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Abstract

Positive definiteness and symmetry of the constitutive tensors describing a second-gradient elastic (SGE) mate-
rial, which is energetically equivalent to a hexagonal planar lattice made up of axially deformable bars, are analyzed
by exploiting the closed form-expressions obtained in part I of the present study in the ‘condensed’ form. It is shown
that, while the first-order approximation leads to an isotropic Cauchy material, a second-order identification pro-
cedure provides an equivalent model exhibiting non-locality, non-centrosymmetry, and anisotropy. The derivation
of the constitutive properties for the SGE from those of the ‘condensed’ one (obtained by considering a quadratic
remote displacement which generates stress states satisfying equilibrium) is presented. Comparisons between the
mechanical responses of the periodic lattice and of the equivalent SGE material under simple shear and uniaxial
strain show the efficacy of the proposed identification procedure and therefore validate the proposed constitutive
model. This model reveals that, at higher-order, a lattice material can be made equivalent to a second-gradient
elastic material exhibiting an internal length, a finding which is now open for applications in micromechanics.

Keywords: Strain gradient elasticity; non-local material; non-centrosymmetric material; internal length; homoge-
nization

1 Introduction

Higher-order constitutive equations for microstructured solids [19, 21, 20, 27, 37, 36], initially introduced following
a phenomenological approach [10, 14, 15, 22, 24, 25], are nowadays more and more often connected to material
microstructures by means of various homogenization schemes [5, 6, 7, 8, 11, 13, 17, 18, 16, 30, 29, 32, 33, 26, 35].

In the context of deriving the higher-order parameters from discrete microstructures, closed-form expressions are
obtained in part I of the present study [28], for the constitutive tensors characterizing a homogeneous second-gradient
elastic material (SGE), equivalent to the hexagonal planar lattice sketched in Fig. 1. The lattice is based on a unit cell

of side length ` and composed of axially deformable bars with stiffnesses k, k̂, and k̃. The equivalent second-gradient
elastic material is obtained by imposing a matching between its strain energy and that of the lattice, when both the
solid and the lattice are subject to remote boundary conditions, which realize all possible quadratic displacement fields,
but constrained by the requirement that the generated stress fields are in equilibrium (without body forces). In this
way, ‘condensed forms’ for the higher-order constitutive tensors follow, because the equilibrium constraint may in a
sense be interpreted as a lack in the number of ‘independent displacement tests’ sufficient to completely characterize a
second-gradient elastic material. The developed elastic model always reduces to the isotropic Cauchy material defined
by [12, 31], when the hexagon side length ` is set to be equal to zero.

1Corresponding author: Davide Bigoni fax: +39 0461 282599; tel.: +39 0461 282507; web-site: http://www.ing.unitn.it/∼bigoni/;
e-mail: davide.bigoni@unitn.it.
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Figure 1: The ‘condensed’ second-gradient elastic material (center), characterized by the constitutive matrices C, M∗,
and A∗ and identified in Part I of this article as the solid energetically equivalent to the periodic lattice (left), which
is based on a hexagonal unit cell of side length ` and is composed of elastic bars, with three different values of axial
stiffness k, k̃ and k̂ (distinguished through different colours) and hinged to each other. The second-gradient elastic
material (right), characterized by matrices C, M, and A, is obtained from a relaxation of the ‘condensed’ solid.

In the present paper, a standard SGE material (Fig. 1, right) is derived from the ‘condensed’ version obtained
in Part I of this study (sketched in Fig. 1, center). The derivation is pursued through a simple approach, which
corresponds to the imposition of the equivalence between the elastic energies of the lattice and of the equivalent
material, but neglecting the equilibrium constraint on the displacement fields. Interestingly, such a simple approach
preserves the symmetry properties of the ‘condensed’ material and leaves unchanged its positive definiteness domain.
Following this approach, the most important result of this paper is obtained, which is provided by three constitutive
matrices defining the SGE material equivalent to the lattice:

C
(
k, k̂, k̃

)
=


λ′ + 2µ λ′ 0

λ′ λ′ + 2µ 0

0 0 µ

 ,

M
(
k, k̂, k̃

)
= m`

 0 0 1 −1 1 0
0 0 1 −1 1 0
0 0 0 0 0 0

 ,

A
(
k, k̂, k̃

)
= `2



a11 a12 0 0 0 a16

a12 a11 − 2(a16 + a26) 0 0 0 a26

0 0 a11 + a12 − 2(a16 + a26)− a34 a34 a12 + a26 − a34 0

0 0 a34 a11 + a12 − a34 −a12 + a16 + a34 0

0 0 a12 + a26 − a34 −a12 + a16 + a34
a11 + a12 − a16 − a26 − 2a34

2
0

a16 a26 0 0 0
a11 − a12 − a16 − a26

2


,

(1)
where the constants for the Cauchy part (expressed using the Lamé constants) of the equivalent elastic material are

λ′ =
2I[1]I[2] − 9I[3]

4
√

3I[2]
, µ =

9I[3]

4
√

3I[2]
, (2)

while those for the non centro-symmetric part are

m =

(
k̂ − k̃

) [
k̂k̃ − 2k(k̂ + k̃)

]
8
√

3I[2]
, (3)

2
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and those for the curvature part are

a11 =

√
3

576I3[2]

[
48k

5
(
k̂ + k̃

)2
+ 4k

4
(
k̂ + k̃

)(
31k̂2 + 194k̂k̃ + 31k̃2

)
+k

3
(

28k̂4 + 814k̂3k̃ + 3024k̂2k̃2 + 814k̂k̃3 + 28k̃4
)

+6I[3]k
(
k̂ + k̃

)(
14k̂2 + 263k̂k̃ + 14k̃2

)
+I[3]k̂k̃

(
84k̂2 + 757k̂k̃ + 84k̃2

)
+ 28k̂3k̃3

(
k̂ + k̃

)]
,

a12 =
3
√

3I[3]

64I3[2]

[
8k

3
(
k̂ + k̃

)
+ k

2
(

8k̂2 + 60k̂k̃ + 8k̃2
)

+ 20I[3]

(
k̂ + k̃

)
+ 3k̂2k̃2

]
,

a16 =

√
3

576I2[2]

[
24k

4
(
k̂ + k̃

)
+ k

3
(

62k̂2 + 256k̂k̃ + 62k̃2
)

+k
2
(
k̂ + k̃

)(
14k̂2 + 299k̂k̃ + 14k̃2

)
+4I[3]

(
7k̂2 + 19k̂k̃ + 7k̃2

)
+ 14k̂2k̃2

(
k̂ + k̃

)]
,

a26 =

√
3I[3]

64I2[2]

[
12k

2
+ 7k

(
k̂ + k̃

)
+ 22k̂k̃

]
,

a34 =

√
3

192I3[2]

[
72I[3]k

3
(
k̂ + k̃

)
+ k

3
(
−8k̂4 + 40k̂3k̃ + 492k̂2k̃2 + 40k̂k̃3 − 8k̃4

)
+234I2[3]

(
k̂ + k̃

)
+ 3I[3]k̂k̃

(
2k̂2 + 31k̂k̃ + 2k̃2

)
− 2k̂3k̃3

(
k̂ + k̃

)]
.

(4)

Note that in the above equations λ′ = λ (λ being the Lamé constant) applies when plane strain prevails (while in the
case of plane stress λ′ = 2λµ/(λ+ 2µ)) and

I[1] = k + k̂ + k̃, I[2] = k k̂ + k k̃ + k̃ k̂, I[3] = k k̂ k̃. (5)

In the present part of this study, the above constitutive matrices, energetically equivalent to the discrete lattice, are
shown to display non-centrosymmetry and non-local anisotropy, although the local response is isotropic. In particular,

the constitutive matrices C
(
k, k̂, k̃

)
, M

(
k, k̂, k̃

)
, and A

(
k, k̂, k̃

)
are found to belong, respectively, to the symmetry

classes O(2) (isotropy), Z3 (2/3π, without reflection symmetry), and D6 (π/3, with reflection symmetry). Furthermore,
the positive definiteness of the identified SGE material is investigated and shown to be possible for specific sets of the
bars’ stiffness ratios k̂/k and k̃/k.

Finally, the mechanical response under simple shear and uniaxial strain is analytically evaluated for the discrete
lattice and for the respective equivalent material. A comparison between the behaviours of the lattice and of its
continuous counterpart shows an excellent agreement, a result which provides a validation to the proposed identification
procedure and paves the way to practical applications.

