One
of the fundamental research questions that wddregsed in the first

experiments was to determine the necessary and sufficient conditions under

sys



which two stimuli are associated. At first, it seemed reasonable to postulate that

the temporal contiguity of the CS and the US was@essary and sufficient

Phase 1 Ccs1 —» US
CS1 —>»

Phase 2 + us

Test CSI —* LR

FIGURE 1 A. Figure adapted fronYerkesand Morgulis(1909) showing the setup
experiments on the conditional reflex8s Abstract scheme of the blockipgradigm showing that whe
a CS is paired with an US simultaneously with a precedingly paired CS, the latter CS is not able to elicit a

conditioned response.

condition for associativéearning taking place. Buh 1969, Kamin (1969)
demorstrated that this was not the case, showing a characteristic phenomenon
of classical condi t Inthafirstegssidohadbleakinga s [ bl
paradigm, an initially neutralS (A) is paired with a US and another neutral
CS(B) is presented ldwnever paired. Aftethis sessiopA will evokeaCR, but
B will not. In a secongessionA is presented in combination with anotias
(X), and B withanother CSY), and both compoun€Ss are repeatedly
associatedvith the US. After the second sessipi will evokea CR, whereas
X will not, even though botiCSshave been paired with @S equally often.
This can be=xplained by noting that for the AX compourtde US could be

14
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fully predicted by A alone, rendering X redundawntiereas for the BY
compoundB could notanticipatethe US, leaving itavailableto be associated

to Y. This suggestthat when a USis completely predicted by th€Ss, no
further learningoccurs In other words, A hadblocked the formation ofan
association between X and théS. In the same perigdRobert Rescorla
demonstrated through a series of experiments thatctmingency the
predictability of the US given the CSvas an essentialequirementfor
Pavlovian conditioning. In other wordtie CS and the US become associated

if and only if the CS carries information about the presence or the absence of
the USIn acritical experiment, Rescor(d968)trained a sample of rats to press

a lever inan experimental chamber to gefood pellet for 2 hours. Then there
were five sessions in which the lever was blocked. In each of these sessions, 12
tones with a duration of 2 minutes were presented at random intervals. During
these sessions, the rats weso occasionally exposed to very short, mildly
painful electric shocks to their fe®&escorla manipulated the distribution of the
shocks relative to the tones in three different groups. For one group, 12 shocks
per session were absolutely contingenttmtone, such as they only occurred
when it was on. The rats in a second control group, also received 12 shocks for
each session while the tone was on, but they also received shocks at a frequency
of 30 seconds during tiiene when the tone was nptesated. In this second
group,the number or frequency of toisbockassociations was not alterdalit

the toneshock contingencyvas strongly decreaseslith respect to the first
group andalsothe total number of shocks per sessicmsgreatly increased
(Rescorla, 1968)To control also for these changé&&escorla ran third control
groupin which the subjects receivd@ shocksthe same total as the first grqup

but distributed ah truly randomratewithoutanyregard to the tonén order to

test the magnitude of the association between the tone and the shock in the

di fferent groups, Rescorla first remove



0.60

020 Experimental Group

Control Group 1

Median Suppression Ration (MSR)

0.00
4 5 6 7 8 9 10

Time (Days)

FIGURE 2. Data adapteffom Rescorlg1968) Resultsare plotted in terms of a suppression ratio of the
form A/(A + B) where A is the rate of responding in CS and B is the rate of responding in a comparable
period prior to CS onsethlis, a suppression ratio of 0 indicates no responding duringh@&one of0.5
indicates similar rates of respondidgring CS and the pr€S period

chamber, with additional two sessions in which the lever was available to use
and there were not any tones nor shocks. After these addisessibns, the
subjects restarted pressing the lever for food. In the last sessions, the
experimenter measured tleonditioned fear of the rats by tracking their
willingness to press the lever when the tone was presented. If the presentation
of the tonemade the ratafraid of it they froze untithe tones presented and

then they resumed to press the levdre resits were that the rats in the first

group learned to fear the tone, but the others in both the two control groups did

16
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not (Fig. 2) Thus,Rescorla concluded thats the CSUS contingency and not
temporalcontiguity that drives Pavlovian conditionin@Rescorla, 1968)To

further demonstrate the central role of contiguity, another example that can be
considered is from the protocol of inhibitory conditioning. This experimental
procedure is termed inhibitory to diflentiate from canonical excitatory
conditioning, in which the US is followed by the CS. In the simplest inhibitory
protocol, the US occurs only when the CS is abgeescorla, 1966 )Although

