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ABSTRACT

A dominant view in the cognitive neuroscience of object vision is that regions of the ventral visual pathway
exhibit some degree of category selectivity. However, recent findings obtained with multivariate pattern ana-
lyses (MVPA) suggest that apparent category selectivity in these regions is dependent on more basic visual
features of stimuli. In which case a rethinking of the function and organization of the ventral pathway may be in
order. We suggest that addressing this issue of functional specificity requires clear coding hypotheses, about
object category and visual features, which make contrasting predictions about neuroimaging results in ventral
pathway regions. One way to differentiate between categorical and featural coding hypotheses is to test for
residual categorical effects: effects of category selectivity that cannot be accounted for by visual features of
stimuli. A strong method for testing these effects, we argue, is to make object category and target visual features
orthogonal in stimulus design. Recent studies that adopt this approach support a feature-based categorical
coding hypothesis according to which regions of the ventral stream do indeed code for object category, but in a
format at least partially based on the visual features of stimuli.

1. Introduction

It is manifest from our everyday experience that we categorize the
objects we see. For example, if we see a cat walking down the street, we
do not see it simply as a mobile shape, with furry texture, but as an
animate creature, an animal, a cat, or possibly our own cat. Even in the
extreme case of ambiguous stimuli that are intermediate between two
categories, we typically still group the stimuli into one or the other
category, instead of experiencing some vague, indeterminate percep-
tion (Harnad, 1987). Yet, research aimed at localizing this capacity to
particular visual brain regions has sometimes been met with skepticism.

Our capacity to visually categorize stands at the crossroads of the
traditional divide between perception and cognition and depends on
the interface between sensory processing of external retinal inputs and
semantic knowledge of object categories (Op de Beeck et al., 2003;
Palmeri and Gauthier, 2004). This raises the question of whether ca-
tegorical representations can be identified within later stages of visual
processing, or are solely the domain of higher cognition. The avail-
ability of these theoretical alternatives can influence the interpretation
of neuroscientific findings. In particular, it is tempting to hypothesize
that the apparent specialization of a visual brain region for representing
an abstract property like object category is instead explainable by visual

properties of stimuli. For example, animals and tools differ in animacy,
but depending on the exact stimuli that one chooses, they may also
differ in shape, color, and texture. In which case, differential neural
selectivity for the stimuli could reflect a difference in object category,
or visual features (Fig. 1). Indeed, the first results showing object ca-
tegory selectivity in the tuning of neurons in the inferior temporal (IT)
cortex of monkeys (Gross et al., 1972) were initially met with such
skepticism (for historical discussion, see Gross, 2008).

This same skepticism extends to neuroimaging research in-
vestigating object category representations in the ventral visual
pathway, which is generally considered to be the neural loci of our
capacity to categorize, and is more generally involved in the processing
of stable features or dimensions of objects available in the information
passed from the retina to early visual regions (Kravitz et al., 2013;
Mishkin et al., 1983). Initial fMRI studies revealed the existence of
several cortical regions in the pathway that respond preferentially to
objects of particular categories, such as the fusiform face area (FFA;
Kanwisher et al., 1997), extrastriate body area (EBA; Downing et al.,
2001), parahippocampal place area (PPA; Epstein and Kanwisher,
1998), and visual word form area (VWFA; Cohen et al., 2000), to name
some of the most well-known regions. In recent years advanced ex-
perimental designs and multivariate pattern analyses (MVPA)
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Fig. 1. Competing explanations for apparent categorical effects in
the ventral pathway as revealed using MVPA. Stimuli from se-

activation space

u

Us

What explains the differential
neural response?

Option 1:
Object category (animal vs tool)

techniques, which allow for a more refined exploration of the factors
that underlie the neural selectivity, have only intensified the debate. On
the one hand, a sizeable body of research has shown that neural activity
patterns in regions of this pathway exhibit category selectivity (for re-
view, see Grill-Spector and Weiner, 2014). These results have been
interpreted as revealing aspects of neural coding for object categories in
visual cortex. On the other hand, recent studies suggest these pattern
responses may be heavily feature dependent, raising the question of
whether these apparent category effects can in fact be explained by
sensitivity to lower-level visual features (Andrews et al., 2015; Baldassi
et al., 2013). In which case, coding in these regions may be for visual
features of objects, rather than category membership.

In what follows we evaluate different categorical and featural
coding hypotheses for regions of the ventral pathway. In Section 2, we
briefly review the kinds of MVPA results that have been taken as evi-
dence of either category selectivity or feature dependence. In Section 3,
we differentiate between a number of coding hypotheses and their
predictions regarding MVPA results. Crucially, we argue that these
hypotheses are not necessarily distinguished by whether they predict
feature dependence in the pattern responses. Instead, they can be dis-
tinguished by whether they predict residual categorical effects in these
responses after one takes account of the feature dependence. In Section
4, we then turn to a critical discussion of existing MVPA results in light
of the available hypotheses, and suggest that evidence for residual ca-
tegorical effects comes from studies that either: (i) model out the con-
tribution of different visual features to categorical effects; or (ii) also
use stimulus sets in which object category and target visual features are
orthogonal. While the former is more common, we emphasize the im-
portance of the latter approach. We further argue that the results of
MVPA studies that make object category and target visual features or-
thogonal support the presence of categorical coding in regions of the
ventral pathway. In Section 5, we consider what other lines of con-
verging neuroscientific evidence are relevant to deciding between
coding hypotheses. In Section 6, we end with some morals and sug-
gestions for future directions.

2. Using MVPA to investigate object category representations in
the ventral visual pathway

We begin with some clarificatory remarks about the nature of object
categorization and the theoretical rationale for using MVPA to in-
vestigate its neural basis.

By visual “object categorization” we mean the process of matching a

Option 2:
visual features (e.g. shape, color, texture)

parate object categories (animals and tools) might produce dif-
ferent patterns responses in a brain region as reflected in a (hy-
pothetical) N dimensional feature space constructed from neural
data from multiple recording units, uy,..,u, (e.g. electrodes for
cellular recordings or voxels from a region of interest for fMRI).
When the stimuli also tend to vary in their visual features (e.g.
low aspect ratio shape and white-patched furry texture vs. high
aspect ratio shape and smooth wood-colored texture), this raises
the question of whether the discriminability of the neural patterns
for the animal and tool stimuli are explained by the difference in
category membership (Option 1) or visual features (Option 2).

representation of an object constructed online to a categorical re-
presentation from long-term memory, such that the categorical prop-
erty that is represented is attributed to the object perceived in the en-
vironment. We take categories to reflect natural “kinds of things” in the
environment, which may be taxonomic (e.g. biological or artefactual
kinds), or functional (e.g. ways in which an object can be manually
manipulated, or whether it presents a possible food source or threat).
Many of the specific categories we mention, such as faces, bodies, and
tools, have clear ecological significance to how we make sense of, na-
vigate, and interact with the objects in the world around us. Category
membership, in turn, is presumed to be determined by a property, or set
of properties, instantiated by member objects—though intuitively we
might only have a dim idea of what these underlying properties might
be. What is crucial is that the shared properties are abstract in com-
parison to more basic visual properties of the stimuli, such as color,
texture, or even shape, even though this distinction is not always very
clear-cut because visual features also vary in complexity.

