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Abstract
In this work, we consider the general family of the so called ADER PN PM schemes for
the numerical solution of hyperbolic partial differential equations with arbitrary high order
of accuracy in space and time. The family of one-step PN PM schemes was introduced in
Dumbser (J Comput Phys 227:8209–8253, 2008) and represents a unified framework for
classical high order Finite Volume (FV) schemes (N = 0), the usual Discontinuous Galerkin
(DG) methods (N = M), as well as a new class of intermediate hybrid schemes for which
a reconstruction operator of degree M is applied over piecewise polynomial data of degree
N with M > N . In all cases with M ≥ N > 0 the PN PM schemes are linear in the sense
of Godunov (Math. USSR Sbornik 47:271–306, 1959), thus when considering phenomena
characterized by discontinuities, spurious oscillations may appear and even destroy the sim-
ulation. Therefore, in this paper we present a new simple, robust and accurate a posteriori
subcell finite volume limiting strategy that is valid for the entire class of PN PM schemes.
The subcell FV limiter is activated only where it is needed, i.e. in the neighborhood of shocks
or other discontinuities, and is able to maintain the resolution of the underlying high order
PN PM schemes, due to the use of a rather fine subgrid of 2N+1 subcells per space dimension.
The paper contains a wide set of test cases for different hyperbolic PDE systems, solved on
adaptive Cartesian meshes that show the capabilities of the proposed method both on smooth
and discontinuous problems, as well as the broad range of its applicability. The tests range
from compressible gasdynamics over classical MHD to relativistic magnetohydrodynamics.
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1 Introduction

In this work we want to improve the family of high order accurate ADER PN PM schemes
first introduced in [37,40] for the solution of hyperbolic partial differential equations. In this
family of schemes the discrete solution is represented in space through high order piecewise
polynomials of degree N at each timestep; the data are then evolved in time through a space-
time reconstruction procedure of order M . The reconstruction procedure is divided into two
steps: concerning the spatial reconstruction, we employ a classical WENO reconstruction
in the case of pure finite volume schemes (N = 0), a reconstruction procedure based on L2

projection that is linear in the sense of Godunov for N > 0 and M > N , and in the case or
pure DG schemes (N = M) the reconstruction reduces to the identity operator; concerning
the reconstruction in time, we employ a novel variant of the ADER approach of Toro and
Titarev, see [26,109,110,113,114], based on an element-local space-time Galerkin predictor,
see [40]. In practice, we can see the Finite Volume (FV) schemes of order M as a particular
case of PN PM methods when N = 0, and also the Discontinous Galerkin (DG) methods are
included in this family when choosing N = M .

Furthermore, this family contains another important class of hybrid or reconstructed DG
schemes when taking N > 0, M > N , which are the main object of study of this paper.
Indeed, they offer many advantages, in particular their good compromise between cost and
resolution. In fact, data are represented with polynomials of order N , so more accurately
with respect to FV methods, but without the expensive cost of a full DG representation
of approximation degree M ; also the CFL stability constraint that limits the timestep size
of any explicit scheme, only depends on N and not on M , allowing for larger timesteps
once the desired order of accuracy has been fixed, see [40]. Last but not least, for N > 0 the
PN PM schemes require amuch smaller reconstruction stencil than comparable finite volume
schemes of degree M . The nominal order of accuracy of the scheme is given by M + 1 so it
can be at least in principle arbitrary high.

The family of reconstructed DG schemes, which is similar to the PN PM framework, was
forwarded independently by Luo et al. in a series of papers, see e.g. [68,87,88,116,117,119]
and references therein. At this point we also highlight that the use of reconstruction and
filtering operators as a post-processor for improving the accuracy of DG schemes goes back
to work of Ryan et al., see [72,77,90,99,100]. Other related work on reconstruction-based
DG schemes can be found in [17,28,82,118].

Moreover, the ADER PN PM family provides a useful framework for code developers
because it allows to include in a unique code both types of standard discretization methods
for hyperbolic PDE (FV andDG schemes), together with the new class of intermediate hybrid
schemes for M > N > 0. It is then possible to let it up to the user to decide whether for a
particular application the use of a robust finite volume approach (N = 0), a very accurate
DG scheme (N = M), or a less expensive but still very accurate intermediate PN PM method
with M > N > 0, is the most appropriate.

The main drawback so far of the intermediate PN PM schemes with M > N > 0, as
presented in [40], is that they are linear in the sense ofGodunov [64], hence notwell suited for
dealing with discontinuous problems. For this reason, here we propose a new simple, robust
and accurate limiting strategy that is able to stabilize the entire class of PN PM schemes in
such a way that they can be employed for the numerical solution of hyperbolic equations with
discontinuous solutions, which may arise even when starting with smooth initial conditions.
Moreover, the new limiter does not substantially deteriorate the benefits of PN PM schemes
in terms of computational cost and accuracy of the original unlimited schemes. To the best
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knowledge of the authors, this is the first time that an a posteriori subcell finite volume limiter
is proposed for general PN PM schemes with M > N > 0. So far, only the cases N = 0 and
M = N were covered in [40] and [52], respectively.

Our limiter is based on the MOOD approach [29,35,36], which has already been success-
fully applied in the framework of ADER finite volume schemes [21,22,85] and Discontinous
Galerkin finite element schemes, see [25,47,52,75,97,124]. Specifically, the numerical solu-
tion is checked a posteriori for nonphysical values and spurious oscillations, and if it does
not satisfy all admissibility detection criteria, given by both physical and numerical require-
ments, in a certain cell, that cell is marked as troubled. Then, instead of applying a limiter to
the already computed solution, the solution is locally recomputedwith a more robust scheme
in the troubled cells, relying either on a second order TVD scheme, as proposed for pure
DG schemes in [19,47,106], or on a higher order ADER-WENO finite volume method as
employed in [23,32,52,95,124]. Moreover, this second computation is performed on a finer
subgrid generated within each troubled cell; the subcell approach is employed in order to
maintain the high resolution of the initial PN PM scheme even when passing to a less accurate
(but more robust) FV scheme. For the given reasons our limiter is called a posteriori subcell
finite volume limiter.

Finally, for a complete review of ADER PN PM schemes we refer to the recent paper [25],
where a complete introduction traces the historical developments of these methods up to its
latest evolutions.

The rest of the paper is organized as follows. After an introduction of the class of physical
phenomena that can be discretized with the proposed numerical method and the structure
of our data representation, we present the family of ADER PN PM schemes in Sect. 2. In
particular, we describe the reconstruction procedure in space, see Sect. 2.3, and in time see
Sect. 2.4; these procedures provide a high order reconstructed polynomial of degree M in
space and time that will be used in the final one-step update formula given in Sect. 2.5.
Then, Sect. 2.6 is dedicated to our a posteriori subcell FV limiter, which in addition can be
combined with mesh adaptation techniques as described in Sect. 2.7.

Next, in Sect. 3 we present a large set of numerical results that shows the order of conver-
gence of our scheme for smooth solutions and their capability of dealing with discontinuities,
i.e. their robustness and resolution. We also compare the hybrid reconstructed schemes with
pure DG schemes in order to show the resulting gain in terms of computational cost. Finally,
we close the paper with some remarks and an outlook to future works in Sect. 4.

2 Numerical Method

In this Section we carefully describe the a posteriori subcell finite volume limiter for general
PN PM schemes, showing its simplicity, accuracy, robustness and versatility thanks to the
following key ingredients:

– the use of the unified PN PM framework for finite volume (FV), discontinous Galerkin
(DG) and hybrid reconstructed DG schemes allows the user to decide freely which com-
bination of N and M is the better choice for a particular application;

– the ADER space-time predictor-corrector formalism allows the implementation of a
truly arbitrary high order accurate fully discrete one-step scheme that needs only one
MPI communication per time step within a parallel HPC implementation, see Sect. 2.4;

– the a posteriori subcell finite volume limiter avoids spurious oscillations of high order
PN PM schemes without affecting the resolution of the underlying method, see Sect. 2.6;
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– the adaptive mesh refinement (AMR) technique allows to use a fine grid only where
necessary, resorting to cheaper coarse grids in smooth regions of the solution, seeSect. 2.7.

2.1 Governing PDE System

We consider a very general formulation of the governing equations in order to model a wide
class of physical phenomena, namely all those which are described by hyperbolic systems
of conservation laws that can be cast into the following form,

∂tQ + ∇ · F(Q) = 0, x ∈ Ω(t) ⊂ R
d , Q ∈ ΩQ ⊂ R

m, (1)

where x = (x, y, z) is the spatial position vector, d is the number of space dimensions, t
represents the time, Q = (q1, q2, . . . , qm)T is the vector of conserved variables defined in
the space of the admissible states ΩQ ⊂ R

m and F(Q) = ( f(Q), g(Q),h(Q) ) = f i (Q)

(i = 1, 2, 3) is the non-linear flux tensor. This kind of system (1) is said to be hyperbolic if
for all directions n �= 0 the matrix

An = ∂F/∂Q · n
has m real eigenvalues and a full set of m linearly independent eigenvectors. Exam-
ples of hyperbolic equations are the Euler equations of gasdynamics, the Shallow Water
equations [27,108] and many multiphase models [4,38,62] used in fluid mechanics, the
magnetohydrodynamics system (MHD) for plasma flow [6,9], the unified first order
hyperbolic formulation of continuum mechanics by Godunov, Peshkov and Romenski
(GPR) [43,48,49,65,66,93] as well as the special and general relativistic formulations of
MHD, see e.g. [3,5,10,33,41,56,122], or for the Einstein field equations (CCZ4) [1,2,42,44].
We will test the method proposed in this paper on some of those systems in order to verify
its applicability in different physical domains.

