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Abstract

The available body of biomedical literature is increasing at a high pace, exceed-

ing the ability of researchers to promptly leverage this knowledge-rich amount

of information. Although the outstanding progress in natural language process-

ing (NLP) we observed in the past few years, current technological advances in

the field mainly concern newswire and web texts, and do not directly translate

in good performance on highly specialized domains such as biomedicine due

to linguistic variations along surface, syntax and semantic levels. Given the

advances in NLP and the challenges the biomedical domain exhibits, and the

explosive growth of biomedical knowledge being currently published, in this

thesis we contribute to the biomedical NLP field by providing efficient means

for extracting semantic relational information from biomedical literature texts.

To this end, we made the following contributions towards the real-world adop-

tion of knowledge extraction methods to support biomedicine: (i) we propose

a symbolic high-precision biomedical relation extraction approach to reduce

the time-consuming manual curation efforts of extracted relational evidence

(Chapter 3), (ii) we conduct a thorough cross-domain study to quantify the

drop in performance of deep learning methods for biomedical edge detection

shedding lights on the importance of linguistic varieties in biomedicine (Chapter

4), and (iii) we propose a fast and accurate end-to-end solution for biomedical

event extraction, leveraging sequential transfer learning and multi-task learn-

ing, making it a viable approach for real-world large-scale scenarios (Chapter

5). We then outline the conclusions by highlighting challenges and providing

future research directions in the field.
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Chapter 1

Introduction

Processing and understanding natural language is a central feature of human

intelligence and therefore a main challenge towards the goal of artificial general

intelligence (Eisenstein, 2019). Giving a machine the ability to perform human

cognitive tasks such as tackling the complexity and ambiguity of natural lan-

guages is a long-standing problem and the main research focus of Natural Lan-

guage Processing (NLP), a field at the intersection of linguistics and computer

science. In the era of data, unstructured textual information pertaining to a

variety of domains is produced at a very high rate, resulting in a large amount

of potentially useful information to dig in. Biomedicine is no exception, in

which the number of research publications indexed on bibliographic databases

such as PubMed (Canese & Weis, 2013) is increasing steeply (Figure 1.1).

The availability of written biomedical knowledge and the fast progress in

NLP have opened up the challenge and the opportunity to extract structured

relational information from unstructured biomedical texts, in order to aid trans-

lating the research evidence into practice. Biomedical Natural Language Pro-

cessing (BioNLP), a subfield of NLP in the biomedical application domain, has

indeed been shown to be crucial for downstream bioinformatics applications

such as the population of knowledge bases and the construction of biochemi-

cal pathways (Ananiadou et al., 2010; Li et al., 2019). Despite the attractive

opportunity, NLP in the biomedical domain is lagging behind the “general

1
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Figure 1.1: Cumulative number of citations indexed on PubMed over years.

domain” NLP. The main reason being that research in natural language pro-

cessing has traditionally focused on newswire text (Cohen & Demner-Fushman,

2014), implicitly setting it as a standard, canonical language. This historical

coincidence is mainly due to the early availability of resources in the newswire

domain (Plank, 2016), that indirectly slowed down the progress in NLP for

non-canonical linguistic varieties, including but not limited to biomedicine,

legal texts, and social media.

Newswire text has indeed a simpler textual structure compared to biomed-

ical text (Cohen & Demner-Fushman, 2014). For instance, it has been shown

that texts in the newswire domain have an average sentence length of 19.1

words, whereas in biomedicine sentences are up to 70.7% longer (i.e., 24.5–

27 words) (Lippincott et al., 2010). Further, the vocabulary overlap between

newswire and biomedicine is only around 24.9% (Gururangan et al., 2020).

Besides lexical and surface characteristics, biomedicine exhibits different syn-

tactic, discourse and sentential features, which vary even within the broad

biomedical domain itself (Lippincott et al., 2010). Particularly, scientific pub-

lications present additional challenges regarding the text types, namely ab-

stracts and full-texts, the latter being harder to process due to the differences

in structural and content aspects (Cohen et al., 2010). Biomedical texts are
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thus by nature more challenging to deal with compared to newswire texts,

due to both the linguistic variations along surface, syntax, and semantics lev-

els (Cohen & Demner-Fushman, 2014), and the implicit linguistic bias of ex-

isting solutions which indirectly harms their repurposing to the biomedical

domain (D. Q. Nguyen & Verspoor, 2019).

Early approaches to NLP – and thus, to BioNLP – have been mostly domi-

nated by symbolic methods, namely the manipulation of linguistic information

units by means of human hand-coded rules and patterns, to the goal of cap-

turing the meaning of texts automatically (Henderson, 2020; Bender & Koller,

2020). The increase in computational power and the need for soft probabilistic

classification in the late 1980s originated a shift towards statistical methods.

As a result, in the past 20 years we have witnessed a first revolution, with

statistical NLP that has become the dominant paradigm (Manning & Schutze,

1999). Statistical approaches such as machine learning have been common-

place since then due to their intrinsic ability to learn patterns from data in

an automated fashion, dispensing the manual crafting of rules and patterns in

favour of feature engineering (Mitchell, 1997).

A second revolution in NLP, or “tsunami” (Manning, 2015), dates back

a few years ago when deep learning, a particular branch of machine learning,

dramatically improved the performance across a variety of NLP tasks (LeCun et

al., 2015). The breakthroughs in representation learning for NLP, such as word

embeddings (Mikolov, Sutskever, et al., 2013; Mikolov, Chen, et al., 2013), have

further strengthened this shift, showing that deep neural network approaches

with dense word representations are effective and more robust across linguistic

variations compared to former approaches (T. H. Nguyen & Grishman, 2015).

Although successful, deep learning methods require a large amount of la-

beled data for the specific task and domain at hand, as well as costly computa-

tional resources in order to train a reliable model. Transfer learning has recently

emerged to mitigate these issues in NLP, providing an effective paradigm to

repurpose models trained on a task or domain on a related task or domain (Pan

& Yang, 2010; Ruder, 2019). Specifically, language models pre-trained on large

collections of unlabeled texts such as BERT (Devlin et al., 2019) have shown to

lessen the amount of data required to reach the same performance on a target
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task (Howard & Ruder, 2018), while increasing the robustness on unseen texts

belonging to different data distributions (Hendrycks et al., 2020). As a result,

transfer learning can be referred to as the third revolution in NLP. The recent

progress in NLP is in fact mostly ascribable to transfer learning (Ruder et al.,

2019), which has led to unprecedented, near to human-level performance on a

wide array of NLP tasks (A. Wang, Pruksachatkun, et al., 2019).

Given the advances in the general domain NLP and the challenges the

biomedical domain exhibits, in this thesis we contribute to the BioNLP field

by proposing effective methods for extracting semantic relational knowledge

from the unstructured biomedical literature, in order to ultimately assist re-

searchers in keeping pace with the growing volume of domain-relevant texts

being published. Specifically, we design solutions for the tasks of biomedical

relation extraction and biomedical event extraction, driving the progress in

BioNLP as well as providing relevant insights to the broader NLP community.

Research Goal and Objectives

The focus of this thesis is on providing efficient means for extracting semantic

relational information of domain interest from the biomedical literature. We

firstly explore traditional symbolic approaches and the conceptually simpler

relation extraction task, then focusing on the more complex event extraction

task, thus employing deep and transfer learning methods. More specifically, in

this thesis we attempt to answer the following research questions:

RQ1 Does a symbolic approach for biomedical relation extraction

aid in mitigating the subsequent manual curation efforts by achiev-

ing a higher precision score compared to deep learning approaches?

How does it compare to recent transfer learning methods?

In order to answer this question, we devise a symbolic approach that uses

carefully designed patterns and rules to leverage surface linguistic information

and syntactic dependency tree structures of the input texts. We compare it to

state-of-the-art methods in literature as well as to transformer-based methods

which we specifically fine-tune on the task. We also conduct a detailed error
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analysis to investigate the limitations of the dependency tree-driven approach,

highlighting interesting challenges and opening future directions.

RQ2 To which degree are deep learning methods robust in han-

dling different linguistic varieties for the edge detection sub-task of

biomedical event extraction? What is the expected drop in perfor-

mance when these methods are applied out-of-domain?

We employ convolutional neural networks as the most successful deep learn-

ing approach for the task to study the cross-domain performance of edge de-

tection on diverse corpora. We compare in-domain and out-of-domain perfor-

mance of models, shedding light on the importance of domain variations to be

tackled in future work, and releasing data to encourage research in this direc-

tion. We also assess the contribution of different syntactic and semantic input

embeddings, providing results using multiple evaluation strategies.

RQ3 How can biomedical event extraction be tackled in an end-to-

end fashion in order to improve the performance on the task com-

pared to previous pipeline-based and joint learning alternatives?

How does it compare to previous work in terms of speed efficiency?

We propose a joint, end-to-end solution for the highly complex task of event

extraction by introducing a novel linearization approach to recast event struc-

tures into word-level labels, and leveraging deep transfer learning methods. We

experiment with single task and diverse multi-task learning alternatives as well

as multi-label decoding. We compare our approach to state-of-the-art meth-

ods in terms of both performance and speed, also providing a thorough error

analysis and investigating the contribution of model components by performing

ablation studies. Results are insightful and open directions in BioNLP and the

broader NLP field.

From a practical perspective, we make the following contributions:

• We propose a high-precision biomedical relation extraction approach to

reduce human curation efforts of the extracted information (Chapter 3);
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• We provide state-of-the-art performance in biomedical relation extraction

using either symbolic or transfer learning methods (Chapter 3);

• We quantify the cross-domain generalization of current deep learning for

edge detection in biomedical event extraction (Chapter 4);

• We release standardized data to encourage future research in cross-domain

biomedical edge detection for event extraction pipelines (Chapter 4);

• We propose a novel linearization approach and a end-to-end multi-task

multi-label model for the biomedical event extraction task (Chapter 5);

• We provide insights on the importance of multi-task learning and multi-

label decoding, as well as first results using non-gold entities (Chapter 5);

• We provide an efficient solution for biomedical event extraction that is

both faster and more accurate compared to previous work (Chapter 5).

Thesis Outline

The organization of this thesis is schematically presented in Figure 1.2. After

this introduction, the following chapters are presented:

• In Chapter 2, an overview of the concepts and methods relevant to the

contents of this thesis is provided. We present fundamentals on natu-

ral language processing and relevant tasks, with particular emphasis on

the biomedical domain. We then introduce symbolic and neural network

methods, with details on layers and components we employ throughout

this dissertation. Finally, we discuss transfer learning concepts and the

notion of domain, providing details on sequential transfer learning meth-

ods such as BERT and the multi-task learning paradigm. Sections 2.2.4

and 2.2.4.1 of this Chapter are based on Ramponi and Plank (2020).

• In Chapter 3, a dependency tree-driven symbolic approach for high-

precision biomedical relation extraction is presented. Specifically, we

show that (i) carefully designed dependency tree rules provide the highest
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Chapter 1
Introduction

Chapter 2
Background

Chapter 4
On Domain Shift

in Biomedical
Event Extraction

Chapter 3
Dependency Tree-Driven

Biomedical
Relation Extraction

Chapter 5
Biomedical

Event Extraction
as Sequence Labeling

Chapter 6
Conclusion

Figure 1.2: How to read this thesis: while we suggest reading Chapters in the
order they appear, Chapters 3, 4 and 5 can be optionally read after Chapter 2.

precision compared to previous methods on the task, ultimately reducing

the human curation efforts of the extracted information, (ii) fine-tuning

transformer-based language models on the task provides higher perfor-

mance than traditional machine learning approaches, and (iii) besides

the good results, there are cases that a symbolic approach still does not

capture due to the high variability of biomedical texts, and the relation

extraction task itself cannot model potentially useful high-order associa-

tions. As a result, this study sets the motivation on focusing on deep and

transfer learning solutions afterwards, for the semantically richer event

extraction task. This Chapter is based on Ramponi, Giampiccolo, Toma-

soni, Priami, and Lombardo (2020).

• In Chapter 4, a study on the cross-domain performance in biomedical

event extraction of typical deep learning solutions is presented. As a case

study, we experiment with the most challenging step of the biomedical
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event extraction pipeline, namely edge detection, employing deep con-

volutional neural networks. We provide (i) the first cross-domain study

of biomedical edge detection, quantifying the out-of-domain drop in per-

formance of in-domain models, thus highlighting the importance of the

linguistic varieties to be tackled in future work, (ii) a standardized cross-

domain corpus we released freely to encourage future research in cross-

domain edge detection for event extraction pipelines, and (iii) insights

about how different syntactic and semantic input embeddings contribute

to the performance. This study provides the motivation to abandon

pipelined models in favour to end-to-end biomedical event extraction,

to avoid cascading errors and to leverage inter-dependencies among sub-

tasks. This Chapter is based on Ramponi, Plank, and Lombardo (2020).

• In Chapter 5, we study how to tackle biomedical event extraction as

end-to-end solution using deep transfer learning in a fast and efficient

way. We propose Biomedical Event Extraction as Sequence Labeling

(BeeSL), whose main contributions are (i) a novel approach to linearize

the event structures into word-level labels, thus to model the biomedical

event extraction stages jointly and leverage subtask inter-dependencies,

while mitigating the error cascading shortcoming of locally-optimized

classifier pipelines, (ii) a multi-task, multi-head learning paradigm, which

substantially reduces the label space for sequence labeling, while allowing

to model multiple head relations for each word at once, (iii) state-of-the-

art results on the standard GENIA event extraction benchmark, and an

increase up to 5× in speed efficiency at inference time compared to the

previous best solution, making it a viable solution for large-scale sce-

narios, and (iv) insights on the contribution of multi-task learning and

multi-label decoding, as well as first results on the task without gold en-

tity information, and a thorough error analysis. This Chapter is based

on Ramponi, van der Goot, Lombardo, and Plank (2020).

Finally, Chapter 6 summarizes the main findings, outlining the conclusions,

and presenting future directions in the field.
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Chapter 2

Background

In this chapter we provide the fundamental background knowledge to under-

stand the remainder of this dissertation. We start by introducing the broad

goal of biomedical natural language processing, specifically focusing on relation

and event extraction as the tasks of interest in this thesis. An introduction

to traditional and neural network approaches in natural language processing

is then provided, with details on layers, components and architectures we em-

ploy throughout this dissertation. Finally, we discuss relevant transfer learning

concepts and introduce the notion of linguistic varieties (or domains), then

focusing on sequential transfer learning approaches such as BERT and multi-

task learning strategies. We conclude the chapter by providing key references

to allow the reader to further deepen the presented topics.

2.1 Biomedical Natural Language Processing

Natural language processing (NLP) has shown tremendous advancements in the

last decade, leading to unprecedented results in a wide array of tasks (A. Wang,

Pruksachatkun, et al., 2019). Given the technical progress and the exponential

growth of the biomedical literature in the form of electronic data resources

(cf. Figure 1.1), there has recently been a surge of interest in NLP technology

in order to extract structured information from the vast amount of unstruc-

tured biomedical texts. The study and development of NLP methods in the

11
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biomedical application domain is typically referred to as biomedical natural

language processing (BioNLP) (Cohen & Demner-Fushman, 2014).1

Although the recent progress in NLP is truly significant, current techno-

logical advances in the field have shown to not directly translate in better

performance in BioNLP (Lee et al., 2020). Indeed, most research in natural

language processing has traditionally focused on newswire and web texts, whose

structural and content aspects are intrinsically different compared to biomed-

ical texts (Cohen et al., 2010). Specifically, as opposed to newswire texts,

biomedical texts exhibit different syntactic and sentential features (Lippincott

et al., 2010), with only a very small percentage of word overlap with newswire

texts due to the occurrence of highly-specialized terms (Gururangan et al.,

2020) and substantially longer and more articulated statements (Lippincott et

al., 2010; Cohen & Demner-Fushman, 2014). This indirectly harms the re-

purposing of existing solutions from the often termed general domain to the

biomedical domain (D. Q. Nguyen & Verspoor, 2019).

As a running example, consider the text excerpts in Table 2.1. It appears

immediately evident that biomedical text contents are drastically different and

that a fine-grained description of biological processes (as the one in Table 2.1,

below) will unlikely occur in newswire data, where on the other hand topics like

money transfer operations find their natural place (Table 2.1, above). Besides

the surface features of both the textual varieties (e.g., the approximately double

length of the biomedical sentence compared to the newswire one, Table 2.1),

biomedical statements are intrinsically more elaborated, exhibiting several co-

ordinate and subordinate clauses. Further, most of the words are typically

of domain relevance. Concretely, “rocG”, “RocR”, “NtrC”, and “NifA” are

highly-specialized biomedical terms that happen to be out-of-vocabulary in

the general domain, and thus are mostly neglected by NLP methods – either

rule-based or data-driven – which rely on newswire textual data. Further, some

words belong to both the domain vocabularies, but they actually differ in their

semantic content. For instance, the term “bank” predominantly refers to a

1In the context of this thesis, biomedical NLP entails biological entities and relationships
from literature, such as protein-protein interactions and molecular biology reactions of genes
or gene products (e.g., regulation, phosphorylation). We thus do not entail clinical NLP
tasks concerning e.g., tests, treatments and medications from medical/health records.
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Table 2.1: Excerpt examples of newswire text and biomedical text, from ACE
corpus (Walker et al., 2006) and LLL corpus (Nédellec, 2005), respectively.

Newswire text
“Citibank was involved in moving about $100 million for Raul Salinas de

Gortari, brother of a former Mexican president, to banks in Switzerland.”

Biomedical text
“The rocG gene of Bacillus subtilis, encoding a catabolic glutamate dehy-

drogenase, is transcribed by SigL-containing RNA polymerase and requires
for its expression RocR, a member of the NtrC/NifA family of proteins that
bind to enhancer-like elements, called upstream activating sequences.”

financial institution in newswire texts, whereas in biomedicine could indicate

an environmental location, e.g., where particular bacterial species proliferate.

As a result, BioNLP as a field aims at accounting for both the challenges

the biomedical domain exhibits, and the specifics about the biomedical task

at hand. BioNLP being a strongly interdisciplinary field, it focuses in deriving

means to allow biomedical researchers to better conduct their own research.

Thus, a main goal in BioNLP is to design and develop methods capable of

extracting relevant information from unstructured biomedical texts, in order

to assist researchers in keeping pace with the increasing volume of domain-

relevant texts being published. The main tasks to this purpose are relation

extraction and event extraction. We provide details on these crucial tasks in

Sections 2.1.1 and 2.1.2 after introducing core tasks and settings in NLP.

Core tasks in natural language processing Despite the domain differ-

ences, BioNLP shares the same fundamental tasks as the general domain NLP.

In the following, we briefly describe the main preprocessing and syntactic tasks

which are typically employed as building blocks in pipelined systems, e.g., to

serve information for rule or feature design, providing examples in Table 2.2.

• tokenization: a common preprocessing task whose goal is to segment

an input string into a sequence of linguistic units, called tokens (roughly

words), in order to ease further processing;
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Table 2.2: Typical tasks in natural language processing. The first row indicates
an example of a raw text to be processed, whereas the following rows show the
intended output for each of the tasks.

Task Example output

Raw text E2F6 activates E2F gene expression

Tokenization E2F6 activates E2F gene expression
Lemmatization e2f6 activate e2f gene expression
POS tagging NN VBZ NN NN NN
Chunking O B-VP O B-NP I-NP
Entity recognition B-PRO O B-PRO O O

Dependency parsing

E2F6 activates E2F gene expression

nsubj

dobj

compound

compound

root

• lemmatization: a task which aims at finding the lemma (i.e., the canon-

ical form) of each token, so that inflected and derived forms of a word are

processed consistently by further analysis components (e.g., “activate” =

{“activates”, “activated”, “activate”}, “be” = {“is”, “are”, “be”});

• part-of-speech tagging: a task whose goal is to assign a descriptive

syntactic category to each token in a sequence (e.g., verb, noun, adverb,

adjective, etc.). Part-of-speech (POS) categories are typically drawn from

tag inventories such as the coarse-grained Universal POS tag set (Nivre

et al., 2016) and the fine-grained PENN Treebank POS tag set (Marcus

et al., 1993) (refer to Appendix A for a detailed description of the tag

sets). POS-tagged tokens are typically employed as central features to

derive chunks or syntactic dependency parse trees (described below);

• chunking: a task which aims at identifying token segments in the input

sequence that together constitute high-level syntactic units (e.g., [“gene”,

“expression”] 7→ [“gene expression”]). The output typically consists of
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BIO-tagged2 labels (i.e., B: begin, I: inside, O: outside) to distinguish

between the first token and the other tokens of single chunks (e.g., B-NP

refers to the first token of a noun phrase, and zero or more I-NP will

follow it). Chunking is also typically referred to as shallow parsing ;

• entity recognition: a task whose goal is to detect and assign a category

to entities in an input sequence. As in chunking, BIO tags are typically

employed to handle multi-token segments. Since entities differ based on

the target application domain, there is no unified tag set. For instance,

general domain entities are typically Person, Organization and Lo-

cation, whereas in biomedicine these are, e.g., Proteins, as shown in

Table 2.2 (B-PRO). Although named entity recognition (NER) is not a

syntactic task per se, it is typically the input to extraction systems;

• dependency parsing: a task which aims to produce a grammatical de-

pendency parse tree for an input sequence of tokens. The output struc-

ture encodes the relationships between tokens, and more specifically the

grammatical dependency (in the form of a label) of each token to its head

token (i.e., the parent in the tree). As for POS tagging, dependency la-

bels are drawn from an inventory such as the ClearNLP tag set (refer

to Appendix B for a detailed description of the tag set). Dependency

parsing has been proven useful for information extraction tasks because

dependencies loosely approximate semantic relationships (Ruder, 2019).

Deriving features for end tasks such as relation and event extraction (Sec-

tions 2.1.1 and 2.1.2) based on the output of some external syntactic modules

in a pipeline fashion has been a de-facto standard in NLP (Tenney et al., 2019).

We use syntactic modules for rule design in Chapter 3 and for providing features

to a neural system in Chapter 4. With the recent advent of deep learning and

specifically the availability of large, deeply contextualized pre-trained models

(Chapter 2.2.4.2), end-to-end solutions have become commonplace due to their

ability in adjusting low-level syntactic information to better capture high-level

2Alternatives to the BIO tagging scheme include IO (I: inside, O: outside) and BILOU
(B: begin, I: inside, L: last, O: outside, U: unit) (see Jurafsky and Martin (2020) for details).
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semantics (Tenney et al., 2019). We design an end-to-end solution for event

extraction in Chapter 5, completely displacing external syntactic tools.

Problem settings Regardless of the technical approach that is employed

(Section 2.2), natural language processing tasks can be categorized according

to different methodological setups which reflect the specifics of the input and

output relationships of the problem at hand. We can specifically distinguish:

• text classification (or categorization): the problem of categorizing a

sequence of tokens based on its content. As a result, a label is assigned

to describe the whole sequence. Example tasks include spam detection,

topic identification, language detection, and sentiment classification;

• sequence labeling (or tagging): the problem of assigning a descrip-

tive label to each of the tokens within an input sequence. POS tagging,

chunking, and entity recognition in Table 2.2 are typical examples;

• syntactic parsing: the problem of deriving a structured output (e.g.,

in the form of a tree or graph) for an input sequence of tokens. Typical

examples are dependency parsing in Table 2.2 and constituency parsing;

• language modeling: the problem of predicting the next token in a

sequence given a sequence of previous tokens. It is typically employed for

large language models pre-training (Chapter 2.2.4.2);

• sequence to sequence (or seq2seq): the problem of producing an out-

put sequence of tokens from an input sequence of tokens. Specifically,

seq2seq builds on top of language modeling. Examples include machine

translation and text summarization.

While most of the NLP tasks have been historically framed into one of the

aforementioned problem setups, this does not preclude reframing a task as a

different problem. For instance, recent work has shown the effectiveness of

reducing syntactic parsing tasks as tagging, specifically constituency (Gómez-

Rodŕıguez & Vilares, 2018) and dependency parsing (Strzyz et al., 2019). We
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also take an opposite but effective direction to current work in Chapter 5, where

we cast biomedical event extraction as sequence labeling.

Given the background on core tasks in natural language processing and the

problem settings, we now introduce the tasks we tackle in this thesis to the goal

of extracting semantic relational information from the unstructured biomedical

literature, namely relation (Section 2.1.1) and event extraction (Section 2.1.2).

2.1.1 Relation Extraction

Relation Extraction (RE) is the task of identifying the semantic relationships

that hold between given entity mentions in an unstructured text. Specifically,

the targeted information focus in biomedicine is in determining if an association

exists between domain-specific entities such as Proteins, and the RE task is

thus typically referred to as biomedical relation extraction. Due to the topic

of this thesis, we hereafter use RE and biomedical RE interchangeably.

Formally, given an input sequence of tokens S = [w1, ..., wN ] and a set of

given entity mentions {ei}Ei=1 where ei is a token span in S, relation extraction

aims at predicting a class ck ∈ C for each entity pair (ei, ej)i 6=j . As a result,

relation extraction is typically framed as a text classification task, where
(|E|

2

)
entity pairs, if |E| ≥ 2, are independently evaluated and assigned a class ck ∈ C.

For instance, given the sentence in Figure 2.1 in which |E| = 3 entity men-

tions are provided (i.e., the Protein mentions “E2F6”, “E2F” and “BDH1”),(|E|
2

)
= 3 candidate relation pairs are evaluated, namely (“E2F6”,“E2F”),

(“E2F6”,“BDH1”), and (“E2F”,“BDH1”) (Figure 2.1, dashed lines).

Protein Protein Protein

E2F6 activates E2F and BDH1 gene expression

Figure 2.1: Example of entity pairs evaluation in biomedical relation extraction.

Specifically, in the relation extraction example in Figure 2.1, the candi-

date relations (“E2F6”,“E2F”) and (“E2F6”,“BDH1”) are positive relation

instances (i.e., c = 1), whereas the pair (“E2F”,“BDH1”) is not in a semantic
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relationship (i.e., c = 0). Since biomedical relations of interest are often inter-

actions, biomedical RE is typically framed as a binary problem in biomedicine.

The main freely available annotated corpora for biomedical relation extraction

are LLL (Nédellec, 2005), IEPA (Ding et al., 2001), and HPRD50 (Fundel et

al., 2007). As opposed to early approaches which derive relations based on en-

tity co-occurrences in the same token sequence (Cheng et al., 2008), annotated

data for relation extraction aims at providing standardized means to encourage

the development and evaluation of accurate information extraction methods.

In this thesis we tackle biomedical relation extraction to the goal of providing

high-precision results to biomedical practitioners, thus reducing the subsequent

efforts in filtering spurious relation instances (Chapter 3).

Evaluation metrics In order to assess the goodness of relation extraction

methods, a set of acknowledged metrics are typically employed. Given a set of

human-annotated (i.e., gold standard) relation instances and the corresponding

predictions, the precision (Eq. 2.1), recall (Eq. 2.2), and the harmonic mean

of the two, referred to as the F 1 score (Eq. 2.3), are calculated as follows:

precision =
TP

TP + FP
(2.1)

recall =
TP

TP + FN
(2.2)

F1 score =
2 ∗ precision ∗ recall
precision+ recall

(2.3)

where TP is the number of true positives (i.e., the number of correctly identified

instances), FP is the number of false positives (i.e., the number of wrongly

identified instances), and FN is the number of false negatives (i.e., the number

of missed instances). TN is also used to indicate the number of true negatives

(i.e., the number of correctly identified negative instances).

Standard precision, recall and F1 score metrics as defined in Eq. 2.1, 2.2

and 2.3 are typically the case of binary classification problems (i.e., when the

output classes are two). When dealing with multi-class classification problems

(i.e., when the output classes are more than two), the metrics are macro- or
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micro-averaged over the classes. In the first case, metrics are computed at

the instance-level, thus each instance contributes equally to the final score,

regardless of the class it belongs. In the second case, per-class contributions

are firstly aggregated and then averaged.

