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We report on the demonstration of an effective, nonlinearity-induced non-reciprocal behavior in a
single non-magnetic multi-mode Taiji resonator. Non-reciprocity is achieved by a combination of an
intensity-dependent refractive index and of a broken spatial reflection symmetry. Continuous wave
power dependent transmission experiments show non-reciprocity and a direction-dependent optical
bistability loop. These can be explained in terms of the unidirectional mode coupling that causes an
asymmetric power enhancement in the resonator. The observations are quantitatively reproduced
by a numerical finite-element theory and physically explained by an analytical coupled-mode theory.
This nonlinear Taiji resonator has the potential of being the building block of large arrays where
to study topological and/or non-Hermitian physics. This represents an important step towards the
miniaturization of nonreciprocal elements for photonic integrated networks.

I. INTRODUCTION

Lorentz reciprocity is a fundamental property of
electromagnetic fields propagating in linear and non-
magnetic media [1]. In optics, it imposes that trans-
mission through any device built by such media is inde-
pendent on the direction of propagation. However, non-
reciprocal elements such as optical isolators and circula-
tors [2, 3] play a crucial role in a variety of technologi-
cal applications, from unidirectional lasers to high-speed
optical communications and information processing sys-
tems [4–6]. The usual path to optical non-reciprocity re-
lies on employing magnetic elements that explicitly break
the time-reversal T symmetry [7–13]. Due to the techni-
cal challenges associated to the monolithic integration of
such elements into integrated photonics devices, alterna-
tive strategies compatible with state-of-the-art photonic
technologies are being explored to circumvent Lorentz
reciprocity. Time-dependent modulations of the mate-
rial refractive index have been used but their operation
requires an external driving field for the modulation and
a large on-chip footprint [14–18]. Since the reciprocity
theorem crucially relies on the linearity of the field equa-
tions, another promising avenue is to exploit optical non-
linearities of materials. A first configuration involved
a cascade of two nonlinear resonators with different
properties, which made transmission strongly direction-
dependent [19]. Similar non-reciprocal devices were then
studied exploiting complex resonator designs [20, 21],
PT -symmetric coupled cavities [22, 23], and two-beam
interactions [24, 25]. Related nonlinearity-induced topol-
ogy and unidirectional propagation phenomena were ex-
perimentally realized in [26].

In this paper, we combine material nonlinearities and
a broken spatial reflection symmetry to observe an ef-
fective breaking of Lorentz reciprocity in a single multi-
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FIG. 1. a) Optical image of the Taiji resonator (TJR) cou-
pled to a bus waveguide. In the forward configuration (light
blue arrows) light enters the sample from the left; in the re-
verse configuration (dark blue arrows) light is injected from
the right. The dashed arrow represents the reflected light in
the reverse case. The orange arrows indicate the propagation
direction of clockwise (+) and counterclockwise (−) modes.
b,c) Simulated intensity I (in units of the input intensity Iin)
inside a TJR operating in the forward (b) and reverse (c) con-
figurations for the same excitation frequency and power. The
intensity maps are produced using the finite-element approach
of Eq. (3).

mode Taiji resonator. Taiji micro-ring resonators (TJR)
are formed by a microring with an S-shaped waveguide
across as sketched in Fig. 1a. In the presence of (sat-
urable) gain, TJR have been widely exploited to obtain
unidirectional operation in ring laser devices [27–29] and,
very recently, as the basic building block of complex lat-
tice structures acting as topological lasers [30]. In the lin-
ear regime, reciprocity of the transmission across a TJR
coupled to a bus waveguide is preserved and the effect
of the S-shaped waveguide element is limited to an effi-
cient unidirectional reflection [31]. Still, different optical
powers are accumulated in the TJR depending on the di-
rection of illumination (Fig. 1b,c). At large input powers
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this leads to a direction-dependent effective nonlinear-
ity and, thus, to an effective non-reciprocal transmission.
In addition to providing an intuitive explanation to the
mechanism underlying this key nonreciprocal behavior,
we also show the important practical advantages offered
by TJR-based nonreciprocal elements in silicon photon-
ics: a smaller footprint than previous non-magnetic pro-
posals; an intrinsic degeneracy of the resonator modes
which is protected by T -reversal without the need for
any fine tuning of the resonant frequencies of several de-
vices; a reduced power threshold to non-reciprocity due
to the use of the inter-mode nonlinearity and of the spa-
tial overlap of the two degenerate modes.