2.2 Domain Discretization and High Order Data Representation (Order N)

On grid level � = 0 the computational domain Ω is discretized with a uniform Cartesian
grid, called main grid or the level zero grid, composed of NE = Nx × Ny × Nz conforming
elements (quadrilaterals if d = 2, or hexahedra if d = 3) denoted byΩi = Ωi jk, i = (i, j, k)
with i = 1, . . . , Nx , j = 1, . . . , Ny , k = 1, . . . , Nz , with volume |Ωi jk | = ∫

Ωi jk
dx and

such that

Ωi = Ωi jk = [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] × [zk− 1

2
, zk+ 1

2
],

with Δxi = xi+ 1
2

− xi− 1
2
, Δy j = y j+ 1

2
− y j− 1

2
, Δzk = zk+ 1

2
− zk− 1

2
.

(2)

For each element we define a reference frame of coordinates ξ = (ξ, η, ζ ) linked to the
Cartesian coordinates x = (x, y, z) of Ωi jk by

x = xi− 1
2

+ ξΔx, y = y j− 1
2

+ ηΔy, z = zk− 1
2

+ ζΔz, ξ, η, ζ ∈ [0, 1]. (3)

Then, we represent the conserved variables Q of (1) in each cell Ωi by a d−dimensional
tensor product of piecewise polynomials of degree N

uh(x, tn) = uh(ξ(x)) =
N−1∑

�=0

ϕ�(ξ) û�,i := ϕ�(ξ) û�,i,

x ∈ Ωi, N = (N + 1)d ,

(4)
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where ϕ�(ξ) are nodal spatial basis functions given by the tensor product of a set of Lagrange
interpolation polynomials of maximum degree N such that

ϕ�(ξ
m
GL) = ϕ�1

(
ξmGL
)
ϕ�2

(
ηmGL
)
ϕ�3

(
ζm
GL

) = δ�m, (5)

where ξmGL are the set of (N + 1)d Gauss-Legendre (GL) quadrature points obtained by the
tensor product of the GL quadrature points ξmGL, ηmGL, ζm

GL in the unit interval [0, 1], see [107].
The discontinuous finite element data representation in (4) leads naturally to i) a Discon-

tinuous Galerkin (DG) scheme if N > 0 and N = M , where the desired order of accuracy M
already coincides with the degree N of the polynomial approximating the data (M = N ), so
that high order of accuracy in space can be obtained without the use of any spatial reconstruc-
tion operator, and to ii) a Finite Volume (FV) scheme in the case N = 0. This indeed means
that for N = 0 we have ϕ�(ξ) = 1 with � = 0, and (4) reduces to the classical piecewise
constant data representation that is typical of finite volume schemes, where the only degree of
freedom per element is the usual cell average û0. In this case the order of accuracyM in space
will be obtained through the reconstruction procedure described in next Sect. 2.3. However,
iii) also a family of hybrid reconstructed Discontinuous Galerkin methods is included in this
representation, where a Hermite-type reconstruction of degree M > N is performed on cell
data represented by polynomials of degree N , see the next Sect. 2.3.

Thus, within the general PN PM formalism one can simultaneously dealwith arbitrary high
order FV and DG schemes and reconstructed hybrid methods inside a unified framework,
with only very fewdifferences between the different schemes (substantially the reconstruction
procedure and the type of limiter).

2.3 High Order Spatial Reconstruction (OrderM)

In the framework of PN PM schemes, M indicates the highest polynomial approximation
degree used for the representation of the discrete solution within the method. Hence, in this
Section we describe the reconstruction procedure that is needed to obtain approximation
degree M in space from an underlying data representation uh(x, tn) of lower or equal degree
N ≤ M , i.e. the procedure that generates a spatially high order accurate reconstruction
polynomial wh(x, tn) of degree M

wh(x, tn) =
M−1∑

�=0

ψ�(x, tn) ŵ�,i := ψ�(x, tn) ŵ�,i, x ∈ Ωi, M = (M + 1)d , (6)

where we formally employ the same nodal basis functions for the reconstruction and for the
data representation, see (4). However, note that when M �= N of course ψl(x, tn) does not
coincide with ϕl(x, tn), since the polynomial degree and the positions of the GL points are
not the same.

For the sake of a uniform notation, when M = N , we trivially impose that the recon-
struction polynomial is given by the DG polynomial, i.e. wh(x, tn) = uh(x, tn), which
automatically implies that in the case N = M the reconstruction operator is simply the
identity.

In the other cases, we employ a polynomial reconstruction procedure implemented in a
dimension by dimension fashion in order to compute the coefficients ŵ�,i in (6). To better
follow the following reasoning we refer the reader also to the Figs. 1, 2 and 3. Focusing on the
reconstruction procedure along the x-direction, given an element Ωi = Ωi jk , we write the
reconstruction polynomial in x-direction wx

h in terms of one dimensional basis functions as
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wx
h(x, t

n) =
M∑

�1=0

N∑

r2=0

N∑

r3=0

ψ�1 (ξ) ϕr2 (η) ϕr3 (ζ ) ŵx
�1,r2,r3,i

:= ψ�1 (ξ) ϕr2 (η) ϕr3 (ζ ) ŵx
�1,r2,r3,i. (7)

Then, we integrate on a set Sx of neighbors of Ωi in x-direction, obtaining an algebraic
system for the polynomial coefficients ŵ�1,r2,r3,i (one for each horizontal section of Ωi)

1

Δxm

∫ x
m+ 1

2

x
m− 1

2

ψ�1ϕr2ϕr3ŵ
x
�1,r2,r3,idx = 1

Δxm

∫ x
m+ 1

2

x
m− 1

2

ϕr1ϕr2ϕr3 ûr1,r2,r3,m dx,

∀Ωm ∈ Sx , ∀�1 ∈ [1, M + 1], ∀r1, r2, r3 ∈ [1, N + 1],
(8)

where Sx contains the neighbors along the x axis, i.e Ωm = Ωmjk such that m ∈
{i − 1, i, i + 1}. Note that we are using a stencil made always of only 3 elements in each
direction, thus a very compact one. Indeed, a stencil composed of 3 elements is enough for
any PN PM scheme with M ≤ 3N + 2, because any PN cell contains N + 1 degrees of
freedom, thus 3 cells provide 3N + 3 degrees of freedom, which are sufficient for a polyno-
mial reconstruction of degree up to 3N + 2. Moreover, when the provided information are
more than the minimum required, the system (9) results to be overdetermined; so, to solve
it, we employ a constrained least-squares technique (CLSQ) [46], i.e. we impose that the
reconstructed polynomial satisfies

1

Δxi

∫ x
i+ 1

2

x
i− 1

2

ψ�1ϕr2ϕr3ŵ
x
�1,r2,r3,idx = 1

Δxi

∫ x
i+ 1

2

x
i− 1

2

ϕr1ϕr2ϕr3 ûr1,r2,r3,i dx,

∀�1 ∈ [1, N + 1], ∀r1, r2, r3 ∈ [1, N + 1],
(9)

exactly. In other words, all moments of the reconstructed solutionwh and the original solution
uh up to degree N must coincide exactly within cell Ωi and match on the remaining stencil
elements in the least-square sense.

To complete the reconstruction polynomial, we now repeat the above procedure in the
y-direction, so we write the reconstruction polynomial in terms of one-dimensional basis
functions as

wy
h(x, y, t

n) = ψ�1 (ξ) ψ�2 (η) ϕr3 (ζ ) ŵy
�1,�2,r3,i

, (10)

and we solve the algebraic system

1

Δyn

∫ y
n+ 1

2

y
n− 1

2

ψ�1ψ�2ϕr3ŵ
y
�1,�2,r3,i

dy = 1

Δyn

∫ y
n+ 1

2

y
n− 1

2

ψ�1ϕr2ϕr3ŵ
x
�1,r2,r3,n dy,

∀Ωn ∈ S y, ∀�1, �2 ∈ [1, M + 1], ∀r2, r3 ∈ [1, N + 1],
(11)

with S y being the set of the neighbors along the y axis, i.e Ωn = Ωink such that
n ∈ { j − 1, j, j + 1}. Again, for overdetermined systems we impose that the reconstruction
exactly satisfies

1

Δy j

∫ y
j+ 1

2

y
j− 1

2

ψ�1ψ�2ϕr3ŵ
y
�1,�2,r3,i

dy = 1

Δy j

∫ y
j+ 1

2

y
j− 1

2

ψ�1ϕr2ϕr3ŵ
x
�1,r2,r3,n dy,

∀�1 ∈ [1, M + 1], ∀�2 ∈ [1, N + 1], ∀r2, r3 ∈ [1, N + 1].
(12)

