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Abstract

This work presents some results about Wick polynomials of a vector field renormaliza-
tion in locally covariant algebraic quantum field theory in curved spacetime. General vector
fields are pictured as sections of natural vector bundles over globally hyperbolic spacetimes
and quantized through the known functorial machinery in terms of local ∗-algebras. These
quantized fields may be defined on spacetimes with given classical background fields, also
sections of natural vector bundles, in addition to the Lorentzian metric. The mass and the
coupling constants are in particular viewed as background fields. Wick powers of the quan-
tized vector field are axiomatically defined imposing in particular local covariance, scaling
properties and smooth dependence on smooth perturbation of the background fields. A gen-
eral classification theorem is established for finite renormalization terms (or counterterms)
arising when comparing different solutions satisfying the defining axioms of Wick powers.
The result is specialized to the case of general tensor fields. In particular, the case of a vector
Klein-Gordon field and the case of a scalar field renormalized together with its derivatives
are discussed as examples. In each case, a more precise statement about the structure of the
counterterms is proved. The finite renormalization terms turn out to be finite-order poly-
nomials tensorially and locally constructed with the backgrounds fields and their covariant
derivatives whose coefficients are locally smooth functions of polynomial scalar invariants
constructed from the so-called marginal subset of the background fields. The notion of local
smooth dependence on polynomial scalar invariants is made precise in the text.

Our main technical tools are based on the Peetre-Slovák theorem characterizing differen-
tial operators and on the classification of smooth invariants on representations of reductive
Lie groups.

1 Introduction

This work is a continuation of the work started in the previous article [KM16] by the first and
last author. While we have aimed the current article to be self-contained, the reader may be
referred to the previous article for the details of some proofs.
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1.1 Wick polynomials

Wick polynomials and time-ordered products of Wick polynomial are the building blocks for
perturbative renormalization of quantum fields, both in Minkowski spacetime and in curved
spacetime, where the metric is considered as a given external classical field. Although of ut-
most physical relevance, e.g., the stress-energy tensor is a Wick polynomial and it plays a most
important part in semiclassical quantum gravity (see [HP15, Sec.6.3] for some cosmological ap-
plications), these formal operators do not belong to the algebra of observables generated by the
smoothly smeared field operators (operator-valued distributions). This is because they corre-
spond to products of distributions at a given point and this notion is not well-defined in general.
As an elementary example for the Klein-Gordon scalar field operator φ(x) on a spacetime (M, g)
viewed as formal integral kernel of a field operator represented on a Fock Hilbert space smeared
with smooth compactly supported functions f , namely φ(f) :=

∫
M φ(x)f(x)

√
|det g| dx, the

simplest Wick power is a suitable interpretation of φ2(x) = φ(x)φ(x). It stands for the integral
kernel φ2(f) =

∫
M φ2(x)f(x)

√
|det g| dx. However this interpretation is very difficult to sup-

port. For example, any naive attempt to define it (with 〈 | 〉 the Fock inner product and Ψ any
state in the appropriate domain) as the limit for n→∞ of∫

M×M
〈Ψ|φ(x)φ(y)Ψ〉f(x)δn(x, y)

√
|det g(x)|

√
|det g(y)| dy dx ,

where δn(x, y) → δ(x, y) as n → ∞, gives rise to divergences for any physically meaningful
state Ψ, such as the Fock vacuum in Minkowski spacetime. The popular and perhaps most
effective procedure to eliminate the short-distance divergences consists of simply keep a regu-
lated smearing function δn(x, y) and simply subtracting a suitable divergent function of n as
n → ∞, that is the regulator is removed. A much more elegant procedure (see [KM15] for a
recent introductory account) consists of first restricting ourselves to a suitable class of physi-
cal states (Hadamard states). For any Hadamard state Φ, the singularity structure of (more
precisely the wavefront set of) 〈Φ|φ(x)φ(y)Φ〉 is under sufficient control so that we can find a
distribution G(x, y) that is independent of Φ (as long as it remains Hadamard) such that the
difference 〈Φ|φ(x)φ(y)Φ〉−G(x, y) is regular enough to be smeared with some distributions and
f(x)δ(x, y) in particular, with a test function f(x). Thus, we could formally define the Wick
square by φ2(x) := limy→x φ(x)φ(y)−G(x, y)1, and so on for higher Wick powers (this is known
as the Hadamard parametrix regularization method [HW01, HW02, BF00]). In any case, even
such a procedure do not lead to a unique definition. The constructed Wick powers (or also
more generally time ordered products of Wick powers) may be still affected by (finite) ambi-
guities, popularly called finite-renormalization terms (or counterterms). Within the divergence
subtraction paradigm their nature is obvious: depending on how the regularization is carried
out, ∞−∞ could be any number.