2 From the ‘condensed’ to the ‘standard’ SGE solid: symmetries and
positive definiteness

By means of the energetic matching with a hexagonal lattice (made up of axially deformable bars of length ` and

stiffnesses
{
k, k̂, k̃

}
, Fig. 1), the strain energy of the equivalent homogeneous second-gradient elastic material (SGE)

is given by (in Part I of this study [28])

USGE

(
pSGE,q∗

)
=

1

2
pSGE

T

C
(
k, k̃, k̂

)
pSGE︸ ︷︷ ︸

UC(pSGE)

+ pSGE
T

M∗
(
k, k̃, k̂

)
q∗︸ ︷︷ ︸

UM∗ (pSGE,q∗)

+
1

2
q∗

T

A∗
(
k, k̃, k̂

)
q∗︸ ︷︷ ︸

UA∗ (q∗)

, (6)

which is a function of the vectors pSGE =
[
εSGE11 , εSGE22 , 2εSGE12

]
and q∗ =

[
χSGE
111 , χ

SGE
221 , χ

SGE
112 , χ

SGE
222

]
, collecting respectively

the independent components of the deformation ε and curvature χ (constrained to produce equilibrated stress fields).
The energy USGE

(
pSGE,q∗

)
also involves the properties of the ‘condensed’ version of the second-gradient elastic

3
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material, expressed by the three matrices C
(
k, k̂, k̃

)
, M∗

(
k, k̂, k̃

)
, and A∗

(
k, k̂, k̃

)
assume the following expressions

C =

 C12 + 2C33 C12 0
C12 C12 + 2C33 0
0 0 C33

 , M∗ =

(
k̂ − k̃

)(
k̂k̃ − 2k

(
k̂ + k̃

))
`

8
√

3I[1]I
2
[2]

 0 0 m∗13 m∗14
0 0 m∗13 m∗14
0 0 0 0

 ,

A∗ =

√
3I[3]`

2

64I2[1]I
4
[2]


a∗11 a∗12 0 0
a∗12 a∗22 0 0
0 0 a∗33 a∗34
0 0 a∗34 a∗44

 ,

(7)

where the coefficients involved in the matrices are

C12 =
2I[1]I[2] − 9I[3]

4
√

3I[2]
, C33 =

9I[3]

4
√

3I[2]
, (8)

m∗13 = I[1]I[2] − 9I[3], m∗14 = −3(I[1]I[2] + 3I[3]), (9)

and

a∗12 =

[
10k

5
(
k̂ + k̃

)3
+ 5k

4
(
k̂ + k̃

)2 (
4k̂2 + 5k̂k̃ + 4k̃2

)
+k

3
(
k̂ + k̃

)(
10k̂4 − 71k̂3k̃ − 303k̂2k̃2 − 71k̂k̃3 + 10k̃4

)
+ 2k

2
k̂k̃
(

6k̂4 − 9k̂3k̃ + 641k̂2k̃2 − 9k̂k̃3 + 6k̃4
)

−kk̂2k̃2
(
k̂ + k̃

)(
33k̂2 + k̂k̃ + 33k̃2

)
− 35k̂3k̃3

(
k̂ + k̃

)2]
,

a∗12 − a∗11 = 12I[1]I[2]

[(
5k
(
k̂ + k̃

)
− 13k̂k̃

)(
k
2
(
k̂ + k̃

)
+ k

(
k̂2 + 6k̂k̃ + k̃2

)
+ k̂k̃

(
k̂ + k̃

))]
,

a∗11 − a∗22 = 8I[1]I[2]

[(
13k̂k̃ − 5k

(
k̂ + k̃

))(
k
2
(
k̂ + k̃

)
+ k

(
k̂2 + 12k̂k̃ + k̃2

)
+ k̂k̃

(
k̂ + k̃

))]
,

a∗33 − a∗22 =
2

3I[3]

[(
k
2
(
k̂ + k̃

)
+ k

(
k̂2 − 6k̂k̃ + k̃2

)
+ k̂k̃

(
k̂ + k̃

))2(
4k

2
(
k̂ + k̃

)3
−I[3]

(
4k̂2 + 35k̂k̃ + 4k̃2

)
+ k̂2k̃2

(
k̂ + k̃

))]
,

a∗33 − a∗34 =
4I[1]I[2]

3I[3]

[(
k
2
(
k̂ + k̃

)
+ k

(
k̂2 − 6k̂k̃ + k̃2

)
+ k̂k̃

(
k̂ + k̃

))(
k
2
(k̂ + k̃)

(
8k̂2 + k̂k̃ + 8k̃2

)
−I[3]

(
8k̂2 + 31k̂k̃ + 8k̃2

)
+ 2k̂2k̃2

(
k̂ + k̃

))]
,

a∗44 − a∗33 =
8I[1]I[2]

3I[3]

[(
k
2
(
k̂ + k̃

)
+ k

(
k̂2 + 12k̂k̃ + k̃2

)
+ k̂k̃

(
k̂ + k̃

))(
k
2
(
k̂ + k̃

)(
8k̂2 + k̂k̃ + 8k̃2

)
−I[3]

(
8k̂2 + 31k̂k̃ + 8k̃2

)
+ 2k̂2k̃2

(
k̂ + k̃

))]
.

(10)
On the other hand, the energy density stored within a ‘standard’ SGE material is

USGE (p,q) =
1

2
pTCp + pTMq +

1

2
qTAq, (11)

which is now constrained to coincide with the energy stored in the ‘condensed’ counterpart, Eq. (6), when the same
quadratic displacement field (producing an equilibrated stress field) is applied, so that p and q are respectively
identified with pSGE and qSGE. In other words, given the matrices M∗ and A∗, Eq. (7), the matrices M and A are to
be determined, which satisfy the following relations

M∗ = MTSGE, A∗ = TSGET

ATSGE, qSGE = TSGEq∗, (12)

where the transformation matrix TSGE, providing the equilibrium conditions in the second-gradient elastic solid, is

4
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introduced

TSGE =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 − 2C33

C12 + C33

2C12

C12 + C33
− 4

2C12

C12 + C33
− 4 − 2C33

C12 + C33
0 0


. (13)

From Eqs. (12), the matrices M and A can be obtained from the identified matrices M∗ and A∗, and the vector
q∗ can be related to the vector qSGE through the following linear relations

M = M∗Q + ∆M, A = QTA∗Q + ∆A and q∗ = QqSGE, (14)

where ∆M and ∆A are additional constitutive matrices (the latter symmetric) yet to be identified, while Q is a
rectangular 4× 6 transformation matrix, with the properties

QTSGE = I, ∆MTSGE = 0, ∆ATSGE = 0, (15)

(being I the identity matrix of rank 4) so that the energy density of the ‘standard’ SGE material is equal to that of
the ‘condensed’ form. It is noted that the constraint provided by Eqs. (15) does not completely define the matrices
Q, ∆M and ∆A. Indeed, eight over the twenty-four coefficients of the transformation matrix Q, six over the eighteen
coefficients of ∆M and three over the twenty-one independent coefficient of ∆A remain still undetermined after
imposing Eqs. (15). These matrices can be expressed as

Q = −Z



Q16 0 0 Q15 0 0

Q26 0 0 Q25 0 0

Q36 0 0 Q35 0 0

Q46 0 0 Q45 0 0

− Y



0 Q16 Q15 0 0 0

0 Q26 Q25 0 0 0

0 Q36 Q35 0 0 0

0 Q46 Q45 0 0 0

+



1 0 0 0 Q15 Q16

0 1 0 0 Q25 Q26

0 0 1 0 Q35 Q36

0 0 0 1 Q45 Q46

,

∆M =

 −∆M16Z −∆M16Y −∆M15Y −∆M15Z ∆M15 ∆M16

−∆M26Z −∆M26Y −∆M25Y −∆M25Z ∆M25 ∆M26

−∆M36Z −∆M36Y −∆M35Y −∆M35Z ∆M35 ∆M36

 ,

∆A =



∆A11
∆A11Y

Z
−∆A15Y −∆A15Z ∆A15 −∆A11

Z
∆A11Y

Z

∆A11Y
2

Z2
−∆A15Y

2

Z
−∆A15Y

∆A15Y

Z
−∆A11Y

Z2

−∆A15Y −∆A15Y
2

Z
−∆A35Y −∆A35Z ∆A35

∆A15Y

Z

−∆A15Z −∆A15Y −∆A35Z −∆A35Z
2

Y

∆A35Z

Y
∆A15

∆A15
∆A15Y

Z
∆A35

∆A35Z

Y
−∆A35

Y
−∆A15

Z

−∆A11

Z
−∆A11Y

Z2

∆A15Y

Z
∆A15 −∆A15

Z

∆A11

Z2


,

(16)

where Y = −2C33/(C12 + C33) and Z = −2(C12 + 2C33)/(C12 + C33).