The space of object categories is highly complex, with multiple
hierarchical levels and a multidimensional similarity structure per
level, as can be seen when representing a familiar object like a cat: it
can be represented as an animate object, a mammalian animal, or a
feline, with each level admitting of different dimensions of variation.
Even though univariate neuroimaging designs that contrast individual
categories have been able to reveal fundamental properties of the
neural system underlying object categorization, this initial approach is
probably insufficient to fully characterize the neural representations
that sustain object categorization. In contrast, MVPA has been shown to
be well suited to characterize these neural representations in their full
complexity, including the study of multiple hierarchical levels and
multidimensional structures (e.g. Edelman et al., 1998; Hanson et al.,
2004; Kiani et al., 2007; Kriegeskorte et al., 2008a).

The analysis of distributed neural patterns with MVPA also seems to
be an appropriate method given the prevalent working hypothesis in
cognitive neuroscience that the brain employs population coding,
where stimulus information is encoded in distributed patterns of neural
activity across a brain region (Pouget et al., 2000; Panzeri et al., 2015).
Thought of geometrically, the hypothesis entails that each distributed
response pattern can be characterized as a point in a high dimensional
“activation space”, where dimensions reflect different neuronal units
(e.g. individual neurons or cortical columns). MVPA is suitable for in-
vestigating this sort of neural coding if we assume both that neuroi-
maging techniques coarsely measure these encoding neural patterns in
a region, and that the activation spaces constructed from these patterns
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have some fidelity to the underlying representational “geometry”
(Haxby et al., 2014; Kriegeskorte and Kievit, 2013; Op de Beeck,
Haushofer, and Kanwisher, 2008). However, we should note that the
use of MVPA does not require a blind faith that these assumptions are
correct (Davis et al., 2014; Spiridon and Kanwisher, 2002).

So described, MVPA inherits the dependence of human fMRI in
general upon the existence of neural maps in which neurons with si-
milar functional properties are spatially clustered together in cortex.
Such clustering is necessary to generate patterns of activity that are
differentiable across stimulus conditions, and can be detected both with
cellular recordings and at the coarse spatial scale of fMRI. Crucially, the
detectability of such maps with fMRI should not be taken for granted,
since a brain region may code for properties of stimuli in a manner that
is not amenable to MVPA (Dubois et al., 2015), or that produces biases
or distortions in measurement depending on the spatial scale of the
encoding patterns (Kriegeskorte and Diedrichsen, 2016; Op de Beeck,
2010). But at least when it comes to category-related selectivity, there
is some evidence that the results of fMRI do coarsely measure spatial
patterns detected with cellular recordings for object stimuli (Issa et al.,
2013).

In the rest of this section we review a selection of the types of MVPA
results that have provided evidence of either category selectivity or
feature dependence in the ventral visual pathway, which we take to
include a complex array of inter-connected brain regions across lateral
occipitotemporal cortex (LOTC), IT cortex, and medial temporal cortex
(Kravitz et al., 2013). This includes posterior portions of the fusiform,
and parahippocampal gyri in humans—also known as ventral temporal
cortex (VTC)—that is the focus of a substantial portion of human fMRI
research on object categorization (Grill-Spector and Weiner, 2014).

2.1. Evidence for categorical representations

There are two kinds of MVPA results that have been interpreted as
reflecting object category representation in regions of the ventral
pathway.

First, if the brain uses a population code to represent object cate-
gories in regions of the ventral pathway, then one prediction is that
neural patterns for stimuli of the same category should cluster together
in the activation spaces of these regions, and hence be reliably dis-
criminable from each other. For example, since we visually represent
animal and tool as distinct categories, in theory the neural response
patterns for exemplars of these two categories should be differentiable
in some region of visual cortex. MVPA provides one prominent means
of determining whether neural patterns can be so differentiated, thus
revealing evidence of categorical information in the pattern responses of
a brain region (Kriegeskorte and Bandettini, 2007).

Many early studies using MVPA showed that information for a wide
variety of object categories can be decoded from pattern activity across
regions of the ventral stream. In a seminal fMRI study, Haxby et al.
(2001) showed that neural patterns in VTC objects of familiar cate-
gories could reliably be differentiated. Similarly, the first studies using
classifiers with human fMRI showed they could be trained to dis-
criminate neural patterns in VTC for faces, houses and chairs (Carlson
et al., 2003), and a wide variety of living/non-living, common/un-
common, and large/small objects (Cox and Savoy, 2003). Hung et al.
(2005) applied the same machine learning methods to recordings from
anterior IT cortex in monkeys showing that stimulus patterns could be
reliably grouped into multiple categories achieving peak classifier
performance at just 125 ms post-stimulus onset. Similarly, Liu et al.
(2009) applied classifiers to intracranial recordings for similar object
category stimuli from sites across the human brain, and found that
object category could be decoded as soon as 100 ms post-stimulus onset
from VTC.

MVPA has also been used to investigate the information that uni-
variate-defined regions of the ventral pathway carry about their region-
defining category as well as other object categories. Early studies

155

Neuropsychologia 105 (2017) 153-164

suggested that faces and places were more decodable in FFA and PPA
respectively, in comparison to other categories (O’Toole et al., 2005;
Spiridon and Kanwisher, 2002; though see Op de Beeck et al., 2010),
with similar results in other areas such as adjacent hand and body re-
gions of LOTC (Bracci et al., 2012). The same pattern of results has also
been observed in both face and body selective regions of medial tem-
poral cortex in humans and monkeys using fMRI (Pinsk et al., 2009).
Finally, MVPA has also been used to discriminate between real and
pseudo-words in VWFA (Baeck et al., 2015).

The second type of finding is premised on the idea that the re-
lationships between neural patterns for objects in ventral pathway re-
gions reflect the organizational relations between categories. For ex-
ample, while at one level cats and dogs are different kind of objects,
they are both instances of domestic pets, mammals, and animals more
generally. If a region codes for these inter-category relations, then a
categorical organization might also be extractable from how neural
patterns for different exemplars cluster in activation space (Haxby
et al., 2014; Iordan et al., 2015; Kriegeskorte and Kievit, 2013).

Several studies have provided evidence of different forms of cate-
gorical organization in regions of the ventral pathway. One prominent
finding is that patterns of neural activity in human and monkey IT
cluster based on the superordinate animate-animate distinction, and
that for animate exemplars the neural patterns further divide into
subordinate categories (Kiani et al., 2007; Kriegeskorte et al., 2008b; cf.
Hanson et al., 2004). Furthermore, this organization in human IT is
similar to that found in monkey IT (Kriegeskorte et al., 2008b), and may
reflect a continuum of animacy rather than a dichotomous re-
presentation in the ventral pathway (Sha et al., 2015). The combination
of fMRI with MEG has also allowed temporally resolved localization to
the ventral pathway for many of these same divisions of animacy and
subordinate (e.g. faces and bodies) categories (Cichy et al., 2014,
2016).