2.1.2 Event Extraction

Similarly to RE, Event Extraction (EE) is a task which aims at extracting

relational knowledge about given entity mentions occurring in an unstructured

text. In the context of BioNLP, EE is typically referred to as biomedical event

extraction. Informally, a biomedical event is a formal description of a biomedi-

cal process or “happening” involving biomedical entities such as Proteins. As

opposed to relations, events aim not only to capture which biomedical mentions

are interacting, but also to describe which kind of interactions are actually oc-

curring, and which role each mention has in them (Björne, 2014). This makes

events suitable for capturing fine-grained descriptions of processes from the

elaborate biomedical statements occurring in the scientific literature.

Specifically, in contrast to relations, which are high-level pairwise associa-

tions between entity mentions (Table 2.3, top), events are semantically rich,

structured representations that (i) are rooted on triggers, i.e., tokens (typi-

cally verbs or nominalized verbs) that indicate the presence of a biomedical

“happening” of a certain category, and thus determine the “center” and the

semantic type of those events, and (ii) have multiple arguments (alternatively,

edges), i.e., entities or other event triggers that participate in the events with

a semantic role (Table 2.3, bottom). For instance, in Table 2.3 (bottom) a

+Regulation event is anchored to the trigger token “activates”, and it has

the “E2F6” Protein as Cause argument, and the “expression”-centered Ex-

pression event as Theme argument. As a result, events naturally capture the

association of more than two mentions, and each event can in turn be argument

of other events, resulting in nested event structures (Björne & Salakoski, 2018).

Given an input text and marked entities, biomedical event extraction thus

aims to recognize events by identifying triggers and arguments as relevant infor-

mation units. Due to the increased complexity caused by the fine-grained rep-

resentation of events, the task is typically tackled into two stages in a pipeline,
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Table 2.3: Comparison of relation and event annotations given input entity
mentions (i.e., Pro: proteins). Relations are pairwise associations of entity
mentions, whereas events are structures rooted on trigger tokens with a se-
mantic type (e.g., +Reg: positive regulation; Exp: expression) which can
have multiple arguments in different semantic roles (arrows and their labels).
Event arguments can be entities or other events, resulting in nested event struc-
tures.

Task Example output

Relation extraction Pro Pro Pro

E2F6 activates E2F and BDH1 gene expression

Event extraction
Pro +Reg Pro Pro Exp

E2F6 activates E2F and BDH1 gene expression

Cause

Theme

Theme
Theme

i.e., using two specifically purposed classifiers. We detail these stages below,

using Figures 2.2 and 2.3 as running examples to explain each stage:

• trigger detection: a sub-task aiming at recognizing and classifying the

tokens that may trigger events. For instance, a +Regulation event trig-

ger centered on the token “activates”, and an Expression event trigger

anchored on the token “expression”, have to be recognized (Figure 2.2,

solid boxes). Instead, other tokens such as “and” and “gene” do not

trigger any biomedical event, and thus are not classified as triggers (Fig-

ure 2.2, dashed boxes). Sequence tagging is typically employed as prob-

lem setup (cf. Section 2.1) for tackling this event extraction stage;

+Regulation Expression

E2F6 activates E2F and BDH1 gene expression

Figure 2.2: Example of trigger detection in biomedical event extraction. Solid
boxes and dashed boxes indicate triggers to be recognized or not, respectively.
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• edge detection: given the previously identified event triggers, this sub-

task aims at identifying and classifying the semantic arguments (or edges)

of each of the events centered on these triggers. Specifically, candidate

edges from each event trigger to given entities or other event triggers are

built and thus evaluated (Figure 2.3, both dashed and solid arrows). For

instance, in Figure 2.3 four potential arguments are evaluated for the

+Regulation trigger anchored on the “activates” token, namely the

Protein entities “E2F6”, “E2F”, “BDH1”, and the Expression event

centered on “expression”. Analogously, four arguments are evaluated for

the Expression event. Each entity or trigger that is actually argument

of events (Figure 2.3, solid arrows) is thus assigned a semantic role in

the event itself (Figure 2.3, label on solid arrows), and negative edge

instances are instead discarded (Figure 2.3, dashed arrows). Edge detec-

tion (also referred to as argument detection) is similar in spirit to relation

extraction, where a pairwise evaluation between mentions has to be car-

ried out.3 As such, this sub-task is typically framed as text classification

problem (cf. Section 2.1), where the token sequence is evaluated multiple

times, one for each pair of properly marked mentions.4

Protein +Regulation Protein Protein Expression

E2F6 activates E2F and BDH1 gene expression

Cause

Theme

Theme

Theme

Figure 2.3: Example of edge detection in biomedical event extraction. Solid
arrows and dashed arrows indicate event arguments to be recognized or not,
respectively. Labels on solid arrows are the roles that entity or event trigger
arguments (end of arrows) have in a specific event (start of arrows).

3However, relation extraction performs an “entity–entity” evaluation, whereas in edge
detection the evaluated associations are between “trigger–[entity|trigger]” pairs.

4This is typically done by (a) using position embeddings (Zeng et al., 2014) as features
to be added to word embeddings, or by (b) replacing mention tokens with a placeholder (Alt
et al., 2019) (e.g., “Mention”) when fine-tuning large pre-trained models.
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The detection of both triggers and edges results in the identification of

biomedical events. For instance, in Figure 2.3 we can see the following events:

an Expression event anchored on “expression” having as Theme arguments

the “E2F” and “BDH1” Proteins, and a +Regulation event centered on

“activates”, having as Cause the “E2F6” Protein, and as Theme argument

the aforementioned Expression event.

As opposed to general domain event extraction (Walker et al., 2006), nested

structures are possible and frequent in biomedical event extraction, making it

a challenging task. The standard benchmark corpus for assessing advances in

biomedical event extraction methods is the well-known GENIA event extraction

corpus (J.-D. Kim et al., 2011), which comprises over 37% nested events. A

variety of pipeline systems made up of trigger and edge detection modules has

been proposed in recent years to tackle the complexity of the task, e.g., Björne

and Salakoski (2018) and Li et al. (2019). In the direction of pipeline systems,

in Chapter 4 we provide a thorough evaluation of edge detection performance

in biomedical event extraction. We also provide in Chapter 5 a novel end-to-

end solution for biomedical event extraction which jointly learns both trigger

and edge information gaining in both performance and efficiency.

Evaluation metrics As for relation extraction, event extraction methods are

evaluated using standard macro-averaged precision (Eq. 2.1), recall (Eq. 2.2),

and F1 score (Eq. 2.3). The evaluation is carried out at the event level, thus

based on an equality criterion (detailed below) between each predicted event

structure (i.e., comprising both the event trigger and its arguments) and its

corresponding gold event annotation. As a result, the typical trigger and edge

detection sub-tasks of pipelined event extraction systems are not formally eval-

uated per se, and their assessment is left to researchers. In Chapter 4, we con-

tribute to the field by providing standardized means for evaluating biomedical

edge detection performance in pipelined systems.

The standard event equality criterion employed in biomedical event extrac-

tion is called approximate recursive span matching. Specifically, a predicted

event is said to match a gold event if all the following conditions hold: (i) the

predicted event trigger is equivalent to the gold event trigger (i.e., the predicted
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token span is entirely contained within the gold token span extended to the

left and the right by one token); (ii) the predicted type of the event trigger is

the same as the type of the gold event trigger; (iii) all the predicted arguments

(either entities or triggers) are equivalent to the gold arguments; (iv) all the

predicted role types of those event arguments are the same as the role types of

gold event arguments; and (v) recursively, the aforementioned conditions hold

for all the events referred as arguments, relaxing iii-iv to at least match the

Theme argument as the main descriptive part of biomedical events (J.-D. Kim

et al., 2011). As a result, the evaluation of biomedical events is very strict

and requires a system to be carefully designed to reach good performance. We

believe this strictness is necessary to avoid partial event matches which are

unlikely to carry useful information for downstream uses (e.g., a Regulation

event with a Cause argument but no actual Theme argument).

2.2 Approaches in Natural Language Processing

In this section we provide an overview of the fundamental methods that are

typically employed in NLP, specifically focusing on approaches for relation

and event extraction of relevance to this thesis. In Section 2.2.1 we introduce

symbolic approaches such as patterns and rules, then providing an overview of

machine learning in Section 2.2.2. We then describe neural network approaches

in Section 2.2.3, finally outlining transfer learning methods in Section 2.2.4.

2.2.1 Patterns and Rules

The symbolic approach to natural language processing, namely the manipula-

tion of linguistic units such as words as discrete symbols, has been an initially

prevalent paradigm in NLP. Concretely, in symbolic NLP hand-coded patterns

and rules are designed by human experts over words and their categorial fea-

tures (e.g., POS tags) to the goal of capturing the meaning of text and solve a

task at hand. Methods exploiting patterns and rules date back to the dawn of

NLP and to the interest in the test of machine intelligence proposed by Turing

(1950), and have been commonplace until the rise of statistical approaches.
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Figure 2.4: Chunked dependency parse tree. Tokens with their indices (ellipses)
are linked by grammatical dependencies (type within rectangles). Entities are
indicated in bold, whereas extracted paths by rules, denoting entity relation-
ships, are indicated by thick grey arrows. Figure source: Fundel et al. (2007).

Since patterns and rules are injected by human experts to mimic their

own reasoning behaviour in solving a specific task, symbolic NLP approaches

are typically task-specific static programs (as opposed to statistical approaches

which automatically learn patterns from data, thus allowing the repurposing of

model architectures, see from Section 2.2.2 onwards). We here outline seminal

approaches relevant to the extraction of relational information.

Lexico-syntactic patterns have been exploited to extract hyponymic lexical

relations. For instance, given the text “Countries, including Canada and Eng-

land”, (Canada, country) and (England, country) hyponyms can be extracted

using the pattern “NP {,} including {NP ,}* {or|and} NP”, where NP is

a noun phrase (Hearst, 1992). However, the interest in biomedicine in keeping

pace with the scientific literature relies on findings such as biomedical interac-

tions rather than lexical relations. Towards this goal, Ono et al. (2001) pro-

posed patterns such as “interaction (between|among) A and B”, “A(-/)B

complex”, and “A and B association with each other”, where A and B

are entity mentions. To further handle the variability of biomedical texts, re-

cent methods leverage dependency parse trees. For instance, in Fundel et al.

(2007) a dependency tree is built on top of noun chunk tokens, and rules are

applied to identify semantic relations between entities based on their shortest

path (Figure 2.4). We employ a similar approach for relation extraction in
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Chapter 3. While symbolic approaches are still effective in relation extraction,

their results in event extraction are far lower compared to statistical approaches

due to the high complexity of the task (J.-D. Kim et al., 2011). We thus adopt

deep and transfer learning methods for event extraction (Chapters 4 and 5).

2.2.2 Machine Learning

Machine Learning (ML) is a field of study aiming at building computational

models for given tasks by automatically learning patterns from data (i.e., the

previous experience on the tasks). More formally:

“A computer program is said to learn from experience E with re-

spect to some class of tasks T and performance measure P , if its

performance at tasks T , as measured by P , improves with experi-

ence E.” (Mitchell (1997))

For instance, in relation extraction (i.e., the task T ) the goal is typically

to maximize the F1 score (i.e., the performance measure P ) on a set of unseen

relation examples by learning from a set of relation examples with given clas-

sification labels (i.e., the training experience E). Given X = {x1, ..., xn} the

training instances and Y = {y1, ..., yn} the corresponding class labels, the goal

is thus to learn a function f that generalizes to unseen instances, assigning

the right labels to new examples. This setup in which training data consists

of tuples {(xi, yi)}ni=1, where n is the number of instances, is called supervised

learning. In contrast, in unsupervised learning {(xi)}ni=1 are only available, thus

the goal reduces to derive input structure or as a mean for feature learning.

Supervised learning deals with two common prediction problems, namely

classification and regression. In classification, the label yi is a discrete value

belonging to a predefined set of classes (or categories) C, whereas in regression

the label yi is a continuous real value. The former can be further divided

into binary, multi-class, and multi-label classification. In binary classification,

|C| = 2 (e.g., determine whether an email is spam or not) whereas in multi-

class classification, |C| ≥ 2 (e.g., assigning to a word a part-of-speech class

from a tag inventory). In both binary and multi-class classification an instance
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is assigned exactly one label drawn from |C|. In multi-label classification, an

instance can be instead assigned multiple classes from |C| (e.g., determine the

list of topics covered in an input text).

Due to the nature of relation and event extraction tasks, in this thesis we

focus on classification problems, particularly binary classification (Chapter 3),

multi-class classification (Chapter 4), and multi-class multi-label classification5

(Chapter 5).

From symbols to vectors In machine learning, input, intermediate, and

output representations are all encoded as vectors. Each input instance xi ∈ X
is a vector of f features (or parameters), i.e., xi = [x

(1)
i , ..., x

(f)
i ], whereas each

output yi ∈ Y is a vector indicating the probability of the example xi to belong

to the c possible classes, i.e., yi = [y
(1)
i , ..., y

(c)
i ]. A feature is an informative

property that is potentially discriminative in the learning process in order to

assign the correct label yi to each example xi. For instance, in computer vision

elemental features are the raw pixel values (e.g., the components of the RGB

color space), which are naturally encoded in digital image data.

As opposed to computer vision, NLP requires words to be converted into

vectorial representations before being fed into a machine learning model. A

näıve solution is to represent each word as one-hot vector, i.e., a binary vector

with the size of the vocabulary, where all dimensions are 0 except for the dimen-

sion corresponding to the actual word, which is 1. Treating words as discrete

representations has shown to exhibit several shortcomings (Smith, 2020), lead-

ing to distributed representations such as word embeddings (Mikolov, Sutskever,

et al., 2013; Mikolov, Chen, et al., 2013) (see Section 2.2.3.1).

Besides elemental features representing the input surface, a wide array of

characteristics can be encoded. Examples are word attributes derived from a

syntactic analysis such as lemmas and part-of-speech tags (Björne & Salakoski,

2018), as well as character n-grams and word suffixes, amongst others. In

relation and edge detection tasks, features encoding the relative position of each

5Multi-class multi-label classification refers to the classification setup in which an instance
can be assigned multiple labels (i.e., multi-label) from |C| ≥ 2 possible ones (i.e., multi-class).
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word to the mentions being evaluated have also been proven successful (Zeng

et al., 2014; T. H. Nguyen & Grishman, 2015).

Learning and generalization Given X the input examples, and Θ some

learnable parameters (or weights) of the model, the training objective is to find

an optimal function f(X; Θ) that minimizes a specific loss function during the

learning process. To meet this goal, optimization algorithms such as gradi-

ent descent are typically employed. A loss function measures the discrepancy

between the predictions ŷi compared to the ground truth yi. Relevant loss func-

tions for classification which are used in this thesis are the binary cross-entropy

loss and the categorial cross entropy loss (or simply cross entropy loss).

The binary cross-entropy loss is used for binary classification problems (i.e.,

|C| = 2). Given y a binary value denoting the ground truth of the example

(e.g., 1 for positive, 0 for negative), and ŷ the predicted probability score of

the example (i.e., in [0, 1]), the binary cross-entropy is expressed in Eq. 2.4:

CEbinary = −y · log(ŷ) + (1− y) · log(1− ŷ) (2.4)

When dealing with |C| ≥ 2 classes, the aforementioned loss generalizes to

the categorial cross-entropy loss, typically referred to as cross-entropy loss. A

separate loss value is computed for each class label c ∈ C, and the results are

then summed together as follows (Eq. 2.5):

CE = −
C∑

c=1

yc · log(ŷc) (2.5)

As a result, the loss value enlarges as the predicted probabilities diverge

from the true labels, whereas it decreases as the predictions are close to the

ground truth (i.e., a perfect classifier would have 0 as loss). Minimizing the

cross-entropy is thus necessary for learning and generalization.

Generalization is a concept tied to the bias-variance tradeoff, namely the

ability of a model to minimize both the error on training data, and the difference

between training and test error (Goodfellow et al., 2016). Bias occurs when

the error on training data is large, whereas variance occurs when the model

exhibits a high gap between errors on training and test data, thus being too
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sensitive to random perturbations in the training data. The model is said to

face underfitting in the first case, and overfitting in the latter. The capacity

of a model, i.e., the ability to fit different kinds of functions, is thus a crucial

factor for generalization (Goodfellow et al., 2016; Ruder, 2019) and the main

motivation for deep learning (Section 2.2.3).

Model assessment In assessing machine learning models, training, develop-

ment (alternatively, validation) and test portions of the original dataset play

a crucial role. The training set is used to train a model (and its potential

variants) to learn the mapping between input data and the corresponding out-

put labels; the development set is used to tune the hyper-parameters of the

designed classifier and to select the best performing model; and the test set is

used to assess the performance of the final model, thus the generalization to

unseen data instances. These portions are typically given along the data itself

to foster comparability of different approaches. However, when standard data

splits are not available, cross validation techniques are typically employed.

The most common is k-fold cross validation, in which the original dataset

is randomly partitioned into k subsets, and k experiments are conducted by

using k − 1 subsets as training data, and the remaining subset as test data.

The resulting k performance scores are then averaged, providing an estimate

of the accuracy of the model to new and previously unseen data.

Challenges and deep learning Traditional machine learning approaches,

such as Kernels and Support Vector Machines (SVM) (Cortes & Vapnik, 1995),

have been shown to work very well in a wide array of problems. However, they

have not historically succeeded in complex AI fields such as NLP, where the

target function to learn is often very complex (Goodfellow et al., 2016). The

transition to deep neural network approaches has thus been mainly motivated

by the need of more flexible learning functions which rely on compositionality,

mitigating the limited representation power and the curse of dimensionality of

traditional machine learning (Goodfellow et al., 2016). We focus on this family

of approaches in the following sections.



2.2. Approaches in Natural Language Processing 29

2.2.3 Neural Networks

Neural Networks (NNs), also known as Artificial Neural Networks (ANNs), are

a family of machine learning models originally intended to be computational

abstractions of the learning process in the human brain. They can be seen as

network-like structures composed by a collection of interconnected computing

units, called neurons (or nodes), whose outputs feed other neurons.

Neural networks lay their foundations on early neuroscience-inspired linear

models such as the McCulloch-Pitts neuron (McCulloch & Pitts, 1943) and

the perceptron model (Rosenblatt, 1958). Despite these units are referred to

as neurons, modern research in neural networks is no longer guided by the goal

of understanding how the brain works, but is rather concerned on building

systems to deal with tasks requiring intelligence (Goodfellow et al., 2016).

In these terms, a neuron can be seen as the building computational block

of a neural network. A neural unit takes a set of n real valued scalar inputs

x1, ..., xn with their associated weights w1, ..., wn, and computes a weighted

summation, adding a bias term b, a learnable parameter which determines

the y-intercept of the function. The resulting sum z is thus passed through a

non-linear function σ, giving a scalar activation value a as output (common

activation functions are detailed in the next paragraphs). The computation of

the neural unit is thus formally defined as follows (Eq. 2.6):

a = σ
( z︷ ︸︸ ︷

n∑
i=0

wi · xi + b
)

(2.6)

whereas a graphical representation of the operations is provided in Figure 2.5a,

where the unit’s output a also corresponds to the output y of the network (i.e.,

y = a). For convenience, given Dn, Dm the dimensions of inputs and outputs,

respectively, Eq. 2.6 can be rewritten using vector notation as follows (Eq. 2.7):

a = σ(

z︷ ︸︸ ︷
W · x+ b) (2.7)

where W ∈ RDn×Dm is the weight matrix, x ∈ RDn the input vector, and

b ∈ RDm the bias vector, with W, b ∈ Θ the learnable parameters.
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(a) A neural unit. (b) A feed-forward neural network.

Figure 2.5: A neural unit as a building block of neural networks, and a feed-
forward neural network. Figure source: Jurafsky and Martin (2020).

Combining such units together allows to build multi-layer neural networks,

in which outputs from units in one layer are fed to units in the next layer.

In essence, a neural network is thus a composition of many affine functions

(i.e., linear functions with a constant), interleaved with non-linear functions

(i.e., activation functions) (Mitchell, 1997). Non-input and non-output layers,

namely hidden layers, are the core of neural networks (Jurafsky & Martin,

2020). They are formed of a number of non-linear hidden units (as the one

depicted in Figure 2.5a) which perform non-linear transformations on the data.

A simple neural network comprising hidden layers is the Feed-Forward Neu-

ral Network (FFNN). A FFNN with a single hidden layer is presented in Fig-

ure 2.5b. Given W the weight matrix of the hidden layer, U the weight matrix

of the output layer, b and b′ (omitted in Figure 2.5b) the bias vector of the hid-

den and the output layer, and σ and σ′ the non-linear functions of the hidden

and the output layer, the resulting output vector y of the two-layer6 FFNN

can be defined as follows (Eq. 2.8):

y = σ′(U ·
h︷ ︸︸ ︷

σ(W · x+ b) +b′) (2.8)

6The enumeration of the layers of a neural network does not include the input layer.
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where h is the output vector of the hidden layer. Multiple layers can be stacked,

resulting in neural architectures with many hidden layers, referred to as deep

neural networks. The use of deep architectures is referred to as deep learning.

Activation functions The introduction of non-linearity on neural networks

is crucial to better capture complex functions. Activation functions are in

charge for adding this capability, as well as to squash real numbers to fixed

intervals for computational reasons. Activation functions are used at hidden

and output layers. For instance, an example activation function for hidden

layers is the Rectified Linear Unit (ReLU), defined as in Eq. 2.9:

σ(z) = max(0, z) (2.9)

which outputs z if z > 0, and 0 otherwise. Despite its simplicity, it typically

overcomes the limitations of other common activation functions, such as the

hyperbolic tangent and sigmoid, which are known to easily saturate and to be

expensive to compute (Goldberg, 2017).7

As for the output layer, the most common activation functions are the

sigmoid activation function (or logistic function) and the softmax. The sigmoid

transforms each value z in [0, 1], squashing outliers towards each end (Eq. 2.10):

σ(z) =
1

1 + e−z
(2.10)

and thus is suitable for binary classification where the output can be interpreted

as a probability value. As previously mentioned, it is currently deprecated in

hidden layers (Goldberg, 2017). When dealing with multi-class classification

problems, the softmax function is typically employed. The softmax normalizes

each element zi of the output vector z so that zi relies in [0, 1] and the values

sum to 1 (Eq. 2.11):

σ(zi) =
ezi∑C
j=1 e

zj
(2.11)

7Note that ReLU is typically inappropriate for some neural architectures, such as Recur-
rent Neural Networks (RNNs). For further investigation, refer to Le et al. (2015).



32 Chapter 2. Background

This allows the output vector z of raw scores to be interpreted as a proba-

bility distribution over the possible classes C.

Specialized layers and architectures Simple feed-forward neural networks

have been shown to be universal function approximators (Hornik et al., 1989)

and as a result the composition of non-linearities in neural networks to have

a high representation power (Goldberg, 2017). However, the non-specificity

of FFNNs has given rise to more specialized layers and architectures that

tackle specific challenges of language data. Indeed, a theoretical guarantee

that FFNNs are universal approximators does not guarantee that the training

algorithm will easily find a suitable function for all problems (Goldberg, 2017).

Given the provided background on machine learning and neural networks, in

the following sections we thus present layers and components that have been

successful which are relevant to the remainder of this thesis.

In Section 2.2.3.1, we introduce the embedding layer, a layer that is nec-

essary to model NLP problems, and aids in mapping word symbols to their

corresponding vectorial representations. On top of the embedding layer, con-

volutional neural networks, which specifically model spatial properties of input

data, can be employed. We introduce them in Section 2.2.3.2. Alternatively,

to model time and long-range relationships between words, transformer models

can be used (Section 2.2.3.3).

2.2.3.1 Embedding Layer

As introduced in Section 2.2.2, neural networks require input, intermediate,

and output representations as vectors. However, words are discrete units of

information, strictly requiring to be transformed into real-valued vectors be-

forehand in order to be used in neural networks. The embedding layer is the

layer in which the transformation from symbols to vectors takes place.

Formally, given a vocabulary V consisting of all the words in the dataset, d

the vector size for each word, and a matrix M ∈ R|V |×d storing the vectors for

each word, a lookup table LM (·) is used (Collobert & Weston, 2008) to turn

each word wi ∈ V into a d-dimensional vectorial representation xi, known as

the word embedding of wi (Eq. 2.12):
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LM (wi) = xi (2.12)

where the embedding vector xi ∈ Rd corresponds to the ith row of the matrix

M . Values in M are typically pre-computed and can be further tuned during

training together with the other learnable parameters of the network.

The embedding layer can be used in the same way to also map other discrete,

categorial features about wi to vectors, e.g., its part-of-speech tag. As a result,

xi becomes the concatenation of the d-dimensional word vector and the d′-

dimensional part-of-speech vector (where d′ is an hyper-parameter), leading to

a (d+ d′)-dimensional representation for the word wi.

Distributed word representations Word representation research, namely

putting words into computers (Smith, 2020), has a long-standing tradition. Not

long ago, words were treated as discrete, integer representations, in which each

word wi was given a |V |-dimensional one-hot vector, i.e., only the dimension

corresponding to the index of the word in the vocabulary V was activated, i.e.,

1 for the identity dimension, and 0 for all others (Figure 2.6, left). However,

discrete word representations are extremely sparse, leading to issues such as

the curse of dimensionality (i.e., a high number of feature dimensions for a

small set of examples). Moreover, they do not carry any information regarding

the properties of words, such as their semantic similarity or relatedness. For

instance, words such as “sternum” and “breastbone”, which both refer to the

bone located in the central region of the chest, were assigned different vectors

as for “activates” and “suppresses”, which instead express a divergent meaning.

To mitigate the issue, word representations that leverage the distributional

properties and usage of linguistic items in large collections of data have been

explored. The idea lies the foundation on the distributional hypothesis in lin-

guistics, which states that words occurring in similar contexts tend to have

similar meanings, mainly popularized by Harris (1954) and Firth (1957). As

a result, a variety of models to derive distributed word representations – a

representation of words’ meaning that is distributed across the whole vector

(Figure 2.6, right) (Smith, 2020) – have been proposed. Under this hypothesis,

similar words get similar vectors (e.g., “E2F6” and “E2F” in Figure 2.6).
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Figure 2.6: Word representations for the sentence “E2F6 activates E2F gene
expression”. Shades of grey represent values. One-hot word vectors are sparse,
and features grow with the size of V . In distributed word vectors the word’s
meaning is instead distributed across the vector, whose dimensionality is fixed.

Seminal examples in distributional semantics are the Brown clusters (Brown

et al., 1992), latent semantic analysis (Landauer et al., 1998), and latent

Dirichlet allocation (Blei et al., 2003). By leveraging dimensionality reduc-

tion techniques, vectors could be compressed, mitigating the feature sparsity

and the curse of dimensionality, ultimately leading to low-dimensional, continu-

ous, dense vectors that model the distributional view of word meaning (Smith,

2020) and that can be inspected for similarities and analogies in a vector space

model. The first work that showed the usefulness in neural networks of dis-

tributional semantic models, or word embeddings, is by Collobert and Weston

(2008). However, with the growth of corpora, the scalability of these methods

became an issue, especially in the case of limited computational resources.

This led to the popularization of the word2vec toolkit (Mikolov, Sutskever,

et al., 2013; Mikolov, Chen, et al., 2013), a method that allows both the inde-

pendent training of word embeddings as well as the use of word representations

pre-trained by other researchers, thus mitigating the need of costly computing

infrastructures. In their original paper, Mikolov, Sutskever, et al. (2013) pro-

posed the continuous skip-gram and the continuous bag-of-words (CBOW) neu-

ral models (Figure 2.7). Given a set of raw texts and a context word window c

(e.g., c = 2 for 2 words on both sides), d-dimensional word embeddings are cre-

ated by (a) predicting the context words w(t−c), ..., w(t+c) given a target word
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(a) CBOW model. (b) Skip-gram model.