The structure of the article is the following: In Sec. II
we develop an analytical coupled-mode theory of light
propagation across the TJR and we make use of it to il-
lustrate the reciprocity breaking for a TJR operating in
the nonlinear regime. Sec. III presents all technical de-
tails of the experimental samples and the optical setup
and summarizes the finite-element model used to describe
ab initio the light propagation in our device. The experi-
mental results are shown in Sec. IV and compared to the
theory. Conclusions are finally drawn in Sec. V.

II. THEORY

As it is shown in Fig. 1a, a TJR supports whispering-
gallery modes propagating in clockwise (CW) and
counter-clockwise (CCW) directions, whose pairwise de-
generacy is protected by T -reversal. The effect of the S-
shaped waveguide is to unidirectionally couple light from
the CW mode into the CCW one, while both modes dis-
play the same effective loss rate. In the forward configu-
ration, light accesses the bus waveguide from its left side
and excites the CCW mode of the resonator through a
directional coupler, but does not propagate into the S-
shaped waveguide. On the other hand, in the reverse
configuration light enters the bus waveguide from the
right and excites the CW mode; via the S-shaped waveg-
uide it partially transfers excitation into the CCW one.
The resulting increase of the total light intensity stored
in the resonator is at the heart of the Lorentz reciprocity
breaking.

A simplified model can guide our experimental analy-
sis. Focusing on the neighborhood of a TJR resonance
(resonance frequency ω0), let us assume a monochromatic
excitation at ω, a weak coupling of the microring to the S-
shaped waveguide and to the bus waveguide (real valued
coupling coefficients kS, kw � 1), and a power dependent
refractive index of the TJR n = nL+nNLI, where I is the
optical intensity in the TJR (Fig. 1b,c) and nL, nNL are
the linear refractive index and the nonlinear coefficient.
We can adopt the widely used temporal coupled-mode
theory [32, 33] and write the steady state electric field

amplitudes E± in the CW (+) and CCW (−) modes as

ωE+ = ω0E+ −
nNL

nL
ω0(|E+|2 + g|E−|2)E+ − iγTE+

− c

LnL
kwE

(R)
in , (1)

ωE− = ω0E− −
nNL

nL
ω0(|E−|2 + g|E+|2)E− − iγTE−

− c

LnL
kwE

(L)
in − i

c

LnL
2k2Se

iωc nLLSE+ . (2)

Here, L and LS are the microring and the S-shaped
waveguide lengths, c is the vacuum speed of light, and

γT is the TJR loss rate (see later). E
(L)
in and E

(R)
in are

the input fields exciting the ring from the left and the
right of the bus waveguide, while the output fields to the

left and to the right are E
(L)
out =

√
1− k2w E

(R)
in + ikwE+

and E
(R)
out =

√
1− k2w E

(L)
in + ikwE−, respectively.

The strength of the nonlinearity is quantified by nNL =
nK + nT which is the sum of the Kerr nK and ther-
mal nT nonlinearities. Of particular interest is the pa-
rameter g which describes the nature of the TJR non-
linearity. g = 2 represents a spatially local Kerr non-
linearity [34–36], while g = 1 describes a thermo-optic
nonlinearity [37]. Note that the thermo-optic nonlinear-
ity is mediated by a homogeneous heating of the TJR
depending on the total energy that is dissipated in it.
As shown in Appendix A, intermediate situations in
which both processes contribute to nNL are described by
g = (2nK + nT)/(nK + nT). In our specific silicon-based
TJR, we have nT � nK and thus g ' 1.