The same methods have also been used to reveal other forms of
categorical organization. Connolly et al. (2012) found that the clus-
tering of neural patterns in VTC and LOTC for images of insects, birds,
and primates reflected a natural taxonomic hierarchy between cate-
gories. Going further, Connolly et al. (2016) also found a representation
of the dimensions of animacy versus dangerousness in numerous ven-
tral pathway regions. Other categorical divisions are not taxonomic in
nature, but have also been revealed with MVPA. The same analyzes
have revealed an organization reflecting a function-related relationship
for body parts and tools in LOTC and VTC (Bracci et al., 2015; Bracci
and Peelen, 2013). They have also been used to investigate the cate-
gorical organization in more circumscribed brain regions, including
those defined by univariate methods, such as FFA, PPA, and EBA (e.g.
Op de Baeck et al., 2010). Furthermore, many of the studies mentioned
above, which report effects of categorical information in regions of the
ventral pathway, have also investigated forms of categorical organiza-
tion.

2.2. The issue of feature dependence

The above MVPA results have been taken to provide converging
evidence that ventral pathway regions implement representations of
object category. However, a reasonable concern, as with any study
using visual stimuli, is that some of these effects might reflect not the
abstract property of category membership, but more low-level visual
differences between stimuli that are highly correlated with category,
and are not controlled for (Cox and Savoy, 2003). For example, if a
region shows discriminable pattern responses for animal and tool sti-
muli, shape might drive the response if there is a consistent difference
in aspect ratio between the categorical stimuli (Fig. 1). It is for this
reason that many studies that report categorical effects contrast results
from ventral pathway regions with those from early visual cortex
(EVC)—typically primary visual cortex (V1)—or test whether the ca-
tegorical effect they report can be account for by low-level image
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properties.

For example, many studies showing evidence of categorical orga-
nization for animacy have used color stimuli, which presents a possible
confound (Kiani et al., 2007; Kriegeskorte et al., 2008b; Sha et al.,
2015). Of course, color is also a highly diagnostic for differentiating
between members of different categories (compare fruits and tools)—a
point we return to below. However, plausibly if a region contains re-
presentations of different categories neural responses should pre-
sumably not be accounted for solely by stimulus color (e.g. one can still
tell the difference between an animal and a tool even under lighting
conditions in which color is difficult to determine). To address this sort
of concern, Kriegeskorte et al. (2008b) compared a color model (along
with several other models) to neural responses from human and
monkey IT. They found that the model did not capture the relationships
between pattern responses. Similarly, Haxby et al. (2001, Appendix)
reanalyzed the data of Ishai et al. (1999) and found that VTC could
discriminate neural patterns both for natural images, and line drawings
of exemplars, suggesting representations not intrinsically tied to object
texture. While color is often easy to control for (by presenting stimuli in
grey-scale) and perhaps texture as well, other image properties and
visual features have also been identified as potentially driving neural
responses in regions of the ventral visual pathway.

Shape provides one natural confound, since objects of the same
category often have the same shape. When using computer-generated
novel objects, activity patterns in LOTC have been shown to correlate
with a model of the perceived shape of these objects (Op de Beeck et al.,
2008b). Similar findings have been found in monkeys using single-unit
recordings and fMRI (Op de Beeck et al., 2001; Yamane et al., 2008). In
one study, Baldassi et al. (2013) sought to directly compare the con-
tributions of object category and shape to the response patterns in
monkey IT. They presented a large number of greyscale object stimuli
to monkeys that included 94 category pairs (e.g. two butterflies, two
fish hooks) while recording from sites in monkey IT. They found that
shape properties of stimuli, rather than category, better accounted for
the relations between neural patterns based on clustering analysis.
Based on these findings, Baldassi et al. concluded that IT neurons pri-
marily represent visual information related to shape, rather than object
categories. These results, and their interpretation, are seemingly in
contrast with those of Kiani et al. (2007) and Kriegeskorte et al. (2008b)
described above. (However, it is also worth considering that one issue
with many studies investigating object categorization in primates is that
the animals have little to no understanding of the images they see. From
this vantage point, the results of Baldassi et al. may not be wholly
surprising).

Low-level image properties provide another possible confound. As
mentioned above, many of the studies using MVPA that report category
selectivity take some account of this possibility. However other results
have been interpreted as showing that seemingly categorical effects are
actually driven by low-level properties. Rice et al. (2014) constructed a
model for images of several familiar categories using the GIST model of
scene statistics (Oliva and Torralba, 2001), which was compared with
the neural patterns for multiple anatomical regions in the ventral
pathway measured with human fMRI. Their results showed that the
relations between the neural patterns for different categories could be
predicted by the GIST model (but see Wardle and Ritchie, 2014). Si-
milarly, Watson et al. (2016b) found that spectral and spatial GIST
models were able to predict neural responses in VTC. Also, Coggan et al.
(2016) found that the neural patterns for scrambled versions of object
stimuli in VTC were positively correlated with the neural responses for
the unscrambled images, despite the fact that the scrambled images
were unrecognizable. The authors interpreted this result as providing
evidence that low-level properties of images differentiate between ca-
tegory-related neural patterns in VTC even in the absence of any overt
representation of object category. Based on such findings, Andrews
et al. (2015) propose that pattern responses in the ventral pathway are
better explained by image low-level properties than object category.
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These studies share an underlying rationale: if the clustering of
neural patterns for object exemplars is accounted for by some of these
stimulus properties—that is, if the responses are heavily feature de-
pendent—then this could challenge the hypothesis that the relevant
region codes for object category. Furthermore, these results raise the
question of whether apparent categorical effects are in fact featural
ones.

3. Contrastive coding hypotheses for the ventral visual pathway

The findings we have reviewed point to conflicting perspectives
about the functional organization of the ventral visual pathway. How
are these findings to be evaluated? To answer this question, we believe
one must first distinguish between the alternative hypotheses that are
available, and articulate their predictions with respect to the effects
that can be revealed using MVPA.

At issue is the nature of the neural population coding in regions of
the ventral pathway. In effect, there are two broad alternative hy-
potheses under consideration, which differ most fundamentally in their
content (as opposed to format), or the information they make explicit
(Grill-Spector and Weiner, 2014; Marr, 1982): object categories or vi-
sual features. In general terms we will call these categorical and featural
coding hypotheses, respectively. Different versions of these coding hy-
potheses provide a means of conceptualizing the dialectic from the
previous section, and how we should interpret categorical effects and
evidence of feature dependence (Fig. 2). For any given coding hy-
pothesis we can ask which of these MVPA results it does (and does not)
predict.

3.1. Does the coding hypothesis predict category selectivity?

Consider first what sort of featural coding hypothesis is ruled out
when there is evidence of category selectivity in a region like VTC, as
there is for discriminating animals vs tools. As described above, many
studies compare the neural pattern response in this region to models of
low-level visual cortex, or compare categorical models to early visual
cortex. When this is done, studies tend to find a difference in decoding
ability between EVC and VTC for low-level features relative to more
high-level and categorical information (Connolly et al., 2012;
Kriegeskorte, 2008b; Op de Beeck et al., 2008b; Peelen and Caramazza,
2012). Clearly these results rule out what we may call a low-level fea-
tural code. Under such a hypothesis, a region contains feature maps for
visual properties such as orientation, spatial frequency, or 2D shape, in
analogy to the organization of early visual areas.