In the following of this section it is first shown that the three matrices C
(
k, k̂, k̃

)
, M∗

(
k, k̂, k̃

)
, and A∗

(
k, k̂, k̃

)
(identified in Part I of this study) respectively belong to the symmetry classes O(2) (isotropy), Z3 (2/3π, without
reflection symmetry), and D6 (π/3, with reflection symmetry). These symmetry properties are then used to further
constraint the undetermined coefficients of the matrices Q, ∆M, and ∆A, a procedure which will leave undetermined
1 component of Q, 2 components of ∆M, and 1 component of ∆A. The remaining 4 components will be eventually
determined with a ‘practical’ rule, so that the second-gradient elastic solid equivalent to the lattice will be defined.
With this definition, the domain of positive definiteness of both the equivalent material in the standard and condensed
forms will be the same, at varying of the two independent stiffness ratios of the lattice.

2.1 Anisotropy characterization

Considering an orthogonal matrix D which realizes a generic rotation or reflection (DDT = DTD = I), the components

of strain and curvature in the rotated or reflected reference system {ε#ij , χ
#
ijk} are related to those in the untrasformed

5
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system {εij , χijk} by [1, 2]

ε#ij = εklDikDjl, χ#
ijk = χlmnDilDjmDkn. (17)

D will be identified either with a reflection S and with a rotation R (θ). These, restricted to a two-dimensional space,
can be expressed as

S =

(
1 0
0 −1

)
, R =

(
c(θ) −s(θ)
s(θ) c(θ)

)
, (18)

with s(θ) = sin θ and c(θ) = cos θ. When the strain and curvature tensors are represented as vectors in the Voigt
notation, Eqs. (17) have to be rewritten in the following form

pSGE
#

= D[p]p
SGE, qSGE

#

= D[q]q
SGE, (19)

where the pairs of matrices D[p] and D[q] will be taken in the following to coincide respectively with either the pair
S[p] and S[q] or R[p] and R[q], defined as

S[p] =

 1 0 0
0 1 0
0 0 −1

 , S[q] =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

, R[p](θ) =

 c2(θ) s2(θ) −c(θ)s(θ)
s2(θ) c2(θ) c(θ)s(θ)
s(2θ) −2c(θ)s(θ) c(2θ)

 ,

R[q](θ) =


c3(θ) s2(θ)c(θ) −s(θ)c2(θ) −s3(θ) −s(θ)c2(θ) s2(θ)c(θ)

s2(θ)c(θ) c3(θ) −s3(θ) −s(θ)c2(θ) s(θ)c2(θ) −s2(θ)c(θ)
s(θ)c2(θ) s3(θ) c3(θ) s2(θ)c(θ) −s2(θ)c(θ) −s(θ)c2(θ)
s3(θ) s(θ)c2(θ) s2(θ)c(θ) c3(θ) s2(θ)c(θ) s(θ)c2(θ)

2s(θ)c2(θ) −2s(θ)c2(θ) −2s2(θ)c(θ) s(θ)s(2θ) (c(θ) + c(3θ))/2 (s(θ)− s(3θ))/2
s(θ)s(2θ) −2s2(θ)c(θ) 2s(θ)c2(θ) −2s(θ)c2(θ) s(θ)c(2θ) (c(θ) + c(3θ))/2.



(20)

Considering the above premise, the symmetry classes of the constitutive matrices can be investigated. While the
symmetry analysis for the first-order response can be immediately performed, the same analysis for the higher-order
response requires the definition of the transformation matrices in condensed form related to the presence of the
curvature vector q∗.

Isotropy of the first-order equivalent material C. The first-order response is symmetric with respect to the
rotation θ when

RT
[p](θ)CR[p](θ) = C, (21)

and mirror symmetric with respect to the reflection S[p] when

ST
[p]CS[p] = C. (22)

Holding true these conditions for every θ, the local response for the equivalent material expressed by C, Eq. (7)1,
is isotropic and centrosymmetric.

2.1.1 Anisotropy characterization of M∗ and A∗

In a reference system denoted with symbol # the following relations hold

qSGE
#

= TSGE#

q∗
#

, q∗
#

= Q#qSGE
#

, (23)

so that the transformed Eq. (15) can now be written as

Q#TSGE#

= I, (24)

while the condensed vector q∗ transforms according to the rule

q∗
#

= D∗[q∗]q
∗, (25)

where D∗[q∗] is the condensed version of D[q] and can be found as follows, with the premise that the above equations
simplify because the first-order material is isotropic, so that

TSGE#

= TSGE, Q = Q#. (26)

6
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Substituting Eq. (12)3 into Eq. (19) and pre-multiplying the obtained equation by the transformation matrix Q
leads to

QqSGE
#

= QD[q]T
SGEq∗, (27)

so that the left side of Eq. (27) is the transformed condensed curvature vector q∗
#

, Eq. (23)2. The latter equation,
compared with Eq. (25), yields

D∗[q∗] = QD[q]T
SGE, (28)

providing the relation between D∗[q∗] and D[q].
A replacement of D[q] by the rotation R[q] or by the reflection S[q] in the law (28) provides the condensed rotation

R∗[q∗] and reflection S∗[q∗] as

R∗[q∗](θ) =



c(θ)((3C12 + 5C33)c(2θ)− C12 − 3C33)

2(C12 + C33)

(C12 − C33)s2(θ)c(θ)

C12 + C33

(C33 − C12)s(θ)c2(θ)

C12 + C33

s(θ)((3C12 + 5C33)c(2θ) + C12 + 3C33)

2(C12 + C33)
(3C12 + 5C33)s2(θ)c(θ)

C12 + C33

c(θ)((C12 − C33)c(2θ) + C12 + 3C33)

2(C12 + C33)

s(θ)((C12 − C33)c(2θ)− C12 − 3C33)

2(C12 + C33)
− (3C12 + 5C33)s(θ)c2(θ)

C12 + C33

(3C12 + 5C33)s(θ)c2(θ)

C12 + C33

s(θ)((C33 − C12)c(2θ) + C12 + 3C33)

2(C12 + C33)

c(θ)((C12 − C33)c(2θ) + C12 + 3C33)

2(C12 + C33)

(3C12 + 5C33)s2(θ)c(θ)

C12 + C33

−s(θ)((3C12 + 5C33)c(2θ) + C12 + 3C33)

2(C12 + C33)

(C12 − C33)s(θ)c2(θ)

C12 + C33

(C12 − C33)s2(θ)c(θ)

C12 + C33

c(θ)((3C12 + 5C33)c(2θ)− C12 − 3C33)

2(C12 + C33)


,

(29)

S∗[q∗] =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (30)

Note that both R∗[q∗](θ) and S∗[q∗] do not depend on the coefficients of Q, a property which follows from the isotropy
of the first-order effective material C.