The total effective loss rate γT = γA + ck2w/(2LnL) +
ck2S/(LnL) is the same for the CW and CCW modes. It
results from the sum of absorption γA and radiative losses
into the bus and the S-shaped waveguides. Yet, the last
term of (2) shows the asymmetric mode coupling intro-
duced by the S-shaped waveguide: while all light lost by
the CCW mode into the S-shaped waveguide is radiated
away, part of the light transferred by the CW mode into
the S-shaped waveguide is re-injected in the CCW mode.
This is illustrated in Fig. 1b,c: In the forward configu-
ration, only the CCW mode is excited and no reflection
occurs. In the reverse one, both modes are excited, and
marked interference fringes are visible in the intensity
profile. As a result, for the same frequency and input
power, the unidirectional mode coupling leads to a larger
intensity inside the TJR in the reverse configuration than
in the forward one.

While this asymmetry does not affect reciprocity in
the linear regime of weak excitations [31], it has a ma-
jor impact on the nonlinear response to strong fields. In
Fig. 2a, we show the numerical prediction of the coupled-
mode equations (1-2) for the internal power propagating
in the ring Pring ' Aε0cnL(|E+|2 + |E−|2)/2 (with A the
waveguide cross section and ε0 the vacuum permittivity).
The input power P ' Aε0cnL|Ein|2/2 is kept at constant
values while the frequency is scanned downwards across a
resonance in forward and reverse configurations. At low
input power the usual Lorentzian peak is found; though,
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FIG. 2. a) Simulated internal power Pring for a downwards
frequency sweep (black arrow) at two input powers P . Light
(dark) blue curves refer to the forward (reverse) configura-
tion. b) Simulated transmitted power PT for a fixed frequency
ω − ω0 ' −4γT in the forward and reverse configurations.
Black arrows indicate the sweep direction. Black dashed
lines label the threshold powers. The inset shows the ratio

P
(for)
T /P

(rev)
T of the transmitted powers in the forward and re-

verse configurations along a decreasing P ramp. Parameters
for both panels: L ' 850 µm, LS = L/2, kw = kS = 0.14,
γA = 5.7 × 109 s−1, nL = 1.83, nT = 8.8 × 10−13 cm2/W,
A = 0.66 µm2, and g = 1.

because of the S-shaped waveguide, the internal power
Pring is higher in the reverse configuration. For a larger
input power, the nonlinear refractive index causes a shift
of the resonance proportional to the TJR internal power.
In our nNL > 0 case, the shift is towards lower frequen-
cies. At sufficiently large powers, both curves display a
sudden downward jump right after the resonance, as typ-
ical in optical bistability [38–42]. Note that the position
of the jump depends on the direction: the larger internal
intensity in the reverse configuration allows for a larger
shift of the resonance before jumping. This difference
is responsible for a frequency window where the internal
intensity in the two configurations is strikingly different.

This key feature is an example of the nonlinear break-
ing of reciprocity and is further illustrated in Fig. 2b.
Here, we show the simulated transmitted power PT as a
function of the input power P for a fixed incident fre-
quency ω − ω0 ' −4γT in the optical bistability regime.
As the input power grows, PT displays a linear increase
up to a threshold P1 where a sudden jump down onto
another stable solution occurs. On the way back, for de-

creasing P , the threshold P2 for the upwards jump is such
that P2 � P1. Thus, a bistability loop opens that can be
understood as a metastability in a first order phase tran-
sition. Once again, the different values of the internal
intensity Pring in the forward and reverse cases lead to
markedly different values for P1 and P2. This results in
intensity windows where the transmitted powers in the
two directions are very different, as shown in the inset.