When applied to regions of the ventral pathway like VTC, a low-
level featural code predicts that there should be no categorical effects.

Does the coding hypothesis
predict any category selectivity?

Yes No

Does the coding hypothesis
predict visual feature dependence?

No

low-level
featural coding
Yes

abstract
categorical coding

Does the coding hypothesis
predict residual category effects?
Yes No

diagnostic
featural coding

feature-based
categorical coding

Fig. 2. Decision tree for coding hypotheses. Each branch in the decision tree relates to
MVPA results that are (or are not) predicted by the different categorical and featural
coding hypotheses. Ultimately, the two most plausible hypotheses, feature-based cate-
gorical coding and diagnostic featural coding, are distinguished by whether they predict
residual categorical effects after one takes account of the feature-dependence of neural
responses in a brain region.
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In early visual areas, such as V1, one typically finds poor decoding for
stimuli based on object category (Connolly et al., 2012; Kriegeskorte
et al., 2008b), but excellent decoding for visual features such as or-
ientation (Haynes and Rees, 2005; Kamitani and Tong, 2005). If an area
of the ventral pathway also implements a low-level featural code, then
one would predict a similar pattern of results—to put the point simply,
MVPA results in later regions of the ventral pathway should be similar
to those found in V1. The fact that they are not suggests that a low-level
featural code is very likely false when considering regions of the ventral
pathway.

While ruling out such an alternative is important, it is doubtful that
studies showing feature dependence of pattern responses in regions like
VTC are intended to support a low-level featural code, since all will
agree that the function and organization of VTC differs from EVC. This
raises the question of what a plausible featural code might look like—a
question we return to shortly.

3.2. Does the coding hypothesis predict visual feature dependence?

Next, consider what kind of categorical coding hypothesis may be
targeted by studies showing evidence of feature dependence, as might
be the case if neural patterns for animal and tool stimuli can be dis-
criminated from each other in a brain region, but shape, color and
texture are highly correlated with object category in the stimulus set
(Fig. 1).

Under what we will call an abstract categorical code, the format of
the representation is largely independent of visual features of stimuli, in
a manner similar to domain-specific hypotheses about concepts
(Caramazza and Shelton, 1998; Mahon and Caramazza, 2008). Ac-
cording to these theories, although sensory representations may have a
causal influence on the organization of our concepts, they do not de-
termine their format (Mahon, 2015). In the present case, the abstract
code may be specific to the visual system, and be a natural consequence
of the idea that along stages of the ventral pathway representations
become more invariant, or tolerant, across transformations of the
viewpoint of a stimulus; or can be recruited by purely symbolic re-
ference to the object (e.g. novel character strings that observers learn to
associate with animals and tools). Alternatively, it may be implemented
in a region of temporal cortex that receives inputs from multiple sense
modalities. In either case, at the extreme, visual features might be en-
tirely dissociable from the categorical property that is being attributed
to a stimulus. In which case, the hypothesis does not predict feature
dependence in a brain region.

In some cases researchers focusing on the ventral pathway do sug-
gest something like an abstract categorical code, perhaps because a
region partially implements our conceptual knowledge. For example,
Peelen and Caramazza (2012) found that information about the type of
action required by a tool (squeeze or rotate), and where the tool is
located (kitchen or garage), was higher in the anterior temporal lobes.
In contrast, perceptual and pixelwise information was much lower in
these regions. Peelen and Caramazza interpreted their findings as
showing that categorical, or even conceptual, representations for tools
are implemented in these regions. In another study, Malone et al.
(2016) had subjects learn to associate lists of pseudowords with dif-
ferent object categories, and then trained a classifier to discriminate
object category based on neural responses to the letter strings. They
found that category information, induced by the pseudoword stimuli,
could indeed be decoded from the lateral anterior temporal lobe, which
they suggest must implement an abstract representation of category.

Evidence of the feature dependence of neural responses would seem
to speak against a rigidly abstract view of how particular regions of the
ventral pathway encode for object categories. Thus, evidence of feature
dependence in VTC runs counter to the predictions of an abstract ca-
tegorical code, though it does not speak against an abstract code being
implemented in more anterior regions of the temporal lobe, as sug-
gested by the results of Peelen and Caramazza (2012) and Malone et al.
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(2016). Feature dependence also does not necessarily speak against all
categorical coding hypotheses. After all, there must be some relation-
ship between the visual representation of object category and visual
features, since any region encoding information about object category
will be causally downstream from ones representing more low-level
properties. Furthermore, since objects of the same category might often
be visually similar (e.g. faces), we might predict a good deal of feature
dependence, even in categorical representations. We now turn to a
discussion of this issue.

3.3. Does the coding hypothesis predict residual categorical effects?

The coding hypotheses we have considered so far do not necessarily
speak directly to the tension between the results described in the pre-
vious section. While low-level featural coding might be ruled out by
category selectivity in ventral pathway regions, it is something of a null
hypothesis in the first place. Although abstract featural coding may be
more plausible, it seems unviable for a region like VTC. Fortunately,
more plausible featural and categorical coding hypotheses are avail-
able.

A more plausible featural coding hypothesis is that a regions re-
presents bundles of visual features that are diagnostic of particular
object categories (Andrews et al., 2015; Jozwik et al., 2016; Proklova
et al., 2016). Call this as the diagnostic featural coding hypothesis. Such
a proposal is put forth by Andrews et al. (2015), who suggest that ap-
parently discrete category selective regions in VTC may in fact imple-
ment multiple featural maps. Since combinations of particular visual
features are indicative of membership in particular object categories,
these maps would produce spatially selective, and hence seemingly
category specific, patterns of neural response, but would not reflect
category-determined functional subdivisions of the ventral pathway.

Importantly, a diagnostic featural code is potentially consistent with
apparent categorical effects in a brain region, but holds that it is di-
agnostic features of stimuli that are driving the differentiation between
neural responses. For example shape, which reflects multiple proper-
ties, might be represented as distinct, because it is diagnostic of cate-
gory membership (Baldassi et al., 2013). Thus, rather than im-
plementing categorical representations of categories like animal and
tool, perhaps (sub-regions of) VTC contain feature maps of shape, as
well as other visual features. It is also plausible that some regions of the
ventral pathway show a preferential response to some diagnostic fea-
tures of object stimuli, as we describe in Section 5.

An alternative hypothesis is a feature-based categorical code: VTC
and its subregions encode object category and use feature-based re-
presentations to do so. For example, early results were interpreted as
supporting a distributed code that consisted of featural maps for re-
presenting object category (Haxby et al., 2001; O’'Toole et al., 2005).
There are a number of reasons for why a feature-based categorical code
should be considered the default hypothesis when it comes to the re-
presentation of categories in the ventral stream.