it is a popular experimental paradigm among the researcher in the tfiedd, |

been often underestimated the implication from the fact that in this procedure
an association is formed between the CS and the absence of the US. In other
words, the organism learns an association by systematically not pairing the CS
with the US, thus préading every consideration about the temporal contiguity
because in this case there cannet be
e v e fQallistel, 2002) To summarize the discussed literature, associative
learning takes place only when the CS is informative about some characteristics
of the US sah as the timing of arrival or its absence, or in other wdhds
presence of the CS reduces the uncertainty of the organism about some features
of the US. Therefore, associative learning is almost entirely driven by how
surprising a stimulustimulus assciation is. Specificallythe more a C&S
association is surprising for theiolbgical system, the more wilbe
strengthenedn recent years, this notion of surprdeven associative learning
became more and more relevant and nowadays encompasseajonigy of
associative learning modglSmith et al., 2006; Terao et al., 201Bhe crucial
mechanism that is postulated is that an organism constantly compares the
predictions made by its internal model of the world with the gathered sensory
data and updates the model accordinghsed on the mismatch between the
predicted and actual outcor{telark, 2013) The surprise is formally defined as

the difference between the predicted and actual outcome and this delta is often
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referred as prediction err¢Rao & Ballard, 1999)In the next section, it will
follow a general discussion about the neural mechanisms underlying Pavlovian
conditioning and theaccumulating newbiological evidenceabout how the

brain computes these prediction errors.

Neural basis of Pavlovian Conditioning

Pavlovian conditionings a basic form of associative learning usually regarding
the association of two perceptual stimuli. In 1949, Donald Hebb suggested that
this association is encoded in the strength of the synapses connecting the
neurons that st or etatior(Hebbt 1®849)a soncepithat i 6 s r e
was summarized with the term synaptiagticity. Following this conjecture,
researchersctually found some molecular mechanisms that corroborate the
Hebbdés idea. What is known iMNmdghiftat syna
D-aspartate NMDA) receptos, which modulatehe number ofU-amino-3-
hydroxy-5-methyt4-isoxazolepropionic aciAMPA) receptorexpressed at the
synapsgGenoux & Montgomery, 2007Presynapticmmeuromodtator release

in co-occurrencewith postsynaptic depolarisatioenablesa calcium influx
through the NMDA receptors, whichinduces trafficking and the
phosphorylation of glutamatergic AMPA receptors. Thebaracteristicof

NMDA receptorsmake themdeally eligible for associative learning processes
thatentail concurrentactivity in different areas of theervous systerthrough

the general process of spiliming-dependenplasticity (STDP,Markram et

al., 1997) AlthoughNMDA -dependent mechanisms have been found to play a
key role in learning and memory processes in the bfaiiet al., 2005; Tye et

al., 2008) there are some recenudies that posit thenorphological structure

of the dendritic arborisation or dendritic spines as essential element that

regulates associative learning mechanisnmonjunction with synaptic



No prediction
Reward occurs

Reward predicted
Reward occurs

Reward predicted
No reward occurs

FIGURE 3. Figure adapteftom Schultz et al.(1997) Changes in dopamine neuron firing reflect the prediction
errors of appetitive events. For each panel, the top graph represents the accumulated spike count per time bin, ar
each dotted line in represents one recording session, where each dot is a spikdeBefing, the juice drop is

not predicted, resulting in a positive prediction error, and increased firing in responsevteatteAfter learning,

the CS predicts the reward, and the dopamine neurons increase firing rate in respongeetbctheeCS, but

not to the predicted reward. When after learning the CS is presented, but the reward is omitted, this results in &
negative prediction error and suppressed firing of the DA neurons at the time the reward should have occurred.

plasticity (Tazerart et al., 2020For example, Bencsik et §2019) showed

that @lcium/calmodulirdependent serine protein kina€e@ASK) interactive
proteins multidomain neuronal scaffold proteins such as Caskinl and Caskin2
influenced the learning capabilities of mice viegulating dendritic spine
morphology and MPA receptor localisatian Another key factor that
contributes to changes in the synaptic strength and the morphology of dendritic

arborisation is the dopamin@®A) neurotransmitter. There is an extensive
19
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literature that shows howDA regulate the traffickig, insertion
phosphorylatiomnd endocytosis of NMDA receptdiBao et al., 2007; Salazar
Colocho et al., 2007@s well as théormation of dendritic sping$asano et al.,
2013) It is also well known the dopaminergic system is responsible for
encoding the prediction errors or the surprise for the rewarding stimali
classical conditioning settindt has been shown that when salient stimuli are
presented tononkeys their DA neurons inhte ventral striatum firmly increase
their firing rate(Tanaka et al., 2019Yhese salient stimuli can be biologically
relevant assets sucas food and water, but also any other stimuli carrying
information about the arrival of these goqtgingberg et al., 1992; Romo &
Schultz, 199Q)Waelti et al(2001)also showed that these DA responses were
conformed to the behavioral pattern found in the blocking paradigman
influential series ofstudies,Schultz and colleagues investigated the phasic
firing patternduring Pavlovianconditioning in the macaque ventral tegmental
area VTA, Mirenowicz & Schultz, 1994, 1996; Romo & Schultz, 1990;
Schultz, 1998) When aneutral visual stimulusis presented to a primate
followed by a juice reward, th@A neurons increase firing in response to the
reward, but not in response to thsual stimulusAs the primatelearns theCS