III. SAMPLES AND OPTICAL SETUP

In order to verify our predictions, we fabricated inte-
grated TJR devices using silicon oxynitride (SiON) single
mode channel waveguides as shown in Fig. 1a [31]. The
waveguide cross section is A = 0.66 µm2. As measured
in [43] at a wavelength λ ' 1550 nm, nL = 1.83 and the
linear absorption coefficient α = 0.35 × 10−4 µm−1. We
estimated nT = (8.8 ± 0.4) × 10−13 cm2/W from the fit
of our experimental data, much larger than the typical
Kerr nonlinear refractive index nK = 8 × 10−16 cm2/W
of the material [43]. The length of the bus waveguide
is approximately the same on both sides of the TJR. In
order to avoid undesired mode couplings, the ends of the
S-shaped waveguide have been designed with a partic-
ular geometry (looking as rhomboids in Fig 1a) which
prevents back-reflections [44].

The optical setup employs a fiber-coupled continuous
wave tunable laser operating at the wavelength range
spanning from 1490 nm to 1640 nm. Its output is coupled
to an Erbium-Doped Fiber Amplifier to get high power.
Then, a polarization control stage sets the input light
to the TM (transverse magnetic) polarization. Light is
coupled in the bus waveguide by butt-coupling through
a tapered fiber. The transmitted light is collected by a
fiber and sent to an InGaAs detector. In order to switch
between the forward and the reverse configurations, the
sample is simply turned without any other change in the
setup.

As it was reported in [31], the response of our samples
is made more complicated by Fabry-Pérot oscillations in
the transmittance due to reflections at the bus waveguide
facets. Even though this does not affect the qualitative
predictions of the coupled mode theory, a quantitative de-
scription requires taking this effect into account as well as
relaxing other implicit approximations. To this purpose,
we have built a more refined theory based on the solu-
tion of the nonlinear Helmholtz equation in our specific
geometry. As it is detailed in Appendix B and in [31], the
ring resonator as well as the S-shaped and the bus waveg-
uides are appropriately segmented and propagation of the
forward- and reverse-propagating waves along each seg-
ment of length ∆z � λ is described by the steady-state
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FIG. 3. a) Normalized transmittance T̃ = T/Tmax as a function of the detuning ∆λ = λ − λ0 from the linear resonance
wavelength for an upwards wavelength sweep (black arrow). The red dotted line represents the experimental transmittance
in the linear regime for an input power P ' 0.01 W. The light (dark) blue solid curve corresponds to the experimental
transmittance in forward (reverse) configuration at a fixed input power P = 0.21 W. The black dashed lines are theoretical fits
of each experimental curve produced using Eq. (3). The inset gives a magnified view of the region of strongest nonreciprocal
behavior. b) Shift ∆λ0 of the resonance wavelength as a function of the input power P for the resonance displayed in panel a).
Light (dark) blue circles correspond to experimental data in forward (reverse) configuration. The black dashed (dotted) line is
a linear fit to the theoretically calculated ∆λ0 in forward (reverse) configuration.

condition

E±(z ±∆z) = exp
{
i
[ (
nL + iα

c

ω

)
(3)

+nT
∆z

L

N∑
j=1

(
|E±(zj)|2 + |E∓(zj)|2

) ]ω
c

∆z
}
E±(z) .

where the thermo-optic nonlinear refractive index of each
element results from the averaged power within it. Mix-
ing of the field in the different elements is provided by
directional couplers, while reflection at both ends of the
bus waveguide is taken as lossless with reflection ampli-
tude ikm. As discussed in Appendix C, this finite-element
theory matches the coupled-mode theory in the appro-
priate limits and can be used to quantitatively fit our
experimental data.