First, virtually all theories of visual object recognition hold that
coding for object categories, while viewpoint-dependent, also achieving
a measure of viewpoint invariance, or “tolerance”, with respect to
transformations of orientation, illumination, distance, and position in
the visual field (Biederman, 2000; Hayward, 2003; Peissig and Tarr,
2007). One can for example readily recognize that an object is an an-
imal (e.g. cat) or tool (e.g. a hammer), even though viewing angle,
lighting, and viewing distance might vary considerably. However, any
representation of a viewpoint of an object will plausibly be heavily
feature dependent, due to the features of an object coded in the view-
point representation. Therefore, it stands to reason that these theories
predict a good deal of feature dependence in the neural representations
that underlie our capacity to recognize objects. For example, both fa-
miliar and newly learned objects may have “canonical” view-
points—those that come to mind most easily when we imagine an ob-
ject and produce lower choice and reaction time errors for
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categorization (Blanz et al., 1999). If viewpoint-dependent re-
presentations of categories are structured around canonical viewpoints,
then the visual features encoded in these viewpoints would make the
representations feature-based (Cutzu and Edelman, 1994). These
viewpoint-dependent theories of recognition provide theoretical back-
ground to research on the neural basis of object categorization (DiCarlo
et al., 2012), however a feature-based categorical code need not be
unimodal and could also be partially constructed based on inputs from
other modalities such as touch or audition—a possibility we return to in
Section 5.

Second, there are a number of ways featural information might be
carried over into downstream brain regions that code for object cate-
gory. First, following DiCarlo and Cox (2007) we can think of the po-
pulation coding of the brain as reflecting manifolds in high-dimensional
activation spaces for different regions. Early in the visual system,
manifolds for object categories are “tangled”, and the visual system
works to untangled them across multiple stages of processing. From this
perspective, all the categorical information that needs extracting is tacit
in the visual inputs, and the function of the visual system is to make this
information explicit (Cox, 2014). But if there is categorical information
tacit in the tangled manifolds of early visual regions, then it is not
unreasonable to expect that there will be featural information still
present when these manifolds are later untangled even though it is not
necessarily explicitly coded for in these regions. Alternatively, other
more high-level features (e.g. shape) might be computed in parallel
with categorical information to help disentangle categorical re-
presentations. In which case, some featural information might actually
improve in decodability along later stages of visual processing, as has
indeed been demonstrated by Hong et al. (2016).

Whatever the details of a feature-based categorical code, it is clear
that, like a diagnostic featural code, it is consistent with both the pre-
sence of categorical effects, and some level of feature dependence, in
ventral pathway regions. The main difference between these hy-
potheses is that a diagnostic featural code predicts feature dependence
based on representational content (it is a code for co-occurring diag-
nostic features of objects), while feature-based categorical coding pre-
dicts feature dependence based on format (it is a code for object cate-
gory, constructed from representations that also code for visual
features). How then do we use MVPA to distinguish between these
hypotheses?

The rationale behind testing for feature dependence is that apparent
category selectivity might involve a failure to control for the con-
founding influence of visual features. However, if one does control for
particular (supposedly) diagnostic features, and still finds a residual
categorical effect, then this would seem to provide evidence of a cate-
gorical code being implemented. For example, if one introduced greater
variation in the toy stimulus set in Fig. 1, so that shape was not such a
clear confound, and found that one could still discriminate the neural
patterns of the animal and tool stimuli, this would be a residual cate-
gorical effect with respect to shape. This provides one way of differ-
entiating between feature-based categorical coding and diagnostic
featural coding hypotheses in a brain region using MVPA. For under the
latter hypothesis, any categorical effects should ultimately be explain-
able by a summation of the diagnostic visual features of stimuli.

3.4. Summary

We have considered a few coding hypothesis: low-level featural,
abstract categorical, diagnostic featural, and feature-based categorical
codes. The relationships between these hypotheses, and their differ-
ential predictions regarding the sort of MVPA results we have reviewed,
can be presented in terms of a decision tree (Fig. 2). As suggested by the
structure of the tree, we believe that the two most plausible alternatives
are diagnostic featural coding and feature-based categorical coding,
both of which are broadly consistent with effects of category selectivity
and feature dependence, but are distinguished by whether they predict
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residual categorical effects. Still, our presentation only emphasizes
certain relationships between these hypotheses. For example, we do not
consider whether two kinds of coding might be presenting in a single
brain region. Still, we believe that the contrasts between the hypotheses
that we have highlighted are instructive. We now turn to evaluating
what kinds of neuroimaging studies test for residual categorical effects.

4. Testing for residual categorical effects

There are two main strategies we focus on for revealing residual
categorical effects with MVPA. The most common approach is to
compare visual feature models to the pattern responses in a brain re-
gion. However, we believe a stronger test is to also explicitly control for
featural or categorical effects in a brain region. Here we discuss re-
search that adopts both kinds of strategies.

4.1. Featural models and residual categorical effects

One way to test for residual categorical effects, or feature depen-
dence, is by applying a categorical model and various visual models to
neural data, and evaluating the variance accounted for by the different
models (Kriegeskorte et al., 2008a; Iordan et al., 2015). If some of the
variance in the data accounted for by a categorical model is not ac-
counted for by a featural one, then this suggests that there is a residual
categorical effect.

A first consideration is which (of the numerous) featural models
should be included in an analysis. If the aim is simply to use the models
as a substitute for controlling for particular visual features of the sti-
muli, then this might warrant comparing a large number of available
models, as is done in studies that compare models of low-level vision to
neural responses in ventral regions. However, if we want to differ-
entiate between diagnostic featural coding and feature-based catego-
rical coding in a region then the models must be theoretically well
motivated. This is not always clearly the case.

For example, the GIST model, which applies Gabor filters of dif-
ferent orientations and spatial frequencies to measure the image sta-
tistics at different locations in an image, is appropriate for investigating
feature dependence in scene-selective regions, since it is based on a
theory of how image statistics are diagnostic for scene categorization
(Watson et al., 2014, 2016a). However, it is unclear how one should
interpret a model of scene statistics when compared to neural patterns
from object-selective regions (e.g. Rice et al., 2014; Watson et al.,
2016b). Part of the motivation for the model is to treat each scene
image as, in effect, objects of the same (square) shape. However, in
studies on object categorization the stimuli are typically natural images
of objects presented on a grey background, which is importantly dif-
ferent than the kind of stimuli the model was intended for. And with
actual shape boundaries, it is likely that the model largely provides
another measure of shape—a point we return to below. Second, as we
have pointed out, feature dependence is consistent with feature-based
categorical coding, thus revealing a relationship between the GIST
model and neural responses in regions like VTC does not clearly speak
against this hypothesis.