Figure 2.7: The two proposed word2vec models to learn word embeddings (with
word context window c = 2). Figure source: Mikolov, Chen, et al. (2013).

wt (continuous skip-gram, Figure 2.7b), or by (b) predicting the target word wt

given the context words w(t−c), ..., w(t+c) (CBOW, Figure 2.7a), where c and

d are hyper-parameters. The training objective is thus to learn word represen-

tations which maximize the probability of predicting context words or target

words, respectively.

The use of word embeddings pre-trained on 6 billion tokens of the Google

News corpus (Mikolov, Sutskever, et al., 2013) has became ubiquitous in a

variety of NLP applications since then. However, some domains exhibit a spe-

cific jargon (Section 2.2.4.1) that is not included in the general purpose word

embeddings derived from a news corpus, leading to a high fraction of miss-

ing word representations (referred to as out-of-vocabulary words). To mitigate

the problem, domain-specific pre-trained word embeddings have been intro-

duced. Of particular relevance to this thesis are the biomedical word embed-

dings by Pyysalo et al. (2013). They induced 200-dimensional word vectors by

using the skip-gram model with a context size of 5 on biomedical publications

from PubMed and PubMed Central. We employ them for biomedical edge

detection in Chapter 4.
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2.2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (Lecun et al., 1998) are a class of deep

neural networks that have been successfully applied in a range of fields, from

computer vision (Redmon et al., 2016; Krizhevsky et al., 2017) to a variety

of natural language processing tasks, such as semantic role labeling (Collobert

et al., 2011), part-of-speech tagging (Dos Santos & Zadrozny, 2014), event

detection (T. H. Nguyen & Grishman, 2015), and question and sentiment clas-

sification (Kalchbrenner et al., 2014; Y. Kim, 2014).

The success of CNNs originates from their ability at capturing the spatial

properties of the input data. As opposed to FFNNs, CNNs are in fact able to

model local and position-invariant features in the text, thus acting as ngram

detectors instead of näıve bag-of-words models (Goldberg, 2017). Accounting

for the spatial locality correlation of words, regardless of their position in the

text – a property named translational invariance – is indeed beneficial to handle

the high variability of texts written in a natural language.

A convolutional neural network – also named convolution-and-pooling ar-

chitecture (LeCun et al., 1995) – is made up by a sequence of layers, namely

a convolutional layer, acting as a feature extractor (i.e., by identifying local

ngrams that are informative for the task at hand), and a pooling layer, that

combines the most informative features of the sequence. These two layers can

be stacked into a hierarchy of convolution-and-pooling operations, allowing the

network to combine long-range features (Goldberg, 2017). The resulting pooled

representation is fed to a fully-connected layer in charge of making the final

classification. See Figure 2.8 for a schematic overview.

It is important to note that the words in the input sequence have to be

encoded into suitable word representations in order to be fed to a convolutional

layer (such as word embeddings, see Section 2.2.3.1). As a result, CNNs are

not self-contained, ready-to-use networks, but rather a collection of layers that

can be plugged into larger neural architectures. In NLP, CNNs are typically

employed on top of an embedding layer (Section 2.2.3.1, Figure 2.8).

From a closer perspective, given a sequence of N words [w1, ..., wN ],8 the

8Typically N is set to the number of words of the longest sentence in the corpus, thus
the sentence is 0-padded in the last unused row dimensions if necessary.
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Figure 2.8: A convolutional neural network architecture with two filters and
window sizes [2,3] (on top of the embedding layer) employed for binary sentence
classification (output classes C = 2). Figure source [adapted]: Y. Kim (2014).

convolutional layer slides over a matrixN×d of the corresponding d-dimensional

word representations [x1, ..., xN ] by applying non-linear functions (i.e., filters)

to each of the k-size contiguous words, being k the window size (e.g., a window

size of 3 considers 3 -grams). A scalar value results from the application of

each filter to a k-words window, thus the application of multiple filters results

in a vector summarizing the k-word windows properties. As a result, the size

of the output vector is n − k + 1. When considering multiple window sizes,

m (n − k + 1)-dimensional vectors are produced. The pooling layer is then

used to condense the information of all the k-words window vectors m result-

ing from the convolutional layer into a single vector summarizing the salient

information of the input sequence. The most widespread pooling operation is

max pooling, which selects the maximum value across each dimension of the

vectors, i.e., the most relevant indicators for each feature for solving the task

at hand. The vector resulting from the pooling operation is then used as input

to a simple feed-forward layer (i.e., a fully connected neural layer as introduced

in Section 2.2.3, which outputs the most confident class c ∈ C (e.g., by using

the softmax function).

Convolutional neural networks have also shown to be more robust across

language variations compared to traditional machine learning approaches on
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relational tasks (T. H. Nguyen & Grishman, 2015). We employ them for a cross-

domain study on biomedical edge detection (Chapter 4). Details on domain

variations are provided in Section 2.2.4.1, whereas for further details on CNNs

we refer the reader to Goodfellow et al. (2016) and Goldberg (2017).

2.2.3.3 Transformers

A Transformer (Vaswani et al., 2017) is a neural network architecture specif-

ically tailored to deal with sequence-to-sequence problems, such as machine

translation and summarization (i.e., where both the input and the output are

sequences). Formally, it is an encoder-decoder architecture (Sutskever et al.,

2014), in which the encoder transforms an arbitrary-length sequence into a

fixed dimensional vector representation, and the decoder uses this latent repre-

sentation to produce another variable-length sequence as output. Both encoder

and decoder can consist of multiple layers.

As opposed to former Recurrent Neural Network (RNN) approaches for pro-

cessing temporal information, such as Long Short-Term Memory (LSTM) net-

works (Hochreiter & Schmidhuber, 1997), transformers do not require the input

sequence to be processed word-by-word, allowing the parallelization of the com-

putation and a significantly faster training (Vaswani et al., 2017). Moreover,

transformers have shown to achieve high performance gains on a wide array of

NLP tasks, motivating new developments such as BERT (Section 2.2.4.2).

Transformers process the input sequence as a whole, overcoming the lim-

itations of directional approaches (e.g., left-to-right) by learning contextual

information of words based on both their sides, and having direct access to all

other words in the sequence. Specifically, transformers are based solely on an

attention mechanism, which weighs the relevance of each input word to each

other word in the sequence, in order to capture contextual information relevant

for the task at hand. As a result, transformers completely dispense convolu-

tions and recurrence (Vaswani et al., 2017). Figure 2.9a provides a high-level

overview of the transformer architecture, which consists of L = 6 encoder layers

and L = 6 decoder layers. The building blocks of the transformer architecture

are introduced in the following.
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(a) Transformer architecture. (b) Multi-head self-attention.

Figure 2.9: Transformer architecture, and detailed view of the multi-head self-
attention sub-layer. Figure source [adapted]: Vaswani et al. (2017).

Word and positional embeddings Words in the input sequence are turned

into d-dimensional word representations as described in Section 2.2.3.1 (Fig-

ure 2.9a, “Input Embedding”). Since the transformer dispenses recurrence, it

requires information about the relative order of words to be injected.9 The au-

thors introduced d-dimensional positional embeddings to the goal, which encode

the specific position of words in the sequence by using multiple sine and cosine

functions of different wavelengths (refer to Vaswani et al. (2017) for details).

Position embeddings are thus summed to word embeddings to equip word rep-

resentations with order information (Figure 2.9a, “Positional Encoding”).

9This is crucial because self-attention, described later on, is permutation-invariant.
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Multi-head self-attention The embedding vector is fed to a transformer

encoder (Figure 2.9a, grey box on the left). Each encoder consists of two

layers: a multi-head self-attention layer (Figure 2.9a, orange box), and a fully

connected feed-forward layer (Figure 2.9a, blue box). Both are followed by

layer normalization which use residual connections (Figure 2.9a, yellow boxes).

We here focus on the attention layer, detailing other layers in the following.

As previously introduced, attention is a mechanism that allows each token

in a sequence to attend to relevant parts of a sequence. For instance, Bahdanau

et al. (2015) introduced attention to score words between two input sequences

for an English-to-French translation task. With self-attention (also known

as intra-attention), Vaswani et al. (2017) extended the attention mechanism

to work on the same input sequence, thus allowing words to focus on other

contextual words that are relevant for the task at hand. They formally refer to

their self-attention mechanism as to scaled dot-product attention (Figure 2.9b

(top), purple box; expanded to show operations in Figure 2.9b (bottom)).

Formally, for each input word vector xi, three different vectors are created:

a query vector qi, a key vector ki, and a value vector vi. Vectors are then

packed into corresponding matrices Q, K and V to compute multiple vectors

simultaneously. These three matrices, which form the input to the scaled dot-

product attention component, are obtained by multiplying each input to three

corresponding matrices of weights WQ, WK , and WV , learned during train-

ing. The actual computation of the scaled dot-product attention is depicted in

Figure 2.9b (bottom) and is defined as follows (Eq. 2.13):

Attention(Q,K, V ) = σ
(QKT

√
dk

)
V (2.13)

Specifically, the query Q and the key K undergo a matrix multiplication,

giving a matrix of raw self-attention scores. For stabilizing gradients during

training, results are scaled by dividing the result by
√
dk, where dk is the

dimension of queries and keys. A softmax function σ is applied for normalizing

self-attention scores in [0, 1] such that they sum to 1. The scaled dot-product

attention output is thus obtained by multiplying scores to the value matrix V .

In order to focus on multiple representations at multiple positions, Vaswani
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et al. (2017) proposed multi-head self-attention (Figure 2.9b (top)). Specifi-

cally, Q, K and V are linearly projected h times, so that scaled dot-product

attention is performed in parallel on all projections. Results are then concate-

nated and projected to get the final attention output.

Residual connections, normalization and others The multi-head self-

attention output is added to the original embedding vector, a process called

residual connection that allows gradients to directly flow during training (He

et al., 2016) (Figure 2.9a, incoming arrows to yellow boxes), then it undergoes

layer normalization to speed-up the training process (Ba et al., 2016) (Fig-

ure 2.9a, yellow boxes). A feed-forward network consisting of two linear layers

with ReLU activation (Figure 2.9a, blue box) transforms the output, which is

again added to residual connections, and then normalized.

The resulting continuous representation comprising attention information is

the output of the encoder, which is used for decoding. Multiple encoder blocks

can be stacked, so that representations can be refined by flowing through them.

The decoder (Figure 2.9a, grey box on the right) uses the same components

described above, except for the addition of a dedicated encoder-decoder multi-

head attention layer (Figure 2.9a, second orange box from bottom, on the right)

that leverages both the output of the encoder (specifically, its transformation

to Q and K matrices), and the output of the first multi-head attention10 (Fig-

ure 2.9a, first orange box from bottom, on the right), whose calculations are

performed on embeddings from the target sequence that are shifted one po-

sition right to let predictions rely on known outputs (Vaswani et al., 2017).

The output of the decoder is then passed through a linear layer and softmax is

applied (Figure 2.9a, layers on top of the grey box on the right) to output the

next word with highest probability. Decoders, as encoders, can be stacked.

2.2.4 Transfer Learning

A default assumption in supervised machine learning is that the test data fol-

lows the same distribution as the training data, i.e., training and test examples

10The first multi-head self-attention layer of the decoder is masked to prevent conditioning
the generation of the output sequence based on future words (Vaswani et al., 2017).
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(a) Supervised machine learning setup. (b) Transfer learning setup.

Figure 2.10: Traditional supervised machine learning setup and transfer learn-
ing setup in comparison. Figure inspired by: Ruder (2019).

are assumed to be independently and identically (i.i.d.) sampled from the same

underlying distribution. Given a particular task and domain (say, A), a model

is trained and applied to the same task and domain A. When dealing with a

different task and domain (say, B), another model is trained to deal with the

peculiarities of the new data (Figure 2.10a). This setup assumes that a lot of

labeled data is available for the task and domain at hand to train a reliable

model, however for most tasks and domains this is not the case (Ruder, 2019).

Transfer Learning (TL) specifically tackles this issue, introducing ways in

which a model trained on a task or domain (i.e., source) can be repurposed

on a related task or domain (i.e., target) (Pan & Yang, 2010). As a result,

instead of training a new model from scratch, a previous model can be employed

and further trained (Figure 2.10b) on substantially fewer examples (Howard &

Ruder, 2018). Besides the amount of required labeled data, transfer learning

has shown several advantages, including time and cost efficient training of deep

learning models, and unprecedented performance gains on a variety of NLP

tasks (Devlin et al., 2019).
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The paradigm draws inspiration from theories on transfer of learning in psy-

chology, which state that knowledge gained in solving a problem in a particular

context strengthens the learning of other problems in new situations (Perkins

et al., 1992). In neural networks, the knowledge is encoded in the form of

learned weights. Transfer learning is formally defined as follows:

“Given a source domain DS and learning task TS, a target domain

DT and learning task TT , transfer learning aims to help improve the

learning of the target predictive function in DT using the knowledge

in DS and TS, where DS = DT , or TS = TT .”

(Pan and Yang (2010))

The setup in which TS 6= TT is referred to as inductive transfer learning,

whereas when DS 6= DT the setting is called transductive transfer learning (Pan

& Yang, 2010). In the context of this thesis, we employ inductive transfer

learning methods (Chapter 5), namely sequential transfer learning and multi-

task learning (detailed in Section 2.2.4.2 and 2.2.4.3, respectively). We also

investigate the need for transductive transfer learning (Chapter 4) to be tackled

in future work, thus the importance of domains, which we define in the following

section (Section 2.2.4.1).

2.2.4.1 Tasks and Domains

As introduced in Section 2.2.4, transfer learning involves the concepts of task

and domain. More formally, a task (e.g., text classification) is defined as

T = {Y, P (Y |X)}, where Y is the label space. Estimates for the prior dis-

tribution P (Y ) and the likelihood P (Y |X) are learned from the training data

{(xi, yi)}ni=1. A domain is instead defined as D = {X , P (X)} where X is the

feature space (e.g., the text representations), and P (X) is the marginal prob-

ability distribution over that feature space.

While the concept of a task is fairly intuitive, this is not obvious for domains.

Indeed, the term is quiet loosely used in NLP and there is no common ground

on what constitutes a domain (Plank, 2016). Typically in NLP, domain is

meant to refer to some coherent type of corpus, i.e., predetermined by the
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given dataset (Plank, 2011). This may relate to topic, style, genre, or linguistic

register. The notion of domain and what plays into it has though significantly

changed over the last years, leading to relevant research lines.

The Penn Treebank WSJ (Wall Street Journal) corpus (Marcus et al., 1993)

and the Brown corpus (Francis & Kucera, 1979) are prototypical examples,

with the WSJ being considered widely as the canonical newswire domain. In

the recent decade, there has been considerable work on what is considered

non-canonical data. The dichotomy between canonical (typically considered

well-edited English newswire) and non-canonical data arose with the increasing

interest of working with social media with all its challenges related to the “nois-

iness” of the domain (Eisenstein, 2013; Baldwin et al., 2013). Models trained

on canonical data failed in light of the challenges on, e.g., Twitter (Gimpel et

al., 2011; Foster et al., 2011), or biomedical texts (Chiu et al., 2016).

Instead of relying on a coarse-grained definition of canonicity, recent work

started to raise more awareness of the underlying variation in the data samples

NLP works with. Indeed, NLP is pervasively facing heterogeneity in data

along many underlying (often unknown) dimensions. A theoretical notion put

forward by Plank (2016) is the variety space. In the variety space a corpus is

seen as a subspace (subregion), a sample of the variety space. A corpus is a

set of instances drawn from the underlying unknown high-dimensional variety

space, whose dimensions (or latent factors) are fuzzy language aspects. These

latent factors can be related to the notions discussed above, such as genre

(e.g., scientific, newswire, informal), sub-domain (e.g., finance, immunology,

politics, environmental law, molecular biology) and socio-demographic aspects

(e.g., author’s age and cultural identity), amongst others, as well as stylistic or

data sampling impacts (e.g., sentence length, annotator bias).

For example, it is less known that the well-known Penn Treebank consists

of multiple genres (Webber, 2009; Plank & van Noord, 2011), including reviews

and some prose. It has almost universally been treated as prototypical news

domain. Similarly, social media is typically considered only non-canonical data,

but an analysis revealed the data to lie on a “continuum of similarity” (Baldwin

et al., 2013). Even within the biomedical domain a variety of subdomains have

shown to exhibit a different linguistic behaviour (Lippincott et al., 2010, 2011).
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Understanding linguistic variations will ultimately help to not only over-

come overfitting to overrepresented domains (e.g., the newswire bias (Plank,

2016)), but also work on robustness of models across domains. We specifically

study cross-domain performance in biomedical edge detection in Chapter 4,

providing insights for future work in transductive transfer learning.

2.2.4.2 Sequential Transfer Learning

Sequential transfer learning refers to the inductive transfer learning setup in

which the different tasks are learnt in a sequence. More precisely, the knowledge

acquired in learning a (source) task where abundant data is available is fully

exploited to subsequently learn a (target) task in which data is potentially

limited to train a reliable deep learning model.

The typical and most effective approach in NLP is to use a language mod-

eling task11 as source task (A. Wang, Hula, et al., 2019). Language modeling

aids to not only leverage the large amount of easily accessible raw data – inso-

far as it requires no supervision – but also helps on learning general properties

of language that can be exploited for a variety of target tasks. From a closer

view, sequential transfer learning typically involves the following stages (Ruder,

2019):

• pre-training: a one-off, computationally costly stage in which a model

is trained on a large unlabeled corpus, producing representations which

are meant to capture general aspects of language;

• fine-tuning: a resource-efficient stage in which representations from a

pre-trained model are used to initialize the model’s weights, that are

further adjusted on a supervised target task.

The sequential transfer learning paradigm has many advantages. First,

compared to training a model from scratch, it lessens the amount of target data

required for reaching the same performance on a target task (Howard & Ruder,

2018), while increasing the robustness on out-of-distribution data (Hendrycks

11Language modeling refers to the task of assigning a probability for a given word or
sequence, based on a sequence of words (Goldberg, 2017).
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et al., 2020). Second, the release of large pre-trained models allows researchers

to directly focus on the target task at hand, designing effective solutions even if

a costly computing infrastructure is not affordable. In addition to reducing the

significant carbon emissions of large model pre-training (Strubell et al., 2019),

the reuse of pre-trained models also represents a step towards the democrati-

zation of NLP (Riedl, 2020). Finally, the outbreaking advances in NLP that

have been registered in the past two years are mostly due to sequential transfer

learning approaches (Ruder et al., 2019), and specifically to a variety of task-

specific solutions on top of transformer-based models such as BERT (Devlin et

al., 2019), which we introduce in the following.

BERT The combination of sequential transfer learning ideas with the trans-

former architecture (Vaswani et al., 2017) (Section 2.2.3.3) has resulted in the

development of BERT (Bidirectional Encoder Representations from Transform-

ers) (Devlin et al., 2019). As the name suggests, BERT is based on transform-

ers, and particularly on transformer encoder layers (called transformer blocks).

Indeed, since BERT is meant to produce language representations that can

then be used for arbitrary tasks, it does not require decoders. However, training

encoders for the language modeling task (i.e., predicting the next word in the

sequence) is intrinsically unidirectional, in that attending to future words would

condition the predictions on the target words themselves. In transformers,

bidirectional self-attention is possible just because the words fed to the encoder

are not part of the prediction. To tackle the issue and make full use of left and

right contexts, Devlin et al. (2019) introduced bidirectionality by using variants

of the language modeling task during pre-training (detailed below).

The BERT architecture is schematically depicted in Figure 2.11. Input

embeddings are fed to L stacked transformer blocks, which consist of H feed-

forward hidden units, and A attention heads.12 Special tokens are included in

the input sequence to allow BERT to naturally apply to diverse tasks. Specif-

ically, a classifier token [CLS] is introduced at the beginning of the whole se-

quence and is used for sentence classification tasks, whereas a separator [SEP]

12In its default variant, called BERTBase, L = 12, H = 768, A = 12. The total number
of learnable parameters is 110M.
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Figure 2.11: An high-level overview of the BERT architecture.

is added to mark the end of a sentence – and the start of the following one – in

order to support tasks dealing with two sequences (e.g., question answering).

Similarly to the transformer (Vaswani et al., 2017), each token in the input

sequence is converted to a embedded representation that makes use of both

token and positional embeddings. In addition to token and position embed-

dings, BERT also introduces segment embeddings, which are markers used to

distinguish the identity of two text segments in the input, in case of sentence

pair classification or question answering (i.e., the one before [SEP], and the

one after it). Token representations are created using WordPiece embeddings,

i.e., representations for subword-level linguistic units to effectively handle rare

words in the input sequence (Wu et al., 2016). Token, position and segment

embeddings are thus summed as in Vaswani et al. (2017) (Section 2.2.3.3).

The input embeddings are then passed to each transformer layer, and thus un-

dergo self-attention, whose results are fed through a feed-forward network to

the next encoder. The output of the last transformer block is a H-dimensional

representation that can be used for classification.

BERT being a sequential transfer learning approach, it consists of pre-

training and fine-tuning stages (Figure 2.12). Specifically:

• pre-training: the model is trained simultaneously on two tasks. As

introduced earlier, in order to support the bidirectional training of the

encoders, variants of the language modeling task have been employed:
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Figure 2.12: Overview of the sequential transfer learning stages in BERT. After
pre-training on unsupervised language modeling objectives (left), the resulting
model parameters are used as initialization and thus fine-tuned for a variety of
target tasks (right). Figure source [adapted]: Devlin et al. (2019).

– masked language modeling (Mask LM): instead of predicting

the next token based on previous ones, 15% of the input tokens are

randomly masked and need to be predicted (Figure 2.12, left, “Mask

LM”) by fully leveraging their context. Notably, 80% of the masked

tokens are replaced with a special masked token [MASK], 10% are

replaced with another random token, and 10% are left unchanged.

The rationale behind this choice is that the [MASK] token are never

seen during fine-tuning (Devlin et al., 2019);

– next sentence prediction (NSP): in order to also capture sentence

relationships, useful for tasks involving text segment pairs, NSP aims

at determining if the second sentence B in the input is actually fol-

lowing the first sentence A. This binary classification task is trivially

generated from a large corpus. Specifically, 50% of the sentences are

paired with actual following sentences, whereas 50% are paired with

random sentences drawn from the corpus. The output of the special

token [CLS] is used for classification (Figure 2.12, left, “NSP”).

• fine-tuning: BERT weights resulting from the pre-training process are

used for fine-tuning on a wide array of tasks (Figure 2.12, right). Inputs
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pertaining to a particular downstream task are provided to the model

following a specific input pattern, and a task-specific output layer is added

on top of the core architecture. For instance, Figure 2.12 (right) shows

fine-tuning on the question answering task, where the input consists of a

question and a paragraph where to search for an answer (i.e., two [SEP]-

separated text segments), and the output is made by labels denoting

the start and end tokens of the answer within the paragraph segment.

In practice, sophisticated task-specific layers can be designed on top of

BERT in order to fully leverage both language representations and task

properties (as we do in Chapter 5). BERT parameters and additional

layers’ weights are jointly updated for the supervised task at hand.

Different input and output patterns are handled in BERT to support fine-

tuning on a variety of target tasks with only the addition of a single output

layer (Figure 2.13). In sentence pair classification tasks (Figure 2.13a), such

as textual entailment or duplicate question detection, two sentences are fed to

BERT using the special [SEP] token to mark where a segment finishes and

the other begins. The output is given by the final representation of the clas-

sifier token [CLS], which aggregates sequence information. In single sentence

classification tasks (Figure 2.13b), such as sentiment classification, the input

is instead a single sentence, and similarly to sentence pair classification, [CLS]

is used for prediction because the output is at a sequence level. As introduced

earlier, for question answering tasks (Figure 2.13c) two segments are fed to

BERT as in sentence pair classification tasks (Figure 2.13a), however the out-

put is instead at a token level, where a start and end span of the question’s

answer to retrieve have to be get from token classes themselves. Lastly, for

sequence labeling tasks (Figure 2.13d), such as POS tagging and NER, the

input is a sequence of tokens and the outputs are token-level labels. In general,

the output representations of actual tokens can be safely ignored in sequence-

level tasks such as those illustrated in Figure 2.13a and 2.13b, whereas the

aggregated information coming from the special token [CLS] are instead ig-

nored in token-level tasks such as question answering and sequence labeling

(Figure 2.13c and 2.13d).
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(a) Sentence pair classification. (b) Single sentence classification.

(c) Question answering. (d) Sequence labeling.

Figure 2.13: Example of diverse target tasks. Figure source [adapted]: Devlin
et al. (2019).

A common practice is thus to reframe inputs and outputs for the down-

stream task at hand to the patterns proposed in Figure 2.13. For instance,

relation extraction is typically framed as a single sentence classification task

(Figure 2.13b). A text segment containing two marked entity mentions is fed

to BERT and the aggregate information from the special token [CLS] is used

to determine if the entities are in a semantic relationship. We use this ap-

proach in Chapter 3 to compare BERT-based models to our proposed symbolic

approach. In event extraction, this is not that straightforward. As described
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in Section 2.1.2, event extraction is a combination of sub-tasks, where trig-

ger detection could be seen as a sequence labeling task as in Figure 2.13d,

whereas edge detection is similar in spirit to relation extraction, and thus can

be framed as a single sentence classification task (Figure 2.13b). Modeling

these two sub-tasks in an end-to-end manner is thus not possible using the

simple input patterns and output layers proposed by Devlin et al. (2019). We

specifically tackle this issue in Chapter 5, proposing a novel linearization ap-

proach of event structures to token-level labels, and specific output layers to

model nested events.

BERT has been originally pre-trained on a large amount of raw texts from

BooksCorpus (Zhu et al., 2015) and English Wikipedia pages (Devlin et al.,

2019). However, as introduced in Section 2.2.4.1, natural language exhibits

important linguistic variations, and general domain language representations

often obtain poor performance on domain-specific varieties such as biomedical

texts (Lee et al., 2020). Similarly to word embeddings (Section 2.2.3.1), the

release of BERT has motivated large domain-specific pre-trained models meant

to be repurposed to tasks belonging to particular language varieties.

Pre-trained models of relevance to the biomedical domain are BioBERT (Lee

et al., 2020) and SciBERT (Beltagy et al., 2019). BioBERT has been pre-

trained on 4.5B PubMed abstract tokens and 13.5B PubMed Central full-

text article tokens (Lee et al., 2020), whereas SciBERT data for pre-training

comprises 3.2B SemanticScholar article tokens (of which about 82% are from

biomedical papers) (Beltagy et al., 2019). The choice of the model also depends

on the problem at hand; for instance, we found that BioBERT is more effective

than SciBERT to our solution for event extraction (Chapter 5), whereas for re-

lation extraction we obtained mixed results (Chapter 3). In general, the large

performance advancements of pre-trained language models over pre-trained

word embedding-based solutions in a variety of tasks and domains (Devlin et

al., 2019; Beltagy et al., 2019; Lee et al., 2020) have made transformer-based

solutions ubiquitous in NLP. This is also motivated by their increased ability in

handling out-of-distribution data compared to previous approaches (Hendrycks

et al., 2020), thus in their robustness across similar domains.
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(a) Single task learning. (b) Multi-task learning.

Figure 2.14: Single and multi-task learning setups in comparison.

2.2.4.3 Multi-Task Learning

As opposed to sequential transfer learning, in multi-task learning the different

tasks are learnt simultaneously. This approach aims at leveraging the train-

ing signals of multiple tasks at the same time, thus exploiting their mutual

information as an inductive bias to help improve the learning and prediction

performance for the tasks (Caruana, 1993, 1997). Figure 2.14 illustrates the

difference between single and multi-task learning setups. Specifically, in con-

trast to the single task learning paradigm in which different models are built

from scratch for each end task (Figure 2.14a, models A and B), in multi-task

learning different tasks are learnt jointly by exploiting a shared representation

in the model (Figure 2.14b, shared model).