US association, firing rates increase when 8 is presentedOnce the
association is learnethe UStriggersprogressively smaller increases in firing
When theUS is completelypredicted, firing ratestopincreasng, while when

the US is omittedfiring rates decrease to below baseline. This pattefinirag
ratesindicatesthat what theDA neuronsreactto is notthe USitself, but its
prediction error.Subsequently fMRI studies on humans found VTA also
encodes reward predictionerrgr8r ay & O6 Doherty, 2007; (
D6Ardenne et al ., .Zikebh®lyem&nuahtheVTAedan al ., 2
be explained by the fadhat the ventral striatunreceivesdopaminergic
projections from te VTA (Joel & Weiner, 2000andthe BOLD signal reflects
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more postsynaptigotentials than firing rat thus it can tell more about the input
on an area rather than an outfiudgothetis et al., 2001Recent findings also
showed amygdaland frontal cortexesponsible foreward prediction error
encoding, but only in subpopulations of mens (Schultz, 2016)Concrning

the functional aspects of the neural mechanisms involved in Pavlovian
conditioning, the way in which dopamine activity encodesl{SSassociations

has been extensively studied both theoretically and experimeritadymodel

free reinforcement leanng algorithm described by Sutton and B4881)has

been successful in modelling the phasic activity of the dopaminergic midbrain
system as well as in other cortical regidn®©® 6 Doher t y . la this al
algorithm the discrepancies between the expected and delivered outzeme
computedover consecutive time steps during a triaducially, the prediction
errorsignal usuallyelicitedby therewardis transferredemporally back tdhe
stimulusthat reliablypredictsreward delivery. This effectivelgssigndo a cue

that predictshereward the value inherent in the reward itself, rather than just
encodingthe occurrence of theward(Sutton & Barto, 1981)in recent times,

all the experimental evidence described above led to the creation of a general
theoretical framework capabbf accounting nearly any observed phenomenon
about associative learnirand brain function in general. It is called Predictive
Coding (PC), and it encompasses a family of theoretical constructs about how
the brain works, such as the Bayesian brain hygsishand the freenergy
principle(Clark, 2013Friston et al., 2006;riston, 2010; Hawkins & Blakeslee,
2004; Huang & Rao, 2011; Mumford, 1992; Rao & Ballard, 1988¢ording

to the PC framework, the brain is essentiallyierarchi@l predictionmachine
(Clark, 2013) The brain is constantly confronted with a grahtindance of
sensory information that must be process#itiently to produceappropriate
behaviowal outcomes. Onevay of optimizing this process is tpredict

incoming sensorinformation based on experience so that expanfednation

2
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is processed efficiently and computationasdsources can be allocated
accordingly PCargues that the nervous systeonstantlygeneratesnodels of

the world based on contextual and stored informagknston, 2010) Such

predictive model isimplementedin higher cortical areas anttansmitted

through feedback connections to lower sensanyices(Friston et al., 2006)

Conversely feedforward conneicins process thanismatch between the

predicted information and the actis&nsory inpu(Rao & Ballard, 1999)The

predictive modeis constantly updated according to thredictionerror signal

The origins of this idea go back to work on the perception of von Helmholtz,

who was the first to conceptualize perception as a process of probabilistic,
knowledgedriven inferencgHelmholtz, 1925) Hel mhol t z6s key i d
Afsensory syst e mssinesy ofinferrmg sensa@y causes frokny

t hei r b o dCldrky 20E3f I ardert tes azcomplish that, it is required

computing multiple probability distributions, because a single such effect will

be coheent with various sets of causes differentiated just by their relative
probability of occurrence. One of the mediablishednodels is surely thizee-

energy principlg(Friston et al., 2006)The freeenergy principles based on
considerations about the thermodynamics of living organisnhe mMain

problem tobe addressed for biological systems is to maintain stable their
structure in spite of the continuous change of the environment, due to the fact

that the repertoire of physiological states in which an organism can survive is

limited. This implies that therpbability of these sensory states must have a low

entropy associated, and the notion of entropy in information theory is equivalent

to the concept of surprise. The more entropy is high, the more sensory data will

be unexpected, and for a biological systémt means being in danger.
Thereforea bi ol ogi cal syst em -terra siverdage of A mi ni m
surprise to ensure that (Fristenj2010)sn@ansory e

thermodynamic sense, free energy is a measure of the energy available to do
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useful work. When this concept is ajgpl to the study of cognition, fresnergy
emerges sithe difference between the way the world is represented in neural
circuits, and the way it actually is. This means for a biological system that
minimizing free energy implies the reduction of surpribkus, a biological

agent may suppress free energiyday changing the two things it depends on:
they can change sensory input by acting on the world or they can change their
recognition density by changing their internal states. These two processes are
isomorphic to the concepts of perception and actiod,this implies that free
energy principle prescribes the optimal conditions for the realization of the
perceptioraction cycle.One of the most basic and robust paradigms to
demonstratgredictive processing activity in the brastimuli is the oddball
paadigm (Naatdnen et al., 1978)n this experimental procedyrdhe
presentation of an oddball stimulus in a sequence of standard stokeisa
negative potential as measuneidh Electroencephalograpi¥EG), which is
known as the mismatch negativity (MMN) potential. The MM@$ponseas
observed in all sensory domaifdkatsuka et al., 2007; Baldeweg, 2006;
Cammann, 1990; Pazblvarez et al., 2003; Stagg et al., 20@&H)d can be
intermpretedunder the P@ramework(Garrido et al., 2009 he predictive model