Anisotropy characterization of M∗. The matrix M∗ is symmetric with respect to the rotation θ when

RT
[p](θ)M

∗R∗[q∗](θ) = M∗, (31)

and mirror symmetric with respect to the reflection S[p] when

ST
[p]M

∗S∗[q∗] = M∗. (32)

For the matrix M∗ defined by Eq. (7)2, the condition (31) is verified for θ = 2jπ/3 (j ∈ Z), so that the material
belongs to Z3 class of symmetry. Moreover, the material is non-centrosymmetric being Eq. (32) in general not verified.
The sole exception is verifed when (

k̂ − k̃
)(

k̂k̃ − 2k
(
k̂ + k̃

))
` = 0, (33)

corresponding to a centrosymmetric response, M∗ = 0. Such a condition is attained whenever the bars stiffness satisfy
one of the two conditions

k̂ = k̃ or k =
k̂k̃

2
(
k̂ + k̃

) . (34)

Anisotropy characterization of A∗. The matrix A∗ is symmetric with respect to the rotation θ when

R∗
T

[q∗](θ)A
∗R∗[q∗](θ) = A∗, (35)

and mirror symmetric with respect to the reflection S[p] when

S∗
T

[q∗]A
∗S∗[q∗] = A∗. (36)

For the matrix A∗ defined by Eq. (7)3, condition (35) is verified for θ = jπ/3 (j ∈ Z), while condition (36) always
is, so that the material belongs to D6 class of symmetry. To annihilate the anisotropic component of the matrix A∗,
the following condition for the three bars stiffness has to be realized

k =

k̂k̃
(

4k̂2 + 35k̂k̃ + 4k̃2
)
± 3
√

3

√
k̂3k̃3

(
8k̂2 + 43k̂k̃ + 8k̃2

)
8
(
k̂ + k̃

)3 . (37)
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2.1.2 Isotropic and centrosymmetric second-gradient equivalent material

The only possibility of obtaining a second-gradient elastic material characterized by an isotropic response (also implying

centrosymmetry) occurs when both Eqs. (33) and (37) are satisfied, which leads to the following constraint on k, k̂,

and k̃

k̂ = k̃ and k =
43± 3

√
177

64
k̃. (38)

The symmetries of the ‘condensed’ material are now completely characterized. As shown in Sect. 2.4, requiring
such symmetry properties to hold for the ‘standard’ material provides a further constraint for the remaining free
parameters in the matrices Q, ∆M, and ∆A, Eq. (16), with the exception of Q35, ∆M15, ∆M16, and ∆A11, which
remain undetermined.

2.2 The directional properties of the elastic energy for the SGE material

Inspired by [23], a further insight on the anisotropy of the effective SGE material (still in the ‘condensed’ form) can be
provided by analyzing the effect of a rotation of the applied curvature field on the stored energy density USGE. The

curvature part UA∗ of the elastic energy density USGE, Eq. (6), generated by the rotation matrix R∗
T

[q∗](θ) applied to a
curvature q∗, is

UA∗ (q∗, θ) =
1

2
q∗

T

R∗
T

[q∗](θ)A
∗R∗[q∗](θ)q

∗. (39)

Polar diagrams of the energy density UA∗ corresponding to a second-gradient elastic material (in the ‘condensed’

form), equivalent to a lattice with stiffness bar ratios k̂/k = 10, k̃/k = 100, is reported in Fig. 2 for a rotation θ
ranging between 0 and 2π of the following four curvature vectors,

q∗[1] = [0, 0,−0.278, 0.961] , q∗[2] = [0.967,−0.254, 0, 0] , q∗[3] = [0, 0, 0.961, 0.278] , q∗[4] = [0.254, 0.967, 0, 0] , (40)

corresponding to the four orthonormal eigenvectors of the ‘condensed’ matrix A∗. The polar diagrams, in which the
values of the elastic energy density are divided by the maximum value attained during the 2π rotation, highlight the
direction sensitivity and symmetry of the material response with rotations, corresponding to θ = jπ/3 (j ∈ Z).

Figure 2: Polar diagrams of the curvature energy density UA∗ in a SGE material (for the ‘condensed’ representation),

equivalent to a hexagonal lattice with stiffness bar ratios k̂/k = 10, k̃/k = 100. The curvatures q∗[i] (i = 1, ..., 4), Eq.
(40), are continuously rotated of an angle θ ranging between 0 and 2π. The diagrams show the π/3 symmetry (green
coloured curve part) of the constitutive response related to the matrix A∗.

The total elastic energy density USGE, Eq. (6), given by the sum of the Cauchy, UC, curvature, UA∗ , and mutual
UM∗ terms, can be rewritten as

USGE =
1

2
t∗

T

L∗
(
k, k̂, k̃

)
t∗, (41)

where the vector t∗ collects the strain and ‘condensed’ curvature vectors and the matrix L∗
(
k, k̂, k̃

)
collects the

matrices (C, M∗, A∗) characterizing the ‘condensed’ equivalent SGE, so that

t∗ =

[
pSGE

T

q∗
T

]
, L∗ =

[
C M∗

M∗
T

A∗.

]
(42)

With the purpose of analyzing the directional property of the total elastic energy, the following function is introduced

L∗ = t∗
T

L∗ t∗ − ψ (t∗ · t∗ − 1) , (43)
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where ψ is a Lagrangian multiplier. Imposing the stationarity of function (43) is equivalent to the following system of
equations 

∂L

∂t∗
= 2 (L∗ − ψI) t∗ = 0,

∂L

∂ψ
= t∗ · t∗ − 1 = 0,

(44)

with Eq. (44)1 defining the eigenvectors of the matrix L∗. These eigenvectors correspond to the seven principal
deformations, while Eq. (44)2 constrains such eigenvectors to lie on the unitary hypersphere. For the SGE material

(in the ‘condensed’ form) equivalent to the lattice with stiffness ratios k̂/k = 10, k̃/k = 100, the following seven
orthonormal eigenvectors are obtained

t∗[1] = [0.671, 0.671, 0, 0, 0,−0.091, 0.303] , t∗[2] = [−0.223,−0.223, 0, 0, 0,−0.225, 0.922] ,

t∗[3] = [−0.011,−0.011, 0, 0, 0,−0.970,−0.242] , t∗[4] = [0, 0, 0, 0.967,−0.254, 0, 0] ,

t∗[5] = [0, 0, 0, 0.254, 0.967, 0, 0] , t∗[6] = [0.707,−0.707, 0, 0, 0, 0, 0] , t∗[7] = [0, 0, 1, 0, 0, 0, 0] ,

(45)

showing that only the first three eigenvectors have non-null components in both the strain and the curvature, while
t∗[4] and t∗[5] have non-null components only in the curvature, and t∗[6] and t∗[7] only in the strain. Note that the
non-null curvature components of the vectors t∗[4] and t∗[5] coincide with the components of vectors q∗[2] and q∗[4],
respectively.

The seven eigenvectors (45) are rotated of an angle θ ∈ [0, 2π] to analyze the directional properties of the energy

density (for a material equivalent to a lattice with stiffness ratios, k̂/k = 10, k̃/k = 100), plotted as polar diagrams
in Fig. 3. The figure shows that: (i.) the constitutive matrix M∗ displays a 2π/3–symmetry revealed by the rotation
of the eigenvectors t∗[1], t∗[2], and t∗[3], (ii.) the constitutive matrix A∗ displays a π/3–symmetry revealed by the
rotation of the eigenvectors t∗[4] and t∗[5], and (iii.) the constitutive matrix C is isoropic revealed by the rotation of
the eigenvectors t∗[6] and t∗[7].

Figure 3: As for Fig. 2, but for the total energy density USGE∗ . Eigenvectors t∗[i] (i = 1, ..., 7), Eq. (45), are
continuously rotated of an angle θ ranging between 0 and 2π. The diagrams show different symmetries: (i.) a 2π/3
symmetry (when t∗[1], t∗[2], and t∗[3] are rotated) related only to the constitutive matrix M∗ (ii.) a π/3 symmetry
(when t∗[4] and t∗[5] are rotated) related only to the constitutive matrix A∗, (iii.) isotropy (when t∗[6] and t∗[7] are
rotated) related only to the constitutive matrix C.

2.3 Positive definiteness of the constitutive tensors (in ‘condensed’ form)

A-priori stability of the response for a higher-order material equivalent to the lattice is related to the positive def-
initeness of the elastic energy. It is known however that positive definiteness of higher-order solids equivalent to
heterogeneous Cauchy materials is not always verified [3, 4, 9, 34], so that the analysis of positive definiteness of the
constitutive tensors so far derived is an important issue.
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With reference to the energy density USGE, Eq. (41), the positive definiteness of the ‘condensed’ SGE corresponds
to the positive definiteness of the matrix L∗ collecting the matrices C, M∗, and A∗, Eq. (42)2. Considering positive
bar stiffnesses (for which the equivalent Cauchy material, Eq. (1), is positive definite), the sets of bar stiffnesses (made
dimensionless through division by k) for which the equivalent material is positive definite or indefinite are displayed
in Fig. 4 as green and red regions, respectively.