Information sharing in the context of neural networks is typically distin-

guished in soft parameter sharing and hard parameter sharing (Ruder, 2017).

In soft parameter sharing, each task is provided its own parameters, and related

parameters from the tasks are constrained to be similar. In hard parameter

sharing, hidden layers are shared between the tasks, and task-specific output

layers are devised on top of shared representations. Hard parameter sharing is

the most common multi-task learning approach since it substantially reduces

overfitting issues by modeling representations which hold for all tasks (Ruder

et al., 2019). With the advent of pre-trained language models, BERT (Devlin

et al., 2019) represents a natural fit for hard parameter sharing.
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Multi-task learning has also been used to provide a main task useful sig-

nals coming from tasks that are not of direct interest, namely auxiliary tasks.

Specifically, the loss coming from each auxiliary task is typically given a smaller

weight compared to the weight of the main task. For instance, POS tagging as

an auxiliary task has shown to consistently improve the performance on chunk-

ing (Changpinyo et al., 2018) and dependency parsing (Y. Zhang & Weiss,

2016), whereas mixed results have been reported for the simultaneous learning

of keyphrase extraction and chunking (Bingel & Søgaard, 2017). More in gen-

eral, since multi-task learning is meant to provide additional related signals, it

reduces the training data needed for the learning tasks at hand (Changpinyo

et al., 2018). We employ multi-task learning in Chapter 5, where we jointly

model the biomedical event extraction sub-tasks using BERT as hard param-

eter sharing architecture.

2.3 End Notes

For a contemporary overview of natural language processing as a field, we refer

the reader to Eisenstein (2019). In-depth details of neural network methods

in NLP are provided in Goldberg (2017) and Jurafsky and Martin (2020). A

comprehensive deep learning overview is provided by Goodfellow et al. (2016),

whereas mathematical optimization details are in Ruder (2016). The seminal

paper by Pan and Yang (2010) provides an in-depth view of transfer learning,

whereas a modern excursus of transfer learning in NLP is in Ruder (2019).

Sections 2.2.4 and 2.2.4.1 are based on the following scientific publication:

Ramponi, A., and Plank, B. (2020). Neural Unsupervised Domain

Adaptation in NLP—A Survey. In Proceedings of the 28th International

Conference on Computational Linguistics (COLING) (pp. 6838–6855).

Barcelona, Spain (Online): International Committee on Computational

Linguistics.





Chapter 3

Dependency Tree-Driven

Biomedical Relation Extraction

In this chapter we focus on biomedical relation extraction aiming at cutting

down the human curation efforts of the resulting semantic entity associations

by providing highly-precise extractions. We propose a symbolic approach for

the task, leveraging surface linguistic information and syntactic dependency

tree structures. Experiments on gold-standard corpora show that the system

achieves the highest precision compared with previous rule-based, kernel-based,

and neural approaches, while maintaining a F1 score comparable or superior to

other methods. The results are insightful and open interesting research direc-

tions we explore in the next chapters, including the need for a more expressive

relational semantics formalism, and the importance of deep and transfer learn-

ing methods in mitigating linguistic variations across different domains.

This chapter is based on the following scientific publication:

Ramponi, A., Giampiccolo, S., Tomasoni, D., Priami, C., and Lom-

bardo, R. (2020). High-Precision Biomedical Relation Extraction for

Reducing Human Curation Efforts in Industrial Applications. IEEE Ac-

cess, 8, 150999–151011. 10.1109/ACCESS.2020.3014862 © 2020 IEEE.

55



56 Chapter 3. Dependency Tree-Driven Biomedical Relation Extraction

3.1 Introduction and Motivation

Relation extraction has attracted a lot of interest in the BioNLP community

for a variety of applications. For instance, biomedical relation extraction has

been employed to dig into research questions ranging from the identification of

protein-protein interactions (Szklarczyk et al., 2016; Saik et al., 2016), gene-

disease associations (Zhou & Fu, 2018; Bhasuran & Natarajan, 2018; Piñero

et al., 2015; Bundschus et al., 2008), adverse drug events (Tafti et al., 2017;

Abacha et al., 2015), and protein subcellular localization (Binder et al., 2014).

To encourage the development of highly performing relation extraction systems,

in the last two decades several community challenges, namely shared tasks, have

been designed (Huang & Lu, 2016).

Despite the great progress in the techniques (cf. Section 3.2), the results

of relation extraction systems still need to undergo a manual scrutiny by field

experts in order to make the information ready to be exploited. This resource-

demanding manual scrutiny should ideally be avoided in real-world contexts,

where biomedical relation extraction is the first step of a complex pipeline of

biologically driven analyses which requires highly precise relations in order to

produce reliable insights.1 This is even more important because of the rapidly

growing body of biomedical literature, which calls for frequent updates of the

extracted evidence during a project life cycle. Highly precise relation extraction

results, with a satisfactory recall,2 are thus crucial in real-world scenarios to

smoothly translate the extracted information into actionable knowledge.

In this chapter, we present a highly precise biomedical relation extraction

system designed to reduce human curation efforts. Our approach is based on a

sequence of NLP syntactic modules, and a novel dependency tree-based relation

extraction engine that captures relations by means of syntactic rules based on

1In contrast to high-precision systems, high-recall systems have the advantage of being
able to find most of the relevant results, at the cost of returning irrelevant ones. High recall
is thus preferable in contexts in which the quantity is more important than quality, or when
false positives do not involve some direct costs; however, when human resources are involved
in the curation of false positives, high precision is preferable since it limits the manual efforts.

2We empirically define a recall score as “satisfactory” if it reaches at least 75% of the recall
performance of the most performant system in terms of F1 score. As we show in Table 3.5,
our system achieves a relative recall of 77.8%, 77.1% and 85.4% on LLL, HPRD50, and IEPA,
respectively, when compared to the recall of the best system on each corpus.
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common linguistic patterns. The highly precise results largely limit the need

for human manual curation, allowing scientists to quickly keep abreast of novel

discoveries and thus to drive an effective research.3

The remaining part of this chapter is organized as follows. In Section 3.2

we list related work in the field. Section 3.3 describes the methods of our

system, going through the syntactic preprocessing analysis and the relation

extraction engine. Section 3.4 outlines the experimental setup, whereas Sec-

tion 3.5 presents the results of our system, showing the quality of the method

on well-established gold-standard corpora with respect to recent approaches.

A detailed analysis of errors and an ablation study are discussed in Section 3.6.

Finally, conclusions are in Section 3.7.

3.2 Related Work

A variety of methods has been adopted for biomedical relation extraction.

These approaches can be mainly divided into three categories: rule-based meth-

ods, feature- and kernel-based methods, and neural methods. Rule-based ap-

proaches typically make use of linguistically-motivated patterns on dependency

parse trees or surface words in order to capture semantic relationships. Fundel

et al. (2007) showed how a small number of carefully designed rules based on

the shortest dependency path (SDP) between two examined entities produces

fairly good results. Yu et al. (2018) exploited dependency parse trees and a

flexible pattern matching scheme, enriching the system with a decision tree

classifier. Diverse syntactic and orthography features have been extensively

used in feature- and kernel-based methods. Phan and Ohkawa (2016) pro-

posed an automatic feature selection method based on the contribution levels

of different feature groups, followed by a k -nearest neighbor (k -NN) classifier.

A variety of kernel-based methods have been proposed too, ranging from the

walk-weighted subsequence kernel (S. Kim et al., 2010) to a combination of

kernels based on different parsers (Miwa et al., 2009). Other kernel-based ap-

proaches for biomedical relation extraction include a linguistic pattern-aware

3A docker container is available at: https://www.cosbi.eu/research/prototypes/

biomedical knowledge extraction
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dependency tree kernel combined with a tree kernel (Warikoo et al., 2018), a

convolution tree kernel (Chang et al., 2016), and a distributed smoothed tree

kernel combined with a feature kernel (Murugesan et al., 2017). In the rising

wave of deep learning, Zhao et al. (2016) proposed a deep multi-layer neural

network for the task. More recent neural methods use Recurrent Neural Net-

works (RNNs), including Bidirectional Long Short-Term Memory (LSTM) and

tree LSTM networks, and Convolutional Neural Networks (CNNs). Y. Zhang

et al. (2018) showed how leveraging the complementary advantages of RNNs

and CNNs in a combined hybrid model improves biomedical relation extrac-

tion. Yadav et al. (2019) experimented with a bidirectional LSTM network

with an attention mechanism, exploiting word sequences and the shortest de-

pendency path between the entities, whereas H. Zhang et al. (2019) introduced

a residual CNN to tackle the task. Ahmed et al. (2019) exploited a tree LSTM

network using a structured attention architecture, showing how the attention

mechanism improves the performance in relation extraction. A recent research

line in NLP includes the Transformer, an encoder-decoder architecture which

dispenses with convolutions and recurrence, being based solely on an attention

mechanism (Vaswani et al., 2017). This architecture is the core of pre-trained

language models such as BERT (Bidirectional Encoder Representations from

Transformers) (Devlin et al., 2019), and its adaptively pre-trained variants for

biomedical texts, namely BioBERT (Lee et al., 2020) and SciBERT (Beltagy

et al., 2019). Despite the recent advances in deep learning based techniques,

in this work we rely on carefully designed syntactic rules on dependency parse

trees in order to avoid being dependent on labeled data. The most similar

approach to our work is thus represented by the work by Fundel et al. (2007).

3.3 Methods

Our approach to biomedical relation extraction includes two main steps, namely

(i) text preprocessing, in which a sequence of syntactic NLP modules are

applied to input texts (Section 3.3.1), and (ii) relation extraction, in which

relationships between biomedical entities are identified and classified (Sec-

tion 3.3.2). A schematic view of the system is presented in Figure 3.1.
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Figure 3.1: In our biomedical relation extraction approach each input docu-
ment is firstly analyzed by syntactic preprocessing modules (i.e., tokenizer*,
POS tagger, chunker*, dependency parser, and syntactic corrector*). The
resulting syntactic dependency parse tree and token annotations, along with
candidate entity pairs, are analyzed by a relation router to detect candidate
relations. Actual relations are finally identified by a relation classifier by means
of pattern matching rules on the dependency tree. *Custom implementation
of preprocessing components. © 2020 IEEE.

3.3.1 Syntactic Preprocessing

A pipeline of syntactic modules is firstly applied to input texts. This allows

the relation extraction engine to leverage syntactic information, such as part-

of-speech tags and dependency trees, in order to extract semantic associations

from input texts. We present the preprocessing modules in the following.

Tokenization The input text is separated into tokens using the spaCy4 tok-

enizer, which we enrich with regular expressions to segment the text units also

on intra-word punctuation (e.g., hyphens, slashes, etc.). This fine-grained ap-

proach to tokenization originates from the observation that not all the symbol-

separated tokens are the smallest units of information to work with. For in-

stance, “IL6-induced atrophy” is typically divided in two tokens (“IL6-induced”

and “atrophy”). However, “IL6-induced” implicitly encodes relational informa-

tion that is eventually desirable to analyze.

4https://spacy.io/
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Part-of-speech tagging Each token is assigned a label describing its part-

of-speech (POS) at two different granularities: a coarse-grained one – from the

Universal POS tagset (Nivre et al., 2016) – and a fine-grained one – from the

Penn Treebank tagset (Marcus et al., 1993). We use the spaCy neural model

for POS tagging. These POS labels (refer to Appendix A for a complete list)

serve to both the chunking and the syntactic dependency parsing steps.

Chunking Our approach to tokenization allows the system to ultimately

merge only the tokens that together form a self-contained chunk of information.

For instance, the tokens T = {(, AKT, ),−, 1} are part of the same concept

“(AKT)-1”, hence it is desirable to merge them into a single token. To the

goal, we designed patterns on the orthography and on the fine- and coarse-

grained POS tags of the tokens (see Table 3.1). The merged tokens store all

attributes of their original constituents (e.g., POS tags, surface text, etc.).

We designed this module to reduce potential errors in syntactic parsing

in case of long and articulated texts, and to easily process multi-token words

(e.g., “Interleukin 6”), frequent in biomedical texts. For instance, given a list of

tokens (i.e., white boxes), the following chunks (i.e., grey boxes) are produced:

YtxH is induced after phosphate starvation in the

wild type in a sigma ( B ) - dependent manner

The number of text units decreases from 19 to 14, allowing an easier parsing

process, and multi-token words are produced. For simplicity, we hereafter refer

to these text units as tokens and chunks indistinctly.

Syntactic dependency parsing A syntactic dependency parse tree of the

text is built using the spaCy non-monotonic transition-based parser. We choose

to rely on the spaCy parser since it has been benchmarked to be the fastest

to date,5 and thus it fully meets real-world application requirements. The

grammatical dependencies (hereafter, edges) of the tokens or chunks (hereafter,

5https://spacy.io/usage/facts-figures#benchmarks
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Table 3.1: The chunking patterns used by the system. Each token Ti in a can-
didate sequence T1...Tn must satisfy some matching rules on the orthography
(orth), and coarse- and fine-grained part-of-speech (pos and tag, respectively)
levels in order to be merged. Underlined tokens are the triggers of a pattern,
which have to meet their restrictions in order to proceed. The rest of the se-
quence tokens are thus subsequently checked for matching. If a matching rule
is satisfied, T1...Tn are merged into a single chunk. © 2020 IEEE.

Pattern name Matching rule

Plus Matcher1

e.g., “CD19+”, “CD20 +”
T1T2, where:
T1(tag) ∈ {NN,NNS,NNP,NNPS}
T2(orth) ∈ {+}

Plus Matcher2

e.g., “CD19(+)”, “CD20 (+ )”
T1T2T3T4, where:
T1(tag) ∈ {NN,NNS,NNP,NNPS}
T2(tag) ∈ {−LRB−}
T3(orth) ∈ {+}
T4(tag) ∈ {−RRB−}

Hyphen Matcher1

e.g., “IL-6”, “AKT- 1”
T1T2T3, where:
T1(tag) ∈ {NN,NNS,NNP,NNPS}
T2(tag) ∈ {HY PH}

Hyphen Matcher2

e.g., “(IL)-6”, “(AKT) - 1”
T1T2T3T4T5, where:
T1(tag) ∈ {−LRB−}
T2(pos) ∈ {PROPN}
T3(tag) ∈ {−RRB−}
T4(orth) ∈ {−}
T5(tag) ∈ {CD}

Adj Nn Matcher
e.g., “Primary cell”, “Tumor
suppressor protein”

[T1, ..., Tk][T(k+1), ..., Tn], where:
T1,...,k(tag) ∈ {JJ, JJR, JJS}
T(k+1),...,n(pos) ∈ {NOUN,PROPN}

Adj Compound Matcher
e.g., “Young adult”

[T1, ..., Tk][T(k+1), ..., Tn], where:
T1,...,n(pos) ∈ {ADJ}

Nn Compound Matcher
e.g., “Cell antibody”

[T1, ..., Tk][T(k+1), ..., Tn], where:
T1,...,n(pos) ∈ {NOUN,PROPN}
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nodes) are drawn from the CLEAR tagset6 for dependency parsing (we refer

the reader to Appendix B for a comprehensive reference).

Syntactic corrector Since POS tags and grammatical dependencies are pre-

dicted, they are not always correct. Correcting POS tags or parse trees is an

hard problem; however, some wrong labels can be easily detected. As a conse-

quence, for the most trivial errors we automatically correct the labels, whereas

in more complex cases we label the sentence as unreliable to avoid false positives

in the relation extraction phase. The following corrections are applied:

• tokens that are heads of a direct object (dobj ) or a nominal subject

(nsubj ) having a coarse-grained POS tag different from verb are assigned

verb as a POS tag;

• tokens that are heads of an adjectival modifier (amod) having verb as a

coarse-grained POS tag are assigned adj as a POS tag, since they are in

most cases past participles used as adjectives.

3.3.2 Relation Extraction

The syntactic preprocessing provides the information needed to extract biomed-

ical relationships between entities from text. Following previous work in biomed-

ical relation extraction, we assume entities are given. We rely on syntactic rules,

thus fully exploiting the dependency parse tree and the syntactic information

encoded to each token. Our strategy involves a routing phase to detect can-

didate relation pairs (Section 3.3.2.1), and a classification phase to assess the

actual presence of semantic relations (Section 3.3.2.2).

3.3.2.1 Relation Router

We analyze the minimum path of the dependency parse tree between entities

to assess if the path is eligible for representing a candidate relation pair. We

6https://github.com/clir/clearnlp-guidelines/blob/master/md/specifications/

dependency labels.md
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Figure 3.2: The logic of the relation router. Rhombus shapes indicate tested
conditions, while arrows indicate the router flow. If all the conditions are
negative, the entity pair is considered a relation candidate. Otherwise, the
entity pair is labeled as a negative relation instance. © 2020 IEEE.

devise several rules to the goal, based on common linguistic constructs.7 The

process of routing a syntactic path involves both the analysis of crossed edges

(i.e., dependency relations) and node attributes (e.g., coarse- and fine-grained

POS tags, surface text, etc.). Figure 3.2 summarizes the workflow. In the case

one of the following conditions is met, the router stops immediately labeling

the candidate relation pair as negative:

7We took inspiration from relation filtering steps in Fundel et al. (2007), then identifying
constructs after manual inspection of 25% of the examples from each dataset (see Section 3.4).
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1. Same entities. If the lemmas of entities are the same, the candidate

pair is labeled as negative;

2. Ungrammatical text. In the case the input text has no verb if not in

subordinate clauses, the pair is considered unreliable and thus labeled as

a negative instance;

3. Unrouteable conjunctions. If conjunctions introducing subordinate

or coordinate prepositions are met (i.e., but, whereas, if, therefore, and

while), the entities are unlikely to be related, thus the pair is negative;

4. Unrouteable prepositions. The prepositions if, therefore, during, de-

spite, from and at typically introduce phrases that specify where – or

when – a specific event occurs – or has occurred. If one of these preposi-

tions is found in the path, the candidate pair is unlikely to be a relation

and thus discarded (i.e., labeled as negative);

5. Clause routing constraint. Sentences in the biomedical literature are

complex and articulated, with one or more coordinate and subordinate

clauses. Entities in different clauses could be in a relation, but only

under some conditions. We allow the router to cross a clause only if the

target clause has no explicit subject dependency, and if the final path has

exactly one subject. Otherwise, we consider the pair a negative instance;

6. More than one subject crossed. If more than a subject dependency

relation is crossed we label the relation pair as negative, because the

minimum path is typically crossing semantically independent phrases or

clauses. For instance, in the sentence “A causes B and C triggers a D-

reaction”, the entity A is not related to the entity D;

7. Purpose-description statements. Some sentences express a broad

research purpose (e.g., “In this paper we aim to demonstrate that tuber-

culosis could be prevented by prophylactic treatment”), instead of actual

relations. When crossing the path between entities, the lemmas of the to-

kens are thus compared to a list of purpose-related words (Appendix C).

If a match is found, the pair is labeled as negative.
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While crossing the path, the relation router also checks if the relation is

affirmed or negated. This is particularly useful to detect actual associations.

Negations are detected using the following rules and lexicons (Appendix C):

1. Negative auxiliary. A crossed token node is incident to an edge having

a negation modifier dependency tag (neg), or is adjacent to a token node

with no lemma;

2. Negative verb. A crossed verb belongs to a lexicon of negative verbs;

3. Negative adverb. A crossed token node is incident to an edge having

an adverb as target that belongs to a lexicon of negative adverbs;

4. Negative noun. A crossed noun belongs to a lexicon of negative nouns;

5. Negative adjective. A crossed adjective belongs to a lexicon of negative

adjectives.

If the relation router navigates the whole path between the two entities

without any of the routing conditions is met, the pair is considered a relation

candidate and is analyzed by the relation classifier (Section 3.3.2.2).

3.3.2.2 Relation Classifier

The relation classifier analyzes the relation candidates the router detected,

assigning the entities the effector and the effectee roles. We identified three

categories of linguistic constructs that are typically used to express semantic

relations in the English language. The categories are the following:

• Relation expressed by a verb (RV ). A generalized version of the

effector-relation-effectee rule proposed by Fundel et al. (2007) that we

enhanced to capture constructs of the form:

entityA-[phrase]-verb-[phrase]-entityB

where a phrase can appear zero, one, or multiple times. As a result,

the rule matches elaborate statements with interleaved phrases such as
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“A plays a big role in B assimilation” , and not only triples of the form

entityA-verb-entityB .

• Relation expressed by a nominalization or a participle (RN ).

Associations in the biomedical literature are often expressed by nominal-

izations or participles. We thus employ the following rules:

(1) nominalization-of-entityA-by-entityB

Example: “Activation of A by B”

(2) nominalization-between-entityA-and-entityB

Example: “Relation between A and B”

(3) nominalization-of-entityA-on-entityB

Example: “Effect of A on B”

(4) entityA-participle-entityB

Example: “A-dependent B”

While rules (1) and (2) are inspired by the relation-of-effectee-by-effector

and relation-between-effector-and-effectee proposed by Fundel et al. (2007),

the rule (3) widens the scope of rule (1), and rule (4) allows the system

to effectively handle nominalized adjectives expressing relations.

• Relation expressed by a conjunction (RC). This category is designed

to capture relations of entities that act together to do something, which

are typically both subjects of a statement. We use the following pattern:

entityA-conjunction-entityB-verb

Example: “A and B associated”

As a result, if the path between entities contains a verb, we consider the

candidate relation pair as a RV relation. The verb found in the path is consid-

ered the verb for the relation, and if multiple verbs are found, we take the last

one in the text order. To assign a role to the entities, we look at the verb voice.

If the voice is active, the entity that appears first in the sentence is labeled as
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the effector, while the second one is labeled as the effectee. Otherwise, the first

entity is labeled as the effectee, and the second entity as the effector.

In the case no verb is found in the crossed path, but it contains (a) a past

participle,8 (b) an adjective ending in “ent” (e.g., A-dependent B), or (c) a

nominalized verb, we consider the candidate pair as a RN candidate. Addi-

tionally, we have to focus on the types of the edges crossed. During the routing

we allow many edge types to be crossed, but a lot of them only exist in verb-

expressed relations. Since a RN relation represents a more compact connection

between the entities, it should not contain verbs (if not the participle form),

nor both subjects and objects. To model this additional restriction in terms

of edge types and paths, we check whether the minimum path between the

two entities only contains certain types of grammatical dependencies. Beyond

links expressed by conjunctions and prepositions, only modifiers, compounds,

and appositions should exist (i.e., npmod, amod, compound, appos, punct, prep,

pobj, or conj ). If condition (a) or (b) is satisfied, the effector and effectee roles

are assigned according to the text order, whereas if condition (c) is met, roles

are assigned by analyzing the preposition connecting the nominalization and

the entities. Specifically, the effector is the entity that does not have a preposi-

tion or, by as ancestor, whereas the effectee is the entity that has a preposition

amongst on, of, or with as ancestor.

If the crossed path only contains a conjunction, the remaining part of the

text is analyzed for RC relations. We check whether the top-level node of the

path is incident to a verb node. In such case, we check if the verb lemma is

interact or form, and if so, we consider the relation as a RC type.9 Note that

in the RC category the effector and effectee roles are not needed since both

entities are interacting as both effectors.

Lastly, if all RV , RN , and RC categories are not satisfied, the candidate

relation pair is labeled as negative.

8This holds under some limitations: it should be incident to an edge with a npadvmod
or an amod dependency relation.

9In contrast to RV and RN relation categories, we here look at the whole dependency
tree, without restricting the focus to the minimum path.
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Table 3.2: Statistics of the benchmark corpora. © 2020 IEEE.

LLL IEPA HPRD50

Positive relations 164 335 163
Negative relations 166 482 270
Sentences 77 486 145

3.4 Experimental Setup

We evaluate our biomedical relation extraction method on different benchmark

corpora annotated for biomedical relations: LLL (Nédellec, 2005), IEPA (Ding

et al., 2001), and HPRD50 (Fundel et al., 2007). The corpora are about dif-

ferent topics in biomedicine, thus they represent a good evaluation benchmark

for our system for diverse real-world applications. In particular, LLL is a cor-

pus about the model bacterium Bacillus subtilis, focused on gene transcription

and sporulation; HPRD50 is about regulatory relations, direct physical inter-

actions and modifications on documents from the Human Protein Reference

Database (Peri et al., 2004); and IEPA is a corpus focused on interactions

between a restricted set of biochemicals (e.g., insulin, oxytoxin, leptin, etc.).

Further details on data creation and annotation are in Appendix D. Relations

between entities are annotated within the sentence boundaries, and entities off-

sets are provided with the raw texts. Given a set of entities {e1, e2, ..., en} ∈ E
belonging to an input sentence S, we generate

(
n
2

)
candidate relation instances

(if n ≥ 2) for the sentence S. Following previous work, negative instances are

represented by pairs that are not annotated as relations in the corpora. The

statistics of the corpora are summarized in Table 3.2.

For the sake of comparison to previous work, we evaluate our relation ex-

traction method using precision, recall, and F1 score. We compared our method

to existing methods in literature, including rule-based approaches (Fundel

et al., 2007; Yu et al., 2018), feature- and kernel-based approaches (Phan

& Ohkawa, 2016; S. Kim et al., 2010; Miwa et al., 2009; Warikoo et al.,

2018; Chang et al., 2016; Murugesan et al., 2017), and neural network ap-

proaches (Zhao et al., 2016; Y. Zhang et al., 2018; Yadav et al., 2019; H. Zhang

et al., 2019; Ahmed et al., 2019). Additionally, we compared our system
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to recent transformer-based methods pre-trained on biomedical texts, namely

BioBERT (Lee et al., 2020) and SciBERT (Beltagy et al., 2019). We fine-tuned

both BioBERT and SciBERT on each corpus, reporting the average perfor-

mance using 10-fold cross validation. We used the official implementation and

optimal hyper-parameters provided by the respective authors (Lee et al., 2020;

Beltagy et al., 2019).

3.5 Empirical Results

Table 3.3 shows the performance of our system across corpora compared to

other methods. Our system achieves the highest precision on all the corpora

(93.2%, 90.7%, and 91.7% on LLL, HPRD50, and IEPA, respectively), outper-

forming by a large margin the BERT-based approaches in the precision metric

while maintaining a F1 score comparable to other methods. The only excep-

tion is on the LLL corpus, where transformer-based methods and the “DSTK &

feature kernel” approach achieve a very high F1 score. It is worth noting that

our relation extraction approach also achieves the highest F1 score (81.1%) on

the IEPA corpus. These results strongly meet our expectations, since our goal

was developing a high-precision system to allow researchers, and in particular

biologists, to obtain reliable information without having to manually review

the results and discard all the false positive instances. The small size of cor-

pora suggests that the superiority of our proposed method over deep learning

approaches is confirmed when few annotated data is available. As future work,

we aim to further investigate this advantage in higher-resource regimes.

3.6 Analysis and Discussion

In this section we present a detailed analysis of the errors (Section 3.6.1) and

an ablation study to investigate the contribution of each rule component (Sec-

tion 3.6.2).
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Table 3.3: Performance of our system with other approaches on benchmark
corpora. Precision (P), Recall (R), and F1 score (F1) are shown by percentage
rounded with a single decimal. Best results for each metric are highlighted in
bold. *Original implementation we fine-tuned on each corpus. © 2020 IEEE.