of the environmenis updaéd by adjustingthe brain connectivitythrough
synaptic plasticityand dendritic spines formatiapon repeatedxposuref the
stimuli. After a while that the standard stimulus is presented, it is reliably
predicted so there is no error signalling (i.e. the MMM)ich istriggered again
when a deviant stimulus presente@nd this pattern is reflected in the neural
adjustmentsdescribedabove (Baldeweg, 2006§riston, 2005) In the next
section, there will be a discussion about the role of saliency or relevance of the
US stimulus in the C®JS associability and how the PC franwk can also
account for stimulustimulus associations that are not behaviourally relevant

nor biologically salient.



24

Role of task relevance in sensory predictions

Thestudy of Pavlovian conditioning has a long tradition, and it is rooted in the
animal research. Due to these circumstanteste has beenvaays a subtlbias
towards studying rewarding associatiorfsince animals necessarily need a
reward in order to perform a taslgnd comparatively little interest in
investigating affectively neutral andskirrelevantCS-US associationsT his
changedvith the advent of humamon-invasiveneuroimagingand researchers
started to test the assumption that only rewarding associations are learned by
the brain. Fletcher and colleagu€2001)investigatedusing fMRI, prediction

error signals regarding the associative learningafééctively neutral CS
(fictitious drugs) and US (fictitious syndromes). At the beginning of the
experiment, when the G8S associabty was still low, activity in the right
dorsolateral prefrontal cortex (DLPFC) and the putamen was high and
decreased as the associability increased. Furthermore, DLPFC activity was
increasing when unexpected outcomes were presented compared to expected
outcomesMclintosh et al(1998)used positrormission tomography (PET) to
showthatafter a tondight associatiorwas establishedhe presentation of the

tone elicited activity in the visual cortebn another study, Kok et a{2017)
studiedthe neural responses to CS presentation using neutrally stimuli as tones
and Gabor patchesising Magnetoencephalography (MEGPparticipants
performed an orientation detection task while the audio stimuli predicéed th
orientationof the Gabor stimuliThey found that indeed the tepeéentation
association was learned and also that, once the association was established, the
tone elicited gre-activationof&l s t i mu | u sin ather mqrds,ahte sotely
presence ofthe CS induced a similar activation pattern of the visual stimuli in
the occipital cortexin all these studies, even if thesedstimuli were not
biologically relevant for the participants such as food, pain or money, the

predictions made by the partieipts upon the stimuli are still relevant for them



because they were asked to perform these tasks. Therefore, the stimuli acquired
a behavioral salience even if they do not possess any intrinsic property that made
them valuable for the participantdp to chte, in the literature there are very few
studies that implemented a Pavlovian conditioning procedure with truly task
irrelevant and affectively neutral stimuli. In one of these studies,
researchergwvestigated the expectation suppression of unattendet an
irrelevantGaborstimuli using fMRI(St. JohrSadtink et al., 2015) They found

that, under some circumstances dependent from the manipulation of working
memory, the expectation suppression was visibleetmotopically specific
areas of early visual cortex (M23). In another representative studgn Ouden

et al. (2009) found that taskrrelevantaudiovisual sensory predictions were
implicitly learned byparticipantausing fMRI, asdenotedoy the modulation of
visualareaselicitedby the predictivaudiostimulus In particular, \sualcortex
wasprogressively lesactivated bythe predicted visual stimulus as thedio

visual associatiowas learnedAlso, expectatiorviolations like the absence of

the predicted stimuludriggereda gradually larger response asissociative
learning progressed possible theoreta interpretation of the reason why the
brain encodes prediction errors even for irrelevant associations can be derived
from the PC frameworkClark, 2013; Rao & Ballard, 1999)ccording to the
free-energy principlethe minimization of surprise, the general goal of any
living system, can be viewed as a sugoal for biological system@-riston et

al., 2006) therefore updating their internal models of the environment in order
to predict potentially surprising events is also a relevant task itself. In other
words, the brain is constantly trying to predict the causes of the sensory data it
receives because this &volutionary, the best strategy one can dopt in order to
control the environment and therefore having more chances to survive. Thus,
making correct predictions is rewarding on itself for the brain even if these

predictions are not served for behaviosdévant goals. Also, this strategy may
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lead to discover new patterns of associations between stimuli that seemed
irrelevantat first glanceobut when the environment or the goals change, these
learned associations can be revaluated. In the next chaptes8, fdllow a

series of studies that investigate the role of task relevance in sensory predictions
using a combination of neuroimaging techniques, such as EEG and MEG, and

computational modelling and machine learning algorithm.