IV. EXPERIMENTAL RESULTS

To probe the TJR response, we performed sweeps of
the laser wavelength at fixed powers around the cold TJR
resonance at λ0 = 1545.76 nm. When operated at a small
input power, P . 0.03 W, the thermal nonlinearity plays
no role and the cold sample behaves as a linear device.
Indeed, we observed the same transmittance T when
pumped from the left or from the right. The linear trans-
mittance normalized to its maximum value T̃ = T/Tmax

is shown as a function of the detuning ∆λ = λ−λ0 from
the resonance wavelength as the red dash-dotted line of
Fig. 3a. From a fit of this curve with the theoretical
model (black dashed lines), we extracted the coefficients

FIG. 4. Optical bistability in the normalized transmittance
T̃ = T/Tmax along a round-trip sweep of the laser detuning
∆λ across the resonance at a fixed input power P = 0.21 W.
The ramp direction is indicated by the black arrows. Exper-
imental data are shown as solid lines while the black dashed
lines are the fits obtained with the finite-element theory of
Eq. (3). a) Forward configuration (light blue). b) Reverse
configuration (dark blue).

kw = 0.49± 0.02, kS = 0.14± 0.03 and km = 0.24± 0.04.
A list of all parameters employed in the fits of the exper-
imental data can be found in Appendix D.
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In order to investigate the nonlinear response, we then
performed upwards wavelength ramps at larger input
powers (an example for P = 0.21 W is shown in Fig. 3a).
As predicted by the model (Fig. 2), the resonance dip in

T̃ is pushed towards longer wavelengths by the nonlinear-
ity due to the accumulated power in the TJR up to the
threshold where T̃ jumps back to a value close to one.
In the reverse configuration, since a larger intensity is
present inside the resonator for the same input power, the
resonance wavelength experiences a larger displacement
than in the forward configuration. This is our first evi-
dence of a nonlinearity-induced nonreciprocal behavior.
A magnified view around the transition points where the
difference is the largest is shown in the inset of Fig. 3a.
Here, the ratio of the transmittance in the two directions
reaches a value Tfor/Trev ' 6 dB at ∆λ ' 0.34 nm. The
displacement ∆λ0 of the resonance from its linear posi-
tion as a function of the input power P is displayed in
Fig. 3b: the non-reciprocity is clearly visible as a larger
slope in the reverse case because of the higher internal
power. The small deviations of the experimental points
(circles) from a linear fit of the theory (lines) are mostly
due to the Fabry-Pérot oscillations. More details on the
difference between the resonance shift shown in Fig. 3b
and that produced by a Kerr nonlinearity of the same
magnitude can be found in the Appendix E.

Further insight in this physics is provided by the bista-
bility loops that are observed when comparing the trans-
mittance along frequency ramps in upwards and down-
wards directions at the same fixed input power. In agree-
ment with the coupled-mode theory of Fig. 2, the experi-
mental observations in Fig. 4 show that the bistable loop
observed in the reverse configuration (bottom) is wider
than the one in the forward configuration (top), due to
the different feedback caused by the S-shaped waveguide
in the TJR. This is also reproduced by the finite element
model (dashed lines).

V. CONCLUSIONS

We have demonstrated how the combination of optical
nonlinearities and a spatially asymmetric design gives rise
to an effective violation of reciprocity in a single non-
magnetic multi-mode Taiji resonator. This device goes
one step beyond previous multi-resonator proposals and
realizations in terms of integrability in silicon photonics
circuits. The simplicity of its design allows a transparent
theoretical analysis and facilitates its use as the unit cell
of more complex structures.

The effective breaking of reciprocity is visible in the
dependence of both the nonlinear shift of the resonance
wavelength and the width of the optical bistability loop
on the direction of illumination. The experimental obser-
vations are quantitatively reproduced by the theory and
the effect is intuitively understood by a coupled-mode
theory in terms of the asymmetric coupling introduced
by the S-shaped waveguide and the consequently differ-

ent strength of the nonlinear feedback effect.