Method LLL HPRD50 IEPA

P R F1 P R F1 P R F1

Fundel et al. (2007)
Dependency tree rules

79.0 85.0 82.0 79.0 78.0 78.0 - - -

Yu et al. (2018)
GRGT (rules & decision tree)

91.2 77.1 83.6 86.5 50.8 64.0 91.0 63.6 74.9

Phan and Ohkawa (2016)
O2G (feature selection & k-NN)

74.7 82.2 76.5 73.0 74.3 72.6 68.1 71.3 69.5

S. Kim et al. (2010)
Walk-weighted subsequence kernel

76.9 91.2 82.4 66.7 69.2 67.8 73.8 71.8 72.9

Miwa et al. (2009)
Multiple kernels

77.6 86.0 80.1 68.5 76.1 70.9 67.5 78.6 71.7

Warikoo et al. (2018)
LPTK (patterns & tree kernel)

78.9 72.1 75.3 72.7 62.2 67.1 74.8 66.1 70.2

Chang et al. (2016)
Convolution tree kernel

73.2 89.6 80.6 63.8 81.2 71.5 62.5 83.3 71.4

Murugesan et al. (2017)
DSTK & feature kernel

87.3 91.2 89.2 76.3 84.2 80.0 75.9 85.2 80.2

Zhao et al. (2016)
Deep neural network

80.7 84.4 81.0 58.7 92.4 71.3 68.7 83.5 74.2

Y. Zhang et al. (2018)
Combined RNN and CNN

76.6 96.1 85.2 75.1 76.4 75.6 73.2 84.4 78.2

Yadav et al. (2019)
SDP-based Bi-LSTM w/ attention

84.2 83.6 83.9 79.9 77.6 78.7 77.0 75.6 76.3

H. Zhang et al. (2019)
Residual CNN

80.5 87.2 83.2 74.9 82.8 77.7 71.6 80.6 75.5

Ahmed et al. (2019)
Tree LSTM

85.3 84.9 84.8 82.4 82.8 82.0 77.0 76.7 76.4

Ahmed et al. (2019)
Tree LSTM w/ structured attention

84.8 84.3 84.2 81.7 82.3 81.3 78.6 78.7 78.5

Lee et al. (2020)
BioBERT*

87.0 91.8 89.4 83.1 81.8 82.5 79.7 82.2 80.9

Beltagy et al. (2019)
SciBERT*

87.3 94.0 90.5 79.1 76.9 78.0 81.6 77.7 79.6

Ours 93.2 73.1 81.9 90.7 70.8 79.5 91.7 72.8 81.1
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Figure 3.3: Distribution of sources of FP errors across corpora. © 2020 IEEE.

3.6.1 Error Analysis

To get additional insights on our approach, we analyzed the false positives and

false negatives produced by the system in order to make room for future work.

False positives analysis. We identified three main sources of false positives

(FPs), which are presented in the following and summarized in Figure 3.3:

• Annotation inconsistencies. Most false positive results (i.e., 58.62%)

are caused by annotation inconsistencies in the corpora. We found sen-

tences in which a relation, on a grammatical basis, actually exists, but it

has not been annotated. For instance, in the following sentence:

Several distinct mutations in exon2 of VHL disrupt binding of

pVHL to TBP-1. (Corpus: HPRD50, sentence ID: d26)

a relation between “VHL” and “pVHL” has not been annotated even

if it is stated in the text. This could be due to the complex mutation

statement that the utterance describes, which may be better modeled as

a biomedical event (Ananiadou et al., 2010);
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• Dependency parsing errors. The 20.69% of false positives is due to

errors in the dependency parse tree. For instance, in the sentence:

A low level of GerE activated transcription of cotD by sig-

maK RNA polymerase in vitro, but a higher level of GerE re-

pressed cotD transcription.

(Corpus: LLL, sentence ID: d18)

the verb “activated” has amod as the head relation label, denoting it is

the adjectival modifier of “transcription”. As a result, the system wrongly

identifies a relation between “sigmaK” and the last occurrence of “cotD”;

• Algorithm errors. Other sources of errors account for the 20.69% of

the total, and are mainly due to articulated syntactic structures that our

algorithm wrongly navigates. For example, in the following sentence:

These results clearly demonstrate that UCP3 gene expression

is upregulated by TZDs in the WAT and BAT in Wistar fatty

rats, an obese model with leptin receptor defect, and that adi-

pose UCP3 gene expression is increased in response to TZDs

in vitro. (Corpus: IEPA, sentence ID: d88)

our system incorrectly identifies a relation between the biomedical entities

“UCP3” and “leptin”.

False negatives analysis. False negatives (FNs) can be classified accord-

ing to both the relation category they have been tested on, and their cause.

Figure 3.4 summarizes the distribution of false negatives according to this clas-

sification. Particularly, the 87.50% of false negatives belong to the RV category,

the 11.03% belong to the RN category, and the 0.74% fall into the RC cate-

gory. The remaining 0.74% are cases that do not belong to any of the previous

categories. For each category, the causes we identified are the following:

• Dependency parsing errors. In the 64.71% of the total cases, false

negatives are caused by errors in the dependency tree of the sentence

being analyzed. For example, in the following sentence:



3.6. Analysis and Discussion 73

Figure 3.4: Distribution of sources of FN errors across corpora, according to
both relation categories and their causes. The remaining 0.74% (1/136) are
cases that do not belong to any category. © 2020 IEEE.

We have shown previously that the transcription of degR is

driven by an alternative sigma factor, sigmaD.

(Corpus: LLL, sentence ID: d26)

“sigmaD” is labeled as an appositional modifier (i.e., appos) of the verb

“shown”; however, its head should instead be “factor”. This results in

a wrong structure that prevents our algorithm to correctly navigate the

tree. We found this kind of error particularly prominent within the RV

category (i.e., 65.55%) and the RN category (i.e., 66.67%). No errors of

this kind are found in RC ;

• Complex or unconvered grammatical structure. In the 25.00% of
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the cases, the grammatical structure of the sentence has more than one

subordinate or coordinate clause, and it is not easy to route. To give an

example of this latter case, we can look at the following sentence:

SpoIIID at low concentration repressed cotC transcription,

whereas a higher concentration only partially repressed cotX

transcription and had little effect on cotB transcription.

(Corpus: LLL, sentence ID: d27)

where to identify the actual relation between “SpoIIID” and “cotX”, the

system should be able to figure out that “higher concentration” is actually

referring to “SpoIIID”. However, this is far beyond the capabilities of our

algorithm. While this false negative cause accounts for all the error within

the RC category, it only accounts for the 23.53% and the 33.33% within

the RV and RN categories, respectively;

• Annotation inconsistencies. Similarly to the false positive analysis,

false negatives could also be due to annotation inconsistencies. These

errors account for the 8.09% of the total false negatives, and an example

of this error type is exemplified by the following sentence:

The aim of this study was to investigate the effects of hCG, hCG

plus oxytocin and oxytocin on [3H] inositol phosphate (IP)

formations in porcine myometrial cells obtained from ovariec-

tomized and cyclic gilts. (Corpus: IEPA, sentence ID: d17)

where “oxytocin” and “inositol phosphate”, following the annotation

standards of the corpora, are not actual relations, but instead state-

ments about the purpose of the study. Fortunately, these errors are not

common, representing only the 8.40% of the total errors in RV ;

• Negation errors. The remaining false negatives (i.e., 2.21%) are due

to errors by our negation detector. For instance, in the sentence:

From these results we conclude that ComK negatively regulates

degR expression by preventing sigmaD-driven transcription of
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degR, possibly through interaction with the control region.

(Corpus: LLL, sentence ID: d26)

our system misses the relation between “ComK” and “degR”. This is

due to difficulties in discerning negated relations from negative relations.

This error type is only present within the RV category, accounting for a

relative amount of 2.52% of the errors.

3.6.2 Ablation Study

In order to provide additional insights on our method, we investigate the con-

tribution of each rule category on the final performance of the system. In

Table 4.5 we report precision, recall and F1 score on all corpora when RV , RN ,

RC , and negation rule components are individually removed. As expected, the

negation rules are useful to the precision of the relation extraction system. In

fact, when removed the precision score decreases on all the corpora (-3.1%,

-8.3%, and -6.6% on LLL, HPRD50, and IEPA, respectively). We also notice a

small increase in the F1 score on the LLL corpus (+2.0%). This is due to the

characteristics of LLL, which exhibits few negated relations with respect to the

other corpora. When removing RV , RN , and RC , we obtain deeper insights

about the importance of each relation category. For instance, the relation ex-

pressed by a verb (RV ) is by far the most important rule set. When removed,

the precision increases on all the corpora (+6.8%, +3.7%, and +2.2% on LLL,

HPRD50, and IEPA, respectively), while an important decrease appears evi-

dent in the recall metric (-58.0%, -58.4%, and -49.1% on LLL, HPRD50, and

IEPA, respectively) and thus in the F1 score. This behaviour confirms that

the RV category is the primary source of errors of our system, but also the

mean of a tradeoff between a very high precision and a satisfying recall. We

notice a similar but less pronounced trend when removing relations expressed

by nominalizations or participles (RN ). On the other hand, the category of

relations expressed by conjunctions (RC) contributes a little on all corpora.

Particularly, it improves the precision (+0.1%), the recall (+0.7%), and the F1

score (+0.5%) on HPRD50, whereas it decreases the precision (-0.4%) and the

F1 score (-0.2%) on IEPA.
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Table 3.4: Ablation study on the contribution of each rule type. We report
precision (P), recall (R), and F1 score (F1) of our biomedical relation extraction
approach on all the corpora when each rule category is removed. © 2020 IEEE.

Corpus Configuration P R F1

Complete rule set 93.2 73.1 81.9
– RV category rules 100.0 15.1 26.2

LLL – RN category rules 91.5 58.1 71.1
– RC category rules 93.2 73.1 81.9
– Negation rules 90.1 78.5 83.9

Complete rule set 90.7 70.8 79.5
– RV category rules 94.4 12.4 21.9

HPRD50 – RN category rules 90.6 63.5 74.7
– RC category rules 90.6 70.1 79.0
– Negation rules 82.4 71.5 76.6

Complete rule set 91.7 72.8 81.1
– RV category rules 93.9 23.7 37.9

IEPA – RN category rules 91.5 50.2 64.8
– RC category rules 92.1 72.8 81.3
– Negation rules 85.1 73.2 78.7

3.7 Summary and Conclusions

In this chapter we presented a high-precision relation extraction system aiming

to speed up the time-consuming process of the manual curation of semantic

biomedical associations. Experimental results on gold-standard corpora showed

that our method outperforms existing rule-based, feature- and kernel-based,

and neural-based biomedical relation extraction approaches on the precision

metric, while reaching a comparable or superior F1 score. As a result, we

met the requirement of limiting the expensive curation of semantic biomedical

relationships to smoothly and reliably translate the extracted information into

actionable knowledge. Besides the good results, this work offered useful insights

and opened interesting research directions:
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Expressivity of relation extraction Our system is able to extract highly

precise binary relations, however there are use cases in which it would be useful

to extract higher-order associations, making a relation the argument of another

relation, or modeling relations with more than two arguments. This motivated

us to focus on biomedical event extraction in the next chapters (Chapter 5

and 6), a more complex yet more powerful NLP task for capturing fine-grained

semantic associations between biomedical entities from unstructured texts.

Deep learning for domain robustness We designed rules as general as

possible, relying on syntactic information thus avoiding to overfit to words or

corpus-specific constructs. However, as presented in Section 3.6, there are cases

the system still does not capture due to the high variability of the biomedical

texts and their articulated syntactic structures. Despite this limitation is lit-

tle pronounced in relation extraction, it becomes important in more complex

structured tasks such as event extraction, where symbolic methods have shown

to be fairly limited in performance (J.-D. Kim et al., 2011). Deep learning

methods have shown to be effective in learning complex patterns from data,

particularly being more robust across domain variations compared to tradi-

tional methods in relation extraction (T. H. Nguyen & Grishman, 2015). We

specifically investigate the robustness of deep learning methods across domain

varieties in the next chapter for the task of edge detection in biomedical event

extraction (Chapter 4).





Chapter 4

On Domain Shift in Biomedical

Event Extraction

In this chapter we shift to biomedical event extraction, a richer NLP task for

capturing semantic relationships, and we focus on robustness in face of linguis-

tic domain variations. As a case study, we experiment on the most challenging

step of the event extraction pipeline, namely edge detection. We contribute to

the field by presenting the first cross-domain study of edge detection in biomed-

ical event extraction, which highlights the importance of linguistic variations

in the different corpora to be tackled in future work. We also encourage fu-

ture research in cross-domain edge detection for event extraction pipelines by

releasing a standardized benchmark dataset and a baseline neural model to the

purpose. We conclude by outlining future directions in the field, while gaining

the motivation for end-to-end biomedical event extraction and the use of novel

transfer learning methodologies.

This chapter is based on the following scientific publication:

Ramponi, A., Plank, B., and Lombardo, R. (2020). Cross-Domain

Evaluation of Edge Detection for Biomedical Event Extraction. In

Proceedings of the 12th Language Resources and Evaluation Conference

(LREC) (pp. 1982–1989). Marseille, France: ELRA.

79
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4.1 Introduction and Motivation

Biomedical event extraction is a crucial task in order to automatically ex-

tract information from the increasingly growing body of biomedical literature.

Specifically, the goal of biomedical event extraction is to extract semantically

rich, structured information from unstructured texts. Unlike traditional re-

lation extraction, event representations can capture the association of one or

more participants in different semantic roles, where each association in turn

can be argument of higher-level associations (see Chapter 2).

Recent studies on biomedical event extraction have shown that supervised

machine learning approaches and in particular neural methods provide state-

of-the-art performance on the task (Björne & Salakoski, 2018; Li et al., 2019).

However, a current limitation of machine learning is that models are trained

under the implicit hypothesis that the test data (i.e., the target) follows the

same underlying distribution of the training data (i.e., the source). In practice,

this translates to a dramatic drop in performance when the model is applied

– or evaluated – into the wild (i.e., out-of-domain), due to the differences of

source and target corpora. This is the case of biomedicine, a field that is often

seen as a domain per se, but instead comprises a lot of sub-domains, from

molecular biology to genetics and physiology.

As a first step towards the open problem of out-of-domain generalization

in machine learning (Bengio, 2019), in this Chapter we provide the first cross-

domain evaluation study in the context of biomedical event extraction. Since

biomedical event extraction is typically framed as a multi-stage task by means

of classifier pipelines (Björne & Salakoski, 2018; Li et al., 2019), this eval-

uation could be carried out at each stage, similarly to what happens in the

non-biomedical ACE event extraction challenge (Walker et al., 2006). How-

ever, the formal evaluation of biomedical event extraction is based on events as

monolithic units by submitting predictions to shared task online evaluation ser-

vices. This has three main consequences: (i) test data is blind and is meant for

the evaluation of entire events, thus it cannot be used for intermediate stages;

(ii) previous work using classifier pipelines report final scores only, making it

difficult to evaluate and interpret how well the stages perform in isolation; and
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(iii) even if those performances were reported, results are incomparable due the

different preprocessing conditions, such as the generation of negative examples,

and experimental setups.

In this work we focus on the edge detection stage of biomedical event ex-

traction since we believe it represents the most important module of the event

extraction pipeline. In fact, in addition to being a step where both input and

output data are not explicitly available, we argue that it shares most of the in-

comparability issues with relation extraction, including the number of negative

examples one could generate, and the independence of training and test data

with regard to the examples within the same sentences (Pyysalo et al., 2008).

In the absence of explicit data and common means to evaluate edge de-

tection in biomedical event extraction, we contribute to the field and provide

(i) standardized training and test data for edge detection for five different

gold-standard corpora enabling cross-domain experimentation, together with a

characterization of the differences between the corpora; (ii) a model for edge

detection based on recent advances in neural methods, setting it as a strong

baseline for future research; and (iii) a thorough experimentation of edge detec-

tion in a cross-domain setting, quantifying the drop in performance of baseline

models. To the best of our knowledge, we are the first to provide such insights.

We thus believe our work could encourage future research on out-of-distribution

generalization for biomedical event extraction, as well as in-depth evaluation

of other stages. To the goal, we make both the data and the baseline available

to the research community.1

The remaining part of this Chapter is organized as follows. Section 4.2

presents related work in the area. In Section 4.3 we present the differences

in language aspects of biomedical event extraction corpora, and the methods

to create a standardized benchmark dataset for edge detection. Section 4.4

describes the baseline method for the task, detailing the experimental setup

and providing an ablation study. Section 4.5 presents the cross-domain results

of the baseline along with a thorough discussion, whereas Section 4.6 outlines

the conclusions.

1The data, splits and source code are available at https://www.cosbi.eu/cfx/9985
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4.2 Related Work

In recent years, a number of shared tasks have been organized to promote

the development of techniques for biomedical NLP, providing annotated cor-

pora and evaluation means (Huang & Lu, 2016). Of particular interest for

biomedical event extraction are the Genia corpus (GE11) (J.-D. Kim et al.,

2011), which is the standard benchmark for assessing advances in the field,

ID11 (Pyysalo et al., 2011), EPI11 (Ohta et al., 2011), PC13 (Ohta et al., 2013),

and MLEE (Pyysalo et al., 2012). Several techniques have been employed for

the task, ranging from rule-based to machine learning based systems (Vanegas

et al., 2015). Recently, neural methods have shown to provide state-of-the-

art performance on the task, using either a pipeline of Convolutional Neural

Networks (CNNs) (Björne & Salakoski, 2018) or Long Short-Term Memory

networks (Li et al., 2019).

Despite the efforts, biomedical corpora comprise many textual variations.

According to the language variety space proposed by Plank (2016), each corpus

could be characterized by several factors, including the topic, the genre, and

the language used, amongst others. Although out-of-distribution generalization

has received increasing importance in other fields, little and scattered work has

been done so far in biomedical event extraction. Vlachos and Craven (2012)

showed that a simple supervised domain adaptation approach (Daumé III,

2007) is beneficial in handling the differences between abstracts and full-texts,

i.e., what we hereafter refer to as textual scope, in GE11. However, their work

assumed labeled data is available in the target domain, and that the textual

scope is the only source of language variation. T. H. Nguyen and Grishman

(2015) conducted experiments in the newswire domain, showing that CNNs

without any external features are more robust than other statistical approaches

for the trigger detection stage. Miwa and Ananiadou (2015) integrated weight-

ing and covariate shift into their system showing how these methods could

improve recall at the cost of precision, whereas Miwa et al. (2013) proposed a

multi-corpus learning approach combining semantic annotations shared across

corpora, heuristically filtering corpus-specific annotation instances. Although

these works are the closest to our goal, data and performance evaluation re-
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sults for edge detection in isolation are not available. Further, since our goal

is to provide standardized data and baseline models to enable future research

on cross-domain generalization for edge detection on unseen and unannotated

domains, we expressly avoid to filter likely spurious negative edge instances

based on the knowledge of instances in other corpora (see Section 4.3.2).

4.3 Data

In this section we present the corpora used in this study, the commonalities and

differences in their language aspects, as well as how we use them to generate

standardized data for edge detection to enable cross-domain experimentation.

4.3.1 Corpora and Linguistic Variations

We focus on five biomedical corpora annotated for event structures. These

corpora are the standard Genia benchmark GE11, ID11, EPI11, PC13, and

MLEE. While the first four originate from shared tasks, MLEE results from

an independent effort towards the annotation of events at various levels of

the biological organization. All the corpora share the genre and the language

aspects, since they all derive from scientific publications in English taken from

PubMed (Canese & Weis, 2013) and PMC (Maloney et al., 2013).

Despite these commonalities, the corpora differ along many other language

aspects. The main aspects – or linguistic variations – we examine are the

sub-domain and the textual scope (Table 4.1). The sub-domain is the subject

topic the corpus belongs to. It has been previously shown that different sub-

domains exhibit different vocabulary, syntax, as well as discourse and sentential

features (Lippincott et al., 2011). The sub-domain is a fuzzy aspect, since

documents could span different topics with various degrees, and it is implicitly

induced in the data collection step of the corpus creation. For example, all the

five corpora under consideration are sampled according to different research

questions, resulting in different sub-domains. Further, the textual scope of

the documents in the corpora introduces another important variation, since

abstracts and full-texts noticeably differ in content and structure (Cohen et

al., 2010). While EPI11, PC13, and MLEE consist of abstracts only, ID11
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Table 4.1: The linguistic aspects (or variations) in the corpora.

corpus scope sub-domain

GE11 full-texts,
abstracts

reactions about transcription factors in human
blood cells

ID11 full-texts mechanisms of infectious diseases in two-
component regulatory systems

EPI11 abstracts epigenetic change events and post-translational
modifications

PC13 abstracts reactions about a selection of pathway models
from BioModels and PantherDB

MLEE abstracts angiogenesis (i.e., formation of new blood ves-
sels from pre-existing ones)

comprises full-text documents, and GE11 comprises both abstracts and full-

texts. We present the statistics of the corpora in Table 4.2. Further details on

data creation and annotation are in Appendix D.

These differences, reported in Table 4.1, show that there is no corpus that

shares more than one language aspect with another one. The language variation

among corpora provides the motivation for conducting a thorough cross-domain

study for edge detection.

4.3.2 Data for Edge Detection

Candidate edge examples are required in order to train and evaluate an edge de-

tector. However, since the standard evaluation in biomedical event extraction

is about the final event structures, edges are not explicitly evaluated. Addition-

ally, test data annotations in shared tasks corpora are blind. Thus, except for

the MLEE corpus, we can only use the train and dev portions (see Table 4.2)

to the purpose. Moreover, there are multiple ways one can generate negative

examples, leading to incomparability issues among individual efforts (Pyysalo

et al., 2008). In this section we outline how we dealt with this problem, creating

standardized benchmark data from all five corpora. As corpora are stand-off

annotations, we provide unified preprocessing, i.e., we devise the extraction of

edges from event structures and the mapping to unified edge types (see “Pre-
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Table 4.2: Statistics of the corpora. In addition to abstracts, GE11 includes
full-text documents too (train: 5/805; development: 5/155; test: 4/264),
whereas all documents in ID11 are full-texts. Density values are also indi-
cated (S/D: average number of sentences per document; W/S: average number
of words per sentence; E/S: average number of events per sentence).

corpus set docs sents words events S/D W/S E/S

GE11 train 805 8,656 205,729 10,310 10.75 23.77 1.19
dev 155 2,888 64,132 3,250 18.63 22.21 1.13
test 264 3,351 79,047 4,487 12.69 23.59 1.34

ID11 train 15 2,484 74,439 2,088 165.60 29.97 0.84
dev 5 709 21,225 691 141.80 29.94 0.97
test 10 1,925 57,489 1,371 192.50 29.86 0.71

EPI11 train 600 5,720 127,312 1,852 9.53 22.26 0.32
dev 200 1,975 43,497 601 9.88 22.02 0.30
test 400 4,132 82,819 1,261 10.33 20.04 0.31

PC13 train 260 2,525 53,811 5,992 9.71 21.31 2.37
dev 90 869 18,579 2,129 9.66 21.38 2.45
test 175 1,714 35,966 4,004 9.79 20.98 2.34

MLEE train 131 1,271 27,875 3,296 9.70 21.93 2.59
dev 44 457 9,610 1,175 10.39 21.03 2.57
test 87 880 19,103 2,206 10.11 21.71 2.51

processing of event structures”) and the generation of negative examples (see

“Generation of negative examples”). In order to allow for the creation of a

wide-coverage benchmark, we propose to focus on the most widely used edge

types across all corpora (see “Merging of under-represented classes”).

Preprocessing of event structures Each document in a corpus is accom-

panied by two annotation files, one for entities and one for both triggers and

event structures. Since an edge is a subset of an event and its endpoints could

be both triggers and entities, edges are implicitly encoded in both annota-

tion files. We thus used these files in order to divide event structures into a
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set of intra-sentence edge examples.2 We use the scispaCy model with cus-

tom postprocessing rules for sentence segmentation (Neumann et al., 2019).

Similarly to Miwa et al. (2013), we also handle name variations on the labels

that refer to the same edge type,3 mapping them to their canonical type (e.g.,

{Theme, Theme2, Theme3} 7→ Theme). Due to both the differences in the

topic of texts – thus, in the provided edge annotations – and the goal of a

cross-domain study, we retain all the semantic edge types that are annotated

in multiple corpora. These edge types are Theme, Cause, Site, CSite, AtLoc,

ToLoc, and FromLoc. For the grouping of these edges refer to “Merging of

under-represented classes” below, while for the formal definition of the edge

types refer to the original publications of corpora.

Generation of negative examples For each sentence in the corpus, we

generate edge pairs from each trigger to each of its potential arguments (i.e.,

triggers or entities). Similarly to previous work (Björne & Salakoski, 2015),

we limit the generation of candidate edges to valid edges only, as defined in

the guidelines of each corpus. This yields candidate pairs that are useful for

learning, and avoids a highly unbalanced distribution of negative examples with

respect to positive examples.4 Then, each candidate edge which does not have a

gold annotated type (e.g., Theme, Cause, etc.) is labeled as a NoEdge type (i.e.,

a negative instance). In the case an edge type is not among the overlapping

edge types in the corpora (see “Preprocessing of event structures”), we discard

the instance. As a result, we obtain a dataset of candidate edges for each

corpus that can be used for training and testing.

Merging of under-represented classes Some classes are highly under-

represented. For instance, in the ID11 training set, there is only one instance

(0.02%) for both AtLoc and ToLoc edges, and there are no AtLoc instances at

all in the dev set. In the same corpus, no CSite instances are present in the

2Recent work show performance degradation due to an high number of false positives on
systems dealing with inter-sentence edges (Lever & Jones, 2016).

3Name variations on the labels are used in the corpora to arbitrarily enumerate multiple
arguments of the same type starting from the same trigger.

4For instance, a Binding trigger cannot have a Phosphorylation as a Theme edge, thus
the pair (Trigger:Binding, Argument:Phosphorylation) is not produced.
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training set, while one instance (0.04%) is present in the dev set. In the MLEE

training and dev sets, there are only 8 instances (0.04%) of FromLoc edges, and

5 (0.05%) in the test set. In general, Site, CSite, AtLoc, ToLoc, and FromLoc

are minority classes which are difficult to learn due to the few number of ex-

amples. While for Site the problem is less pronounced, accounting on average

for 3.16% of the edges among corpora, other edges are more problematic. On

average, in the training sets there are 0.13% of CSite, 0.26% of AtLoc, 0.15%

of ToLoc, and 0.08% of FromLoc instances. Since all these edges encode a sim-

ilar semantic meaning of location, we created a new Location class, mapping

them into it (i.e., {Site, CSite,AtLoc, ToLoc, FromLoc} 7→ Location). This

strategy overcomes the learning issues from under-represented classes and pro-

vides a mean for cross-domain experimentation, since all corpora now have a

Location type.

Edge statistics across corpora The final statistics of the edges in all the

corpora are presented in Table 4.3. The instances in the train/dev set are the

ones generated from the original training set of the respective corpus, while the

test instances are the ones coming from the original development set, since no

event annotations are provided in the test sets. For the MLEE corpus, where

test set annotations are available, the train/dev and the test sets reflect the

original splits of the corpus.

4.4 Experiments

In this section we present the baseline model used in our experiments, the

experimental setup, including the tuning of the hyper-parameters, and an ab-

lation study to investigate the importance of different input embeddings.

4.4.1 Model Overview

We cast the edge detection problem as a multi-class classification problem

where the labels to be predicted are Theme, Cause, Location, and NoEdge. We

employ a CNN architecture as our framework, following its recent success in

biomedical event extraction (Björne & Salakoski, 2018). Since our goal is to
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Table 4.3: Statistics of edges in all the corpora in the newly created train-
ing/development (train/dev) and test sets.