And then the same procedure can be repeated along the z axis by looking for the unknown
coefficients ŵ�1,�2,�3,i of

wh(x, y, z, t
n) = ψ�1 (ξ) ψ�2 (η) ψ�3 (ζ ) ŵ�1,�2,�3,i, (13)
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j
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j
1 

+ j
1 - j

x-rec, part 1/2
ii - 1 i + 1

j
1 

+ j
1 - j

(c) -rec, part 1/2

ii - 1 i + 1

j
1 

+ j
1 - j

x-rec, part 2/2
ii - 1 i + 1

j
1 

+ j
1 - j

x-rec, part 2/2
ii - 1 i + 1

j
1 

+ j
1 - j

(a) Data (b) Data x

(d) Data (e) (f) x-rec cell Ωij

Fig. 1 Reconstruction P1P2 in cell Ωi j along the x-direction in d = 2 dimensions. Since we are employing
nodal basis functions, we can represent the available information at each stage of our PN PM scheme in each
cell by a symbol located at a certain GL point inside the cell. In a P1P2 scheme uh is represented by a
PN = P1 polynomial, so we have (N + 1)2 = 4 information in each cell (a, the green circles). By selecting
the N + 1 = 2 information along the same horizontal section in Ωi j and in its two immediate neighbors
Ωi−1, j , Ωi+1, j (b), we have enough information (3(N + 1) = 6 > 3 = M + 1) in order to reconstruct a
PM = P2 polynomial in x-direction (c); then we have to repeat the same procedure for each N + 1 = 2
horizontal section of cell Ωi j (d, e). In this way we obtain our reconstructing polynomial in the x-direction,
represented by (M + 1)(N + 1) = 6 information (f, the blue crosses) (Colour figure online)

and solving the algebraic system

1

Δz p

∫ z
p+ 1

2

z
p− 1

2

ψ�1ψ�2ψ�3ŵ�1,�2,�3,i dy = 1

Δz p

∫ z
p+ 1

2

z
p− 1

2

ψ�1ψ�2ϕr3ŵ
y
�1�2,r3,p

dy,

∀Ωp ∈ Sz, ∀�1, �2, �3 ∈ [1, M + 1], ∀r3 ∈ [1, N + 1],
(14)

Sz being the set of the neighbors along the z axis, i.e Ωp = Ωi j p such that p ∈
[k − 1, k, k + 1]. For overdetermined systems, the constraint reads

1

Δzk

∫ z
k+ 1

2

z
k− 1

2

ψ�1ψ�2ψ�3ŵ�1,�2,�3,i dy = 1

Δzk

∫ z
k+ 1

2

z
k− 1

2

ψ�1ψ�2ϕr3ŵ
y
�1�2,r3,i

dy,

∀�1, �2,∈ [1, M + 1], ∀�3 ∈ [1, N + 1], ∀r3 ∈ [1, N + 1].
(15)

Finally, the coefficients ŵ�1,�2,�3,i represent the ŵ�,i of (6) that give us the desired polynomial
representation of order M in space.

We would like to emphasize that the reconstructed PN PM schemes with N > 0 are very
compact because for the reconstruction they need a much smaller stencils than classical finite
volume schemes and that for regular Cartesianmeshes, the coefficients of the above constraint
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j
1 

+ j
1 - j

(e) Data

(g) Data (i) Reconstruction in Ωij

Fig. 2 Reconstruction P1P2 in cell Ωi j along the y-direction in d = 2 dimensions. After having performed
the reconstruction along the x direction, in each cell we have (M + 1)(N + 1) = 6 information (a, the blue
crosses). Now, by selecting (N + 1) = 2 information along the same vertical section in Ωi j and in its two
immediate neighbors Ωi, j−1, Ωi, j+1 (c), we have enough information (3(N + 1) = 6 > 3 = M + 1) in
order to reconstruct a PM = P2 polynomial in y-direction (d); then we have to repeat the same procedure for
each M + 1 = 3 vertical section of cell Ωi j (e–h). In this way we obtain our final PM = P2 reconstructing
polynomial for the cell Ωi j (i, the red crosses) (Colour figure online)

least squares systems depend only on the choice of the basis functions, hence the integrals
can be precomputed once and for all on the reference element before starting the simulation.

Furthermore, in the specific case N = 0, i.e. when the PN PM reduces to a FV scheme, the
above polynomial reconstruction procedure must be made nonlinear; this can be easily done,
for example, by adopting the WENO strategy specifically described in the context of PN PM
type schemes (thus with the same notation adopted here) on Cartesian meshes in [25,51].
We recall that the nonlinearity introduced through ENO/WENO type procedures essentially
avoids the spurious oscillations typical of high order linear schemes modeling discontin-
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(d) x-rec cell Ωij (e) Data y-rec, part 2/5 (f) y-rec, part 2/5

(g) Data y-rec, part 4/5 (h) y-rec, part 4/5 (i) Reconstruction in Ωij

Fig. 3 Reconstruction P2P4 in cellΩi j in d = 2 dimensions. The available data (a, green circles) are provided
by the PN = P2 polynomial uh . By selecting (N + 1) = 3 information along the same horizontal section in
Ωi j and in its two immediate neighbors Ωi−1, j , Ωi+1, j (b), we have enough information (3(N + 1) = 9 >

5 = M + 1) in order to reconstruct a PM = P4 polynomial in x-direction (c); then the same procedure has to
be repeated for each N + 1 = 3 horizontal section of cell Ωi j obtaining (d), and finally for each cell of the
domain. At this point in each cell we have (M + 1)(N + 1) = 15 information (d, the blue crosses) and by
selecting (N + 1) = 3 information along the same vertical section in Ωi j and in its two immediate neighbors
Ωi, j−1, Ωi, j+1 (e), we have enough information to reconstruct a PM = P4 polynomial in y-direction (f);
then we have to repeat the same procedure for each M + 1 = 5 vertical section of cell Ωi j (g, h). In this way
we obtain our final PM = P5 reconstructing polynomial for the cell Ωi j (i, the red crosses) (Colour figure
online)

uous processes see [64], and was already introduced in the 80s and subsequently largely
developed [8,69,70,73,103,105,125]. Due to the already exhaustive literature available on
FV schemes, here, for what concerns the strategies that guarantee robustness on discontinu-
ities, we focus on PN PM schemes only with N > 0: indeed, it is for those schemes that we
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propose in this work a new strategy, i.e. the new a posteriori subcell FV limiter described in
Sect. 2.6.

2.4 High Order in Time via a Local Space-Time Galerkin Predictor

We recall that high order of accuracy in space is provided by the piecewise polynomial data
representation wh of (6), obtained in the previous Sect. 2.3.

Now, in order to achieve also high order of accuracy in time, relying on the ADER
predictor-corrector approach, we need to compute the so-called space-time Galerkin pre-
dictor, i.e. a space-time polynomial qh of degree M in (d + 1)-dimensions (d for the space
plus 1 for the time) which takes the following form

qh(x, t) = qh(ξ(x), τ (t)) =
Q−1∑

�=0

θ�(ξ , τ )q̂� = θ�(ξ , τ )q̂�,

x ∈ Ωi, t ∈ [tn, tn+1], Q = (M + 1)d+1,

(16)

where again θ�(ξ , τ ) is given by the tensor product of Lagrange interpolation polynomials
ϕ� (ξ(x)) ϕ�τ (τ ), with ξ(x) given by (3) and the mapping for the time coordinate given by
t = tn + τΔt, τ ∈ [0, 1]. This high order polynomial in space and time will serve as a
predictor solution, only valid inside Ωi × [tn, tn+1], to be used for evaluating the numerical
fluxes and the sources when integrating the PDE in the final corrector step of the ADER
scheme, see Sect. 2.5.

In order to determine the unknown coefficients q̂� of (16) we search qh such that it satisfies
a weak form of the governing PDE (1) integrated in space and time locally inside each Ωi
(with Ω◦

i = Ωi\∂Ωi being the interior of Ωi)

∫ tn+1

tn

∫

Ω◦
i

θk ∂tqh dx dt +
∫ tn+1

tn

∫

Ω◦
i

θk ∇ · F(qh) dx dt = 0, (17)

where the first term is integrated in time by parts exploiting the causality principle (upwinding
in time)
∫

Ω◦
i

θk(x, tn+1)qh(x, tn+1) dx −
∫

Ω◦
i

θk(x, tn)wh(x, tn) dx

−
∫ tn+1

tn

∫

Ω◦
i

∂tθk(x, t)qh(x, t) dx dt +
∫ tn+1

tn

∫

Ω◦
i

θk(x, t)∇ · F(qh(x, t)) dx dt = 0,

(18)
and wh(x, tn) is the known initial condition at time tn .

Now, the system (18), which contains only volume integrals to be calculated inside Ωi
and no surface integrals, can be solved via a simple discrete Picard iteration for each element
Ωi, and there is no need of any communication with neighbor elements. Indeed, the so-called
predictor step consists in a local solution of the governing PDE (1) in the small, see [69],
inside each space-time element Ωi × [tn, tn+1]. It is called local because it is obtained by
only considering cell Ωi with initial data wh , the governing equations (1) and the geometry,
without taking into account any interaction between Ωi and its neighbors. We also want to
emphasize that this procedure is exactly the same whatever N and M are.