Future work will address the technologically important
issue of optimizing the nonreciprocity by employing Taiji
resonators built of highly nonlinear materials in a prop-
erly designed critical coupling regime. The nonrecipro-
cal bandwidth can also be extended by engineering an
optimized coupling with the S-shaped waveguide allow-
ing to achieve simultaneously a high quality factor and
a larger exchange of energy between the counterprop-
agating modes. Further prospective research lines will
include building atop [45] to investigate the limitations
set by dynamical reciprocity on the actual performance
of our TJR device as a nonlinear optical isolator; and
exploring the richer variety of nonlinearity-induced non-
reciprocal effects in large arrays of resonators where they
interplay with non-trivial band topologies and topolog-
ical edge states [12, 46]. On the long run, this will be
ultimately extended to non-Hermitian systems with gain
and losses [47].
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Appendix A: General coupled-mode theory

The Taiji resonator (TJR) coupled-mode theory
steady-state equations in the most general case featuring
a combination of local and nonlocal nonlinearities read

ωE+ = ω0E+ −
nK
nL

ω0(|E+|2 + 2|E−|2)E+

− nT
nL

ω0(|E+|2 + |E−|2)E+ − iγTE+ −
c

LnL
kwE

(R)
in ,

(A1)

ωE− = ω0E− −
nK
nL

ω0(|E−|2 + 2|E+|2)E−

− nT
nL

ω0(|E−|2 + |E+|2)E− − iγTE− −
c

LnL
kwE

(L)
in

− i c

LnL
2k2Se

iωc nLLSE+. (A2)
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……

FIG. 5. Scheme of the modelled Taiji resonator (TJR) show-
ing the electric field amplitudes E inside each segment zj (de-
limited by the short transverse lines) and the transmission and
coupling amplitudes at each directional coupler (represented
by the long transverse lines) tw,S,m and ikw,S,m.

By properly grouping both nonlinear terms it is easy to
show that

ωE+ = ω0E+ −
nK + nT
nL

ω0

(
|E+|2 +

2nK + nT
nK + nT

|E−|2
)
E+

− iγTE+ −
c

LnL
kwE

(R)
in , (A3)

ωE− = ω0E− −
nK + nT
nL

ω0

(
|E−|2 +

2nK + nT
nK + nT

|E+|2
)
E−

− iγTE− −
c

LnL
kwE

(L)
in − i

c

LnL
2k2Se

iωc nLLSE+,

(A4)

and therefore

nNL = nK + nT, g =
2nK + nT
nK + nT

. (A5)

Upon replacing ω → i∂t, these equations can be used
to describe the evolution of the system in time under the
assumption of a temporally local nonlinearity. While this
is usually a good approximation for Kerr media, one must
keep in mind that thermal nonlinearities are typically
slow so this approximation must be explicitly verified on
a case-by-case basis.

Appendix B: Finite-element model

In order to derive the finite-element equations to be
employed in the fits of the experimental results we di-
vided each waveguide in the sample into segments of
equal length ∆zr,S,w = Lr,S,w/Nr,S,w = zj − zj−1, be-
ing Lr,S,w[48] the total length of each component (ring,
S, and bus waveguides), Nr,S,w the number of segments in

which it is divided, and zj the spatial coordinate of each
segment j = 1, ..., Nr,S,w. The segment length in each
case is assumed to be much longer than the light wave-
length, i.e. ∆zr,S,w � λ. The aim of the finite-element
model is to relate the amplitude of the electric field E at a
position zj+1 to the amplitude in the precedent segment
zj . To simplify the notation, on the following we will
drop the subindices referring to the sample components
as the equations are valid regardless of which waveguide
is considered. We started from a modified Helmholtz’s
equation including a local Kerr nonlinearity with refrac-
tive index nK, and a nonlocal thermo-optical nonlinearity
with refractive index nT. It reads

∂2E

∂z2
= −

(ω
c

)2 [(
nL + iα

c

ω

)
+ nK|E(z)|2

+ nT
∆z

L

N∑
j=1

|E(zj)|2
]2
E(z), (B1)

where ω and c correspond to the angular frequency and
speed of light in free space, respectively, nL is the lin-
ear refractive index, and α is the absorption coefficient.
Note that the thermal nonlinearity shifts the refractive
index at each sample component proportionally to the
average intensity inside it. In our case we have that
nL � nK,T|E(z)|2 ∀z, which implies that the field oscilla-
tion due to the linear part of the material’s response will
be much faster than that of the nonlinear part. Therefore
one can employ the Ansatz