Chapter 2: Stimulus-independent visual cortex activity

induced by implicit auditory conditioning
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Introduction

Neural systems need to continuously extract statistical regularities from the
environment and update predictions about their curcentext to optimize
behaviour (Friston et al., 2006) Traditionally, in the neurxientific and
psychological literatureorediction has been studiedinost exclusively in the
context of classical and instrumental conditioning parad{fewlov, 1927;
Skinner, 1938)which measure how living systems are able to associate neutral
events (or actions) with affectivelynd biological significant events such as
food delivery or sleep deprivationHowever it has beerpoorly investigated
whether learning oincidentalstimulusstimulus associations (i.e., learning of
associations that are irrelevant gwaldirected behawaur) is characterized by

the same neuronal mechanisaisPaviovian conditioningThe assumption in
associative learning research that the strength of the association is determined
by theeffectivesaliene, defined as the intrinsic property of a stimutuglicit

a biological response in the living organisshthe unconditioned stimulyand

also by the temporatontiguity between the conditioned and unconditioned
stimuli) or even that the effective saliencetloé unconditionedtimulus is a
conditio sire qua non for associative learning taking pl@a@ be traced back

to the early studies of classical and instrumental conditio(@gnjan, 2005;
Trevifio, 2016; Eelen, 2018pPne reason for this was thi#ie only method to
study cognitive phenomena was to measure observable belsassociative
learningwas studied exclusively with experimental designs that emphasize a
behavioural response, therefore precluding the investigation of irrelevant
associtions that, by definition, do not exhibit a clear behavioural respdmse.

recent times, thanks to the advent of modern neuroimaging methods, some
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studies investigated the brain responses related to incidental associations,
showing evidence of learninglated modulation of brain activity elicited by
taskirrelevant stimuli{den Ouden et al., 2009; St. JeS8aaltink et al., 2015)

For instance den Ouden et a(2009)found that taskrrelevantaudiovisual
sensory predictions were implicitly learned pgrticipantsusing functional
magnetic resonance imaging (fMRBsdenotedby the modulation of visual
areaselicited by the predictiveaudiostimulus In particular, vsual cortex was
progressively lesactivated bythe predicted visual stimulus as tedicvisual
associationwvas learnedAlso, expectatiorviolations like the absence of the
predicted stimlus, triggereda graduallylarge response agssociativéearning
progressedThese results can be interpreted under the general framework of
predictive codindRao & Ballard, 1999Friston, 2005; Clark, 2013Predictive
coding asserts that the brairc@nstantly using generative causal models of the
world to predict and infer the causes underlying incoming sensory data in order
to minimize surprisgFriston et al., 2006)These models are continuously
updated using the difference between their prediction and the sensory input, a
guantity that is generally referred as prediction giBayer & Glimcher, 2005;

den Ouden et al., 2010; Schultz, 20IB)ese prediction errors are encoded in
the nairal dynamics mostly in the form of increased activity, as extensively
reported in the dopaminergic system but also in other cortical ancostital
regions, or changes in the functional connectivity between brain @elasltz

et al., 1997; Mehta, 2001Jhis kind of encoding is efficient and motivated by
informationtheoretic principles in the sense that it reduces redundancy by
signaling only the changes khar than constancy. Here, we used
Electroencephalography (EEG) to find evidence that participants learned task
irrelevant associations by solely analyzing their brain activity, without a
behavioral response. Specifically, we investigated whether thesankpar

related patterns of brain activity elicited by implicit associations can be
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explained by the same predictive coding principles governing the neural activity
of associative learning for gedirected purposes. In our experimental design,
participants prformed a perceptual detection task while being exposed to
audicvisual distractor stimuli. Auditory distractors predicted subsequent visual
distractors according to a predefined probability structure that was unknown to
the participants, using a tracenditioning paradigm in which auditory stimuli
preceded visual stimuli and were not temporally overlapped. Importantly, our
design allows us to separate the time in which the brain generates a prediction
about the next visual outcome and the time in whicdduates this prediction

with the sensory data and computes the prediction error. Thus, we studied the
brain responses associated with both the predictive audio stimuli (prediction)

and the predicted visual stimuli (prediction error).

Methods

Participants

Twenty-one volunteers (13 females, mean age 24.3, rang2)lparticipated

in this study. All were righhanded with normal or correctéo-normal vision

and normal hearing, had no history of neurological disorders and were not
taking any neurological edications. All participants gave informed written
consent. The study was conducted in accordance with the Declaration of

Helsinki and approved by the University of Trento Ethics Committee.