Figure 4: Regions in the bars’ stiffness (k̂/k–k̃/k) space corresponding to positive definite (green colour) or indefinite
(red colour) equivalent second-gradient elastic material. Note the symmetry with respect to a line inclined at π/4 and

that the case of equal stiffnessess, k̂/k=k̃/k=1, corresponds to an indefinite material.

The two cases of isotropy, given by Eq. (38), are remarkable. In fact, for both of them the equivalent material is
positive definite, while in the case of three equal bar stiffnesses, the equivalent material, not isotropic at higher-order, is
also not positive definite. Note that the positive definiteness of the equivalent material is not affected by a permutation
of k̂ with k̃, so that the symmetry line inclined at π/4 is observed in the figure. The non positive definiteness issue is
discussed further by analyzing the elastic energy stored within a circular domain at increasing its size.

Variation of the elastic energy with the characteristic length. Even in the case of non positive definite
equivalent constitutive response, the elastic energy stored within a disk of equivalent material of radius ρ centred at
the origin of the reference system and generated by a quadratic displacement field (producing an equilibrated stress
field) is always positive whenever the ratio between the disk radius ρ and the hexagonal lattice side ` exceeds a finite
value. Restricting attention to a purely quadratic displacement conditions (α = 0) 1, the integration of the energy
density, Eq. (6), over the aforementioned disk yields

USGE = ρ4C
(
C
(
k, k̂, k̃

)
,β
)

︸ ︷︷ ︸
UC

+ ρ2`2 A
(
A∗
(
k, k̂, k̃

)
,β
)

︸ ︷︷ ︸
UA∗

, (46)

where C
(
C(k, k̂, k̃),β

)
is always positive, while A

(
A∗(k, k̂, k̃),β

)
has no sign restriction.

Eq. (46) shows that the Cauchy UC and the higher-order UA∗ energies are ruled by different powers in the disk
radius ρ, so that they scale differently with it. On the other hand, the mutual energy UM∗ is null, because it follows
from an integration of an odd function over a symmetric domain.

Introducing the parameter R as the ratio between the UA∗ and UC

R =
UA∗

UC
, (47)

1A purely quadratic displacement (α = 0) is a strongly demanding condition for positive definiteness of the elastic energy within a
finite domain, because the Cauchy part UC of the elastic energy, always positive, is only partially (through tensor β) activated.
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the elastic energy USGE (6) can be rewritten as

USGE = (1 + R)UC. (48)

Considering expression (46), the parameter R (47) reduces to

R =
A
(
A∗
(
k, k̂, k̃

)
,β
)

C
(
C
(
k, k̂, k̃

)
,β
) (

`

ρ

)2

, (49)

and the following two considerations can be made:

• a positive value for the stored energy USGE, Eq. (46), is achieved when the following constraint on R is enforced

A
(
A∗
(
k, k̂, k̃

)
,β
)

C
(
C
(
k, k̂, k̃

)
,β
) (

`

ρ

)2

> −1. (50)

which is always satisfied if A
(
A∗
(
k, k̂, k̃

)
,β
)

is greater than zero, since C
(
C
(
k, k̂, k̃

)
,β
)

always is;

• the parameter R increases when the higher-order part UA∗ of the elastic energy is increased with respect to the
Cauchy UC energy. A large value of the parameter R can always be achieved by increasing either the ratio `/ρ

or the ratio A
(
A∗
(
k, k̂, k̃

)
,β
)/

C
(
C
(
k, k̂, k̃

)
,β
)

.

The behaviour of parameter R as a function of the ratio `/ρ is reported in Fig. 5, for three different values of

the pairs of bars’ stiffness {k̂/k, k̃/k} and for the following values of the non-null components of β: β222 = −β112 =
−β211 = 1. The figure shows that the stored energy becomes always positive when the disk radius ρ is sufficiently
large.

Figure 5: Parameter R, Eq. (47), as a function of the ratio ρ/`, for β222 = −β112 = −β211 = 1. Different pairs of

bars’ stiffness are reported {k̂/k, k̃/k}, given by {4.5, 3.5} (green), {5, 0.2} (purple) and {10, 0.1} (orange). Note that
the ratio is always positive at sufficiently large ρ/`.

As a closing remark, it is observed that the higher-order energy contribution UA∗ becomes negligible with respect
to the Cauchy part UC at a threshold value of the ratio ρ/`, function of the bars’ stiffnesses.

2.4 The constitutive law for the equivalent second-gradient elastic material

Having used for the identification (performed in Part I of this study) a quadratic displacement field which produces
an equilibrated stress field, an equivalent second-gradient material has been so far defined in a ‘condensed’ form,
corresponding to a class of ∞4 second-gradient materials, all providing a correct energy matching with the periodic
planar lattice. At this stage, a ‘relaxation of the constraints’ has to be introduced to yield an equivalent second-gradient
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elastic material in a, say, ‘standard form’. This relaxation can be introduced in several ways, as for example exploiting
an optimization scheme. However, in the following a simple approach is pursued, which corresponds to imposing (still
at the first indentification step) an equivalence between the elastic energies of the lattice and the equivalent solid in
which the equilibrium constraint on the coefficients βijk (Eq. (46) and (75) in [28]) is neglected, therefore removing
the concept itself of ‘condensed’ material.

Removing the equilibrium constraint yields the definition of a unique second-gradient elastic material, through the
following expressions for the four coefficients Q35, A11, ∆M15, and ∆M16

Q35 =
I[1]

4E

[
26k

3
(
k̂ + k̃

)2
− 2k

2
(
k̂ + k̃

)(
5k̂2 − 16k̂k̃ + 5k̃2

)
+

I[3]

(
−47k̂2 + 40k̂k̃ − 47k̃2

)
− 10k̂2k̃2

(
k̂ + k̃

)]
,

∆A11 =−

(
2k

2
(
k̂ + k̃

)
+ k

(
2k̂2 + 15k̂k̃ + 2k̃2

)
+ 2k̂k̃

(
k̂ + k̃

))2
`2

192
√

3I2[2]E

[
−60k

4
(
k̂ + k̃

)

+ k
3
(
−155k̂2 + 818k̂k̃ − 155k̃2

)
− k2

(
k̂ + k̃

)(
35k̂2 − 211k̂k̃ + 35k̃2

)
+I[3]

(
182k̂2 − 253k̂k̃ + 182k̃2

)
+ 28k̂2k̃2

(
k̂ + k̃

)]
,

∆M15 =∆M16 = 0.

(51)

where E is defined as

E =5k
4
(
k̂ + k̃

)2
+ k

3
(
k̂ + k̃

)(
10k̂2 − 69k̂k̃ + 10k̃2

)
+ k

2
(

5k̂4 + 13k̂3k̃ − 78k̂2k̃2 + 13k̂k̃3 + 5k̃4
)

− 13I[3]

(
k̂ + k̃

)(
2k̂2 − 3k̂k̃ + 2k̃2

)
− 4k̂2k̃2

(
k̂ + k̃

)2
.

(52)

A substitution of the above coefficients in the matrices (16), which are also constrained by the material symmetry of

the ‘condensed’ solid remarked in section 2.1, yields the two constitutive tensors M
(
k, k̂, k̃

)
and A

(
k, k̂, k̃

)
anticipated

with Eqn. (1). It is highlighted that the adopted choice for the coefficients in Eqs. (51) provides a domain of positive
definiteness identical for both the ‘condensed’ (Fig. 4) and the extended forms of the equivalent material.

3 Validation of the identified SGE material

The second-gradient elastic material previously obtained to be equivalent to the hexagonal lattice structure is validated
through comparisons between their corresponding response to the same mechanical input. In particular, two basic
boundary value problems are analyzed, namely, simple shear and uniaxial strain, providing the four deformations
shown in Fig. 6, which have been reported after an analytical determination (so that they are exact). In all of these
cases the response of the equivalent homogeneous material is provided in closed-form expressions, while that of the
lattice is obtained by solving a linear system.