E(z) = E+(z) + E−(z)

= ξ+(z)ei
ω
c (nL+iαc/ω)z + ξ−(z)e−i

ω
c (nL+iαc/ω)z,

(B2)

where E± are the electric field amplitudes and ξ± are
the slowly-evolving parts of the field propagating in the
clockwise (+) and counterclockwise (−) directions.

After inserting Eq. (B2) into Eq. (B1) we use the rotat-
ing wave approximation to neglect those terms oscillating
with spatial frequency on the order of ω/c or faster, which
average to zero in a segment much longer than the optical
wavevelength, as well as the smaller terms proportional
to ∂2ξ+,−/∂z

2 and those of order O(n2K,T). Identifying
the energy-conserving processes we obtain

∂ξ±
∂z

= ±iω
c

[
nK
(
|ξ±(z)|2 + 2|ξ∓(z)|2

)
+ nT

∆z

L

N∑
j=1

(
|ξ±(zj)|2 + |ξ∓(zj)|2

) ]
ξ±(z). (B3)

By integrating these differential equations along a single
segment where the slowly-evolving intensities |ξ±|2 can
be considered as constant in our weak absorption regime
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and employing the Ansatz (B2) one finally arrives to

E±(z ±∆z) = exp

{
i

[(
n+ iα

c

ω

)
+ nK

(
|E±(z)|2 + 2|E∓(z)|2

)
+ nT

∆z

L

N∑
j=1

(
|E±(zj)|2 + |E∓(zj)|2

) ]ω
c

∆z

}
E±(z).

(B4)

which generalizes Eq. (3) to generic nonlinearities.
The fields in the different components of the sample are

coupled in reciprocal and lossless directional couplers in
which the output and input field amplitudes are related
by a scattering matrix(

Eout,1

Eout,2

)
=

(
tw,S,m ikw,S,m
ikw,S,m tw,S,m

)(
Ein,1

Ein,2

)
, (B5)

where tw,S and ikw,S represent the transmission and cou-
pling amplitudes in the ring-bus and ring-S couplers, re-
spectively. On the other hand, tm and ikm correspond to
the transmission and reflection amplitudes at the facets
of the bus waveguide, which give rise to Fabry-Pérot os-
cillations. Note that tw,S,m and kw,S,m are taken as real
numbers satisfying t2w,S,m + k2w,S,m = 1.

Altogether, the set of Eqs. (B4-B5) for all elements
of our set-up represent the electric field propagation
throughout the sample and can be solved with standard
numerical techniques providing a complete and quantita-
tive description of the nonlinear light propagation at the
steady-state.

Appendix C: Coupled-mode theory and
finite-element model in the weak coupling regime

In this Appendix we show that the finite-element sim-
ulations recover the coupled-mode theory results in the
weak coupling limit (kw,S � 1) without Fabry-Pérot os-
cillations (km = 0). Fig. 6 displays the normalized trans-

mittance T̃ = T/Tmax for a TJR operating in forward
and reverse configurations as obtained by using both for-
malisms. The parameters of the simulations are those
employed in Fig. 2 for an incident power P = 0.21 W. The
agreement between both models is best found around res-
onance where the coupled-mode equations are valid. The
discontinuities and the non-reciprocal window are found
to lie at the same wavelengths in both simulations.