Procedure

During the experiment, participants were exposed to a stream of audio and

visual stimuli while sitting in a dimhit booth at a distance of 1 m from the



30

CRT monitor (22.5 inch VIEWPixx; resolution: 1024 x 768 pixels; refresh rate:
100 Hz; screen width: 56m). Auditory stimuliconsisted ofiow and high
frequency pure tones, respectively of 250 Hz and 500 Hz. Visual stimuli
consisted ofGabor patches (Fig. 1A, 4.4° x 3.4° visual angle) with Gaussian
envelope, standard deviation of 18.0 and a sgatigliency of 0.08 cycles/pixel
displayed in a grey background (RGB: 128, 128, 128), one with 45° orientation
(right) and the other one with 135° orientation (left). On each trial, auditory
stimuli predicted the presence or absence of visual stimuli aogptdithe
probability structure illustrated in Fig. 1B. One of the 2 tones (A1) was paired
with one of the 2 Gabors (V1) with a probability of 90% [¥1), while in the
remaining 10% of the times, Al was followed by the absence of the visual
stimulation (M0JA1). The other pair of stimuli (A2 and V2) were associated with
an opposite statistical pattern (¥2 10%, VJA2 90%). The assignment of the
stimuli to the conditions was counterbalanced across the participants. The trial
structure, illustrated in Fid.C, consisted of a fixation cross indicating the start
of the trial with a duration of 100 ms, followed after 500 ms by the equally
probable presentation of one of the 2 tones with a duration of 600 ms.
Immediately after the offset of the audio stimulatione of the 2 Gabors or
their absence was presented for 500 ms and then the trial terminated with an
inter-trial interval (IT1) of 2500 ms + 500 ms. Importantly, this experimental
design that resembles a trace conditioning paradigm (Cole et al., 199&¥ al

us to investigate the brain response associated to both audio (predictive) and
visual (predicted) stimuli. The experiment consisted of a total of 400 trials
divided in 10 blocks and the total duration of the experiment was approximately
40 minutes. Qtically, in order to ensure a constant level of attention on the task
and to make the statistical associations between stimulirtadkvant, we ask
participants to perform an aueNisual target detection task. The task consisted

of pressing a button enever they perceived one of the two perceptual target
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(Fig. 1A, an auditory one that was the combination of A1 and A2, and a visual
one that was the combination of V1 and V2) that was presented for 500 ms. On
each block, there were 4 audio and 4 visual targets randomly presented during
trial intervals and followed by an ITI. Crucially, when debriefed at the end of
the experiment with a questionnaire, participants did not become aware of the
31
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statistical associans between the stimuli. The experimental script was

generated using OpenSesame with PsychoPy as ba@Wlatitbt et al., 2012)

EEG acquisition and preprocessing

EEG data were recorded from a standard51€ystem with 27 Ag/AgCl
electrodes cap (EasyCap, Brain Products, Germany) at a sampling rate of 1 kHz.
| mpedance was kept below 10 kqufdor al |l
and the right mastoid was used as reference. Electrodes were positioned at the
following scalp sites: Fpz, Fz, F3, F4, F7, F8, F9, F10, FC5, FC6, T7, C3, Cz,
C4, T8, CP5, CP6, P7, P3, Pz, P4, P8, PO7, PO8, 01, Oz, and O2. All
preprocessing steps werenclucted using EEGLAB (Delorme and Makeig,
2004). Spherical interpolation was carried out on individual bad channels with
the criterion that a channel correlated less than 0.85 on average respect to its
neighbours and with the assistance of visual inspedtaverage number of
interpolated channels: 0.74, range3)0 Data were dowssampled to 250 Hz

and filtered with a higipass at 0.1 Hz and a lepass at 80 Hz, using a
butterworth [IR filter with model order 2. CleanLin®ullen, 2012) with

default parameters was used to remove line noise at 50 Hz and its harmonics up
to 200 Hz. After this step, data were rereferenced to a common average
reference and epoched between 1300 ms
the audio stimulus with a baseline correction betw880 ms to 0 ms. Artifact
rejection was applied using visuakpection and by automatically eliminating
epochs containing a channel with extreme values with a threshold of £500. The
average number of trials rejected per participant was 1.1% (SD=2.1%, range O
7.3%). Stereotyped artifacts, including blinks, eye mams and muscle
artifacts were deleted via independent component analysis (ICA) using the
extended infomax algorithifBell & Sejnowski, 1995)The average number of

independent components removeds 9.33 (£3.48 SD), using a rejection
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strategy based on ICLab@ionTonachini et al., 20199nd visual inspection.
Finally, data were converted to Fieldtri@ostenveld et al., 201Iprmat for

subsequent analyses.

EEG analysis

Data analysis aimed to assess implicit associative learning of perceptual stimuli
and specifically to investigate the neural response evoked by the specific
auditory stimuli repeatedly paired with the visual stimuli. Tigs taim, the
analysis focused on two main time windows: a first epoch from 0 ms to 600 ms
related to auditory stimulus presentation only, either followed or not by the
Gabor patch, and a second ept&ram 600 ms to 1400 ms characterized by the
presentation of the Gabor patch only or by its omission. First, conventional
eventrelated potential (ERP) analysis was performed by simply-vineyf
splitting the data of each condition (first half vs. secontidfahe experiment)

on the four stimulus pairs (MAl, VOJALl, V2|A2, VOJA2). EEG data were
averaged across selected areas using frontal (Fpz, Fz, F3, F4, F7, F8, F9, F10),
temporeparietal (FC5, FC6, T7, C3, Cz, C4, T8, CP5, CP6, P7, P3, Pz), and
occipitd (P4, P8, PO7, PO8, 01, Oz, O2) regions of interest (R&0kes et