In the absence of body forces, the stress σij and the double-stress τkij fields within a homogeneous SGE material
are governed by the equilibrium equations

σij,j − τkji,kj = 0, (53)

moreover, the components of the resultant traction vector P (n) associated with the surface of normal unit vector n
are given by

Pk(n) = σjk nj − ni nj D (τijk)− 2nj Di (τijk) + (ni nj Dl (nl)−Dj (ni)) τijk, (54)

where the differential operators Dj ( · ) and D ( · ) are defined as

Dj ( · ) = (δjl − njnl) ( · ),l , D ( · ) = nl ( · ),l , (55)

with the comma defining differentiation with respect to the coordinates xl.
The mechanical responses of the lattice and of the related equivalent homogeneous solid are compared for different

stiffness ratios pairs k̂/k and k̂/k and corresponding constitutive parameters µ, λ, m, a11, a22, a33, and a44 of the SGE.
All of these parameters are listed for the six Example cases (Ex1, Ex2, Ex3, Ex4, Ex5, and Ex6) in Table 1. The
comparison is performed by analysing displacement and strain energy density fields. As far as regards the geometry:
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Figure 6: Upper row from left to right: Undeformed lattice and equivalent SGE material; deformed configuration
induced by a simple shear parallel to the horizontal direction; deformed configuration induced by a uniaxial strain
in the vertical direction. Lower row from left to right: Undeformed lattice and equivalent SGE material; deformed
configuration induced by a simple shear parallel to the vertical direction; deformed configuration induced by a uniaxial
strain in the horizontal direction. The deformed configurations (which are exact) for the lattice are displayed for bars

having the same stiffness, k̂/k = k̃/k = 1, which corresponds to centrosymmetric response.

• for simple shear and uniaxial strain respectively aligned parallel to the x1–axis and to the x2–axis, the lattice
structure is considered to be realized as the periodic repetition along the x1–axis of one line of 9 unit cells, so
that the strip of equivalent homogeneous solid has sides H = 14` and (by imposing the equivalence of area)
B = 81

√
3`/28, Fig. 6 (top);

• for simple shear and uniaxial strain respectively aligned parallel to the x2–axis and to the x1–axis, the periodic
repetition along the x2 axis of two lines of 8 unit cells realizes the lattice structure, so that the equivalent
homogeneous strip has sides H = 17

√
3`/2 and (by imposing the equivalence of area) B = 48`/17, Fig. 6

(bottom).

Table 1: The stiffness ratios k̂/k and k̂/k and the corresponding equivalent constitutive parameters µ, λ, m, a11,
a22, a33, and a44 (made dimensionless through division by the bar stiffness k) used to compare the solutions of the
boundary value problems shown in Figs. 7-11.

k̂/k k̃/k µ/k λ/k m/k a11/k a22/k a33/k a44/k

Ex1 1 1 0.433 0.433 0 1.27 0.153 0.135 1.25

Ex2 25 25 1.20 13.52 0 5.902 0.426 0.554 6.03

Ex3 1500 10 1.18 435 78 129 0.413 14.4 143

Ex4 0.75 0.75 0.354 0.367 0 1.19 0.125 0.127 1.188

Ex5 0.05 0.5 0.056 0.39 0.06 0.823 5.45·10−4 0.034 0.857

Ex6 0.5 0.05 0.056 0.39 -0.06 0.823 5.45·10−4 0.034 0.857
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3.1 Simple shear problem

The kinematical boundary conditions for a SGE material subject to a simple shear aligned parallel to the xI–axis
(I = 1, 2) are

uI (xJ = 0) = 0, uI (xJ = H) = UI , uI,J (xJ = 0) = 0, uI,J (xJ = H) = 0,

uJ (xJ = 0) = 0, uJ (xJ = H) = 0, uJ,J (xJ = 0) = 0, uJ,J (xJ = H) = 0,
for

{
I, J = 1, 2,
I 6= J,

(56)

where UI is the prescribed displacement aligned parallel to the xI -direction and applied at xJ = H (reported in the
centre of Fig. 6 for I = 1 and J = 2, top and bottom part, respectively). Because the boundary conditions are
independent of xI and the SGE material is homogeneous, the displacement fields are only dependent on xJ ,

uI = uI(xJ), uJ = uJ(xJ), (57)

so that the equilibrium equations (53) in the case of simple shear aligned parallel the x1–axis (I = 1, J = 2) reduce to
u1,22(x2)− `2 a22

µ
u1,2222(x2) = 0,

u2,22(x2)− `2 a44
(λ+ 2µ)

u2,2222(x2) = 0,
(58)

and the resultant traction components Eq. (54) which are generated on a surface parallel to the x1–axis (and therefore
n = e2) result to be {

P1 (e2) = σ12 − τ221,2 ,

P2 (e2) = σ22 − τ222,2 .
(59)

Differently, if the simple shear is aligned parallel to the x2–axis (I = 2, J = 1), the equilibrium equations (53)
become 

u1,11(x1) + `

(
m

λ+ 2µ
u2,111(x1)− ` a11

λ+ 2µ
u1,1111(x1)

)
= 0,

u2,11(x1)− `
(
m

µ
u1,111(x1) + `

a33
µ
u2,1111(x1)

)
= 0,

(60)

and the resultant traction components Eq. (54) which are generated on a surface parallel to the x2–axis result to be{
P1 (e1) = σ11 − τ111,1 ,

P2 (e1) = σ12 − τ112,1 ,
(61)

where a22 = a11 − 2(a16 + a26), a33 = a11 + a12 − 2(a16 + a26) − a34, and a44 = a11 + a12 − a34, in agreement with
Eq. (1)3.

Note that the differential equations (58) and (60) are uncoupled when the simple shear is aligned parallel to the
x1–axis, while these become coupled when the simple shear is aligned parallel to the x2–axis.

The two cases of simple shear aligned parallel the x1–axis and parallel to the x2–axis are separately analyzed below.

3.1.1 Simple shear parallel to the x1–axis

Solving the equilibrium equations (58) subject to the boundary conditions (56) leads to the following solution in terms
of displacement fields within the SGE solid

u1(x2) =

cosh (Zs)x2 +

[
sinh

(
Zs

(
1− 2x2

H

))
− sinh (Zs)

]
H

2Zs

coshZs −
1

Zs
sinhZs

U2

H
, u2(x2) = 0, (62)

and in terms of stress and double stress fields

σ12(x2) = µ
2 sinh

(x2
H

Zs

)
sinh

(
Zs

(
1− x2

H

))
coshZs −

1

Zs
sinhZs

U2

H
, τ221(x2) =

a22
a12

τ111(x2),

τ111(x2) = ` a12

2`

H
Zs sinh

(
Zs

(
1− 2x2

H

))
coshZs −

1

Zs
sinhZs

U2

H
, τ122(x2) =

a26
a12

τ111(x2).

(63)
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Note that in the above-reported solution the parameter m does not appear, so that the considered boundary value
problem does not activate the possible non-centrosymmetric response.

The components of the resultant traction vector associated with the normal n = e2 are found to be independent
of x2 in the form

P1 (e2) =
µ

1− 1

Zs
tanhZs

U2

H
, P2 (e2) = 0, (64)

and the three contributions UC, UM, and UA to the strain energy density are given by

UC(x2) = µ
2 sinh2

(
Zs

(
1− x2

H

))
sinh2

(x2
H

Zs

)
(

coshZs −
1

Zs
sinhZs

)2

U2
2

H2
, UM(x2) = 0,

UA(x2) = µ

sinh2

(
Zs

(
1− 2x2

H

))
2

(
coshZs −

1

Zs
sinhZs

)2

U2
2

H2
,

(65)

where

Zs =
H

2`

√
µ

a22
. (66)

Comparisons between the mechanical response of the lattice (solved exactly through Mathematica) and those of
the equivalent Cauchy solid and of the equivalent SGE solid are reported in Fig. 7, for the stiffness pairs labeled as
Ex1 (upper part), Ex2 (central part), and Ex3 (lower part), see Table 1. In particular, the deformed configuration, the
displacement u1(x2), and the strain energy density U(x2) are reported from left to right along the coordinate x2. For
the lattice, average values taken over each unit cell are reported as yellow dots, while the values evaluated within the
equivalent Cauchy and SGE solids are reported as dashed and purple lines, respectively. The improvement obtained
when the lattice is modelled through the identified SGE, with respect to the equivalent Cauchy material can be noted.
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Figure 7: A simple shear strain is applied aligned parallel to the x1–axis on a hexagonal lattice (left and reported as
yellow dots on the right figures), on a Cauchy (dashed line) and a second-gradient (purple line) equivalent solid. From
left to right: Deformed configuration (superimposed to the undeformed configuration sketched gray), displacement
field u1(x2), and elastic strain energy density U(x2) for the three cases labeled as Ex1 (upper part), Ex2 (central part),
and Ex3 (lower part) as defined in Table 1. The enhancement in the modelling introduced through the second-gradient
approximation are clearly visible.