We recall that this procedure has been introduced for the first time in [40] for unstructured
meshes, it has been extended for example to moving meshes in [18] and to degenerate space
time elements in [60]; finally, its convergence has been formally proved in [25].
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2.5 High Order Fully-Discrete One-Step ADER PNPM Scheme

Last, the update formula of our ADER PN PM scheme is recovered starting from the weak
formulation of the governing equations (1) (where the test functions ϕk coincide with the
basis functions ϕ� of (5))

∫ tn+1

tn

∫

Ωi

ϕk (∂tQ + ∇ · F(Q)) dx dt = 0; (19)

we then substitute Q with (4) at time t = tn (the known initial condition) and at t = tn+1

(to represent the unknown evolved conserved variables), and with the high order predictor
qh previously computed for t ∈ [tn, tn+1], obtaining

(∫

Ωi

ϕkϕl dx
)(

ûn+1
� − ûn�

)
+
∫ tn+1

tn

∫

∂Ωi

ϕkF
(
q−
h ,q+

h

) · n dS dt

−
∫ tn+1

tn

∫

Ωi

∇ϕk · F(qh) dx dt = 0.

(20)

The use of qh allows to compute the integrals appearing in (20) with high order of accuracy
in both space and time.

The boundary fluxes F · n are obtained by a Riemann solver, thus providing the coupling
between neighbors, which was neglected in the predictor step. In particular, in this work we
will employ three types of standard fluxes, namely the Rusanov flux and the HLL flux, whose
description can be found in [112], and the HLLEM flux for which we refer to [39,53]. For the
sake of completness, we report here the expression of the Rusanov flux that reads as follows

F(q−
h ,q+

h ) · n = 1

2

(
F(q+

h ) + F(q−
h )
) · n − 1

2
smax
(
q+
h − q−

h

)
, (21)

where smax is the maximum eigenvalue of the system matrices A(q+
h ) and A(q−

h ) being
A(Q) = ∂F

∂Q . We remark also that due to the discontinuous character of qh at the interfaces
∂Ωi, F · n is computed through a numerical flux function evaluated over the boundary-
extrapolated data q−

h and q+
h (i.e the predictors qh of two neighbors elements evaluated at

the common interface).
Finally, we stress again that the update procedure in (20) is the same whatever N and M

are, and allows the contemporary evolution of all the (N + 1)d degrees of freedom of uh .

2.5.1 CFL Stability Constraint

A very important feature of PN PM schemes is linked to the CFL stability constraint. Since
this family of scheme is explicit, the time step Δt has to be computed according to a (global)
Courant-Friedrichs-Levy (CFL) stability condition given by

ΔtPN PM < CFLPN PM
hmin

d

1

|λmax| <
CFL

(2N + 1)

hmin

d

1

|λmax| (22)

where hmin is the minimum characteristic mesh-size, |λmax| is the spectral radius of the
system matrix A and the maximum admissible CFLPN PM number is given in Table 1. In
the above formula we wanted also to recall the classical CFL condition of Runge-Kutta DG
schemes (the one written on the right, with CFL < 1) which is just a bit less restrictive than
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Table 1 Maximum admissible CFL number for PN PM schemes from second to fifth-order of accuracy

CFLPN PM N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

M = 0 1.0

M = 1 1.0 0.33

M = 2 1.0 0.33 0.17

M = 3 1.0 0.33 0.17 0.1

M = 4 1.0 0.33 0.17 0.1 0.069

M = 5 1.0 0.33 0.17 0.1 0.069 0.045

M = 6 1.0 0.33 0.17 0.1 0.069 0.045 0.038

the one needed for ADER PN PM schemes, but easier to remember and helpful in justifying
the stability of our subcell limiter, see formula (29).

Furthermore, we would like to emphasize that it is the degree N of the data representation
that governs the stability of themethod and not the polynomial degreeM of the reconstruction
operator. Hence, the reconstructed hybrid methods with N > 0 and M > N allow for larger
time steps than the pure DG methods (N = M) of the same order always maintaining a
superior resolution with respect to FV schemes (N = 0), fact that further justifies the interest
in their development.

2.6 A Posteriori Subcell Finite Volume Limiter

Up to now, the presented PN PM scheme is high order accurate in space and time and, formally,
the differences between the FV case (N = 0) the pure DG case (N = M) and the hybrid
reconstructed case (N > 0, M > N ) are basically only due to the procedure for achieving
high order of accuracy in space, which is obtained through a WENO reconstruction in the
FV case, a linear reconstruction in the hybrid case and is automatic by construction for DG,
see Sect. 2.3. But this is actually a major difference, because the WENO operator provides a
non-linear stabilization of the FV scheme, while the PN PM schemes with N > 0 presented
so far are unlimited and, as such, they are affected by the so-called Gibbs phenomenon, i.e.
oscillations are likely to appear in presence of shock waves or other discontinuities. These
oscillations can be explained by the Godunov theorem [64], because in this case the scheme
is linear in the sense of Godunov.

As a consequence, a limiting technique is required. Our strategy is described in detail
below and it will be applied whenever N > 0.

First, we need to consider the numerical solution computed so far un+1
h only as a candidate

solution: we denote it with un+1,∗
h (x, tn+1).

Then, following [25,52,57,75,123,124], each element Ωi is divided into Nω = (2N +1)d

equal non-overlapping subgrid cells ωi,α whose volume is denoted by |ωi,α|; for any cell we
define the corresponding subcell average of the PN PM solution at time tn

vni,α(x, tn) = 1

|ωi,α|
∫

ωi,α

unh(x, t
n) dx = P(unh), ∀α ∈ [1, Nω], (23)

and the candidate subcell averages at time tn+1

vn+1,∗
i,α (x, tn+1) = 1

|ωi,α|
∫

ωi,α

un+1,∗
h (x, tn+1) dx = P(un+1,∗

h ), ∀α ∈ [1, Nω], (24)
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where P(uh) is the L2 projection operator into the space of piecewise constant cell averages.
Now, we have to mark the troubled cells, i.e. we have to identify those cells where the

solution found through the PN PM scheme cannot be accepted because it may lead to spurious
oscillations. Thus, the candidate solution vn+1,∗

h is checked against a set of detection criteria.
Here we follow the criteria described in [19], however also other specific physical bounds
or more elaborate choices as those of invariant domain preserving methods [67] could be
considered.

First, we require that the computed solution is physically acceptable, i.e. that it belongs to
the phase space of the conservation law being solved. For instance, if the compressible Euler
equations for gas dynamics are considered, density and pressure should be positive and in
practice we require that they are greater than a prescribed tolerance ε = 10−12. Then, the
solution should verify a relaxed discrete maximum principle (DMP)

min
m∈V(Ωi)

(

min
β∈[1,Nω](v

n
m,β )

)

− δ ≤ vn+1,∗
i,α ≤ max

m∈V(Ωi)

(

max
β∈[1,Nω](v

n
m,β )

)

+ δ, ∀α ∈ [1, Nω],
(25)

where V(Ωi) is the set containing all the neighbors of Ωi sharing a common node with Ωi,
and δ is a parameter which, according to [19,52,124], reads

δ = max

(

δ0, ε ·
[

max
m∈V(Ωi)

(

max
β∈[1,Nω](v

n
m,β )

)

− min
m∈V(Ωi)

(

min
β∈[1,Nω](v

n
m,β )

)])

, (26)

with δ0 = 10−5 and ε = 10−4. If a cell does not fulfill the detection criteria in all its subcells,
then it is marked as troubled. It is possible that some false positive activations of the limiter
occur; however these local effects do not reduce the overall quality of the simulation thanks
to the highly accurate limiter procedure adopted on troubled cells.

Then only on these troubled cells we apply either a second-order accurate MUSCL-
Hancock TVD finite volume scheme with minmod slope limiter [112] (in particular in
presence of strong shock waves or low density atmospheres), or a more accurate ADER-
WENO FV scheme [51,52] that better captures local extrema. In this way we can re-compute
the solution in order to evolve the cell averages vni,α in time and obtain vn+1

i,α .
Note that, due to the fact of applying a high order scheme and to do so on a subgrid

instead that on the main grid, the subcell average representation given by vn+1
i,α maintains the

high resolution of the underling PN PM scheme. Indeed now, we can recover from these cell
averages a polynomial un+1

h of degree N ; this is done by applying a reconstruction operator
R such that
∫

ωn
i,α

un+1
h (x, tn+1) dx =

∫

ωn
i,α

vn+1
i,α (x, tn) dx := R(vn+1

i,α (x, tn)), ∀α ∈ [1, Nω], (27)

which is conservative on the main cell Ωi thanks to the additional linear constraint
∫

Ωi

un+1
h (x, tn+1) dx =

∫

Ωi

vn+1
h (x, tn+1) dx. (28)

Moreover, the projection operator P in (23) and the reconstruction operatorR in (27) satisfy
the property P · R = I, with I being the identity operator.