al., 20M). Second, a regressidrased approactMyers et al., 2014; Stokes et

al., 2014)aimed at assessing learnirgjated EEG changes on a trigktrial

basis during exposition to aueuisual stimuli. The regression analysis was
based omestimated beta values (slope parameter) obtained from a general linear
model (GLM) that used the averaged EEG activity over each ROI and
timepoints across block of trials as dependent variable and the number of blocks
as r@ressor to have a proxy for the passing of time. These extracted beta
parameters can be interpreted as the trend of the data over the course of the
experiment. For instance, a positive slope indicates that the amplitude of the

EEG signal in that particul&Ol-timestep pair increased positively over time.
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Trials were averaged across 10 blocks (20 trials per block) to increase the signal
to-noise ratio. This analysis was performed on the subject level for A1 and A2
time-series separately. Statistical sigrahce was based on dependsatples

t-t est (U=0.05) u s i n-pasethpegnsutatiomtestsaand at e ¢
maxsum as cluster statistiMaris & Oostenveld, 2007)Third, a regression
multivariate pattern analysis (MVA, using MVPA:Light toolbox (Treder,
2020)and custom MATLAB scripts, was employed to decode differences of the
activation pattern between Al and A2 as well as between V1,VO|Al and
V2,VO|A2 (Cichy & Pantazis, 2017)considering the EEG activity in each
channel averaged over blocks of trialsl(d) for each subject as features and
the block order as outcome variable. A Kernel RiiRegression (KRRHe et

al., 2014)model with the radial basis function kernel, which is a kernelized
version of the ridge regression (linear least squares withnoeh
regularization}that allows noflinear mappings of the data, was applied over
time. Zscoring was applied across samples for each time point separately to
normalize channel variances and remove baseline shifts. Model performance
was estimated using the Root Mean SquamdrE(RMSE) as metric and
repeated Hold crossvalidation with 5 repetitions and 5 folds, to avoid
overfitting and increase robustness of results. Chlised permutation tests
with the same hyperparameters of the previous regression analysis were
consicered for estimating statistical significance. In addition, searchlight
analysis(Kriegeskorte et al., 2006pplied to each channel assessediapa
features relevance. Analysis of V1 and V2 stimuli was also based on regression
analysis and MVPA but in order to consider the intrinsic differences of their
probability distributions were applied to additional variables (see next section)
estimated usg the Hierarchical Gaussian Filter (HGF) modelathys et al.,
2014)
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Hierarchical Gaussian Filter model

The Hierarchical Gaussian Filter model (HGF) is a Bayesian generative model
(Mathys et al., 20149f perceptual inference on a changing environment based
on sequential inpugliglesias et al., 2013; Hauser et al., 2014; Powers et al.,
2017) The HGF consists of perceptual and response models, representing a
Bayesian observer who receives a sequehicgots, updates an internal model

of how environment generates those inputs and predicts future observations
(Fig. 1 D). Since our experimental design deliberately precluded behavioral
responses, we used only the perceptual m@tefanics et al., 2018 such a
modeling framework, a perceptual moaeimprises a hierarchy of 3 hidden
states @), which account for a muitevel belief updating process about the
hierarchically related environmental states giving rise to sensory inputs, and an
observation modek§ represents the actual occurrence sfimulus in a given

trial (Fig. 1). The model assumes that environmental hidden states evolve
conditionally on the states at the immediately higher level. The hidden states

process at the first level of the perceptual model represents a sequencdf belie
(w ) about stimulus occurrence, that is, whether a visual stimulus was present

W p) or absentd m) at trial6, and is modelled as follows:

O X 801 & Eidw aQ 1)

wherei @ D p Ag® is the logistic sigmoid function. Here, the
hidden states at the second lewsl () is an unbounded real parameter of the

probability thatw = 1, thus representing the current belief of the probability
that a given stimulus occurs. Such an hidden state process evolves according to

a Gaussian random walk:
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@ W o x 0hoi i OB (2)

which depends on both its value at a previous driahd the hidden state at the

third level of the hierarchy. In particular, the higherel hidden state process
(o ) deermines the logyolatility of the hidden state process at the second

level, thus codifying the volatility of the environment during the time course of

the experiment. This process evolves according to a Gaussian random walk:

W LW X 0DHO i i M (3)

The parameter set[§f ) determines the dispersion of the random walks
atdifferent levels of the hierarchy and allows to shapevidual difference in
learning. By inverting the generative model, given a sequence of
observations ¢, it is possible to obtain the updating process of theliyal

trial estimates of the hidden state variables. The update rules st@mareon

structure across t he "hedpdatedithe hosteriorar c hy :
mean’ of the statev, that represents the belief on tf@lis proportional to

the precisiorweighted prediction error (pwPE) as follows:

‘ L - 4)

[ — )