Corpus Set Edges Theme Cause Location NoEdge

GE11 train/dev 26,718 9,027 1,082 487 18,122
31.43% 3.77% 1.70% 63.10%

test 9,083 2,905 442 181 5,555
31.98% 4.87% 1.99% 61.16%

ID11 train/dev 6,430 1,270 212 28 4,920
19.75% 3.30% 0.44% 76.52%

test 2,805 453 113 21 2,218
16.15% 4.03% 0.75% 79.07%

EPI11 train/dev 4,410 1,578 145 582 2,105
35.78% 3.29% 13.20% 47.73%

test 1,502 518 53 188 743
34.49% 3.53% 12.52% 49.47%

PC13 train/dev 24,327 4,958 1,834 286 17,249
20.38% 7.54% 1.18% 70.90%

test 8,809 1,782 635 98 6,294
20.23% 7.21% 1.11% 71.45%

MLEE train/dev 19,903 3,482 1,001 219 15,201
17.49% 5.03% 1.10% 76.38%

test 9,415 1,688 466 91 7,170
17.93% 4.95% 0.97% 76.16%

provide a baseline model for future research on cross-domain generalization for

edge detection, we based architectural choices (e.g., number of convolutional

layers) on recent work (T. H. Nguyen & Grishman, 2015), whose proposed net-

work has been shown to provide an higher cross-domain robustness compared

to traditional methods for relational semantics tasks. A graphical overview is

presented in Figure 4.1. The neural network is composed of an input layer, a

convolutional layer, a max-pooling layer, and a classification layer. To intro-

duce a non-linearity, we use the ReLU activation function at each layer, except

the output layer, which uses softmax. Given a sentence S containing a candi-
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Figure 4.1: Architecture of the baseline model for biomedical edge detection.
Tokens are turned into real-valued representations which are concatenated at
the input layer. A convolutional layer and a max-pooling layer extract and
summarize features, whereas the 4-class classification is done after the fully-
connected classification layer.

date edge, an example is modeled as its sequence of tokens {wi, ..., wn} ∈ S.

Each token wi is turned into a real-valued, vectorial representation xi repre-

senting its different syntactic and semantic characteristics. This token-wise

representation is the result of the concatenation of different embeddings:

• Word embedding: a vectorial representation for the token from pre-

trained word embeddings resulting from millions of PubMed abstracts,

PMC full-texts, and English Wikipedia texts (Pyysalo et al., 2013). Out-

of-vocabulary tokens are randomly initialized;

• Position embedding: a vector encoding the relative position of the

current token from each target (Zeng et al., 2014). Since the targets are

two – the source and the target of the edge to guess – two embeddings

are used, one for the source and one for the target;

• Type embedding: a vector for the trigger type (or the named entity
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type) associated with the token, available in the gold annotations of the

corpora;

• POS embedding: a vector for the part-of-speech tag the token is as-

signed. We predict POS tags using a biomedical model trained on GENIA

1.0 Treebank and OntoNotes 5.0 (Neumann et al., 2019) (Appendix A);

• Dependency embedding: we use the path embeddings by Björne and

Salakoski (2018), encoding the shortest undirected dependency path from

each token to the source and target tokens of the edge candidate. We

set the path depth to 2, since a depth d > 2 has been reported to hurt

the performance in edge detection. As a result, we employ a total of four

embeddings (one for the source and one for the target, both at a path

distance 1 and 2). Similarly to POS embeddings, we use a model trained

on biomedical texts to predict dependency trees (Neumann et al., 2019).

The sentence representation is thus passed through the convolutional layer

(operating on 1D) and the max-pooling layer. The 4-class classification is

done at the classification layer using softmax. Similarly to Nguyen and Grish-

man (T. H. Nguyen & Grishman, 2015) we used shuffled mini-batches of size 50

during training and a dropout regularization rate ρ = 0.5 to avoid overfitting.

All the weights of the network are updated at training time, except for the

200-dimensional pre-trained word embeddings.

4.4.2 Experimental Setup

Before training, we tuned the hyper-parameters of the network under a 5-

fold stratified group cross-validation setting on the train/dev set of GE11 (Ta-

ble 4.3).5 We designed this multifaceted cross validation setting (i) to account

for the class imbalance, ensuring different splits have examples from all the

classes, especially the under-represented ones, and (ii) to avoid the same doc-

ument falling into different splits, a long-standing issue in comparability of

5We use the standard GE11 benchmark since it represents the largest biomedical event
extraction corpus and it includes both abstract and full-text documents.
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Table 4.4: The search space for the best hyper-parameter configuration, along
with the optimal values.

Hyper-parameter Value Space

Optimizer Adam Adadelta, Adagrad, Adam, Adamax, RMSProp, SGD
Learning rate 5e−4 1, 1e−1, 1e−2, 1e−3, 5e−4, 1e−4

Batch size 50 50, 64
Window sizes [3,4,5] [3,4,5], [1,3,5,7]
Filters 150 32, 150
Embedding size 32 8, 16, 32, 50, 64

relation extraction systems (Pyysalo et al., 2008), which we extend to the doc-

ument scope. In fact, not only the same sentence but contiguous sentences

could share common information that could lead to an overestimation of per-

formance.

We collect hyper-parameter choices that have been employed in related

work (T. H. Nguyen & Grishman, 2015; Björne & Salakoski, 2018)6 for the

optimizer, the learning rate, the batch size, the window size, and the num-

ber of filters. Additionally, we search for the optimal dimension of the input

embeddings, which we concatenate to the 200-dimensional word embeddings.

We perform a grid search to select the values, averaging the performance of

models for each combination of input embeddings across the five executions.

To prevent overfitting, we use early stopping with a patience value of 5 epochs,

choosing models from the epoch with the highest micro F1 score on the devel-

opment set. Table 4.4 depicts the search space, where we highlight the best

hyper-parameter values we choose. We also find that no significant differences

in performance are given by different dimensions for each input embedding.

Finally, we train the network on the whole train/dev set of each corpus,

evaluating it on the respective test set (Table 4.3). For cross-domain evaluation,

we instead test all the models – trained on a source train/dev corpus – on the

test set of all the other corpora.

To give a detailed picture of the performance, we report both the micro F1

6We acknowledge that optimal values for hyper-parameters might be outside this search
space; however, for the purpose of a baseline model and due to the exploding combinations
of values to be tested, we leave extensive hyper-parameter tuning for future work.
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and macro F1 scores, while we use micro F1 for model selection. We believe

reporting both is useful to the community since the evaluation is typically spe-

cific to the use case – in fact, one could be more interested in good performance

among all classes rather than at an instance level. Additionally, for each metric

we also provide the scores considering negative instances in the evaluation (i.e.,

with NoEdge) and without considering them (i.e., without NoEdge). We believe

this sheds light on the impact of negative examples in edge detection. For the

sake of comparability of future results, we also make the stratified group splits

for each dataset publicly available.

4.4.3 Ablation Study

We investigate the contribution of different combinations of input embeddings

(i.e., POS : part-of-speech, TYP : type, DEP : dependency) to the performance

of the model on the GE11 development splits (Table 4.5). We average micro F1

scores of each variant of the model on the five development splits, also reporting

the standard deviation. This experiment shows that (i) the most informative

input embedding is DEP, which individually contributes 1.96 F1, followed by

TYP, which contributes 1.68 F1; (ii) POS is the least informative embedding

since whether it is removed individually or with other embeddings it decreases

the performance only slightly (from 0.09 to 0.42 F1);7 (iii) the behaviour of

the different input embeddings is consistent both individually and in group,

with POS and DEP being highly independent from TYP due to their semantic

interdependency; (iv) the inclusion of all the embeddings contributes to a gain

of 4.28 F1 points with respect to the baseline with only word and position

embeddings. It is worth noting that DEP is the most informative embedding

despite being a predicted feature. To sum up, the semantic and syntactic

features together help edge detection, with the dependency path being the

most informative feature.

7The max decrease in performance of 0.42 F1 points occurs when POS is removed with
TYP, DEP (“POS, TYP, DEP”, Table 4.5) compared to keeping it (“TYP, DEP”, Table 4.5).
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Table 4.5: Ablation study on input embeddings. We report mean and standard
deviation of micro F1 scores on the development splits for each variant of the
model, as well as the performance loss (∆) with respect to the complete model.

Model Micro F1 score ∆

All the input embeddings 88.83 ± 0.35
– POS 88.74 ± 0.58 -0.09
– TYP 87.15 ± 0.66 -1.68
– DEP 86.87 ± 0.33 -1.96
– POS, TYP 86.76 ± 0.52 -2.07
– POS, DEP 86.67 ± 0.51 -2.16
– TYP, DEP 84.97 ± 0.61 -3.86
– POS, TYP, DEP 84.55 ± 0.57 -4.28

4.5 Results and Discussion

In-domain and out-of-domain results of the baseline model across the five cor-

pora are reported in Table 4.6. Particularly, we present four evaluation strate-

gies to guide the reader in choosing the most appropriate approach for assessing

edge detection performance according to its use case. To give additional in-

sights on the results, we also present per-class F1 scores of each model trained

on a source corpus when applied to each target corpus (Figure 4.2). Thus, we

hereafter use both views to complement the discussion of the results.

In-domain results As we can see in Table 4.6, regardless of the metric and

the classes used, in-domain results (with a grey background) are consistently

better than out-of-domain results. This is not surprising since corpora are

characterized by important linguistic variations. The only exception is the

ID11 corpus: a model trained on ID11 seems not enough to provide the highest

macro F1 score on the ID11 test set. This is due to both the relatively small size

of the ID11 train/dev set and the very few training examples having Location

as a label, clearly insufficient to learn the patterns that characterize the class

(Table 4.3). This only impacts the macro F1 score, where under-represented

classes such as Location are given the same weight as dominant classes such

as Theme and NoEdge. As a matter of fact, the GE11 model achieves a higher
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Table 4.6: Cross-domain performance of the baseline model for edge detection.
Different performance views are presented, according to both the evaluation
metrics used – i.e., micro F1 score (top table), or macro F1 score (bottom
table) – and whether the scores consider the classification of negative examples
– i.e., with NoEdge or without NoEdge, on the rows of both tables. In-domain
results are on the diagonals (with a grey background), while best results on
target corpora are in bold. For each metric and evaluation strategy, we indicate
the average out-of-domain drop (in italic).

target → micro F1

source ↓ GE11 ID11 EPI11 PC13 MLEE Avg

w
it

h
N
o
E
d
g
e

GE11 88.65 86.67 84.35 84.36 84.79 -3.71
ID11 80.48 90.05 71.50 81.84 84.07 -10.58
EPI11 73.67 78.00 87.88 76.17 71.41 -13.07
PC13 83.87 86.95 73.10 88.11 87.15 -5.34
MLEE 81.22 88.20 70.24 84.54 90.20 -9.15

w
it

h
ou

t
N
o
E
d
g
e

GE11 83.66 69.31 83.43 66.14 63.39 -13.09
ID11 70.67 72.63 59.72 61.54 61.82 -9.19
EPI11 63.69 53.01 87.17 52.18 47.93 -32.97
PC13 74.92 68.09 59.90 76.22 70.08 -7.97
MLEE 69.15 67.68 53.48 64.75 75.95 -12.08

target → macro F1

source ↓ GE11 ID11 EPI11 PC13 MLEE Avg

w
it

h
N
o
E
d
g
e

GE11 81.01 74.28 77.09 53.28 50.85 -17.13
ID11 56.90 65.76 52.33 48.61 48.17 -14.01
EPI11 62.22 54.93 82.19 48.95 42.78 -29.97
PC13 56.81 54.38 54.57 77.48 56.00 -22.04
MLEE 55.54 55.42 52.54 57.75 74.59 -19.28

w
it

h
ou

t
N
o
E
d
g
e

GE11 77.47 68.39 74.35 40.66 37.37 -22.28
ID11 47.17 56.20 42.99 36.33 33.96 -16.09
EPI11 56.23 44.53 80.06 36.70 29.76 -38.25
PC13 46.01 41.70 44.51 72.42 43.79 -28.42
MLEE 44.92 42.79 42.58 46.67 68.08 -23.84
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Figure 4.2: Performance of in-domain models for each source corpus on de-
tecting and classifying edge labels on all the other corpora (target). Each plot
indicates a target corpus the source model is tested.
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macro F1 score on the ID11 test set only because of the Location classification

performance, almost two times the one provided by the in-domain ID11 model

(Figure 4.2, “Scores on ID11 test set”). On average over all five corpora, the

in-domain micro F1 is 88.98 and 79.13 with and without considering NoEdge,

respectively, while the in-domain macro F1 is 76.21 and 70.85 with and without

negative instances, respectively.

Out-of-domain results A large drop in performance occurs when in-domain

models are applied on out-of-domain corpora. As reported in Table 4.6, the

drop in micro F1 score is from 3.71 to 13.07 points if we consider negative

instances in the evaluation, and from 7.97 to 32.97 without considering them.

Regarding the macro F1 score, the drop is even more pronounced, going from

14.01 to 29.97 considering negative edges, and from 16.09 to 38.25 without

them. From a closer point of view, we notice EPI11 is the most difficult domain

a model could be applied to, as shown by the highest drop in out-of-domain

performance across all metrics and classes (i.e., -13.07 and -29.97 considering

the NoEdge class, and -32.97 and -38.25 without considering the NoEdge class,

for micro and macro F1 scores, respectively). This could be due to how EPI11

was constructed, since it is the only corpus that was built avoiding a sample

selection bias towards particular proteins or event expressions (Ohta et al.,

2011). Another interesting finding is about the ability of some in-domain mod-

els to generalize reasonably well to a specific target domain. This is the case

of the GE11 model, when applied to EPI11 as a target (i.e., GE11→EPI11),

and of the PC13 model, when applied to MLEE (i.e., PC13→MLEE). Al-

though they are far from the performance of the target in-domain models –

especially under the macro F1 metric – they consistently achieve better results

than other in-domain models on all metrics and classes. As we can see in

Figure 4.2, “Scores on EPI11 test set”, in the GE11→EPI11 case the GE11

model obtains lower performance mainly due to the classification of the Cause

class, while maintaining close performance on Location and NoEdge classes.

Regarding PC13→MLEE, the difference in performance with respect to the

MLEE in-domain model could be explained by the Location score, which is

0% (Figure 4.2, “Scores on MLEE test set”).
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Location seems to be the trickiest class to predict especially in the MLEE

target test set, where the only source that achieves a score greater that 0% is

EPI11 (7.02%) (Figure 4.2, “Scores on MLEE test set”). In general, our exper-

iments highlight that there is no single source corpus in which a model could

be trained to robustly and consistently achieve good performance on all target

corpora. This highlights the need for future research in out-of-distribution ro-

bustness to make in-domain models able to generalize better across linguistic

varieties, even within biomedicine itself.

Metrics and classes We notice important distinctions when using micro F1

or macro F1 score as the evaluation metric. Firstly, the scores using macro

F1 are generally lower than the scores using micro F1. This is because over-

represented classes (e.g., Theme, NoEdge) dominate the micro F1 score, while

the correct classification of under-represented classes (e.g., Location) is central

to obtain a high macro F1 score. Secondly, considering negative instances (i.e.,

NoEdge) in computing the averaged scores of edge detection leads to an over-

estimation of the performance. This could be explained by the fact that NoEdge

is the majority class in all the corpora, thus giving a high contribution on both

micro and macro F1 scores. Despite it is a common practice to consider only

true annotated labels (i.e., Theme, Cause, and Location) in the evaluation –

using wrongly predicted negative instances as false negatives for the actual

class, and treating as false positives for the actual class the instances that

are negatives, but classified in that class – we believe considering the negative

class in the evaluation could be beneficial in developing real world applications.

Whatever evaluation strategy is used, we see the trend of the scores is consistent

across metrics and classes.

4.6 Summary and Conclusions

We provided the first cross-domain evaluation study for biomedical edge detec-

tion, together with standardized data from five gold-standard corpora to enable

further progress in comparable edge detection. We proposed different evalua-

tion strategies to assess the performance of models, together with an in-domain
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baseline for edge detection, for which we assessed the contribution of different

combinations of input embeddings, finding syntactic and semantic features to

be particularly helpful. We used in-domain models to assess the performance

drop across five datasets, shedding light on the importance of developing robust

models that could deal with the linguistic variations in different corpora. We

believe this work could encourage future work in out-of-distrubution general-

ization, and could sensitize an awareness about the language differences within

the biomedical domain. The data, the splits, and the baselines for edge detec-

tion are publicly available. This work motivated us to explore complementary

research directions, outlined in the following:

End-to-end event extraction State-of-the-art systems currently employ

classifier pipelines (Björne & Salakoski, 2018; Li et al., 2019), of which edge

detection is one of these classifiers. This study clearly showed that even the

stage of edge detection alone is far from being perfect in performance. In clas-

sifier pipelines, errors typically propagate between modules – i.e., an incorrect

prediction from a module (say, trigger detection) inevitably affects the per-

formance of the following stage (i.e., edge detection). We thus investigate an

end-to-end solution for the whole task in the next chapter (Chapter 5).

Transfer learning for domain robustness For the purpose of this work,

we used a CNN baseline since it has been shown to provide an higher cross-

domain robustness compared to traditional methods for relational semantics

tasks (T. H. Nguyen & Grishman, 2015). Recently, transfer learning has arisen

as an effective solution to mitigate the out-of-domain performance drop issue,

by transferring previous knowledge acquired from a related domain to a tar-

get domain (Ruder, 2019). Pre-trained models such as BERT (Devlin et al.,

2019) are typically employed to the purpose of language variations and data

mismatch. In the next chapter (Chapter 5), we thus employ transfer learning

in biomedical event extraction for the first time, while providing an efficient,

high-performance, and end-to-end solution.



Chapter 5

Biomedical Event Extraction as

Sequence Labeling

In this chapter we present a novel end-to-end biomedical event extraction ap-

proach, namely Biomedical Event Extraction as Sequence Labeling (BeeSL).

We contribute to the field by recasting the event structures into a representation

suitable for sequence labeling, thus modeling trigger and argument information

jointly through a shared encoder, experimenting with multi-task learning strate-

gies and multi-label aware decoding. BeeSL is both fast and accurate, and

unlike current methods does not require any external knowledge base or pre-

processing tools. BeeSL outperforms the current best system on the standard

Genia 2011 benchmark by 1.57% absolute F1 score, establishing a new state of

the art for the task. Empirical results show that BeeSL’s speed and accuracy

makes it a viable approach for large-scale real-world scenarios.

This chapter is based on the following scientific publication:

Ramponi, A., van der Goot, R., Lombardo, R., and Plank, B. (2020).

Biomedical Event Extraction as Sequence Labeling. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP) (pp. 5357–5367). Punta Cana, Dominican Republic (Online):

Association for Computational Linguistics.
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5.1 Introduction and Motivation

Biomedical event extraction is a complex task that requires to detect – and

assign a semantic type to – both event triggers (i.e., the words indicating the

presence of a biomedical event) and their arguments (i.e., which are partici-

pating in those events). As introduced in Chapter 2, biomedical events are

typically highly complex and nested structures (Miwa et al., 2014) where long-

distance arguments are frequent (Li et al., 2019), which thus require deep

contextual knowledge to resolve. While the task has received significant atten-

tion in research over the last decade, it remains challenging. Progress has been

rather stagnating (see Figure 5.1).

State-of-the-art biomedical event extraction systems still work as classifier

pipelines, and extract event triggers and their arguments independently (Björne

& Salakoski, 2018; Li et al., 2019). They typically employ dependency parsing

as features in a CNN model ensemble (Björne & Salakoski, 2018) or in Tree-

LSTMs with knowledge bases (Li et al., 2019). We instead argue that modeling

triggers and arguments jointly can lead to a more efficient model in terms of

both speed and accuracy due to the sharing of information between sub-tasks.

In this work we propose a new approach for biomedical event extraction by

casting it as a sequence labeling task (BeeSL). Our approach is conceptually

simple: we convert the event structures into a representation suitable for se-

quence labeling, and leverage a multi-label aware decoder with BERT (Devlin

et al., 2019) in a multi-task sequence labeling model. This reduces the problem

to predicting a structured output for an input sequence to word-level tagging

decisions. Compared to previous alternatives (cf. Section 5.2) which cast event

extraction as syntactic or semantic tree- or graph-parsing task, this leads to a

faster, joint model which also mitigates error propagation of locally-optimized

classifier pipelines (Björne & Salakoski, 2018; Li et al., 2019). Our empirical

evaluation shows the effectiveness of BeeSL for biomedical event extraction.

A quantitative and qualitative analysis shows that BeeSL is fast and effective.

Despite the model’s simplicity, BeeSL outperforms the previous best model (Li

et al., 2019) on most event categories.

To the best of our knowledge, we are the first to cast biomedical event ex-
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Figure 5.1: Performance of biomedical event extraction on the standard
BioNLP Genia 2011 test set over time.

traction as sequence labeling. We demonstrate that BeeSL is an attractive

and efficient solution to extract biomedical events. We evaluate it on the stan-

dard BioNLP Genia 2011 benchmark, obtaining a new state of the art, while

gaining on efficiency. We additionally provide empirical results of the impact

of alternative multi-task encodings, and to the best of our knowledge, the first

results of biomedical event extraction without assuming entities are given.1

The remaining part of this chapter is organized as follows. Section 5.2 out-

lines related work in biomedical event extraction. In Section 5.3 we revise the

details on the task, presenting our encoding strategy for sequence labeling and

the model. Section 5.4 illustrates the experimental setup, whereas in Section 5.5

we present the empirical results, analyzing the multi-task learning variants and

the multi-label decoding feature, as well as providing a comparison of BeeSL

to the state-of-the-art in terms of accuracy and speed. Section 5.6 provides a

detailed analysis and discussion on the importance of multi-task learning, the

stability of the multi-label decoder, the robustness to non-gold entity informa-

1The source code is available at https://github.com/cosbi-research/beesl
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tion, and an error analysis. Finally, conclusions are in Section 5.7.

5.2 Related Work

Biomedical event extraction has a long-standing tradition. In the last decade,

several methods based on traditional machine learning approaches have been

proposed (Riedel et al., 2011; Miwa et al., 2012; Vlachos & Craven, 2012;

Venugopal et al., 2014; Majumder et al., 2016). Current work in the field has

explored neural methods and uses multiple classification stages to deal with

biomedical event extraction. Namely, first identifying trigger mentions, and

then evaluating all possible combinations for each trigger to all entities or trig-

gers in order to detect event arguments (Li et al., 2019; Björne & Salakoski,

2018). They come with the shortcomings of traditional classifier pipeline meth-

ods, particularly the error propagation between different modules, such as trig-

ger and edge (i.e., argument) detection. In this work we instead take an alter-

native direction modeling both triggers and event arguments jointly. Further,

many studies use dependency parsers to obtain features or for guidance of

Tree-LSTMs (Li et al., 2019; Björne & Salakoski, 2018), being dependent on

predicted information by other tools to tackle the task. We instead dispense

external resources relying on contextualized word representations only.

Earlier work framed biomedical event extraction as syntactic and semantic

tree- or graph-parsing (McClosky et al., 2011; Rao et al., 2017). In particu-

lar, McClosky et al. (2011) do dependency parsing, followed by a second-stage

parse reranker model for event extraction, and Rao et al. (2017) cast the prob-

lem as subgraph identification problem. Recent work in syntactic parsing has

shown that reducing parsing to sequence labeling is a viable alternative for

both constituent and dependency parsing (Spoustová & Spousta, 2010; Gómez-

Rodŕıguez & Vilares, 2018; Strzyz et al., 2019), which we took as inspiration

in this work. To the best of our knowledge, we are the first to cast biomedical

event extraction as a sequence labeling task.

Joint learning paradigms for biomedical event extraction were explored in

early work (Riedel & McCallum, 2011; Riedel et al., 2011; Venugopal et al.,

2014; Vlachos & Craven, 2012). Remarkably, the system by Riedel et al. (2011)
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is still amongst the top-scoring models (cf. Figure 5.1). Contemporary to our

work, a very recent study proposes oneIE, a joint learning model for event

extraction in the newswire domain (Lin et al., 2020). It proposes a single

end-to-end model for event extraction using four stages, paired with a beam

search, obtaining good results on ACE data (Walker et al., 2006). However,

event structures are flat in the newswire ACE data, while they can be nested in

the biomedical GENIA data thus being more challenging (Miwa et al., 2014).

To handle the frequent occurrence of tokens that are argument of multiple

events, we devise a dedicated multi-label decoder. Processing multiple labels

per token has previously been done for relation extraction using multi-head

selection (Bekoulis et al., 2018a, 2018b), and sequence labeling has been em-

ployed for joint entity and relation classification (Dai et al., 2019) with inter-

token attention. We instead employ multi-label decoding at the token-level for

multi-label aware sequence labeling.

5.3 Methods

In this section we revise what event structures are and provide details on how we

encode them to a representation suitable for sequence labeling (Section 5.3.1).

Afterwards, we present our biomedical event extraction model for learning the

resulting linearized representation in an end-to-end fashion, by exploiting an

encoder pre-trained on biomedical texts, different multi-task learning strate-

gies, and multi-label decoding (Section 5.3.2).

5.3.1 Encoding Event Structures

Events are structured representations which comprise multiple information

units (Figure 5.2, top). An event is anchored to a trigger, a text span which

indicates the presence of an event (Figure 5.2, rounded boxes). Each event

has one or more arguments, namely entities or other events (Figure 5.2, end of

arrows), which are assigned a role in the event (Figure 5.2, labels on arrows).

For example, an Expression event is indicated in Figure 5.2 at “production”

involving the Protein “IL-10” as its argument. Nested structures are possible

and frequent in biomedical event extraction. For instance, the +Regulation
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Protein +Regulation Protein +Regulation +Regulation Expression Protein
IL-12 induced STAT-4 activation showed to promote production of IL-10

d: Protein +Regulation Protein +Regulation +Regulation Expression Protein
r: Cause Theme Theme, Cause Theme Theme
h: +Reg+1 +Reg+1 +Reg−1, +Reg+1 +Reg−1 Exp−1

Cause

Theme

Theme

Cause

Theme Theme

Figure 5.2: Top: a text excerpt with four biomedical events. Above the
text (italicized), mentions (triggers inside rounded boxes, and entities with-
out rounded boxes) and argument roles (labels on arrows) are indicated. Bot-
tom: our proposed encoding, where d, r and h represent the label parts for
dependents, relations, and heads, respectively.

event centered on “activation” is both argument of the “induced”-anchored

event as well as the “promote”-anchored event.

Given [x1, ..., xn] a sequence of n tokens, we encode event structures as

token-level labels [y1, ..., yn], to reduce the task to a sequence labeling problem.

Adopting the dependency parsing terminology (Jurafsky & Martin, 2020), we

encode the label yi for each token xi as a tuple 〈d, r, h〉, where:

• d (dependent): a label indicating the mention type of the token (either a

trigger, entity, or nothing);

• r (relation): a label indicating the argument role type of the token, with

respect to the event it is participating in;

• h (head): a label indicating the actual event (trigger) type of which the

token has an argument role in.

The labels are illustrated in Figure 5.2 (bottom). In more detail, to dis-

criminate heads with the same type in text, we encode the heads h as relative

head mention position.2 For instance, h = +Reg+1 means the head is the first

+Regulation on the right of d in the relative surface order, whereas h =

+Reg−2 means it is the second +Regulation on the left. In Figure 5.2 the

2In preliminary experiments we found this mitigates the label sparsity problem of other
positional encodings, e.g., relative positional encoding (Strzyz et al., 2019). We additionally
found relative head mention positions ≥ 2 are rare in our data.
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label for “production” is 〈Expression, Theme, +Reg−1〉, denoting the token

is an Expression trigger, Theme of the first +Regulation event on the left.

As opposed to dependency parsing, tokens may have zero or multiple roots,

and thus multiple heads and relations. This poses additional challenges. For in-

stance, the “activation”-anchored event (Figure 5.2) is both Theme and Cause

of “induced”- and “promote”-anchored event heads, respectively. As a result,

both r and h are multi-label, and the label for “activation” is encoded as

〈+Regulation, [Theme, Cause], [+Reg−1, +Reg+1]〉, where the order of

r and h items is preserved. We handle multiple labels per token via multi-label

decoding (Section 5.3.2.2).

5.3.2 Event Extraction as Sequence Labeling

Formally, we aim to learn a function f : X 7→ Y that assigns each token xi a

structured label yi, i.e., 〈d, r, h〉. A straightforward solution is to predict the

label yi as an atomic entity (i.e., a single label resulting from the concatenation

of d, r and h) in a single-task model. For BeeSL, we instead propose to

use multi-task learning (MTL) which allows to learn interdependencies while

cutting down the label space, paired with multi-label prediction.