3.1.2 Simple shear parallel to the x2–axis

In the case of a simple shear parallel to the x2–axis, the governing equilibrium equations (60) become coupled. The
solution of these equations can be obtained in a closed-form, but very complex, when the boundary conditions (56)
are applied. The complication is related to the activation of the possible non-centrosymmetric effects. Therefore, this
solution has been obtained with Mathematica, but is not reported.

The mechanical responses of the lattice and of the two equivalent material models (Cauchy and SGE) are reported
in Fig. 8, for stiffness ratios corresponding to the case labeled as Ex1, Ex2, and Ex3 in Table 1 (from left to right in
the figure). In the figure (from the upper part to the lower) the deformed configuration, the displacement field u2(x1),
and the strain energy density U(x1) are shown.
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Figure 8: A simple shear strain is applied aligned parallel to the x2–axis on a hexagonal lattice (upper part and
reported as yellow dots on the lower figures), on a Cauchy (dashed line) and a second-gradient (purple line) equivalent
solid. From the upper to the lower part: deformed configuration (superimposed to the undeformed configuration
sketched gray), displacement field u2(x1), and strain energy density U(x1) for the stiffness ratios labeled as Ex1, Ex2,
and Ex3 in Table 1.

3.1.3 Validation of the second-gradient model for simple shear via energy mismatch

The strain energy for the previously-reported simple shear problems has been evaluated with reference to a portion
of the lattice, Ulat, and an equivalent portion of the identified materials (Cauchy, UCau, and second-gradient, USGE)
shown in Figs. 7 and 8. The difference between the strain energy in the lattice and the strain energy either of the
Cauchy or of the second-gradient elastic materials are presented in Table 2, after a division by the strain energy in
the lattice.2 The portion of the lattice considered for the evaluation of the elastic energy comprises a line of 9 unit
cells for shear parallel to the x1–axis and two lines of 8 unit cells for shear parallel to the x2–axis, while a rectangular
region has been used for the equivalent solids, respectively of dimensions B = 81

√
3`/28 and H = 14`, and B = 48`/17

and H = 17
√

3`/2. The selected dimension of the rectangle ensures the correct area equivalence with the considered
portion of lattice.

The discrepancies in the strain energy reported in Table 2 can be interpreted in a sense as the error made when
the discrete lattice is treated as an equivalent elastic continuum.

2Note that the dimensionless difference in the total energy also coincides with the dimensionless difference in the resultant of the
tractions, computed as (RIJ − BσCau

IJ )/RIJ for the equivalent Cauchy and as (RIJ − BPI(eJ ))/RIJ for the equivalent SGE. In these

expressions, σCau
IJ is the shear stress in the equivalent Cauchy solid and RIJ is the component along the xJ–axis of the sum of the force in

the bars of the lattice, cut with a plane with of normal eI (being I the direction of the simple shear, and J 6= I, with {I, J} = {1, 2}).
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Table 2: Errors in the strain energy matching between the lattice and the equivalent Cauchy and SGE solids for a
simple shear parallel to the x1–axis and parallel to the x2–axis. The stiffness ratios labeled as Ex1, Ex2, and Ex3 in
Table 1 are considered.

Simple shear parallel to x1–axis Simple shear parallel to x2–axis

Ulat − UCau

Ulat

Ulat − USGE

Ulat

Ulat − UCau

Ulat

Ulat − USGE

Ulat

Ex1 10.46% 2.14% 16.26% 9.38%

Ex2 16.58% 8.83% 26.74% 19.3%

Ex3 16.4% 8.69% 25.63% 1.14%

The advantage in modelling the discrete lattice as an equivalent SGE material, instead of an equivalent Cauchy
material, is evident from the Table, where the discrepancies in the strain energies are remarkably reduced using the
second-gradient equivalent model, rather than the Cauchy solid.

3.2 Uniaxial strain problem

The kinematical boundary conditions for a SGE material subject to a uniaxial strain aligned parallel to the xI–axis
(I = 1, 2) are

uI (xI = 0) = 0, uI (xI = H) = UI , uI,J (xI = 0) = 0, uI,J (xI = H) = 0,

uJ (xI = 0) = 0, uJ (xI = H) = 0, uJ,J (xI = 0) = 0, uJ,J (xI = H) = 0,
for

{
I, J = 1, 2,
J 6= I,

(67)

where UI is the imposed displacement aligned parallel to the xI -direction and applied at xI = H (sketched with
arrows on the right of Fig. 6 for the cases I = 1 and J = 2). Because of the fact that the boundary conditions are
independent of xJ and the SGE material is homogeneous, the displacement fields are only dependent on xI ,

uI = uI(xI), uJ = uJ(xI), (68)

so that the equilibrium (53) in the case of uniaxial strain aligned parallel to the x1–axis (I = 1, J = 2) reduces to
Eqs. (60) and Eqs. (61), respectively, while for uniaxial strain aligned parallel the x2–axis (I = 2, J = 1) to Eqs. (58)
and Eqs. (59), respectively.

The equilibrium equations become uncoupled when the uniaxial strain is imposed aligned parallel to the x2–axis,
while remain coupled when the uniaxial strain is aligned parallel the x1–axis.

3.2.1 Uniaxial strain parallel to the x2–axis

In terms of displacement field within the SGE solid, the solution of the equilibrium equations (58) when subjected to
the boundary conditions (67) yields the following expressions

u1(x2) = 0, u2(x2) =

x2 cosh(Zu) +
H

2Zu

[
sinh

(
Zu

(
1− 2x2

H

))
− sinh(Zu)

]
cosh(Zu)− 1

Zu
sinh(Zu)

U2

H
, (69)

while in terms of stress fields

σ11(x2) =

λ

[
cosh(Zu)− cosh

(
Zu

(
1− 2x2

H

))]
− 2`

H
mZu sinh

(
Zu

(
1− 2x2

H

))
cosh(Zu)− 1

Zu
sinh (Zu)

U2

H
,

σ22(x2) =

(λ+ 2µ)

[
cosh(Zu)− cosh

(
Zu

(
1− 2x2

H

))]
− 2`

H
mZu sinh

(
Zu

(
1− 2x2

H

))
cosh(Zu)− 1

Zu
sinh (Zu)

U2

H
,

(70)
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and in terms of double stress fields

τ112(x2) = `

m

[
cosh(Zu)− cosh

(
Zu

(
1− 2x2

H

))]
+

2`

H
a34Zu sinh

(
Zu

(
1− 2x2

H

))
cosh(Zu)− 1

Zu
sinh (Zu)

U2

H
,

τ222(x2) = `

−m
[
cosh(Zu)− cosh

(
Zu

(
1− 2x2

H

))]
+

2`

H
a44Zu sinh

(
Zu

(
1− 2x2

H

))
cosh(Zu)− 1

Zu
sinh (Zu)

U2

H
,

τ211(x2) = `

m

[
cosh(Zu)− cosh

(
Zu

(
1− 2x2

H

))]
+

2`

H
a45Zu sinh

(
Zu

(
1− 2x2

H

))
cosh(Zu)− 1

Zu
sinh (Zu)

U2

H
,

(71)

showing that, although the governing equations (58) are decoupled, the stress and double-stress fields depend on the
non-centrosymmetry constitutive parameter.

The components of the resultant traction vector associated with the normal n = e2 are found to be independent
of x2 in the form

P1 (e2) = 0, P2 (e2) =
λ+ 2µ

1− 1

Zu
tanhZu

U2

H
, (72)

and the three contributions UC, UM, and UA to the strain energy density are given by

UC(x2) =

(λ+ 2µ)

[
cosh (Zu)− cosh

(
Zu

(
1− 2x2

H

))]2
2

(
cosh (Zu)− 1

Zu
sinh (Zu)

)2 ,

UM(x2) =
2`

H

mZu sinh

(
Zu

(
1− 2x2

H

))[
cosh

(
Zu

(
1− 2x2

H

))
− cosh(Zu)

]
(

cosh(Zu)− sinh(Zu)

Zu

)2

U2
2

H2
,

UA(x2) =

(λ+ 2µ) sinh2

(
Zu

(
1− 2x2

H

))
2

(
cosh (Zu)− 1

Zu
sinh (Zu)

)2 ,

(73)

where

Zu =
H

2`

√
λ+ 2µ

a44
. (74)

Comparisons between the mechanical response of the lattice (solved exactly through Mathematica) and those of
the equivalent Cauchy solid and of the equivalent SGE solid are reported in Fig. 9, for the stiffness pairs labeled as
Ex1 (upper part), Ex4 (central part), and Ex5 (lower part), in Table 1. In particular, the deformed configuration, the
displacement u2(x2), and the strain energy density U(x2) are reported from left to right along the coordinate x2. For
the lattice, average values taken over each unit cell are reported as yellow dots, while the values evaluated within the
equivalent Cauchy and SGE solids are reported as dashed and purple lines, respectively.