‘ — (6)
As shown in EQsi3, in each trial, a belief update ‘ Is proportional

to the prediction error at the level belpw . The pwPE is the product of the
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prediction errof and a precision ratip  that depends on the precision
(inverse variance, Eq. 5) of the prediction at the level b&lowand the current

level* .In this application, we are interested in the update equations of
the hidden states at the second levhlctvhave a general form similar to those

of traditional reinforcement learning models, such as the Resétatmer

model (Rescorla& Wagner, 1972) The pwPE on the second level, is thus
assumed to be responsible for the learned perceptual association. The nature of
the pwPE can be described through the following update equation of the mean

of the second level:

, i (4)

where the last term represents the prediction efror i ° at the first

level weighted by the precision teym (see(Mathys et al., 2014pr a general
derivation and more mathematical details). Trajectories of pwPEs with separate
models for A1 and A2 were calculated by estimating the parameters that
minimize Bayesian Surprise using the BroyddetcherGoldfarlbShannon
(BFGS) quasiNewton optimization gorithm. We determined these Bayes
optimal perceptual parameters by inverting the perceptual model based on the
stimulus sequence alone and a predefined prior for each parameter (the standard
in the HGF toolbox, version 5.2 implemented via the Transldtidlgerithms

for Psychiatry Advancing Science toolbox). These maléeived trajectories

of pwPEs from the second level were used (Fig. 1 E) as, respectively, regressor

and outcome variables in the GEihsed regression and MVPA.
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latency resulted significant in the MVPA analysis across tibn@opographical representation of the results o

the regression analysis at the latency resulted significant.

Results

Participants debriefed at the end of the experiment reported not to be
consciously aware of audwsual stimuli pairings. They reported to have
noticed neither any particular regularity of stimuli presentation nor any pairing
between auditory and visudirauli when specifically interrogated on possible

audiovisual associations.
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Conditioned stimuli

ERP analysis of the conditioned auditory stimuff €poch: 600ms) showed

a significant difference between the Al first and second half waveform in the
frontal and occipital ROI around 520 and 580 ms (Fig. 3 A, p<0.05, cluster
corrected), while for the comparison of A2 first and second half ERPs no
significant differences emerged (Fig. 3 B). Interestingly, the occipital region in
Al in the second part of the experiment was decreasing its activity with respect
to the first part, while for the frontal region we observed the opposite pattern.
Regression angsis of beta values revealed a significant difference (p < 0.05,
cluster corrected) between Al and A2 in the frontal and occipital ROIs;
specifically, A1l with respect to A2 showed increased positivity in the frontal
ROI and increased negativity in the qutal ROl in a time window immediately
preceding V1 presentation, between 550 and 580 ms in the frontal and occipital
areas(Fig. 2 A-D). MVPA analysis over time showed significantly higher
performance of the kernel ridge regression model for A1 as cothfia&, in

a time window between 535 and 565ms, as evidenced by the lower residual
variance expressed through the RMSE. Searchlight analysis indicated a major
contribution of frontal and occipital ROIs to the observed differences in the

regression modeldiween Al and A2 (Fig. 2-B).
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Unconditioned stimuli

ERP analysis of the unconditioned stimuli™(Zpoch: 6600 ms after
unconditioned stimuli onset) showed ngrsficant effects (Fig. 5 M) in the
selected ROIs comparing first and second ha#llo¥isual conditions (V1|Al,
VO|AL, V2|A2, VO|A2). Regression analysis of pwPE trajectergstimated by
considering the opposite probability distribution of V1 arddécurrence given

Al with respect to V2 and VO occurrence given A2, showed a significant
difference of EEG pattern between V1+V0 and V2+VO0 in the time window 240
280 ms after the offset of the conditioned stimulus (p<0.05, cluster corrected)
in the occipial ROl and around 24800 ms in the frontal ROI (Fig. 4,-B;
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FIGURE 4 A. Regression slope time series estimated on single trial at each timestep in Frontal, Temporo
Parietal and Occipital ROIls, using the pwPE trajectories estimated from the HGF model for Al (in blue) and A2
(in red) conditions. Shades indicate SEM and horizdogtes represent significant differences between the two
conditions fj T8t uclustercorrected) B. MVPA performance for Al (in blue) and A2 (in red) across time
using all channels as features. Shading indicates SEM across subjects and the horiztwotaklkzasignificant
difference between the two model§ ( 18t vclustercorrected).C. Topographical representation of the
Searchlight analysis at the latency resulted significant in the MVPA analysis acrosP tilraographical
representation of the ressibf the regression analysis at the latency resulted significant.

p<0.05, cluster corrected). MVPA over time did not evidenced a significant
difference of KRR model performance between V1,VO|Aland V2,VO|A2(Fig.
4B). Searchlight analysis, performed in tkame time window resulted
significant in the GLM analysis (24800 ms), revealed a greater contribution
of temporaloccipital regions for predicting pwPE trajectories in V1,VO|Al
model performance, while for V2,VO|A2 only a restricted number of occipital
channels were contributing most (Fig. 4C).
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