A similar sort of criticism can be leveled against studies that use
semantic feature labeling of images, which is common in psychological
research on conceptual understanding. Jozwik et al. (2016) constructed
high-dimensional categorical and featural models based on free labeling
of the stimuli from Kriegeskorte et al. (2008b). Both models were then
correlated with the pattern response for the stimuli in IT. Ultimately,
they found that both models explained the same variance in the neural
data. One could interpret such as result as showing a failure to find a
residual categorical effect in IT, in so far as the categorical model did
not significantly explain more variance than the featural model. In their
study, the categorical model included properties shared by many sti-
muli, (e.g. “living/organism”) and names for individual stimuli (e.g.
“wolf/fox”). The feature-based model included object parts (“horns”,
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Fig. 3. Analysis of stimuli from Bracci and Op de Beeck (2016). Panel (a) depicts the stimuli from Bracci and Op de Beeck (2016), which involved objects from 6 different categories and 9
different shapes so that category and shape were render orthogonal dimensions of the stimulus set. Panel (b) depicts the correlations between a pixel similarity matrix, shape and category
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panel (b). As can be see, the category model does not cluster with the other three. Panel (d) shows the mean correlation between the four matrices and one region of interest from Bracci
and Op de Beeck (2016), body and face-selective ventral occipitotemporal cortex (VOTC-body/face).
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“neck”), shapes (“cylindrical”), color (“white”, “yellow”), and textures
(“wooly”). However, other dimension of the featural model (“dress”,
“tree”, “head”, “torso”) could be considered categorical. Similarly,
Clarke and Tyler (2014) compared a model of normed “semantic fea-
tures” (Taylor et al., 2012) to neural response from regions of the
ventral pathway. The labeled features of the model included colors (“is
green”) and shape (“is round”), but also body parts (“has 4 legs”), and
functional properties (“is edible”, “used for music”), and so seem to blur
together both featural and categories properties. These semantic models
are not constrained by hypotheses about the representation of visual
features, but rather by what properties participants can verbally attri-
bute to the stimuli. Therefore, they are also ill-suited to the question of
whether ventral pathway regions code for object category vs. diagnostic
visual features.

The forgoing speaks to the importance of focusing on features that
might be considered diagnostic of particular object categories. Ideally,
studies should follow the same rationale as multiple regression, and
determine how many different model predictors account for the de-
pendent neural variable. One can also take a neural network modeling
approach. In particular, recent studies have incorporated deep neural-
networks (DNNs) to investigate biological vision (Kriegeskorte, 2015).
Several studies have found that the higher layers of networks that have
representational spaces similar to those of human and monkey IT per-
form better at object categorization tasks of natural images, are also
better at explaining the activation space from these regions, and seem
be organized based on object categories (Cadieu et al., 2014; Khaligh-
Razavi and Kriegeskorte, 2014; Yamins et al., 2014). In contrast lower
layers, which are tuned to more visual properties of stimuli, tend to
poorly capture the relationships between the neural responses in IT
(though it can be difficult to discern precisely what visual features of
images the lower layers are tuned to). In so far as it may be difficult to
explain the unit responses in the top levels of these networks simply in
terms of diagnostic features, and they capture the pattern responses in
IT, their organization may point towards the presence of categorical
coding in IT.

4.2. Controlling for visual features reveals residual categorical effects

A powerful way to tease apart the contributions of object category
and target visual features to a neural response is to make them ortho-
gonal properties of a stimulus set. Any residual categorical effect in the

neural response, as revealed by the modeling approach, is presumably
driven by some independence between the categorical and featural
information extracted from the stimuli. Making target visual features
orthogonal to category membership ensures this independence.
Furthermore, if there is no residual categorical effect, then we have
better evidence that the visual feature (e.g. shape) that has been made
orthogonal was in fact driving the apparent categorical response. This
approach has led to much success in research looking at neuronal
tuning, where a limited number of visual features are controlled for,
and rendered orthogonal to object category (Gross et al., 1969; Tanaka
et al.,, 1991; Yamane et al., 2008; Brincat et al., 2004). Note that a
stimulus-based approach is not a substitute for modeling out the con-
tribution of category membership and visual features to a neural re-
sponse. Rather, where possible the best practice is to use both ap-
proaches in conjunction.

Of course, categorical information is typically correlated with many
visual features, and in that respect the highly controlled stimulus sets
are not representative of our everyday visual experience. One may
therefore question the generalizability of such stimulus designs to more
ecological settings (Talebi and Baker, 2012). Still, this stimulus-design
approach does provide a strong test for comparing feature-based cate-
gorical coding and diagnostic featural coding. For if categorical in-
formation or organization are present in a brain region, even when
target visual properties are made orthogonal to object category, then
this would constitute a clear residual categorical effect, and rules out a
diagnostic featural coding hypothesis based on these properties.

Recent studies have adopted this stimulus-design approach to dif-
ferentiating between coding hypotheses by making 2D shape ortho-
gonal from object category. Bracci and Op de Beeck (2016) selected
stimuli as part of six separate object categories and nine different shape
profiles, such that there was a stimulus for each combination of cate-
gory and shape (Fig. 3A). This ensured that models of pixel similarity
and shape were entirely uncorrelated with a model for object category.
These models were correlated with activity patterns from multiple re-
gions of interest. Crucially, in regions of LOTC and VTC both the visual
and categorical models were significantly correlated with the neural
activity patterns. But since these models were independent, the corre-
lation with the categorical model constituted a residual categorical ef-
fect. Other recent studies have adopted the same logic. Proklova et al.
(2016) selected animate and inanimate objects that were grouped into
three shape clusters, and tested models of both shape and texture. They
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found that in regions of the ventral pathway the neural patterns for
these shape-matched stimuli could not be accounted for by the visual
feature models. In another study combining fMRI and MEG, Kaiser et al.
(2016) presented body part (bare hands and clothed torsos) and
clothing stimuli (gloves and shirts) that were matched for shape. Using
a cross-decoding approach (training on one shape pair, and testing on
the other), they found that object category (body vs. clothing) could be
decoded bilaterally in LOTC, and at 130-200 ms post-stimulus onset.

These findings have important consequences for the interpretation
of results where visual features are highly correlated with object cate-
gory (Baldassi et al., 2013; Rice et al., 2014). To illustrate this point, we
applied the GIST model to the stimuli of Bracci and Op de Beeck (2016).
As shown in Fig. 3B-C, using a well-controlled stimulus set, the visual
feature model is highly independent from the category model, thus
image statistics cannot explain the residual categorical effects observed
in the regions of interest (Fig. 3D). Conversely, the GIST model partially
correlates with other image visual properties: object perceived shape
and object physical (pixel) shape. Together, these results show that
residual categorical effects could go largely unnoticed when object
category and certain visual features are largely correlated (for an in-
vestigation into how these stimuli might be revealing of shape per-
ception, see Kubilius et al., 2016).

The studies we have described have investigated categorical effects
in the absence of featural ones, but it is important to recognize that the
reverse can also be investigated: featural effects in ventral pathway
regions in the absence of categorical ones. A recent study by Coggan
et al. (2016) provides an elegant illustration of this idea. fMRI subjects
were presented with exemplars of object categories under three con-
ditions: globally and locally scrambled, and unscrambled. In the two
scrambled forms, the images were unrecognizable by subjects. By pre-
senting the stimuli in separate runs, increasing in clarity, Coggan et al.
(2016) ensured that no categorical representations were recruited by
subjects until the unscrambled condition. They then compared neural
activity patterns for the stimuli from these conditions in VTC. They
found a positive correlations between the neural patterns for the
scrambled conditions and the unscrambled condition, suggesting that
low-level image properties produce featural effects in VTC even when
no categorical representation is recruited.