However, we have to remark that the reconstruction operator (27), (28) might still lead
to an oscillatory solution, since it is based on a linear unlimited least squares technique. If
this is the case, the cell Ωi will be marked again automatically as troubled during the next
timestep tn+2, therefore the same finite volume subcell limiter will be used again in that cell
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and in particular the subcell averages from which to start as initial data at time tn+1 will be
the vn+1

i,α kept in memory from the previous limited step.
Furthermore, if a cellΩi is acceptable but has at least one troubled neighbor inV(Ωi), then

we cannot accept its candidate solution un+1,∗
h (x, tn+1) as it is because the scheme would be

nonconservative, since the numerical flux F · n at the common interface would have been
computed in two different ways in Ωi and its neighbor and by using a qh that may already
be non acceptable. Thus, the final PN PM solution in these cells, neighbors of troubled ones,
is rearranged as follows: we keep the already computed values of the volume integral and of
the surface integrals interacting with non-troubled cells, while the numerical flux across the
troubled faces is substituted with the one computed through the limiter procedure.

Finally, note that for the subcell FV scheme we have a different CFL stability condition

ΔtFV < CFLFV
hmin

d Nω

1

|λmax| , (29)

with CFLFV < 1 and hmin the minimum cell size referred to Ωi. Condition (29) guides us in
choosing the number of employed subcells Nω. In particular, our choice Nω = (2N + 1)d

respects the stability condition (29)maintaining the original timestep size fixed for the current
timestep [see (22)] but also taking into account the maximum possible number of subgrid
elements allowed by that timestep size.

We would like to stress again that our interest for PN PM schemes is motivated by the
high resolution that they are able to provide and the reduced cost offered by the possibility
of representing data with lower order polynomials of degree N and to achieve, however, an
order of accuracy M , with M > N , using a very compact stencil and a simple reconstruction
procedure.

The presented a posteriori subcell FV limiter is applied onlywhere it is needed by detecting
spurious oscillations a posteriori and it is based on strong stability preserving FV schemes
developed precisely for dealing with discontinuous solutions. Since FV schemes are less
accurate than PN PM schemes with N > 0, the limiter is applied on a finer subgrid than the
original main grid in order to avoid a loss of useful information.

2.7 Adaptive CartesianMesh Refinement

The last ingredient that further increases the resolution of the proposed approach is the
possibility of activating an Adaptive Mesh Refinement (AMR) technique based on a cell-by-
cell refinement approach; indeed, the combined action of our subcell limiter and of AMR
allows a sharp detection of all discontinuities. For details we refer to [14,15,24,45,51,55–
57,76,96,120,124] and we recall here just the main features. Our algorithm basically consists
in, starting from the main grid (2), introducing successive refinement levels, in regions of
particular interest according to a prescribed refinement criterion. In particular, we have to fix
the following parameters:

– the maximum level of refinement �max, typically chosen equal to 2 or 3 in our tests;
– the refinement factor r, governing the number of subcells that are generated according to

Δx� = rΔx�+1, Δy� = rΔy�+1, Δz� = rΔz�+1, (30)

where Δx� is the size of the cell at refinement level number � along the x-direction, and
similarly for the other directions;
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– the refinement criterion that we base on oscillations of second derivatives, see [84]. In
practice, we have to compute

χi =
√ ∑

k,l(∂
2Φ/∂xk∂xl)2

∑
k,l [(|∂Φ/∂xk |i+1 + |∂Φ/∂xk |i )/Δxl + ε|(∂2/∂xk∂xl)||Φ|]2 , (31)

where the summation
∑

k,l is taken over the number of space dimension of the problem
in order to include the cross term derivatives, the parameter ε = 0.01 acts as a filter
preventing refinement in regions of small ripples, and the function Φ = Φ(Q), that
could be any suitable indicator function of the conserved variables Q, in our test is
chosen to be simply Φ(Q) = ρ. Next, a cell Ωi is marked for refinement if χi > χref ,
while it is marked for re-coarsening if χi < χrec. In our tests we have chosen χref in the
range [0.2, 0.25] and χrec in [0.05, 0.15].

Finally, the numerical solution at the subcell level during a refinement step is obtained by a
standard L2 projection, while a reconstruction operator is employed to recover the solution on
themain grid starting from the subcell level.Moreover, in order to simplify the reconstruction
procedure, the grid is treated as locally uniform for each cell independent of its grid level
�, because the neighbors cells at a coarser level � − 1 can be virtually refined in order to
allow for the reconstruction procedure on locally uniform meshes detailed in Sect. 2.3. We
also note that our AMR algorithm is endowed with a time-accurate local time stepping (LTS)
feature, see [51] for details.

3 Numerical Results

In this Section we present a large set of numerical test cases in order to show the accuracy,
robustness and efficiency of the presented PN PM family of schemes equipped with the a
posteriori subcell finite volume limiter.

In order to cover a wide variety of physical phenomena we have applied our schemes to
three sets of equations of relevance in fluid-dynamical applications, namely the Euler equa-
tions of compressible hydrodynamics (HD), the magnetohydrodynamics equations (MHD),
and the special relativistic magnetohydrodynamics equations (RMHD).

In particular, for any set of equations we have selected both a smooth test case, to show
the order of convergence of our schemes (up to order six), and some problems containing
strong discontinuities going from logically one-dimensional Riemann problems to classical
challenging two-dimensional benchmarks, such as the Sedov explosion problem, the Double
Mach Reflection problem, the MHD rotor problem, the RMHD blast wave, as well as the
MHD & RMHD Orszag–Tang vortex problems. The presence of discontinuities allows to
prove the robustness and resolution of our a posteriori subcell limiting strategy.

Moreover, the results obtained with the intermediate PN PM schemes (i.e. N �= 0 and
M > N ) are compared with the pure DG approach (i.e. N = M) in order to show their gain
in terms of computational efficiency, whilemaintaining a similar resolution.We also compare
numerical results onAMRmeshes against results obtained on fine uniformCartesianmeshes,
demonstrating both the robustness of our schemes on adaptive meshes and the obtained
savings in computational time.
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3.1 Euler Equations of Gasdynamics

The first set of hyperbolic equations that we consider is given by the homogeneous Euler
equations of compressible gasdynamics that can be cast in form (1) by choosing

Q =

⎛

⎜
⎜
⎝

ρ

ρu
ρv

ρE

⎞

⎟
⎟
⎠ , F =

⎛

⎜
⎜
⎝

ρu ρv

ρu2 + p ρuv

ρuv ρv2 + p
u(ρE + p) v(ρE + p)

⎞

⎟
⎟
⎠ . (32)

The vector of conserved variables Q involves the fluid density ρ, the momentum density
vector ρv = (ρu, ρv) and the total energy density ρE . The fluid pressure p is related to the
conserved quantities Q using the equation of state for an ideal gas

p = (γ − 1)

(

ρE − 1

2
ρv2
)

, (33)

where γ is the ratio of specific heats so that the speed of sound takes the form c =
√

γ p
ρ
.

3.1.1 Isentropic Vortex

First of all, in order to verify the order of convergence of the proposed PN PM schemes,
we consider a smooth isentropic vortex flow according to [71]. The computational domain is
given by the squareΩ = [0, 10]×[0, 10]with periodic boundary conditions set everywhere.
For the initial conditions we consider a homogeneous background fieldQ0 = (ρ, u, v, p) =
(1, 1, 1, 1) traveling with a constant velocity vc = (1, 1) and we superimpose on this field
some perturbations for density and pressure of the following form

δρ = (1 + δT )
1

γ−1 − 1, δ p = (1 + δT )
γ

γ−1 − 1, (34)

with the temperature fluctuation

δT = − (γ − 1)ε2

8γπ2 e1−r2

and the vortex strength ε = 5. The velocity field is also affected by the following perturbations
(

δu
δv

)

= ε

2π
e
1−r2
2

(−(y − 5)
(x − 5)

)

. (35)

The initial condition is thus given byQ = Q0 +Q. The exact solutionQe at the final time t f
can be simply computed as the time-shifted initial condition, i.e.Qe(x, t f ) = Q(x−vct f , 0).

In Table 2, we report the convergence rates from second up to sixth order of accuracy for
the smooth vortex test problem run on a sequence of successively refined meshes up to the
final time t f = 1.0. The optimal order of accuracy is achieved for the hybrid schemes PN PM
with M > N and for the pure DG schemes with N = M .

3.1.2 The Sod Shock Tube Problem

The Sod shock tube problem in 2D can be seen as a multidimensional extension of the
classical Sod test case in 1D [112], which allows to verify the robustness and the resolution
capacity of the employed numerical method on a rarefaction wave, a contact discontinuity
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Fig. 4 Sod shock tube problem at t f = 0.4. Left: we compare our numerical results obtained with two fourth
order methods, namely the P2P3 and the P3P3 with the exact solution. Note that the two schemes show a
similar resolution but the P2P3 is twice faster than the P3P3, Right: we compare our numerical results obtained
with two sixth order methods, namely the P3P5 and the P5P5 with the exact solution. Note again that the two
schemes show a similar resolution but the P3P5 is 2.33 times faster than the P5P5

and a shock at the same time, indeed the three waves are originated by the discontinuous
initial condition.