It is highlighted that, for Ex5, the strain energy density of the SGE solid is not symmetric with respect to the
horizontal line drawn at mid point of the height H. The asymmetry is due to the non-centrosymmetric component
UM of the strain energy density, a component which results skew-symmetric. The improvement obtained when the
lattice is modelled through the identified SGE, with respect to the equivalent Cauchy material, can be noted.
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Figure 9: A uniaxial strain is applied aligned parallel to the x2–axis on a hexagonal lattice (left and reported as yellow
dots on the right figures), on a Cauchy (dashed line) and a second-gradient (purple line) equivalent solid. From left
to right: Deformed configuration (superimposed to the undeformed configuration sketched gray), displacement field
u2(x2), and elastic strain energy density U(x2) for the three cases labeled as Ex1 (upper part), Ex4 (central part),
and Ex5 (lower part), as defined in Table 1.

3.2.2 Uniaxial strain parallel to the x1–axis

In the case of a uniaxial strain parallel to the x1–axis, the governing equilibrium equations (60) become coupled. The
solution of these equations can be obtained in a closed, but very complicated, form when the boundary conditions
(67) are applied. The complexity is related to the non-centrosymmetric effect. Therefore, the closed-form solution
obtained with Mathematica is not reported.

The mechanical responses of the lattice and of the two equivalent solids (Cauchy and second-gradient) are reported
in Fig. 10, for stiffness ratios corresponding to the case labeled as Ex1, Ex4, and Ex5 in Table 1 (found from left to
right in the figure). The deformed configuration, the displacement field u1(x1), and the strain energy density U(x1)
are shown in the figure (from the upper part to the lower).
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Figure 10: A uniaxial strain aligned parallel to the x1–axis on a hexagonal lattice (upper part and reported as yellow
dots on the lower figures), on a Cauchy (dashed line) and a second-gradient (purple line) equivalent solid. From
the upper to the lower part: deformed configuration (superimposed to the undeformed configuration sketched gray),
displacement field u1(x1), and strain energy density U(x1) for the stiffness ratios labeled as Ex1, Ex4, and Ex5 in
Table 1.

3.2.3 Validation of the second-gradient model for uniaxial strain via energy mismatch

The strain energy for the previously-reported uniaxial strain problems has been evaluated with reference to a portion
of the lattice, Ulat, and an equivalent portion of the identified materials (Cauchy, UCau, and second-gradient, USGE)
shown in Figs. 9 and 10. The difference between the strain energy in the lattice and the strain energy either of the
Cauchy or of the second-gradient elastic materials are presented in Table 3, after a division by the strain energy in the
lattice.3 The portion of the lattice considered for the evaluation of the elastic energy comprises a line of 9 unit cells
for uniaxial strain parallel to the x2–axis and two lines of 8 unit cells for uniaxial strain parallel to the x1–axis, while
a rectangular region has been used for the equivalent solids, respectively of dimensions B = 81

√
3`/28 and H = 14`,

and B = 48`/17 and H = 17
√

3`/2. The selected dimension of the rectangle ensures the correct equivalence with the
considered portion of lattice.

The discrepancies in the strain energy reported in Table 3 can be interpreted in a sense as the error made when
the discrete lattice is treated as an equivalent elastic continuum.

3As in the simple shear problem, for the uniaxial strain problems the dimensionless difference in the resultant of the tractions coincides
with that in the energy.
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Table 3: Errors in the strain energy matching between the lattice and the equivalent Cauchy and SGE solids for a
uniaxial strain parallel to the x1–axis and parallel to the x2–axis. The stiffness ratios labeled as Ex1, Ex4, and Ex5
in Table 1 are considered.

Uniaxial strain parallel to x1–axis Uniaxial strain parallel to x2–axis

Ulat − UCau

Ulat

Ulat − USGE

Ulat

Ulat − UCau

Ulat

Ulat − USGE

Ulat

Ex1 8.16% -6.83% 14.52% -1.24%

Ex4 8.67% -7.47% 14.75% 0.57%

Ex5 11.93% -8.23% 16.5% -0.72%

The negative values reported in Table 3 for the discrepancy in the strain energy are referred to situations where
the second-gradient equivalent solid is stiffer than the lattice. While the advantage in modelling the lattice as an
equivalent second-gradient continuum is not particularly evident from the case of uniaxial strain parallel to the x1–
axis, the advantage becomes clear when the uniaxial strain becomes parallel to the x2–axis.

3.3 Non-centrosymmetry in the lattice and in the SGE material

The purpose of this section is to provide a clear evidence of the non-centrosymmetric effect in the lattice structure and
its proper prediction through the identified equivalent SGE solid. In fact, the non-centrosymmetry of a material can be
interpreted as a coupling between strains and curvatures, so that if a non-centrosymmetric solid is subjected to strain,
curvature is generated and vice-versa. A basic example for which the lattice and, in agreement, the equivalent SGE
solid show non-centrosymmetric behaviour is the case of uniaxial strain aligned parallel to the x1–axis (Section 3.2.2),

whenever the three bars’ stiffnesses k, k̂, and k̃ do not satisfy Eq. (34). In this case, the lattice structure displays a
transverse displacement u2(x1), which is simply not captured by the equivalent Cauchy solid, but is correctly modelled
with the second-gradient equivalent continuum, as shown in Fig. 11.

Fig. 11 reports results for lattices and corresponding SGE solids characterized by the stiffness ratios labeled as Ex5
and Ex6 in Table 1 and subject to compressive (U1 < 0) and tensile (U1 > 0) uniaxial strain, both applied to three
different hexagonal geometries (H/` = {4

√
3 + 1/2, 8

√
3 + 1/2, 16

√
3 + 1/2}). It is possible to observe from the figure

that the transverse displacement field u2(x1) takes a different sign in the upper and lower parts of Fig. 11. This is a
consequence of the fact that the equivalent constitutive parameter m keeps the same absolute value, but changes its
sign, when two the non-perimeter springs are permuted. Note that, due to the normalization, the diagrams u2(x1)/U1

are insensitive to the sign of the imposed displacement U1.

22



Published in International Journal of Solids and Structures (2019) 176-177, 19-35
doi: https://doi.org/10.1016/j.ijsolstr.2019.07.009

Figure 11: Deformed configurations (superimposed to the undeformed configuration sketched gray) and dimensionless
transverse displacement u2(x1)/U1 for the lattice and the corresponding equivalent SGE solid, in the cases labeled as
Ex5 and Ex6 in Table 1 and subject to compressive (U1 < 0) and tensile (U1 > 0) uniaxial strain aligned parallel to
the x1–axis. Different geometries are reported, H/` = {4

√
3 + 1/2, 8

√
3 + 1/2, 16

√
3 + 1/2}. Note that the transverse

displacement would be null for a Cauchy equivalent material, thus evidencing the superiority of the second-gradient
model.

4 Conclusions

A class of second-gradient elastic materials has been derived from a ‘condensed’ form of the constitutive tensors,
identified in Part I of this study to be energetically equivalent to a hexagonal (planar and infinite) truss structure made
up of three orders of different elastic bars. It is shown that the identified homogeneous material displays mechanical
properties of: (i.) non-locality, (ii.) non-centrosymmetry, and (iii.) anisotropy (although the local behaviour is
isotropic, in consequence of the hexagonal geometry, local, and centrosymmetric). The capability of the presented
model is assessed through comparisons of the mechanical response under simple shear and uniaxial strain for different
lattice structures and their equivalent material counterparts, for which analytical solutions have been derived. The
performed comparisons provide a quantitative validation of the present identification technique, thus confirming its
applicative potentiality in the advanced design of microstructured solids.
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