The design of Coggan et al.’s study is explicitly intended to test
against categorical coding in VTC. However a feature-based categorical
coding hypothesis is in fact consistent with their results. First, in their
stimulus set object category and visual properties were not dissociated,
thus correlation between neural patterns for scrambled and un-
scrambled images could still reflect properties common to images
within the same category (e.g., round shape of faces). Second, as they
acknowledge, the explainable variance in the neural patterns for intact
images could not be entirely explained by the correspondence with the
scrambled images. Thus these results also suggest the possible presence
of residual categorical effects.

Finally, making category orthogonal to visual features is also re-
levant to studies using DNNs. Some studies used largely uncontrolled
stimuli, like Khaligh-Razavi and Kriegeskorte (2014) who analyzed the
data of Kiani et al. (2007) and Kriegeskorte et al. (2008b). However
other studies rely on a stimulus design motivated by the viewpoint
invariance of object recognition. These stimuli of digitally rendered 3D
objects are presented at different locations, scales, and orientations,
against random scene backgrounds are designed to make category or-
thogonal to many incidental visual features created by consistency of
viewpoint, and provide a strong test of DNNs on object categorization
tasks (Pinto et al., 2008). Several studies showing category selectivity in
the higher levels of IT-tuned DNNs have used these viewpoint-con-
trolled stimuli (Cadieu et al., 2014; Hong et al., 2016; Yamins et al.,
2014). In one study, designed to evaluate different feature-based cate-
gorical coding hypotheses using these viewpoint-controlled object sti-
muli, Hong et al. (2016) investigated both category decoding as well as
the ability of classifiers to discriminate more low-level properties of the
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stimuli (e.g. object perimeter and aspect ratio) based on recordings
from monkey V4 and IT. Interestingly, not only did they find that de-
codability for category increased between these regions (and relative to
a model of early visual cortex), but also that discriminability of visual
features increased across regions. These results not only disambiguate
between coding hypotheses, but in addition predict that higher-level
regions may code for some object-related visual features to a larger
extent than one might expect intuitively.

In conclusion, we suggest that testing for residual categorical effects
can distinguish between categorical and featural hypotheses. This can
be done in two ways: orthogonalizing stimulus dimensions or, when
this is not possible, testing multiple models with methods that allow to
measure the amount of variance explained by each model separately.
Crucially, as we have briefly reviewed here, where studies have made
category membership and visual features orthogonal, there have indeed
been residual categorical effects.

5. Converging evidence for categorical coding in the ventral
pathway

In the previous section we suggested the strongest way to test for
residual categorical effects with MVPA is to use stimuli where target
visual features and category membership are orthogonal. However, this
sort of stimulus manipulation may not always be feasible since, at the
limit, one cannot control for all visual features if a categorical code is
indeed feature-based. Sometimes, other properties of stimuli might rule
out a featural coding hypothesis. For example, hands and tools share
little in common in terms of shape or low-level visual features, so it is
implausible that these features can fully explain category selectivity in
the hand/tool region of LOTC (Bracci et al., 2012). A better explanation
is that the region codes for their action-related properties (Bracci et al.,
2016; Bracci and Peelen, 2013). However, more generally, evidence of
residual categorical effects revealed with MVPA at best provides only
one line of what must be converging evidence for categorical coding in
a ventral pathway region.

In this section we consider three kinds of evidence that we think are
especially pertinent to evaluating coding hypotheses: (i) Correlations
between feature maps; (ii) deficits or disorders due to brain lesions or
atypical neural development in the visual system; and (iii) short-term
experimental disruption of neural functioning that impairs categoriza-
tion performance.

5.1. Correlations between (diagnostic) feature maps and categorical coding

It has long been a debate whether the univariate contrasts of dif-
ferent categories identify parts of topographic maps for visual features
in VTC, or are instead distinct spatially adjacent category selective
modules (Grill-Spector and Weiner, 2014; Haxby et al, 2001;
Kanwisher, 2010; Op de Beeck et al., 2008a, 2008b). For example, a
consistent finding in the literature is that contrasts between faces and
places isolate FFA and PPA in adjacent regions of VTC (Downing et al.,
2006). However, these regions also show contrasting response biases to
stimuli with particular visual features.

First, voxels in FFA show preferential responses to images with
curved shapes (Caldara et al., 2006; Caldera and Seghier, 2009), low
spatial frequency (SF) content (Rajimehr et al., 2011; Woodhead et al.,
2011), and foveal retinotopic position (Hasson et al., 2002; Levy et al.,
2001). This combination of preferences is not simply inherited from
low-level visual cortex—in fact, quite the contrary. In EVC, which has a
robust retinotopic organization, responses to high SF stimuli decreases
with increased eccentricity (Henriksson et al., 2008; Sasaki et al.,
2001). FFA shows the opposite pattern: low SF is paired with a foveal
preference (Fig. 4). Second, consider that PPA—which is generally ac-
tivated when viewing visual scenes, landmarks, and buildings (Epstein
and Kanwisher, 1998)—may be selective for rectilinear shapes and high
SFs, which are abundant in scene images (Nasr and Tootell, 2012; Nasr
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Fig. 4. Selectivity biases in regions of the ventral pathway. Portions of VTC (FFA and
PPA) show reverse feature selectivity to what is observed in EVC.

et al.,, 2014; Rajimehr et al., 2011; though see Bryan et al., 2016),
peripherally presented images (Hasson et al., 2002; Levy et al., 2001)
and to large objects (Konkle and Oliva, 2012; Park et al., 2015). As with
FFA, the relation between SF preference and eccentricity bias in PPA
goes in the opposite direction of that observed in EVC (Fig. 3).

One might be tempted to interpret these overlapping biases in sti-
mulus SF and retinotopic location in terms of a diagnostic featural code
or even a more low-level featural code (cf. Andrews et al., 2015).
However, these biases can be equally explained if we assume these
regions have some functional importance related to the representation
of either faces (Bracci and Op de Beeck, 2016; Op de Beeck et al.,
2008a), or scenes (Groen et al., 2017). Consider in particular that biases
in SF and eccentricity in FFA suggest a functional importance to face
representation, since we tend to foveate and rely on low SF information
when identifying and discriminating faces (Caldara et al., 2006). Other
results, which show a sensitivity in face regions to diagnostic properties
of stimuli, also seem hard to reconcile with a diagnostic featural coding
hypothesis. For example, strong effects of gaze behavior towards ca-
nonical feature location of faces can be linked to greater decoding in
occipital face area (OFA) when face features are presented in their
canonical location, such as eye stimuli presented in upper quadrants of
the visual field (de Haas et al., 2016). Furthermore, FFA and OFA may
even exhibit a “faciotopic” organization (Henriksson et al., 2015; van
der Hurk et al., 2015).

In short, the combination of feature selectivity of these regions
seems to suggest an organization specialized for representing a parti-
cular object category, faces, and is consistent with the idea that the
representation of object category is feature-based and depends on de-
tecting diagnostic fragments of stimuli in canonical retinotopic posi-
tions (Kravitz et al., 2008; Ullman, 2007). VIC does not contain a
multiplexing of a series of independent maps of visual features. Instead,
it shows marked correlations between feature maps and preferences
that align well with the categories that are represented in VTC and its
sub-regions. The correlations between maps for visual features of sti-
muli support the notion of categorical coding rather than diagnostic
feature coding: the correlations mostly make sense in the context of
coding for category.