Here, we consider as computational domain a square of dimension [−1, 1] × [−1, 1]
coveredwith a uniformmesh of 50×10 control volumes, and the initial condition is composed
of two different states, separated by a discontinuity at xd = 0

{
ρL = 1, vL = 0, pL = 1, x ≤ xd
ρR = 0.125, vR = 0, pR = 0.1, x > xd .

(36)

The final time is chosen to be t f = 0.4, so that the shock wave does not cross the external
boundary of the domain, where wall boundary conditions are set. The algorithm for the
calculation of the exact solution of this Riemann problem is given in [111].

We have run this problem with two fourth order methods, namely the P2P3 and the P3P3
schemes, and two sixth order methods, namely the P3P5 and the P5P5 schemes, equipped
with the a posteriori subcell TVD FV limiter and employing the Rusanov flux both in the
main PN PM scheme and at the limiter stage. The agreement of our numerical results with
the exact solution is perfect and the hybrid schemes (i.e. M < N ) are faster than the pure
DG schemes (N=M), see Fig. 4.

Moreover, in Fig. 5, one can see that the limiter activates exactly where the shock discon-
tinuity is located also when the adaptive mesh refinement technique is employed.

3.1.3 The Lax Shock Tube Problem

The Lax shock tube problem, introduced for the first time in [81], is another classical bench-
mark for high order methods for the solution of the Euler equations. The computational
domain is the square [−1, 1]× [−1, 1] and the initial condition is composed of two different
states, separated by a discontinuity located at xd = 0

{
ρL = 0.445, vL = 0.698, pL = 3.528, x ≤ xd
ρR = 0.5, vR = 0, pR = 0.571, x > xd .

(37)
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Fig. 5 Sod shock tube problem at t f = 0.4 solved with our P3P5 sixth order scheme. We show in red the cells
on which the limiter is activated and in blue the unlimited cells. The left panel is obtained with an initial grid
of 50×10 elements and �max = 2 levels of refinement with r = 3 in a total computational time of 1248s. The
right image is obtained by using a fine uniform grid of 450 × 90 elements corresponding to the finest AMR
grid level in a total computational time of 3670s. In both the cases the limiter perfectly activates only where
the shock wave is located (Colour figure online)

Fig. 6 Lax shock tube problem at t f = 0.14, obtained with our sixth order schemes, namely the P3P5 and
P5P5 schemes. Left: we draw the density profile on the z axis and we colour in red the cells on which the
limiter is activated and in blue the unlimited cells. Right: we compare our numerical results with the exact
solution (Colour figure online)

In this case, we have covered our computational domainwith a very coarsemesh of 20×10
elements activating the AMR procedure with �max = 2 levels of refinement and r = 3. In
Fig. 6, we present the results obtained with two sixth order methods, namely the P3P5 and the
P5P5 schemes, used together with the HLLEM [39,53] numerical flux. Both the numerical
results perfectly agree with the reference solution and the hybrid scheme is 2.5 times faster
than the pure DG scheme. Also the limiter activates exactly only at the shock location and,
due to the subcell resolution, it does not affect the quality of the profile which is sharply
captured even on a very coarse mesh.

3.1.4 The Shu-Osher Shock Tube Problem

The Shu-Osher problem was first introduced in [104] and it allows to check the capability of
our new scheme to deal simultaneously with physical oscillations and shock waves appearing
at the same time during the simulation. It consists of a one-dimensional Mach 3 shock front
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interacting with a sinusoidal density disturbance that generates a combination of discontinu-
ities and smooth structures, whose entropy fluctuations are amplified when passing through
the shock.

We discretize our computational domain Ω = [−5, 5] × [0, 1] with an AMR grid with
64× 4 elements on the coarsest level and a maximum refinement level �max = 2 with r = 3.
The initial conditions are given by

{
ρ = 3.8571, u = 2.6294, v = 0, p = 10.333, x < 4,

ρ = 1.0 + 0.2 sin(5x), u = 0, v = 0, p = 1, x ≥ 4,
(38)

and the simulations run up to the final time t f = 1.8. For this test case, we employ the HLL
Riemann solver, and the TVD a posteriori subcell finite volume limiter.

We then compare the results obtained with two pure DG schemes P3P3 and P5P5, and
the hybrid schemes P2P3 and P3P5 which have, respectively, the same order of accuracy. As
shown in Fig. 7, the methods are accurate, and robust thanks to the employed limiter strategy,
and the intermediate schemes PN PM with M > N are computational more efficient than
pure DG schemes.

3.1.5 Sedov Problem

This test problem is widespread in literature [60,74,86] and it describes the evolution of a
blast wave that is generated at the origin O = (x, y) = (0, 0) of the computational domain
Ω(0) = [0, 1.2]× [0, 1.2]. An exact solution based on self-similarity arguments is available
from [101] and the fluid is assumed to be an ideal gas with γ = 1.4, which is initially at rest
and assigned with a uniform density ρ0 = 1. The initial pressure is p0 = 10−6 everywhere
except in the cell Vor containing the origin O where it is given by

por = (γ − 1)ρ0
Etot

|Vor|
being Etot = 0.244816 the the total energy concentrated at x = 0 and |Vor| the total volume
of Vor .

We solve this numerical test with a selection of high order methods going from fourth to
eighth order of accuracy on a mesh of 50 × 50 elements with and without AMR. When the
adaptive mesh refinement is activated, we take �max = 2 and r = 3. For all these test cases
we employ the Rusanov flux, CFL = 0.9, and the WENO a posteriori subcell finite volume
limiter.

We show the results on the activation of the limiter in Fig. 9, and the obtained density
profiles in Fig. 8. Finally, we compare the performances of a selection of methods in Table 3,
in particular we highlight the needed computational times versus their capability of capturing
the high density peak. We can remark that the hybrid schemes (as the P2P3 and the P3P5)
have accurate and robust results at a lower computational cost; also the combination with
adaptive mesh refinement helps in increasing the accuracy keeping the computational cost
low.

3.1.6 Double Mach Reflection

The double Mach reflection problem was first studied by Woodward and Colella [121] from
which we take the setup also for our test.
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Fig. 7 Shu-Osher shock tube problem at t f = 1.8 solved with our fourth order scheme, namely the P2P3
and P3P3 schemes (first column), and our sixth order schemes, namely the P3P5 and P5P5 schemes (second
column). In the first two rows we plot the value of the density on the z axis and we depict in red the cell where
the limiter is activated. In the third row our results are compared with a reference solution obtained with a
WENO FV scheme on a very fine mesh. Moreover the computational time required by the PN PM schemes
with N < M (respectively 394s and 2007s) are significantly shorter than those required by the pure DG
schemes (N = M) (respectively 880s and 5050s); nevertheless all the results show an excellent agreement
with the reference solution (Colour figure online)
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Fig. 8 Sedov test problem. Comparison of numerical density obtained with a selection of our high order
methods (left, middle) and density contours obtained with the hybrid P2P3 third order scheme on an AMR
grid

Table 3 Sedov problem Method Order Total CPU time Density peak

P1P4 5 24 4.01

P1P5 6 37 4.02

P2P3 4 76 4.48

P3P5 6 361 4.94

P5P5 6 1458 5.08

P1P4 + AMR 5 847 5.20

P7P7 8 4428 5.25

P2P3 + AMR 4 1168 5.53

P3P3 + AMR 4 2454 5.61

We report the total CPU time in seconds and the values of the density
peak (that should be equal to 6) obtained with a selection of methods
going from order 4 to 8. The results are ordered with respect to the
density peak value. One can notice that the hybrid schemes (as the P2P3
and the P3P5) have accurate results at a lower computational cost

We consider a computational domain Ω = [0, 4] × [0, 1] covered with a coarse mesh of
72× 24 elements where we activate the adaptive mesh refinement with �max = 2 and r = 3,
and we compare the behavior of two fifth order schemes, namely the hybrid P2P4 scheme
and the P4P4 pure DG scheme. For all the simulations, we employ the Rusanov flux and the
second order TVD a posteriori subcell finite volume limiter.

At the beginning of the computation a shockwavemoving atMach number 10 is positioned
at (x, y) = (1/6, 0) with an angle of 60◦ with respect to the x-axis and the initial pre-shock
conditions (on the left of the shock) are given by a constant density equal to 1.4 and a
constant pressure p = 1. At the bottom boundary we employ reflective boundary conditions
for x > 1/6 where we suppose the presence of a wall, and the exact post-shock conditions
for 0 ≤ x ≤ 1/6 to mimic an angled wedge. At the top boundary, the flow variables are set
to describe the exact motion of the Mach 10 shock. Finally at the left and right boundaries
we set inflow and outflow boundaries.