An overview of BeeSL is shown in Figure 5.3. We use BERT (Devlin et al.,

2019) as encoder, pre-trained on biomedical texts (Section 5.4), masking entity

spans for better generalization (Alt et al., 2019). The first WordPiece (Schuster

& Nakajima, 2012) of each token xi is used for prediction, where the contextual

hidden representation ei of the token xi is encoded with layer-wise attention

over the BERT layers, similarly to (Peters et al., 2018; Kondratyuk & Straka,

2019). As decoders, we use standard softmax with a cross entropy loss unless

otherwise specified (Figure 5.3, upper left), and introduce a multi-label decoder

(Section 5.3.2.2) (Figure 5.3, upper right). Variants of the model depicted in

Figure 5.3 are thoroughly discussed in Section 5.3.2.1 and Section 5.3.2.2.

We empirically evaluate both single-task and multi-task setups, including

several MTL encoding alternatives, discussing their limitations and benefits.

In the following, we first introduce the multi-task setups (Section 5.3.2.1), and

then multi-label decoding (Section 5.3.2.2).
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〈+Regulation, Theme, +Reg−1〉,
〈+Regulation, Cause, +Reg+1〉

Softmax

lj ∈ D

Softmax decoder

〈+Regulation〉
〈Theme,
+Reg−1〉

〈Cause,
+Reg+1〉

Multi-label decoder

lj ∈ R×H

BERT encoder

activation

Figure 5.3: BeeSL uses a multi-task multi-label model, using a BERT encoder
with layer attention, and dedicated decoders for predicting the labels for each
label sub-space, which are trivially merged. In this figure the prediction of
labels for the token “activation” is illustrated.
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5.3.2.1 Multi-Task Strategies

We denote the label spaces for each component of the labels as di ∈ D, ri ∈ R,

and hi ∈ H. Further, we use L to refer to the maximum label space size.

Single-task A single-task (ST) setup is used as a baseline. It predicts a

single label yi = 〈d, r, h〉 for each input token xi, thus using a single decoder.

The label space is up to L = |D| × |R| × |H|.

Multi-task The label yi for each token xi is decomposed into parts (here-

after, sub-labels), each treated as a prediction task. The decomposition of the

label space allows each sub-label space to be framed as a different task with its

own private decoder, mitigating the output space sparsity (Vilares et al., 2019).

Depending on the decomposition of the label yi = 〈d, r, h〉, we have four multi-

task learning options (pairs of tasks, or each subpart as a task, respectively)

with the following properties:

Option 1. 〈d〉, 〈r, h〉: up to L = |D|+ |R| × |H|;

Option 2. 〈d, r〉, 〈h〉: up to L = |D| × |R|+ |H|;

Option 3. 〈d, h〉, 〈r〉: up to L = |D| × |H|+ |R|;

Option 4. 〈d〉, 〈r〉, 〈h〉: up to L = |D|+ |R|+ |H|.

Option 4 encodes each subpart as its own task. While this leads to the small-

est label space, it decouples the problem into 3 separate tasks. Options 1-3 are

pair-wise task setups. We hypothesize that BeeSL benefits from disentangling

mention detection from head labeling (option 1, depicted in Figure 5.3).

As illustrated in Figure 5.3, BeeSL uses the predicted sub-labels to form

the complete label tuple ŷi = 〈d̂, r̂, ĥ〉. In case r and h belong to different sub-

label spaces (as is possible in options 2-4), we require that both predictions r̂

and ĥ are present (non-empty) to ensure well-formedness. This is a downside

of these alternative options 2-4, as we will see empirically (Section 5.5).

During training, the MTL loss is computed as L =
∑

t λtLt, where Lt is the

loss for each task t, given by the respective decoder (see also Section 5.3.2.2),
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with λt a task-specific weighting parameter. In our experiments we kept λ = 1.0

for all, since preliminary experiments showed weighting sub-tasks differently

was not beneficial. In the single-task setup, the loss reduces to L = Lt.

5.3.2.2 Multi-Label Decoder

The multi-label decoder is designed to handle multiple labels per token, thus

being suitable for predicting relations and heads, which may be more than one

as introduced in Section 5.3.1. Given a task with lj ∈ L labels, the multi-

label decoder models P (lj |ei) for each label lj . Differently from the single-

label decoder (i.e., softmax), each label is predicted with a sigmoid, where all

contribute equally to the loss. Thus, given the probabilities P (lj |ei) for the

lj ∈ L labels and a threshold τ , the token xi is assigned all the labels lj with

probability P (lj |ei) ≥ τ . If no P (lj |ei) ≥ τ is found, we take the highest

scoring label lj (which may also be empty) as a fallback.3 We employ a binary

cross-entropy loss, averaged across all batches.

5.4 Experimental Setup

We evaluate BeeSL on the Genia 2011 benchmark (J.-D. Kim et al., 2011),

which is the largest dataset to date that comprises both the linguistic va-

rieties of abstracts and full-texts, also including a large fraction of nested

events (Björne & Salakoski, 2011). The corpus consists of annotations for

Protein entities and 9 fine-grained event types. The Genia event extraction

task expects both texts and entities as input, and complete events need to be

predicted. Statistics on the dataset are shown in Table 5.1. Further details on

data creation and annotation are in Appendix D.

Event types can be categorized into simple, binding and complex events, re-

lated to the number and types of arguments. Simple events require a Theme

only, binding events require one or more Theme arguments, while complex

events take both Theme and Cause arguments, where both can in turn be

3In case τ = 0 ∨ τ = 1, we adopt the same strategy, since all or no labels would be
potentially predicted, respectively.
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Table 5.1: Statistics of the Genia 2011 event dataset.

Item Train Dev Test

Documents 908 259 347
Sentences 8,664 2,888 3,363
Tokens 230,737 74,334 90,091

Entities 11,625 4,690 5,301
Events 10,310 3,250 4,487

Table 5.2: Formal definition of biomedical events. P: Protein entity, E: any
event type, +: 1 or more arguments, ?: 0 or 1 arguments.

Event type Arguments

Simple events
Gene expression Theme(P)
Transcription Theme(P)
Protein catabolism Theme(P)
Phosphorylation Theme(P)
Localization Theme(P)

Binding Theme(P)+

Complex events
Regulation Theme(P/E), Cause(P/E)?
Positive regulation Theme(P/E), Cause(P/E)?
Negative regulation Theme(P/E), Cause(P/E)?

other events, resulting in nested structures. Björne and Salakoski (2011) esti-

mated that 37.2% of the events in the data are nested. A formal specification

of biomedical events is detailed in Table 5.2, whereas the full data can be

downloaded freely from the official GENIA portal.4

BeeSL is based on MaChAmp (van der Goot et al., 2021), a toolkit for

multi-task learning and fine-tuning of BERT-like models, which in turn is based

on the PyTorch-based (Paszke et al., 2019) AllenNLP library v0.9.0 (Gardner et

al., 2018). We extend MaChAmp to also handle multi-label sequence labeling.

We experiment with BeeSL in single- and different multi-task setups.

4http://bionlp-st.dbcls.jp/GE/2011/downloads/
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After sequence labeling, token-level labels are converted into the official

BioNLP-ST standoff format for evaluation (J.-D. Kim et al., 2011). We simply

split the event arguments based on their formal definition, producing complete

structures (e.g., an Expression event with k Theme arguments is split into

k Expression events, with one Theme each). Similarly to previous work,

we focus on sentence-level events.5 We used BioBERT-Base 1.1 as our BERT

model for experiments, since it provides state-of-the-art performance across

multiple biomedical information extraction tasks (Lee et al., 2020).

Hyper-parameter values and tuning details The list of hyper-parameter

values and the search space are presented in Table 5.3, whereas the number of

trainable parameters in BeeSL is ≈ 110M . For tuning, we started from the

values reported in previous works on multi-task learning for NLP evaluation

benchmarks, e.g., UDify (Kondratyuk & Straka, 2019), and perform a minimal

search to avoid overfitting. We performed 32 search trials via grid search, in

which the “batch size” and the “base learning rate” have been coupled due to

their strong interdependency – (32, 1e−3) and (64, 1e−2). Additional search

trials have been performed for threshold τ selection (yielding the threshold for

multi-task τMT = 0.5 and for single-task τST = 0.7). We used the official ap-

proximate recursive span matching based F1 score for model selection, whereas

the sum of span-based F1 scores of the tasks was employed to determine early

stopping of the training process.

Evaluation In line with previous work, we evaluate BeeSL in terms of preci-

sion (P), recall (R), and F1 score according to the approximate recursive span

matching criterion (J.-D. Kim et al., 2011) using the official BioNLP online

evaluation service.6

5Events crossing sentence boundaries account for 6.0% of the total events in GENIA.
Sentence-level processing theoretically limits the maximum performance that can be achieved
by a system; however, dealing with multi-sentence inputs requires specifically tailored meth-
ods and is likely to drastically reduce the efficiency of a system in terms of training and
inference time and memory, thus undermining its practical usage. Moreover, we hypothesize
that such a small fraction of inter-sentence events is likely to introduce a high number of
false positive cross-sentence events. This is in line with findings by Lever and Jones (2016).

6http://bionlp-st.dbcls.jp/GE/2011/eval-test/
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Table 5.3: Hyper-parameter values and search space.

Hyper-parameter Value Space

Optimizer Adam
β1, β2 0.9,0.99
Weight decay 0.01
Gradient clipping 10
Dropout 0.5 0.1, 0.3, 0.5
BERT dropout 0.1 0.1, 0.2
Mask probability 0.1 0.1, 0.15, 0.2
Layer dropout 0.1
Batch size 64 32, 64
Base learning rate 1e−2 1e−3, 1e−2
BERT learning rate 5e−5

Epochs 50
Patience 5

Multi-label threshold 0.5 0.1, 0.2, ..., 1.0

No gold entities In biomedical event extraction, entities are typically given

in advance. To evaluate BeeSL in a setup with predicted entities (Section 5.6.3),

we firstly employ our model as single-task sequence labeler for recognizing en-

tity mentions using default settings and a standard Conditional Random Field

(CRF) decoder (Gardner et al., 2018). Note that for comparison purposes in

all other experiments we assume entity mentions are given. Then, we evaluate

BeeSL with raw texts and predicted entities as input, thus indirectly penaliz-

ing events that take over-predicted entities or that miss entities since they are

under-predicted.

5.5 Empirical Results

First, we evaluate the MTL strategies and multi-label decoding on the devel-

opment set to determine the best setup (see “Multi-task settings” and “Adding

the multi-label decoder”). Then, we compare BeeSL to the results obtained

by the top performing systems on the official test set (see “Comparison to the

state of the art”). Finally, we gauge its speed (see “Speed comparison”).
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Table 5.4: Performance of diverse settings for BeeSL (multi-task and multi-
label) on the development set.

Multi-task P R F1

〈d〉, 〈r, h〉 71.28 55.44 62.37
〈d, r〉, 〈h〉 72.35 51.31 60.04
〈d, h〉, 〈r〉 73.51 49.49 59.16
〈d〉, 〈r〉, 〈h〉 73.05 51.34 60.30

Multi-label P R F1

BeeSLST 73.30 52.42 61.13
with multi-label 71.74 56.71 63.34

BeeSLMT 71.28 55.44 62.37
with multi-label 71.84 59.42 65.04

Multi-task settings Table 5.4 (top) summarizes the main results for the

MTL experiments. They confirm our hypothesis that 〈d〉, 〈r, h〉 (option 1)

is the most viable representation; it leads to the highest F1 score, largely

outperforming the other MTL options, particularly in recall. These results

show that a multi-task setup with separate tasks for mention detection, and

relation and head labeling, respectively, is the most useful. Option 1, i.e.,

〈d〉, 〈r, h〉 defaults to the multi-task option for BeeSL (Figure 5.3) used in the

following experiments.

Adding the multi-label decoder We evaluate the multi-label decoder for

both single-task (BeeSLST ) and multi-task (BeeSLMT ) setups (Table 5.4,

bottom). Multi-label decoding is beneficial, as the data contains many multi-

headed tokens (i.e., with multiple incoming edges), and modeling them im-

proves both setups. Single task performance increases substantially, from 61.13

to 63.34 F1 score. Similar significant performance gains are observed for multi-

task learning, from 62.37 to 65.04 F1 score. Regardless of the multi-label

modeling, the multi-task setup provides the highest overall performance.

Comparison to the state of the art We now compare the multi-task

multi-label BeeSL (hereafter, simply BeeSL) to the top performing systems.
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Table 5.5: Performance comparison on the test set of the standard BioNLP
Genia 2011 benchmark. *indicates that the system was trained on training
plus part of development data. BeeSL uses the official training portion only.
Top: traditional ML systems; Middle: state-of-the-art neural systems; Bottom:
proposed multi-task multi-label sequence labeling system (BeeSL).

Method P R F1

Riedel et al. (2011)
FAUST – Model combination (joint+parsing)

64.75 49.41 56.04

Miwa et al. (2012)
EventMine – SVM pipeline (+coref)

63.48 53.35 57.98

Venugopal et al. (2014)
BioMLN – SVM pipeline

63.61 53.42 58.07

Majumder et al. (2016)
Stacked generalization

66.46 48.96 56.38

Björne and Salakoski (2018)
TEES – CNN pipeline (single model)

64.86 50.53 56.80

Björne and Salakoski (2018)
TEES – CNN pipeline (5x ensemble)

68.76 49.97 57.87

Björne and Salakoski (2018)*
TEES – CNN pipeline (mixed 5x ensemble)

69.45 49.94 58.10

Li et al. (2019)
BiLSTM pipeline

62.18 48.44 54.46

Li et al. (2019)
Tree-LSTM pipeline

64.56 50.28 56.53

Li et al. (2019)
KB-driven Tree-LSTM pipeline

67.01 52.14 58.65

BeeSL 69.72 53.00 60.22

As shown in Table 5.5, BeeSL outperforms the state-of-the-art by a large

margin, i.e., an absolute improvement of 1.57 points in F1 score over the KB-

Tree LSTM model (Li et al., 2019) (hereafter, KBTL). It improves over both

precision and recall, and yields a new state of the art with an F1 score of

60.22%, yet being conceptually simple.
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Table 5.6: Detailed per-event performance of BeeSL and KBTL (KB-driven
TreeLSTM) on the test set. Best scores are in bold.

BeeSL KBTL
Event type P R F1 P R F1

Simple events 84.17 74.98 79.31 85.95 72.62 78.73
Gene expression 84.55 77.54 80.90 87.24 74.35 80.28
Transcription 72.50 66.67 69.46 82.31 69.54 75.39
Protein catabolism 83.33 66.67 74.07 87.50 46.67 60.87
Phosphorylation 94.05 85.41 89.52 87.28 81.62 84.36
Localization 83.21 59.69 69.51 80.28 59.69 68.47

Binding 65.36 40.73 50.19 53.16 37.68 44.10

Complex events 58.54 41.14 48.32 55.73 41.73 47.72
Regulation 62.22 36.36 45.90 53.61 36.62 43.52
Positive regulation 60.14 41.93 49.41 57.90 41.37 48.26
Negative regulation 53.19 42.38 47.17 52.39 46.06 49.02

All events 69.72 53.00 60.22 67.01 52.14 58.65

Table 5.6 compares the scores of BeeSL to the previous best model on a

per-event level. BeeSL outperforms the KBTL approach (Li et al., 2019) over-

all on 7 out of the 9 event types. From a coarse-grained perspective, BeeSL

outperforms KBTL on all simple, binding, and complex event categories. Par-

ticularly, improvements over KBTL on simple events are as large as +13%

F1 score. Furthermore, noticeable are also the improvements for binding and

nested, complex events, for which our model achieves 50.19% and 48.32% F1

score. From a closer look, the recall of BeeSL on simple events is substan-

tially higher than KBTL, which ease a correct identification of complex events.

The only exceptions are for -Regulation and Transcription event types,

for which BeeSL’s F1 scores are lower that KBTL ones. While the precision

for -Regulation events is higher than KBTL, recall is substantially lower.

We hypothesize that this behaviour is due to the use of external knowledge

information by KBTL, which allows to retrieve more instances of this type, at

the cost of precision. Moreover, we speculate that Transcription errors are

caused by the ambiguity of Expression and Transcription triggers. We
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Table 5.7: Speed comparison to TEES single and ensemble models at inference
time. Results are sents/min, averaged over 5 runs.

sents/min

TEES (single) 255±1
TEES (ensemble) 101±1

BeeSL 499±3

refer to Section 5.6.4 for more details.

Next, we look at performance per text type (i.e., abstract and full-text

subsets). BeeSL achieves 62.14% F1 score on abstracts-only documents, and

55.59% F1 score on full-texts. This confirms that full-texts are harder to pro-

cess than abstracts, due to the known differences in structural and content

aspects (Cohen et al., 2010).

To sum up, BeeSL handles events well, and unlike most prior work, does

not use knowledge bases or dependency parsers as pre-processing step to ob-

tain features. BeeSL uses multi-task learning with a contextual encoder and

both single- and multi-label aware decoding, herewith bringing progress to the

biomedical event extraction task as illustrated in Figure 5.1.

Speed comparison We compare BeeSL to TEES, the Turku Event Extrac-

tion System (Björne & Salakoski, 2018) to compare their speed at inference time

on commodity hardware. TEES is the 2nd top-performing system (Figure 5.1),

and its code is freely available. To the best of our knowledge, the source code

of (Li et al., 2019) is not yet available.

Results in Table 5.7 show that BeeSL is ∼2x faster and ∼5x faster on a

consumer grade CPU7 than TEES single and ensemble system, respectively.

In terms of sentences per minute, BeeSL processes ∼500 sents/min compared

to 255 sents/min and 101 sents/min in TEES single (3.42% lower F1) and

ensemble (2.12% lower F1), respectively.

7Intel Core i5-6360U (2 cores).
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Table 5.8: Ablation study on BeeSL when removing the multi-task capability
(i.e., replacing MTL with independent classifiers) and the multi-label handling.

Setting P R F1

BeeSL 71.84 59.42 65.04
– multi-task 71.66 56.95 63.47

– multi-label 74.28 52.39 61.44

5.6 Analysis and Discussion

To gain insights about BeeSL, we shed more light on several aspects. Firstly,

we analyze how much BeeSL gains from multi-task learning, compared to

using a powerful contextualized BERT encoder alone in a single-task learn-

ing setup and a formulation with two independent classifiers (Section 5.6.1).

Then, we quantify the stability of the threshold τ of the multi-label decoder

(Section 5.6.2). We also aim to get deeper insight on model performance in

the case entities are not explicitly available (Section 5.6.3), and qualitatively

study the sources of prediction errors of BeeSL (Section 5.6.4).

5.6.1 Importance of Multi-Task Learning

As opposed to running one single model which models 〈d〉 and 〈r, h〉 jointly in a

multi-task setup (i.e., our best setup), we also experiment with a formulation of

two single-task classifiers which predict 〈d〉 and 〈r, h〉 separately. This allows

us to gauge the effectiveness of the multi-task learning approach compared

to local classifiers which use strong BERT-based encoding, and compared to

predicting an atomic label in single-task learning.

Results in Table 5.8 confirm that leveraging a shared encoder and multi-

task learning for both 〈d〉 and 〈r, h〉 is crucial. Without multi-task learning and

multi-label decoding, the F1 score drops to 61.44 in the case of independent

classifiers (Table 5.8), and to 61.13 in the case of single-task learning (BeeSLST

in Table 5.4). Adding the multi-label decoding capability helps, as expected.

Independent classifiers achieve 63.47% F1 score (Table 5.8), whereas single-

task learning reaches 63.34% F1 score (BeeSLST with multi-label in Table 5.4).
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Table 5.9: Ablation study on the threshold τ of the multi-label decoder (“with
best-only predicion”: τ = 1.0).

Setting F1 ∆

BeeSLST (multi-label) 63.34
with best-only prediction 62.87 -0.47

BeeSLMT (multi-label) 65.04
with best-only prediction 64.54 -0.50
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Figure 5.4: Stability of the threshold τ . Values in the range 0.3-0.7 only
minimally alter BeeSL scores.

However, the full power of BeeSL is only achieved by using both the multi-task

and the multi-label approach, which leads to the novel state of the art.

5.6.2 Stability of the Multi-Label Decoder

As shown in Table 5.4, using a multi-label decoder largely increases the perfor-

mance of a system with a single-label decoder (from 62.37 to 65.04 F1 score).

However, what is left is how much the threshold τ impacts the performance.

To get insights on it, we firstly performed an ablation study setting τ = 1.0. As

introduced in Section 5.3.2.2, this reduces to predicting the highest scoring la-

bel only – however, in a reduced label space induced by the multi-label decoder
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Table 5.10: Performance of BeeSL with no gold entities.

P R F1

BeeSL 71.84 59.42 65.04
– gold entities 66.15 54.09 59.51

(meaning that k labels per token are treated separately, i.e., yi = {y1i , ..., yki }
instead of being considered an atomic concatenated unit, i.e., yi = y1i ⊕...⊕yki ).

We positively found that only part of the improvement given by the multi-label

decoding is due to the threshold τ in both multi-task and single-task settings

(+0.50% and +0.47%, respectively) (Table 5.9).

Moreover, we evaluated BeeSL with different τ values. As shown in Fig-

ure 5.4, a threshold in the range 0.3-0.7 only marginally alters the results,

which are still better than predicting the highest scoring label only (τ = 1.0).

This confirms the importance of using a multi-label aware decoder as well as

the stability of the threshold in predicting the output labels.

5.6.3 Impact of Gold Entity Information

The standard in biomedical event extraction is to evaluate the performance of

a system on raw texts paired with gold entity annotations (i.e., entities that

are given in advance). This makes sense to isolate the task and to assess the

actual event extraction performance, as well as to be able to compare results

to previous work in the field. However, in real-world situations it is unlikely

that the data is annotated for entities. We believe it is important to estimate

the system performance in case of predicted, non-gold entities (hereafter, silver

entities). The performance of the entity mention prediction (cf. Section 5.4)

on the development set is 87.95 span-based F1 score.

The results on the event extraction task using silver entities are shown in

Table 5.10. The overall drop in F1 amounts to around 5%, and it is well-

balanced across precision and recall. This shows that BeeSL’s performance is

clearly affected, but that the system is relatively robust to noisy, non-gold silver

entities. We believe that this performance gap can be further minimized by

using jackknifing (Agić & Schluter, 2017) to reduce data mismatch, however,
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Table 5.11: Error analysis on a random sample of 30 documents from the
development set.

Error type Fraction

Trigger
Under-prediction 31.43%
Over-prediction 28.57%
Wrong type 10.00%

Argument
Under-prediction 22.86%
Over-prediction 7.14%
Wrong type 0.00%

this requires to align the predicted entities with the existing events in the

training data, which is non-trivial, and we leave this for future work.

5.6.4 Error Analysis

We randomly sampled a total of 30 documents (comprising 168 gold events)

from the development set for a manual scrutiny for sources of errors. We

classified errors into two broad categories, namely trigger and argument errors.

Further, we classified them in fine-grained categories based on the type of

error, namely under-prediction, over-prediction, and wrong type. Table 5.11

summarizes the results.

We notice the largest fraction of errors is due to trigger errors. From a

closer look, under-predicted triggers account for 31.43% of the total, whereas

over-predicted triggers for 28.57%. We investigated the reason for these errors,

finding that over-predicted triggers are often due to generic words used very

frequently to indicate specific trigger types. For instance, BeeSL identifies the

+Regulation event anchored at “activated” in the following sentence:

Tax co-transfected with reporter constructs into Jurkat cells maxi-

mally activated HTLV-I-LTR-CAT and kappa B-fos-CA.

(Sentence ID: PMID-7505113)
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albeit the gold standard does not contain the event in this instance. However,

from a semantic point of view we believe these errors are acceptable. Other

cases include the words such as “detected” and “influences”, which are often

used as Expression and Regulation event triggers, respectively.

Under-prediction of triggers is instead due to a variety of reasons. Both

rare words (e.g., a +Regulation event centered on “co-transfected”) and

uncertain events account for a large fraction of this error type. An example of

uncertain event is presented in the following sentence:

The observation that a mutated LT-kappa B construct (M1-CAT)

was inactive in C81-66-45, confirmed the importance of NF-kappa

B in LT gene expression. (Sentence ID: PMID-7505113)

where the +Regulation trigger “importance” is not recognized by BeeSL.

Wrongly typed triggers represent only 10% of the errors. An example is

represented by ambiguous trigger types. In the sentence:

There is a report describing that mitogenic stimulation of T cells

upregulates A3G mRNA levels.

(Sentence ID: PMC-1920263-01-INTRODUCTION)

BeeSL classifies “levels” as an Expression trigger, while the gold annotation

indicates it is a Transcription trigger. By a closer look, we found some

triggers in the corpora are annotated as Expression and Transcription

types interchangeably. This is due to the fact that a Transcription, from a

biological point of view, is actually a kind of gene Expression.

Regarding the identification of arguments, over-predictions are quite un-

common. If erroneous, the main error we found may benefit from syntactic

information, which we aim to integrate in a multi-task setup in future work.

We found no misclassification of arguments in our document samples. Lastly,

under-prediction of arguments is instead mostly due to under-predicted events.
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5.7 Summary and Conclusions

In this chapter we described BeeSL, a novel end-to-end biomedical event ex-

traction system which is both efficient and accurate. BeeSL is broadly ap-

plicable to event extraction and other tasks that can be recast as sequence

labeling. The system’s strength comes from the joint multi-task modeling

paired with multi-label decoding, which aids interdependencies between the

tasks and is superior to alternative decoders based on strong contextualized

BERT embeddings. BeeSL is fast, and achieves state-of-the-art performance

on the standard Genia 2011 event extraction benchmark without the need of

external tools for features and resources such as parsers and knowledge bases.

Our analysis shows that BeeSL works very well across event types. Future

work include the experimentation using BeeSL in low-resource data setups,

and in the context of other publicly available datasets with different definitions

of events. We also release the code freely, to foster research on using BeeSL

for other central NLP tasks as well, such as enhanced dependency parsing, fine-

grained named entity recognition, and semantic parsing. General conclusions

are provided in the next chapter (Chapter 6).





Chapter 6

Summary and Conclusions

In this thesis, we focused on designing effective means for extracting semantic

relational information from biomedical literature texts, in order to assist field

experts in keeping pace with the growing volume of biomedical knowledge being

published. After providing background information on natural language pro-

cessing and introducing symbolic approaches and relevant deep and transfer

learning methods (Chapter 2), we focused on the central tasks for biomedi-

cal information extraction, namely biomedical relation and event extraction,

and particularly on specific challenges towards a reliable and smooth adoption

of knowledge extraction solutions in real-world scenarios. We summarize our

findings that aim to answer the research questions outlined in Chapter 1 in the

following synopsis, then focusing on future research directions in the field.

Specifically, in Chapter 3 we designed a symbolic approach for biomedical

relation extraction which leverages syntactic dependency trees and surface lin-

guistic information such as part-of-speech tags by means of carefully designed

patterns and rules. The aim of this study was to investigate if symbolic meth-

ods for relation extraction may reduce the time-consuming manual scrutiny

of false positive relation instances, a typical desideratum of biomedical prac-

titioners to readily exploit the automatically extracted evidence for further

biologically-driven analyses. Empirical results are encouraging, showing that

our symbolic method achieves the highest precision score – while maintaining

123
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a comparable or higher F1 score – compared to both previous rule-based and

machine learning alternatives, as well as to more recent transfer learning ap-

proaches we specifically fine-tuned to the purpose (which however show very

high overall performance on the task). Therefore, the answer to the research

question RQ1 is positive, since manual curation is drastically reduced by our

symbolic approach, particularly when annotated data is scarce. In future work

we aim to investigate if the advantage of our approach over machine learning

ones also holds in high-resource regimes. Despite the good results, a detailed

error analysis highlighted that there are cases that rules still do not capture

due to very complex linguistic constructs, and that the expressivity of binary

relations is somehow limited in modeling fine-grained, high-order relations (i.e.,

relations that are argument of other relations). These facts provided us the

motivation to focus on the more expressive biomedical event extraction task,

and to employ deep and transfer learning methods.