Appendix D: Fit parameters

Table I summarizes the parameters employed in the fit
of the experimental data using the finite-element model
derived in Appendix B. A diagram of the simulated de-
vice is shown in Fig. 5. The TJR is assumed to be at

FIG. 6. Normalized transmittance T̃ as a function of the rela-
tive wavelength shift with respect to the resonance wavelenght
(∆λ) in an upwards ramp (indicated by the black arrow) for
a TJR in the forward (light blue) and reverse (dark blue)
configurations. The dashed curves were calculated by using
the coupled-mode theory (c.m.), whereas the solid lines were
obtained with the finite-element model (f.e.). The incident
power is taken to be P = 0.21 W. The parameters of the
simulations are those of Fig. 2.

the center of the bus waveguide. Whilst the sample em-
ployed in the experiment features an asymmetrical TJR
with an optimized shape in order to reduce backscatter-
ing of light, to facilitate the calculations we employed a
circular TJR with the same ring length.

Rr 135.11 µm nL 1.83
RS 62.45 µm nK 8× 10−16 cm2/W
LL 687.50 µm nT (8.8± 0.4)× 10−13 cm2/W
LR 687.50 µm α 0.3454× 10−4 µm−1

A 0.66× 10−8 cm2 kw 0.49± 0.02
Nr 8 kS 0.14± 0.03
NS 2 km 0.24± 0.04
Nw 4

TABLE I. Fit parameters: ring radius Rr, S waveguide radius
RS, bus waveguide length to the left LL and right LR of the
TJR, waveguide cross section A, number of segments in which
the ring, S and bus waveguides are divided Nr,S,w, linear re-
fractive index nL, nonlinear Kerr refractive coefficient nK,
nonlinear thermal refractive coefficient nT, absorption losses
α, coupling parameters kw,S for the ring-bus waveguide and
ring-S waveguide couplers, and reflection amplitude km at the
bus waveguide facets.

Appendix E: Resonance shift for equivalent
thermo-optic and Kerr nonlinearities

Here we compare the resonance shift ∆λ0 produced by
the thermo-optic nonlinearity displayed by our samples
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with the one that would exhibit a (fictitious) TJR featur-
ing a Kerr nonlinear parameter of the same magnitude
nK = 8.8 × 10−13 cm2/W and a negligible nT ' 0. In
all calculations, ∆λ0 is measured w.r.t. the linear posi-
tion of the resonance at λ = 1545.76 nm. Fig. 7 shows
linear fits of the numerical results of the finite-element
model in each case, which slightly deviate from the lin-
ear behaviour due to Fabry-Pérot oscillations: quite un-
expectedly, for a given value of the input power the Kerr
nonlinearity with g = 2 gives a slightly smaller nonlinear
shift ∆λ0 than the thermo-optic nonlinearity (g = 1).

These numerical results can be physically understood
using the coupled-mode equations (1-2). In the forward
configuration light circulates in the CCW mode only and
no significant difference between both kinds of nonlinear-
ity arises. In the reverse configuration, one could have
expected that the presence of the g = 2 factor in the
Kerr nonlinear term of Eq. (2) would give a larger non-
linear shift ∆λ0 compared to the thermo-optical case.
The complete calculation displayed here shows that this
is not the case, since the very presence of this factor g = 2
quickly pushes the CCW mode out of resonance from the
CW one and the pump laser. This results in a smaller
value of the intensity in the CCW mode, which may well
overcompensate the factor 2. As a result, the net effec-
tive nonlinear shift ∆λ0 turns out to be a bit smaller for
a Kerr nonlinearity than for a thermal one at the same
input power.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.2

0.4

0.6

0.8

1

FIG. 7. Shift of the resonance wavelength ∆λ0 w.r.t. its lin-
ear value λ = 1545.76 nm as a function of the input power
P . All curves are linear fits of the numerically calculated
data using the finite-element model. Dashed lines are the
curves displayed in Fig. 3b for the experimental case of a
thermo-optic nonlinearity with nT = 8.8 × 10−13 cm2/W.
Solid lines are obtained by employing a purely Kerr nonlin-
earity (nT = 0) whose strength has been artificially increased
to nK = 8.8 × 10−13 cm2/W to match the strength of the
thermo-optic nonlinearity of the experiment. Light (dark)
blue lines correspond to the forward (reverse) configuration.
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