The obtained numerical results are shown in Fig. 10 for the entire domain; we also plot a
zoom in Fig. 11 where, one can notice the roll up of the Mach stem due to Kelvin-Helmholtz
instabilities.
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Fig. 9 Limited cells (red) and unlimited ones (blue) for the Sedov problem solved with a selection of high
order methods, i.e. P1P5, P3P5, P5P5, P1P4, P2P3, P7P7. A part some spurious oscillations of the PN PM
schemes with N = 1, the limiter activates exactly at the shock location (Colour figure online)

3.2 Ideal MHD Equations

Next, we consider the equations of ideal classical magnetohydrodynamics (MHD) which,
with respect to the previous set of equations, take also into account the evolution of the
magnetic field B. The vector of the conserved variablesQ and the flux tensor F of the general
form (1) are given by

Q =

⎛

⎜
⎜
⎜
⎜
⎝

ρ

ρv
ρE
B
ψ

⎞

⎟
⎟
⎟
⎟
⎠

, F(Q) =

⎛

⎜
⎜
⎜
⎜
⎝

ρv
ρv ⊗ v + pt I − 1

4π B ⊗ B
v(ρE + pt ) − 1

4π B(v · B)

v ⊗ B − B ⊗ v + ψI
c2hB

⎞

⎟
⎟
⎟
⎟
⎠

. (39)

Here,B = (Bx , By, Bz) represents themagnetic field and pt = p+ 1
8π B

2 is the total pressure.
The hydrodynamic pressure is given by the equation of state used to close the system, thus

p = (γ − 1)

(

ρE − 1

2
v2 − B2

8π

)

. (40)

System (39) requires an additional constraint on the divergence of the magnetic field to be
satisfied, that is

∇ · B = 0. (41)
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Fig. 10 Double Mach Reflection density contours obtained with two fifth order schemes, namely the P2P4
and the P4P4 schemes. We plot 30 equally spaced contour lines from 1.5 to 22.9705 as suggested in [102]
(Colour figure online)

Here, (39) includes one additional scalar PDE for the evolution of the variable ψ , which
is needed to transport divergence errors outside the computational domain with an artificial
divergence cleaning speed ch , see [31,91]. A similar approach is adopted in [16,20,57].
A more recent and more sophisticated methodology to fulfill this condition exactly at the
discrete level also in the context of high order ADER WENO finite volume schemes on
unstructured simplex meshes can be found in [7].

3.2.1 MHD Vortex

First, for the numerical convergence studies, we solve the vortex test problem proposed by
Balsara in [6]. The computational domain is given by the box Ω = [0, 10] × [0, 10] with
wall boundary conditions imposed everywhere. The initial condition can be written in terms
of the vector of primitive variables V = (ρ, u, v, w, p, Bx , By, Bz, Ψ )T as

V(x, 0) = (1, δu, δv, 0, 1 + δ p, δBx , δBy, 0, 0)
T , (42)

with δv = (δu, δv, 0)T , δB = (δBx , δBy, 0)T and
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Fig. 11 Double Mach Reflection. Left: density contours with 30 equally spaced contour lines from 1.5 to
22.9705. Right: limited cells (red) and unlimited cells (blue) (Colour figure online)

δv = κ

2π
eq(1−r2)ez × r

δB = μ

2π
eq(1−r2)ez × r,

δ p = 1

64qπ3

(
μ2(1 − 2qr2) − 4κ2π

)
e2q(1−r2),

(43)

where ez = (0, 0, 1), r = (x − 5, y − 5, 0) and r = ‖r‖ = √(x − 5)2 + (y − 5)2. The
divergence cleaning speed is chosen as ch = 2. The other parameters are q = 1

2 , κ = 1 and
μ = √

4π , according to [6].
In Table 4, we report the convergence rates from second up to sixth order of accuracy for

the MHD vortex test problem run on a sequence of successively refined meshes up to the
final time t f = 1.0. The optimal order of accuracy is achieved both in space and time both
for the hybrid schemes PN PM with M > N and for the pure DG schemes with N = M .
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3.2.2 MHD Rotor Problem

TheMHD rotor problem is a classical benchmark forMHD that was first proposed by Balsara
and Spicer in [9]. It consists of a rapidly rotating fluid of high density embedded in a fluid at
rest with low density. Both fluids are subject to an initially constant magnetic field.

The rotor produces torsional Alfvén waves that are launched into the outer fluid at rest,
resulting in a decrease of angular momentum of the spinning rotor. We consider as computa-
tional domain the square Ω = [−0.5, 0.5] × [−0.5, 0.5] and as initial condition we take the
density inside a circle of radius r ≤ 0.1 equal to ρ = 10, while the density of the ambient
fluid at rest is set to ρ = 1. The rotor has an angular velocity of ω = 10. The pressure
is p = 1 and the magnetic field vector is set to B = (2.5, 0, 0)T in the entire domain. As
proposed by Balsara and Spicer we apply a linear taper to the velocity and to the density in
the range from 0.1 ≤ r ≤ 0.105 so that density and velocity match those of the ambient fluid
at rest at a radius of r = 0.105. The speed for the hyperbolic divergence cleaning is set to
ch = 8 and γ = 1.4 is used. Wall boundary conditions are applied everywhere.

We run this problem on a coarse mesh made of 45 × 45 elements activating the AMR
procedure with �max = 2 levels of refinement and r = 3, and for comparison we also employ
a finer uniform mesh of 405 × 405 elements corresponding to the finest AMR grid level. In
particular, we have employed the P2P4 fifth order scheme and the P4P5 sixth order scheme
with the Rusanov numerical flux and our a posteriori subcell WENO FV limiter. In all the
cases, we can observe a good agreement between the obtained numerical results and those
available in the literature, see Figs. 12 and 13.

3.3 MHDOrszag–TangVortex

We consider now the the vortex system of Orszag and Tang [30,92,94] for the ideal MHD
equations. We choose as computational domain the square Ω = [0, 2π] × [0, 2π] with
periodic boundary conditions set everywhere; we cover it with a uniform grid of 128 × 128
elements.

The initial condition written in terms of primitive variables are the following
(
ρ, u, v, w, p, Bx , By, Bz

)

=
(
γ 2,− sin(y), sin(x), 0, γ,−√

4π sin(y),
√
4π sin(2x), 0

) (44)

with γ = 5/3. The divergence cleaning speed is set to ch = 2 and the final time of the
simulation is taken to be t f = 3 as in [40].

We solve this test by employing three different fifth order schemes, namely the hybrid
P2P4 and P3P4 schemes and the pure DG P4P4 scheme, with the Rusanov numerical flux and
equipped with our a posteriori subcell TVD finite volume limiter. The obtained numerical
results and the cells on which the limiter is activated are presented in Fig. 14. One can notice
that the three methods produce similar results with a good qualitative agreement compared
to the solutions provided in [7,40,124]; moreover, the hybrid schemes are computationally
more efficient than the pure DG scheme.

3.4 Special Relativistic MHD Equations

The system of equations of special relativistic magnetohydrodynamics (RMHD) is supposed
to provide a sufficiently accurate description of the dynamics of those astrophysical plasma
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Fig. 12 MHD Rotor problem at the final time t f = 0.25 solved with our P2P4 fifth order scheme. In the left

column we plot the pressure contours, in the central column the magnetic density profile M = (B2x+B2y+B2z )

(8π)
and in the right column we depict in red the troubled cells and in blue unlimited cells. The results on the first
row are obtained with a coarse mesh of 45 × 45 cells and �max = 2 levels of refinement with r = 3. The
results on the second row are obtained by using a fine uniform grid of 405 × 405 elements corresponding to
the finest AMR grid level. The computation on the finer grids takes twice the time of the computation on a
coarse mesh with AMR (i.e 7890s instead of 3779s) (Colour figure online)

that move close to the speed of light and which are subject to electromagnetic forces that
dominate over the gravitational forces. For example this is the case of high energy astro-
physical phenomena like extragalactic jets [13], gamma-ray bursts [80] or magnetospheres
of neutron stars [89].

For a more detailed description of this model and a review of the numerical methods used
in its approximation we refer to [123] and the reference therein. Here we briefly recall only
the main terms appearing in the equations, which indeed can be written under the general
hyperbolic form (1) by choosing

Q =

⎡

⎢
⎢
⎣

D
Sj

U
B j

⎤

⎥
⎥
⎦ , f i =

⎡

⎢
⎢
⎣

vi D
Wi

j
Si

ε j ik Ek

⎤

⎥
⎥
⎦ , (45)

where we have employed the classical tensor index notation based on the Einstein summation
convention, which implies summation over two equal indices.