Building on top of the aforementioned findings, in Chapter 4 we investigated

the cross-domain robustness of deep learning solutions typically employed for

biomedical event extraction. Specifically, we focused on the most challenging

biomedical event extraction sub-task, namely edge detection, whose evalua-

tion is not typically reported in literature. We employed convolutional neural

networks since they have been shown to be more robust across linguistic vari-

ations compared to previous machine learning alternatives (T. H. Nguyen &

Grishman, 2015), enriching it with syntactic and semantic input embeddings

and setting it as strong baseline for the study. To quantify the drop in perfor-

mance when dealing with out-of-distribution data, we trained multiple models

on in-domain corpora, and we tested their robustness when applied on all other

corpora. Concretely, we answered the research question RQ2 by finding a drop

in performance up to 32.97 and 38.25 points in micro and macro F1 score,

respectively, which highlighted the importance of accounting and tackling lin-

guistic varieties in future work to ensure a high out-of-distribution robustness

of methods. We thus released standardized benchmark data to encourage fu-

ture research in cross-domain generalization of edge detection in biomedical

event extraction pipelines. Future avenues for research in this direction in-

clude the design of robust edge detection models based on transformer-based
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architectures, and domain adaptation techniques to handle domain variation.

The previous contribution to the BioNLP community posed the motiva-

tion to design an end-to-end solution for biomedical event extraction, in order

to overcome the limitations of traditional classifier pipelines, namely the er-

ror cascading issues and the lack of information sharing between sub-tasks.

Also, the recent outstanding achievements of transfer learning methods in

NLP (A. Wang, Pruksachatkun, et al., 2019), and the substantially increased

out-of-distribution performance of these methods (Hendrycks et al., 2020), mo-

tivated us to blend these ideas together. Specifically, in Chapter 5 we investi-

gated if the highly complex biomedical event extraction task may be tackled

in an end-to-end fashion with both sequential transfer learning ideas such as

BERT (Devlin et al., 2019) and a multi-task learning paradigm, while im-

proving both speed and accuracy compared to previously proposed solutions.

To the goal, we proposed Biomedical Event Extraction as Sequence Label-

ing (BeeSL), an end-to-end approach that transforms event structures into

token-level labels, thus modeling the sub-tasks of trigger and edge detection

jointly while implicitly leveraging inter-dependencies between them and mit-

igating error cascading. Instead of evaluating pairwise associations multiple

times, BeeSL reads the input sequence only once, and also dispenses external

resources and pre-processing tools for obtaining features. A BERT encoder

pre-trained on biomedical literature (Lee et al., 2020) is fine-tuned to produce

domain-relevant contextualized representations for the task, and specifically

purposed decoders such as a multi-label decoder are devised on top of the en-

coder and trained in a multi-task setup. Our end-to-end approach to biomed-

ical event extraction successfully answered the research question RQ3, achiev-

ing state-the-art results on the standard biomedical event extraction GENIA

benchmark while showing an increase up to 5× in speed efficiency at inference

time compared to the previous best solution, making it a suitable approach for

large-scale real-world applications. Additional insights such as the importance

of multi-task learning and multi-label decoding and the impact of gold entity

information complemented the work, opening interesting future directions to

the broader NLP community, such that the repurposing of the linearization

approach to other structured tasks such as enhanced dependency parsing, fine-
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grained named entity recognition, and semantic parsing.

In summary, in this thesis we have made several contributions to advance

the BioNLP field, by tackling both the tasks of biomedical relation extraction

(Chapter 3) and biomedical event extraction (Chapters 4 and 5), and providing

novel solutions as well as relevant insights for real-world adoption of knowledge

extraction in the biomedical field, including (i) a high-precision relation ex-

traction approach to reduce the time-consuming manual curation efforts of the

extracted relation instances (Chapter 3), (ii) a thorough cross-domain study

to quantify the drop in performance of biomedical edge detection methods

when applied to potentially different linguistic varieties (Chapter 4), and (iii)

a fast and accurate solution for biomedical event extraction that makes it a

viable approach to be used in real-world large-scale applications (Chapter 5).

Concretely, we believe end users might benefit from these insights in a practi-

cal setting. The work in Chapter 3 makes a step towards allowing biomedical

practitioners to focus more on downstream analyses, rather than curation. The

work in Chapter 4 might instead sensitize the research community on model

robustness in BioNLP, which in turn will be of practical usefulness to biomed-

ical experts to apply models in a variety of sub-domains. Finally, the event

extraction system proposed in Chapter 5 makes the extraction of events sub-

stantially faster, making it an attractive solution when large-scale extraction

is needed or computational resources are limited. We have thus explored com-

plementary views of “goodness” of BioNLP models, including robustness and

efficiency, issues that are central for real-world adoption of BioNLP systems.

We believe both the tasks of relation and event extraction have their own

strengths for extracting relational knowledge in biomedical literature. Al-

though limited in representational power, biomedical relation extraction is a

simpler formalism that can be employed in an early stage by field practitioners

to explore the biomedical literature and find dense clusters of relevant informa-

tion to focus on (e.g., by means of downstream applications such as knowledge

graphs). On the other hand, biomedical event extraction is a fine-grained al-

ternative to relation extraction that can better inform researchers on specific

details about novel biomedical findings, such as nested reactions and inter-

actions, thus being highly effective when a specific research question is set.
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Besides representational strengths and weaknesses, we believe the reporting of

human performance on the corpora would be extremely valuable for assessing

the progress in both the tasks, and eventually determine when benchmarks

saturate. Although this is not central to this work, we found that not all the

corpora are accompanied by an inter-annotator agreement score (Appendix D).

On the basis of the agreement reported for HPRD50 (81% F1, Appendix D),

we speculate our relation extraction method (79.5% F1 on HPRD50) is close

to an empirical upper bound. On the contrary, an average estimate of the

inter-annotator agreement reported for event extraction corpora (∼70–75% F1,

Appendix D) suggests there is still room for improvement in the field.

We identified some potential avenues for future research that we outline

in the following. As common practice in relation and event extraction and

their standard benchmarks for evaluation, in this thesis we assume entity men-

tions are given. However, devising unified information extraction systems that

predict both entities and their relations (or events) may be beneficial. While

for relation extraction this has been explored in recent times (Bekoulis et al.,

2018b), for event extraction this integration is not straightforward, mainly due

to the fact that event extraction itself comprises multiple inter-related tasks. As

a step towards this goal, in this thesis we provide the first results on biomedical

event extraction without assuming gold entities (Chapter 5). An interesting

future direction includes learning entity mentions and events together follow-

ing a multi-task paradigm. We envision an increasing number of such joint

methods in the near future.

Another interesting direction is about reliably applying current methods to

specific sub-domains of biomedicine in which annotations are not abundant or

readily available. This translates to drastically reducing the need for annotated

training data. With the recent rise of sequential transfer learning approaches

such as BERT (Devlin et al., 2019), we positively observed impressive perfor-

mance gains in a wide array of NLP tasks (A. Wang et al., 2018), as well as a

reduced need for annotated target data for reaching the same performance on

a target task compared to training a model from scratch (Howard & Ruder,

2018). However, learning in extreme scenarios where annotated data is very

scarce or absent, namely low-resource regimes, is still an open problem and
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should be extensively tackled in the near future (Hedderich et al., 2020). An

interesting research idea for future work is to simulate a low-resource scenario

for relational information extraction tasks, in order to assess the amount of

labeled data that is needed to reach a sufficient accuracy on a target task, i.e.,

by maximizing the annotation effort–performance tradeoff.

Another research perspective includes the design of neuro-symbolic methods

for NLP. As presented in the previous chapters, we employed symbolic and deep

transfer learning approaches, each of which has its own advantages. Symbolic

methods are transparent but are brittle and exhibit a rigid behaviour, whereas

deep transfer learning methods are opaque but are highly performant solutions

which are able to capture hidden patterns from data automatically. Blending

these two lines together is seeing an increasing interest in the broader machine

learning community (d’Avila Garcez & Lamb, 2020), and we envision a rapid

development of these techniques in the next decade. Additionally, softening

the rigid behaviour of binary decisions may help in reducing errors caused by

misclassification of early assessments in a processing pipeline. An interesting

research direction is to employ a probabilistic assessment of the conditions of

the relation router presented in Figure 3.2 (Chapter 3).

A last challenge is about going towards multilingual biomedical knowledge

extraction. In this thesis we focused on English biomedical literature, since it

is the common language used to communicate science. However, some research

studies are only published in other languages, mainly those pertaining to the

Chinese language family. Accounting for the over 7,000 languages in the world

is a long-term goal of current NLP (Joshi et al., 2020). While large pre-trained

multilingual models already exist for the general domain, e.g., multilingual

BERT (Devlin et al., 2019), to the best of our knowledge no transformer-based

model has been yet developed for biomedical texts in multiple languages, in

order to be ultimately used as backbone for complex information extraction

systems. We believe extracting information of biomedical relevance from texts

in multiple languages will be one of the next drivers of progress in BioNLP.

In the short term, we envision a shift from monolingual to bilingual or multi-

lingual relation and event extraction systems to support biomedicine.
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Vanegas, J. A., Matos, S., González, F., & Oliveira, J. L. (2015). An Overview of

Biomolecular Event Extraction from Scientific Documents. Computational

and Mathematical Methods in Medicine, 2015 .

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . .

Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural

Information Processing Systems (NeurIPS) (pp. 5998–6008). Long Beach,

California, USA: Curran Associates, Inc.

Venugopal, D., Chen, C., Gogate, V., & Ng, V. (2014). Relieving the Com-

putational Bottleneck: Joint Inference for Event Extraction with High-

Dimensional Features. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP) (pp. 831–843). Doha,

Qatar: Association for Computational Linguistics.

Vilares, D., Abdou, M., & Søgaard, A. (2019). Better, Faster, Stronger Se-

quence Tagging Constituent Parsers. In Proceedings of the 2019 Confer-

ence of the North American Chapter of the Association for Computational

Linguistics – Human Language Technologies: Volume 1, Long and Short

Papers (NAACL-HLT) (pp. 3372–3383). Minneapolis, Minnesota, USA:

Association for Computational Linguistics.

Vlachos, A., & Craven, M. (2012). Biomedical Event Extraction from Ab-

stracts and Full Papers Using Search-based Structured Prediction. BMC

Bioinformatics, 13 (11), 1–11.

Walker, C., Strassel, S., Medero, J., & Maeda, K. (2006). ACE 2005 Multilingual

Training Corpus. (https://catalog.ldc.upenn.edu/LDC2006T06)

Wang, A., Hula, J., Xia, P., Pappagari, R., McCoy, R. T., Patel, R., . . . Bow-

man, S. R. (2019). Can You Tell Me How to Get Past Sesame Street?



148 References

Sentence-Level Pretraining Beyond Language Modeling. In Proceedings of

the 57th Annual Meeting of the Association for Computational Linguistics

(ACL) (pp. 4465–4476). Florence, Italy: Association for Computational

Linguistics.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., . . .

Bowman, S. (2019). SuperGLUE: A Stickier Benchmark for General-

Purpose Language Understanding Systems. In Advances in Neural Infor-

mation Processing Systems (NeurIPS) (Vol. 32, pp. 3266–3280). Vancou-

ver, Canada: Curran Associates, Inc.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. (2018).

GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Lan-

guage Understanding. In Proceedings of the 2018 EMNLP workshop Black-

boxNLP: Analyzing and Interpreting Neural Networks for NLP (pp. 353–

355). Brussels, Belgium: Association for Computational Linguistics.

Wang, X., McKendrick, I., Barrett, I., Dix, I., French, T., Tsujii, J., & Anani-

adou, S. (2011). Automatic Extraction of Angiogenesis Bioprocess from

Text. Bioinformatics, 27 (19), 2730–2737.

Warikoo, N., Chang, Y.-C., & Hsu, W.-L. (2018). LPTK: A Linguistic

Pattern-aware Dependency Tree Kernel Approach for the BioCreative VI

CHEMPROT Task. Database, 2018 .

Webber, B. (2009). Genre Distinctions for Discourse in the Penn TreeBank.

In Proceedings of the Joint Conference of the 47th Annual Meeting of

the Association for Computational Linguistics and the 4th International

Joint Conference on Natural Language Processing of the AFNLP (ACL-

IJCNLP) (pp. 674–682). Suntec, Singapore: Association for Computa-

tional Linguistics.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., . . .

others (2016). Google’s Neural Machine Translation System: Bridg-

ing the Gap Between Human and Machine Translation. arXiv preprint

arXiv:1609.08144 .

Yadav, S., Ekbal, A., Saha, S., Kumar, A., & Bhattacharyya, P. (2019). Feature

Assisted Stacked Attentive Shortest Dependency Path based Bi-LSTM

Model for Protein–Protein Interaction. Knowledge-Based Systems, 166 ,



References 149

18–29.

Yu, K., Lung, P.-Y., Zhao, T., Zhao, P., Tseng, Y.-Y., & Zhang, J. (2018).

Automatic Extraction of Protein-Protein Interactions using Grammati-

cal Relationship Graph. BMC Medical Informatics and Decision Making ,

18 (2), 42.

Zeng, D., Liu, K., Lai, S., Zhou, G., & Zhao, J. (2014). Relation Classifica-

tion via Convolutional Deep Neural Network. In Proceedings of the 25th

International Conference on Computational Linguistics: Technical Papers

(COLING) (pp. 2335–2344). Dublin, Ireland: Dublin City University and

Association for Computational Linguistics.

Zhang, H., Guan, R., Zhou, F., Liang, Y., Zhan, Z.-H., Huang, L., & Feng, X.

(2019). Deep Residual Convolutional Neural Network for Protein-Protein

Interaction Extraction. IEEE Access, 7 , 89354–89365.

Zhang, Y., Lin, H., Yang, Z., Wang, J., Zhang, S., Sun, Y., & Yang, L. (2018).

A Hybrid Model Based on Neural Networks for Biomedical Relation Ex-

traction. Journal of Biomedical Informatics, 81 , 83–92.

Zhang, Y., & Weiss, D. (2016). Stack-Propagation: Improved Representation

Learning for Syntax. In Proceedings of the 54th Annual Meeting of the As-

sociation for Computational Linguistics: Volume 1, Long Papers (ACL)

(pp. 1557–1566). Berlin, Germany: Association for Computational Lin-

guistics.

Zhao, Z., Yang, Z., Lin, H., Wang, J., & Gao, S. (2016). A Protein-Protein Inter-

action Extraction Approach Based on Deep Neural Network. International

Journal of Data Mining and Bioinformatics, 15 (2), 145–164.

Zhou, J., & Fu, B.-q. (2018). The Research on Gene-Disease Association Based

on Text-Mining of PubMed. BMC Bioinformatics, 19 (1), 37.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., &

Fidler, S. (2015). Aligning Books and Movies: Towards Story-like Visual

Explanations by Watching Movies and Reading Books. In Proceedings

of the IEEE International Conference on Computer Vision (ICCV) (pp.

19–27). Las Condes, Cile.









Appendix A

Part-of-Speech Tags

A list of the part-of-speech labels is provided in the following. Particularly,

in Table A.1 the coarse-grained Universal POS tags (Nivre et al., 2016) are

presented,1 whereas in Table A.2 is the fine-grained PENN Treebank POS

tag set (Marcus et al., 1993), OntoNotes 5 version.2 For further information

about the tags, their design methods and motivation, we refer the reader to

the original research publications (Nivre et al., 2016; Marcus et al., 1993).

Table A.1: Universal POS tags.

Tag Description Tag Description

ADJ Adjective PART Particle
ADP Adposition PRON Pronoun
ADV Adverb PROPN Proper noun
AUX Auxiliary PUNCT Punctuation
CCONJ Coordinating conjunction SCONJ Subordinating conjunction
DET Determiner SYM Symbol
INTJ Interjection VERB Verb
NOUN Noun X Other
NUM Numeral

1https://universaldependencies.org/u/pos/
2https://catalog.ldc.upenn.edu/LDC2013T19
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Table A.2: Penn Treebank POS tags.

Tag Description Tag Description

$ Symbol, currency NNP Noun, proper singular
“ Opening quotation mark NNPS Noun, proper plural
” Closing quotation mark NNS Noun, plural
, Punctuation mark, comma PDT Predeterminer
-LRB- Left round bracket POS Possessive ending
-RRB- Reft round bracket PRP Pronoun, personal
. Punctuation mark, sentence closer PRP$ Pronoun, possessive
: Punctuation mark, colon or ellipsis RB Adverb
ADD Email RBR Adverb, comparative
AFX Affix RBS Adverb, superlative
CC Coordinating conjunction RP Adverb, particle
CD Cardinal number SP Space
DT Determiner SYM Symbol
EX Existential there TO Infinitival “to”
FW Foreign word UH Interjection
GW Add. word in multi-word expression VB Verb, base form
HYPH Punctuation mark, hyphen VBD Verb, past tense
IN Preposition / subordinating conjunction VBG Verb, gerund or present participle
JJ Adjective VBN Verb, past participle
JJR Adjective, comparative VBP Verb, non-3rd person singular present
JJS Adjective, superlative VBZ Verb, 3rd person singular present
LS List item marker WDT Wh-determiner
MD Verb, modal auxiliary WP Wh-pronoun, personal
NFP Superfluous punctuation WP$ Wh-pronoun, possessive
NIL Missing tag WRB Wh-adverb
NN Noun, singular or mass XX Unknown



Appendix B

Grammatical Dependency Tags

A list of grammatical dependency tags (drawn from the ClearNLP tag set1)

together with the linguistic descriptions are provided in Table B.1.

Table B.1: ClearNLP Dependency Labels.

Tag Description

acl Clausal modifier of noun
acomp Adjectival complement
advcl Adverbial clause modifier
advmod Adverbial modifier
agent Agent
amod Adjectival modifier
appos Appositional modifier
attr Attribute
aux Auxiliary
auxpass Auxiliary, passive
case Case marking
cc Coordinating conjunction
ccomp Clausal complement

(continued on the next page)

1https://github.com/clir/clearnlp-guidelines/blob/master/md/specifications/

dependency labels.md
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(continued from the previous page)

Tag Description

compound Compound
conj Conjunct
csubj Clausal subject
csubjpass Clausal subject, passive
dative Dative
dep Unclassified dependent
det Determiner
dobj Direct object
expl Expletive
intj Interjection
mark Marker
meta Meta modifier
neg Negation modifier
nounmod Modifier of nominal
npmod Noun phrase as adverbial modifier
nsubj Nominal subject
nsubjpass Nominal subject, passive
nummod Numeric modifier
parataxis Parataxis
oprd Object predicate
pcomp Complement of preposition
pobj Object of preposition
poss Possession modifier
preconj Pre-correlative conjunction
predet Pre-determiner
prep Prepositional modifier
prt Particle
punct Punctuation
quantmod Modifier of quantifier
relcl Relative clause modifier
root Root
xcomp Open clausal complement



Appendix C

Lexical Resources

The lexicons used for the study in Chapter 3 are provided in the following:

• Purpose words. {assay, characterize, conjugate, elucidate, investigate,

measure, propose, publish, suggest, test};

• Negation verbs. {dissociate, unaffect};

• Negation adverbs. {almost, barely, diffusely, hardly, inadequately, in-

frequently, insignificantly, insufficiently, irregularly, marginally, meagerly,

merely, minimally, narrowly, negatively, negligibly, neither, nowhere, rarely,

scantily, scarcely, seldom, skimpily, slightly, sparely, sparsely, sporadi-

cally, uncommonly, unlikely, unusually, weakly};

• Negation nouns. {blockade, lack};

• Negation adjectives. {absent, different, independent, insignificant, ir-

relevant, negative, unaffected, unrelated}.
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Appendix D

Corpora Details

This appendix provides additional information on the data collection and anno-

tation process that has been followed for creating the corpora used throughout

this thesis, as reported in the original publications. Relevant data statistics

are instead presented in the main body when the corpora are introduced.

GE11 A standard corpus annotated for biomedical events used to measure

the progress in the field, which has originated from a long-standing project ef-

fort (Collier et al., 1999; J.-D. Kim et al., 2008, 2011). The subject domain of

GE11 (hereafter, GENIA) is about reactions concerning transcription factors in

human blood cells. The corpus is the largest event extraction dataset to date

and comprises both abstracts and full-texts. Data collection has been origi-

nally performed by querying the MEDLINE database1 for "Humans" [MeSH]

AND "Blood Cells" [MeSH] AND "Transcription Factors" [MeSH],2 then

randomly sampling 2,000 abstracts for annotation (J.-D. Kim et al., 2008).

GE11 abstracts derive from the effort described in J.-D. Kim et al. (2008),

from which irrelevant annotations have been filtered out and new ones have

been added to make the corpus more suitable for a shared task (J.-D. Kim et

al., 2011). Additionally, fourteen full-text documents have also been included

in GE11. Annotation has been performed by three graduates in molecular biol-

1https://www.nlm.nih.gov/medline/medline overview.html
2MeSH refers to a controlled vocabulary thesaurus used for PubMed article indexing.
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ogy, coordinated by a domain expert, and annotation quality has been ensured

by frequent discussions and weekly meetings to inspect problematic annotation

cases (J.-D. Kim et al., 2008). We were unable to find precise inter-annotator

agreement scores for event annotations; however, the whole process has been

coordinated by well-defined principles of annotations and very detailed guide-

lines – subsequently used as the basis for the annotation of the other event

extraction datasets – accompanied by regular discussions and revisions (prin-

ciples and guidelines can be found in J.-D. Kim et al. (2008)).

ID11 A corpus about mechanisms of infectious diseases in two-component

regulatory systems, introduced in Pyysalo et al. (2011). Data has been col-

lected from full-text publications within the PMC3 open access subset. The

selection has been performed by infectious disease experts from Virginia Tech

as a representative sample of publications on two-component regulatory sys-

tems, published from 2006 onwards. Data annotation has been done by two

teams (from the University of Tokyo and Virginia Tech, respectively), following

annotation guidelines based on GENIA event annotations, which have been

refined throughout the process. The annotation effort has been coordinated

by an annotator with previous experience in event annotation. Based on the

consistency of annotations produced by the two groups, the authors have esti-

mated no lower than 75% F1 score as inter-annotator consistency (Pyysalo et

al., 2011) according to the standard evaluation criterion for event extraction

described in Section 2.1.2, paragraph “Evaluation metrics”.

EPI11 A corpus about epigenetic change events and post-translational mod-

ifications (Ohta et al., 2011). PubMed abstracts having DNA methylation or

one of the prominent post-translational modifications identified in Ohta et al.

(2010) (i.e., glycosylation, hydroxylation, methylation, acetylation) as

MeSH term have been selected. Abstracts with fewer than five entities (iden-

tified with a named entity tagger) have been discarded, then the remaining

abstracts have been manually filtered to ensure relevance to the intended top-

ics. Data annotation has been performed by three annotators with a molecular

3https://www.ncbi.nlm.nih.gov/pmc/
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biology background, following the GENIA event annotation guidelines. An

event annotation expert has been in charge of supervising the entire process.

An independent annotation has been performed on a random sample of 10% of

the documents to ensure annotation consistency (each document has been an-

notated twice). Based on the standard evaluation criterion for event extraction

described in Section 2.1.2, paragraph “Evaluation metrics”, the agreement in

terms of F1 score has been reported to be 89% (Ohta et al., 2011).

PC13 A corpus of event-annotated documents relevant to pathway reactions,

introduced in Ohta et al. (2013). Data selection has been performed based on

the relevance of documents to specific pathway reactions. To the goal, a sam-

ple of literature references from the most annotated pathways in BioModels4

has been collected (e.g., mTOR, yeast cell cycle), and manual filtering has

been performed to a subset of abstracts concerning relevant reactions. Then,

a random set of reactions from a selection of PantherDB5 models has been

used to retrieve documents relevant to those reactions by an automated sys-

tem (Kemper et al., 2010). A manual check has then been performed to select

the most relevant abstracts. Data annotation has been done by a team of three

biologists, and a random sample of 20% of documents has been annotated by all

annotators to discuss the most complex cases, refining the guidelines, and mea-

suring the inter-annotator agreement. The inter-annotator agreement in terms

of F1 score, based on the standard evaluation criterion for event extraction

described in Section 2.1.2, paragraph “Evaluation metrics”, has been reported

to be 61% after the initial annotation. For redundantly labeled documents, at

the end of the annotation process a coordinator has evaluated and chosen the

best documents to include in the final corpus (Ohta et al., 2013).

MLEE A corpus about angiogenesis (i.e., the development of new blood ves-

sels from pre-existing ones) with event annotations, introduced in Pyysalo et

al. (2012). This sub-domain concerns processes that are relevant to cancer and

pathologies at the organism level. A corpus of 262 PubMed abstracts collected

4https://www.ebi.ac.uk/biomodels/
5http://www.pantherdb.org/pathway/
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in a previous study (X. Wang et al., 2011) has been annotated for structured

events. Data selection has been performed by randomly sampling MEDLINE

abstracts from October 2009 onwards which match manually-crafted angiogen-

esis and event patterns (refer to X. Wang et al. (2011) for a full list). The

annotation has been performed by a Ph.D. biologist with extensive experience

in annotation and a Ph.D. computer scientist with experience in event extrac-

tion. Annotation guidelines have been based on the GENIA ones, and have

been refined during the labeling process to ensure consistency for ambiguous

cases. The inter-annotator agreement has been calculated in five rounds of

annotations (ten abstracts each), followed by a revision to the annotations and

the guidelines. The agreement has been calculated using F1 score based on the

standard evaluation criterion for event extraction described in Section 2.1.2,

paragraph “Evaluation metrics”. The agreement scores have been reported to

be 56.8%, 71.6%, 70.1%, 76.1%, and 72.2%, showing that the disagreement has

been reduced right after the first round of annotation (Pyysalo et al., 2012).

LLL A relation-annotated corpus that was created for the LLL05 (Learning

Language in Logic) shared task (Nédellec, 2005), focused on gene transcrip-

tion and sporulation of the model bacterium Bacillus subtilis. Abstracts have

been selected by querying for "Bacillus subtilis transcription" on MED-

LINE (Nédellec et al., 2001). Sentences containing at least two entities from

a curated list of relevant genes and proteins have been retained (Nédellec et

al., 2001; Nédellec, 2005). Annotation was performed by the MIG-INRA lab;

however, we could not find mention on the inter-annotator agreement for the

corpus.

IEPA A corpus annotated for relations, focused on interactions between a set

of biochemicals (e.g., insulin, oxytoxin, leptin, etc.) (Ding et al., 2001). Data

collection has been performed by querying MEDLINE through the PubMed

interface using ten queries consisting of pairs of biochemical entities which rep-

resent diverse biological areas (e.g., insulin AND oxytoxin, flavonoid AND

cholesterol; refer to Ding et al. (2001) for a full list). Sentences from ti-

tles and abstracts having at least two co-occurring biochemicals have been
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retained. We were unable to find details on the manual annotation process.

The F1 score for information retrieval at the sentence level has been reported

to be 72.9% (Ding et al., 2001).

HPRD50 A corpus about regulatory relations, direct physical interactions,

and modifications, introduced in Fundel et al. (2007). Fifty PubMed abstracts

referenced by the Human Protein Reference Database (Peri et al., 2004) have

been randomly selected. Sentences from those abstracts have been annotated

for relations by two annotators with a biochemical background, reaching an

inter-annotator agreement6 of 81%. As reported in Fundel et al. (2007), by

considering one of the annotators as the ground truth this corresponds to 89%

F1 score for the other annotator.

6The intersection of relations that have been annotated over all the relations.