5.2. Neural deficits and categorical coding

A large number of category-specific deficits have been reported in
the literature, and are often targeted at specific categories, including
many of the categories we have discussed, including faces, animacy and
tools (for review, see Capitani et al., 2003). Although issues of cate-
gorical and featural coding also arise with respect to neuropsycholo-
gical findings (Caramazza and Shelton, 1998), these deficits are gen-
erally considered category-specific, in some cases include damage to
ventral pathway regions, and converge with the effects of category-
specificity we have described (Mahon and Caramazza, 2009).

For instance, lesions within the right fusiform gyrus selectively
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impair face recognition leaving general object recognition unaffected
(Barton et al., 2002; Wada and Yamamoto, 2001), and focal lesions of
the right anterior temporal lobe cause face specific impairment
(Busigny et al., 2014). Also, acquired prosopagnosia causes face-specific
deficits in recognition, ruling out the possibility that the disorder re-
flects a general deficit in recognizing visually homogeneous objects
(Busigny et al., 2010). Using MVPA, some studies have also investigated
the neural responses of individuals with congenital prosopagnosia.
Rivolta et al. (2014) found abnormal activity in different aspects of the
face network in individuals with congenital prosopagnosia, and Zhang
et al. (2015) found impaired representation of face configurations in
right FFA.

Finally, congenital blindness is an especially important test case for
evaluating categorical coding hypotheses in ventral pathway regions,
since any organization revealed in the areas cannot be the result of
visual experience. Crucially, it has been found that categorical organi-
zation is preserved in congenitally blind individuals in LOTC and VTC
(Handjaras et al., 2016; Peelen et al., 2014; van den Hurk et al., 2017).
Although, one could argue that object shape could be acquired via other
modalities such as touch (Amedi et al., 2001) or sound (Arnott et al.,
2013), it is impossible for image statistics to influence visual cortex
organization of these individuals. Instead, categorical organization for
some divisions is likely innately specified, and present even in the ab-
sence of visual experience (Mahon and Caramazza, 2011).

A recent paper from our lab illustrates these points. van den Hurk
et al. (2017) found that auditory cues for different categories (faces,
bodies, scenes, and other objects) produced decodable pattern re-
sponses in the VTC of congenitally blind individuals. Even more
striking, when classifiers were trained on the neural patterns of the
blind individuals they could reliably generalize to predict the neural
patterns of sighted individuals produced by visual images of objects
from these categories. While it is difficult to deduce what precisely is
shared by the representations in the VTC of blind and sighted in-
dividuals, it cannot be a reflection of visual features. In contrast, these
results are consistent with VTC implementing representations of cate-
gory that are partially innately specified, and further augmented in
development by (multi-modal) sensory inputs. Thus, VTC may imple-
ment a feature-based categorical code, but one that need not be ex-
clusively dependent on visual features and instead also includes fea-
tures from other modalities.

5.3. Experimental interventions and categorical coding

Evidence for categorical coding also comes from research that in-
volves experimental interventions in ventral pathway regions. This is
especially the case with respect to regions of the face network. In
monkeys, Afraz et al. (2006) found that microstimulation of face pat-
ches biased the response of animals performing a face recognition task.
Similarly, Afraz et al. (2015) used optogenetics to stimulate clusters of
face-selective neurons in monkey IT, which resulted in reduced accu-
racy in a face gender discrimination task.

More dramatic evidence of categorical coding for faces comes from
direct electrical stimulation of portions of human fusiform gyrus ante-
rior to FFA (Jonas et al., 2015; Parvizi et al., 2012). These studies show
that when directly stimulated this region produces transient proso-
pagnosia in individuals’ ability to recognize individual faces, causing
profound face perceptual distortion, even though their ability to re-
cognize faces as such seems to remain wholly intact. Thus one cannot
explain these effects by appeal to disruption of some sort of a diagnostic
featural code representation.

While these and other studies we have mentioned largely relate to
one category, faces, their results highlight that there are diverse sources
of evidence in favor of some form of categorical coding in the ventral
pathway, which are highly relevant to the interpretation of MVPA re-
sults that have been used to support different coding hypotheses.
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6. General discussion

In this paper we have discussed the debate regarding object cate-
gory selectivity in the ventral visual pathway—a debate that has be-
come particularly lively due to the analytic power provided by MVPA.
As we have emphasized, it is important that one frames matters in terms
of competing coding hypotheses. After comparing these hypotheses to
evidence from the literature, we believe that present results generally
favor feature-based categorical coding in regions of the pathway. In this
concluding section we will discuss some general morals of our discus-
sion, and suggestions for future directions.

With respect to MVPA, as we have argued stimulus design and
model selection should be tailored to differentiating between diagnostic
featural coding and feature-based categorical coding hypotheses. Where
prominent studies may be subject to possible confounds of shape and
color, it makes sense to question what of these results can be accounted
for by visual features. At the same time, these sorts of results should not
be taken as necessarily providing the strongest evidence in favor of
categorical coding in the ventral pathway. As is true of many branches
of science, evidence must converge, and the popularity of investigating
object categorization in the ventral stream using MVPA provides ample
opportunity for integration.

One important point of caution is that the presence of categorical
information or organization in a brain region does not entail that such
information or structure is exploited in a task related manner, or ex-
plicitly coded for (Cox and Savoy, 2003; de Wit et al., 2016; Ritchie
et al., in press). This point holds even when showing evidence of re-
sidual categorical effects. The fact the categorical specificity in a brain
region is orthogonal to target visual features of stimuli is not sufficient
evidence to show that it represents object category, even if we can rule
out alternative featural coding hypotheses. One way to partially address
this concern is to pair MVPA with behavioral methods (Tong and Pratte,
2012). For example, Carlson et al. (2014) were able to predict reaction
times of observes on an animacy task based on distances of activity
patterns from a decision boundary through activation space in human
IT using the data of Kriegeskorte et al. (2008a). This result suggests that
the information in the region measured with fMRI could be functionally
exploited, and points to a general strategy for relating psychological
models of behavior to MVPA methods (Ritchie and Carlson, 2016).

While we have focused on categorical vs. featural coding in the
visual system, similar issues arise in research on the neural loci of
conceptual understanding. Although our discussion is orthogonal to the
question of whether concepts are abstract or embodied (a distinction
that may not even be fruitful for cognitive neuroscience; see
Leshinskaya and Caramazza, 2016), more directly relevant is whether
part of our conceptual knowledge is partially implemented in (or ad-
jacent to) modality-specific brain regions. For example, much of the
research on the neural localization of conceptual understanding posits
categorical representations in the ventral pathway, and has sometimes
relied on similar results to the ones we have reviewed here (Mahon and
Caramazza, 2009; Martin, 2007). We believe this raises an important
point: if our goal is to investigate what kind of categorical code is (or is
not) found in ventral pathway regions, then we may need to broaden
our perspective to consider how these regions factor into categorical
representation in the brain more generally.

In sum, evidence available in the literature suggests that category
selectivity cannot be accounted by feature selective biases observed
throughout visual cortex. Instead, the existence of feature biases, the
presence of residual categorical effects, provide strong support for the
hypothesis that they all share the common goal of representing object
category.
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