The conserved variables (D, S j ,U , B j ) are related to the rest-mass density ρ, to the
thermal pressure p, to the fluid velocity vi and to the magnetic field Bi by
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Fig. 13 MHD Rotor problem at the final time t f = 0.25 solved with our P4P5 sixth order scheme. In the left

column we plot the pressure contours, in the central column the magnetic density profile M = (B2x+B2y+B2z )

(8π)
and in the right column we depict in red the troubled cells and in blue unlimited cells in blue. The results on
the first row are obtained with a coarse mesh of 45 × 45 cells and �max = 2 levels of refinement with r = 3.
The results on the second row are obtained by using a fine uniform grid of 405× 405 elements corresponding
to the finest AMR grid level. The computation on the finer grids takes twice the time of the computation on a
coarse mesh with AMR (Colour figure online)

D = ρW ,

Si = ρhW 2vi + εi jk E j Bk,

U = ρhW 2 − p + 1

2
(E2 + B2),

(46)

where εi jk is the spatial Levi–Civita tensor and δi j is the Kronecker symbol. As usual in ideal
MHD, the electric field is given by E = −v×B. The spatial tensor Wi

j in (45), representing
the momentum flux density, is

Wi j ≡ ρhW 2viv j − Ei E j − Bi B j +
[

p + 1

2
(E2 + B2)

]

δi j , (47)

where δi j is the Kronecker delta.
The above equations include the divergence free condition ∇ · B = 0 for the magnetic

field, which, although is guaranteed by the Maxwell equations at a continuous level, is not
automatically satisfied from a numerical point of view. Different strategies can be adopted in
order to solve this problem (see [115] for a review). Here, as for the MHD case of Sect. 3.2,
we have adopted the so called divergence-cleaning approach presented in [31,91], which
considers an augmented system with an additional equation for a scalar field Φ, in order to
propagate away the deviations from ∇ · B = 0

∂tΦ + ∂i B
i = −κΦ , (48)
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Fig. 14 MHD Orszag–Tang at the final time of t f = 3.0. We compare the results obtained with three fifth
order schemes, namely the P2P4, P3P4, P4P4 schemes. In the first column we depict the density contours, in
the second column we depict the pressure contours and in the third column we depict the troubled cells in red
and the unlimited cells in blue. One can notice that the three methods lead to similar results but with respect
to P4P4 the P2P4 is 3.39 times faster and the P3P4 is 1.60 time faster (Colour figure online)

while the fluxes for the evolution of the magnetic field are also modified, namely f i (B j ) →
ε j ik Ek + Φδi j .

3.4.1 AlfvénWave

As for the previous set of equations we first of all check the convergence of our new numerical
scheme. In the case ofRMHDwecan consider the propagation of a circularly polarizedAlfven
wave, for which an analytic solution can be computed, see [33,78].

As initial condition we impose the following profile for the magnetic field and the velocity
field

123



Journal of Scientific Computing            (2021) 86:37 Page 31 of 41    37 

Bx = B0

By = ηB0 cos[k(x − vAt)]
Bz = ηB0 sin[k(x − vAt)]
vx = 0

vy = −vABy/B0

vz = −vABz/B0.

(49)

where B0 is the uniformmagnetic field along x , ρ = p = B0 = η = 1, k is the wave number,
while vA is the Alfven speed at which the wave propagates

v2A = B2
0

ρh + B2
0

(
1 + η2

)

⎡

⎢
⎣
1

2

⎛

⎜
⎝1 +

√√
√
√1 −

(
2ηB2

0

ρh + B2
0

(
1 + η2

)

)2
⎞

⎟
⎠

⎤

⎥
⎦

−1

and γ = 5/3.
For the computational domain, we consider the 2D square Ω = [0, 2π] × [0, 2π] with

periodic boundary conditions set everywhere, and we run our simulation up to the final time
t f = L/vA = 2π/vA corresponding to one period.

In Table 5, we report the L2 norm of the errors between our numerical results and the
analytical solution for the variable ρ. The convergence rates from second up to sixth order
of accuracy are confirmed both for the hybrid schemes PN PM with M > N and for the pure
DG schemes with N = M .

3.4.2 Riemann Problems

Now, in order to check the robustness and accuracy of our a posteriori subcell FV limiter for
the general class of the PN PM schemes, we solve two classical Riemann problems of RHD
(i.e. RMHD with B = 0) for which also an exact solution is available.

We consider the computational domain Ω = [−0.5, 0.5] × [0, 1] and as initial condition
we impose the discontinuous values given in Table 6. We solve these two test cases with a
fifth order P3P5 scheme and the HLLEM numerical flux, over a mesh of 20 × 10 elements
with �max = 2 levels of refinement and r = 3.

The obtained numerical results, see Fig. 15, show once again that our limiter procedure
preserves the resolution of the underlying PN PM scheme even on a coarse mesh.

3.4.3 Cylindrical Blast Wave

Wenow take into account a truly two dimensional test inRMHD, i.e. the cylindrical expansion
of a blast wave in a plasma with an initially uniform magnetic field. This is a severe test
proposed in [79], and subsequently also solved in [33,50,83,123].

For the initial condition we set the rest-mass density and the pressure equal to ρ = 0.01
and p = 1 within a cylinder of radius r = 1.0, and ρ = 10−4 and p = 5×10−4 outside. Like
in [79] and in [33], the inner and outer values are joined through a smooth ramp function
between r = 0.8 and r = 1, to avoid a sharp discontinuity in the initial conditions. The
plasma is initially at rest and subject to a constant magnetic field along the x-direction, i.e.
Bx = 0.1, By = 0, Bz = 0.

We have solved this problem on the computational domain Ω = [−6, 6] × [−6, 6], with
a uniform mesh of 160 × 160 elements. We have used the Rusanov numerical flux and two
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Table 6 Initial conditions for the
one-dimensional Riemann
problems

Problem ρ (vx vy vz) p t f γ

RP1

x ≤ 0 1 0.9 0 0 1 0.4 5
3

x > 0 1 0 0 0 10

RP2

x ≤ 0 1 − 0.6 0 0 10 4
3

x > 0 10 0.5 0 0 20

x

rh
o

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

Exact
P3P5 + AMR

x

rh
o

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

11

12

Exact
P3P5 + AMR

Fig. 15 RHDequations andRiemannproblemsRP1 (left) andRP2 (right), seeTable 6 for the initial conditions.
In the Figure, we compare our numerical results for the density ρ (squares) with the exact solution (continuous
line)

sixth order schemes, namely the P3P5 and the P5P5 schemes, equipped with the robust a
posteriori subcell second-order TVDFV limiter. The obtained numerical results, which agree
with those available in the literature, are reported in Fig. 16.

3.4.4 RMHD Orszag–Tang Vortex

Finally, we have chosen the relativistic version of the well known Orszag–Tang vortex prob-
lem, proposed by [92], and adapted to the relativistic case in [50,123]. The computational
domain is Ω = [0, 2π] × [0, 2π ] and the initial conditions are given by

(
ρ, u, v, w, p, Bx , By, Bz

)

=
(

1,− 3

4
√
2
sin (y) ,

3

4
√
2
sin (x) , 0, 1,− sin (y) , sin (2x) , 0

)

,
(50)

with γ = 4/3.
To solve this systemwe employ the sixth order hybrid scheme P3P5 over a level zeromesh

of 45×45 elements, activating theAMR featurewith �max = 2 levels of refinement and r = 3.
The obtained numerical results are reported in Fig. 17: once again we can notice that the two
schemes have a similar resolution but the hybrid scheme is 2.62 times faster than a pure
DG scheme, of the same order. Furthermore, we can observe that the proposed a posteriori

123



   37 Page 34 of 41 Journal of Scientific Computing            (2021) 86:37 

Fig. 16 RMHD blast wave at time t f = 4.0. We show the results obtained with two sixth order schemes,
namely the P3P5 and P5P5 schemes. In the left column we plot the density contours and in the right column
we depict the troubled cells in red and the unlimited cells in blue. The resolution and the number of limited
cells are quite similar with the two approaches but the hybrid P3P5 scheme is 2.79 times faster than the pure
DG P5P5 scheme (Colour figure online)

subcell limiter procedure is robust andmaintains the high resolution of the underlying PN PM
scheme even on coarse meshes.

4 Conclusion

In this paper we have proposed a new simple, robust, accurate and computationally efficient
limiting strategy for the general family of ADER PN PM schemes, allowing, for the first time
in literature, the use of hybrid reconstructed methods (N > 0, M > N ) in the modeling
of discontinuous phenomena. The key ideas behind our limiter are: i) its local activation
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Fig. 17 RMHD Orszag Tang at time t f = 5. We present the density contours (left column) and the limited
cells (in red in the right column) obtained with two sixth order schemes, namely the P3P5 and the P5P5
schemes, on an adaptive mesh with 45× 45 control volume on the coarsest level, �max = 2 and r = 3 (Colour
figure online)

only where the linear schemes introduces oscillations through an a posteriori detector, ii)
its robustness due to the use of strong stability preserving TVD or WENO FV schemes as
limiter, iii) its resolution due to the use of the limiter on 2N +1 subcells. Thus, we have been
able to apply this new approach to many different systems of hyperbolic conservation laws,
providing highly accurate numerical results in all cases. Moreover, we had the possibility to
compare the performance of the class of intermediate PN PM schemes with M > N > 0
with pure DG schemes (M = N ). We have observed that in most cases the intermediate
PN PM schemes offer a similar resolution compared to pure DG methods, but at a reduced
computational cost.

Future work will consider the extension of PN PM scheme with N > 0, M > N to
unstructured moving meshes [18,63], in particular for regenerating Voronoi tessellations [59,
60], and to the three-dimensional case. Finally, due to their low memory consumption and
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their gain in computational efficiency compared to DG schemes, they will be also considered
for astrophysical applications [42,44,61] and the unified first order hyperbolic model of
continuum mechanics proposed in [25,48,49,93,98], where a large number of conserved
variables has to be discretized. Due to their accuracy and compact stencil in the future we
also plan to use PN PM schemeswith a posteriori subcell finite volume limiter in the context of
hyperbolic reformulations of nonlinear dispersive systems and wave propagation problems,
see e.g. [11,12,34,54,58].
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