A given Wick product φn(x), interpreted as a distributional kernel evaluated at x, can
always be be redefined by adding similar counterterms of lower order multiplied with coefficients
depending on x: φn(x) =

∑
k<nCk(x)φk(x). The structure of these coefficients Ck can be fixed

by imposing some further physical constraints.
A definite difference exists between flat and curved spacetime renormalization procedures

defining Wick polynomials (we will not discuss time ordered products in this work). In Minkowski
spacetime, Wick polynomials (though not time ordered products Wick polynomials) are com-
pletely fixed by the so called normal-ordering prescription which is feasible because there exist
a unique Poincaré invariant reference state and all the manipulations are in fact performed
in the Fock-Hilbert space, relying upon that vacuum state. The normal-ordering prescription
is able to simultaneously get rid of ultraviolet divergences and fix all remaining finite renor-
malization ambiguities of Wick polynomials in Minkowski spacetime. From our viewpoint it
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consists of removing the ultraviolet singularities and imposing that the expectation values of
the obtained operators vanish on the unique Poincaré invariant state. Unfortunately no such
preferred reference state exists in generic curved spacetime, though a viewpoint similar to the
Minkowskian one may be adopted dealing with maximally symmetric spacetimes like de Sitter
spacetime, where a natural and unique notion of symmetry-invariant vacuum is available (at
least for massive fields [AF87]). In the absence of a sufficiently large group of Killing symmetries
able to single out a physically privileged reference vacuum state, or for specific values of the
parameters defining the quantum field (think of a Klein-Gordon field in Minkowski space time
with m2 < 0), the Minkowskian procedure cannot be adopted to completely fix the definition
of Wick polynomial even if the normal ordering prescription is mathematically meaningful in
the Fock space of every Gaussian (or quasi-free) state.

Still, a relic of the Minkowskian short-distance divergence remains in generic curved space-
time, encoded in the universal Hadamard short distance divergence of n-point functions, math-
ematically corresponding to a definite structure of the wavefront set of these distributions, in
the language of microlocal analysis (e.g., see [KM15]). However removing this divergence is by
no means sufficient to uniquely define Wick powers. Ambiguities remain and the best we can
do is to reduce them to the smallest possible number of types and to classify them.

Let us briefly and heuristically describe how these ambiguities have been studied in previous
works. In addition to the obvious requirement that any general procedure should give rise to
the known result in Minkowski spacetime, the general strategy [HW01] is to avoid any specific
choice from scratch: first of all, no preferred Hilbert space representation of operators is chosen
and all the discussion takes place at the level of abstract ∗-algebras of operators φ(M,b)(x),
where (M,b) denotes a spacetime endowed with a set of background fields, like the metric
and the mass generally, both allowed to vary on M . Quantum states are algebraic states,
namely positive normalized linear functionals over the said unital ∗-algebra of observables. The
standard Hilbert space representation arises via the GNS theorem [KM15, Sec.5.1.3]. Next the
notion of Wick polynomial is required to be consistent with the requirements of locality and
covariance [BFV03]. In other words, Wick polynomials (and all other observables too) must be
equivariant with respect to causal embeddings of different spacetimes (locality) and with respect
to causal diffeomorphisms of a given yet arbitrary spacetime (covariance). This is not enough
however to fix the Wick polynomials completely and, barring obvious technical requirements,
further natural constraints must be added [HW01], like the behavior of Wick polynomials under
rescaling of the metric and the other given background fields, which together allow a satisfactory
classification of the remaining freedom in finite renormalizations. Unfortunately, one of the
technical requirements from [HW01], so-called “analytic dependence on analytic metrics”, was
long considered unnatural, despite its crucial role in the classification result.

An important refinement of these results was recently made (by some of the authors) for
the real scalar field [KM16], where “analytic dependence” was replaced by the more natural
“smooth dependence” of the Wick polynomial on smooth compactly localized perturbations of
external fields. As a matter of fact one requires that smooth deformations of the background
fields b 7→ b(s), where s ∈ R, produces smooth fields (x, s) 7→ φn(M,b(s))(x), with a suitable
precise interpretation of these mathematical objects. This smooth dependence requirement
together with locality allowed us to replace all appeals to analyticity in the proof of the classi-
fication result by an appeal to the Peetre-Slovák theorem [Slo88]. This fundamental result in
differential geometry states that a (possibly non-linear) map between spaces of smooth functions
is a differential operator precisely when it is local (depends only on the germ of its argument)
and maps smooth families of smooth functions to smooth families of smooth functions. The
latter regularity condition is what inspired our “smooth dependence” requirement. This argu-
ment, applied in the case of the Klein-Gordon scalar field in [KM16], was used to show that
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the renormalization coefficients Ck(x) are locally given by differential operators applied to the
background fields b(x) = (g,m2, ξ), which consist of the metric, the mass squared and the cur-
vature coupling (cf. Section 6.1). The further requirements of locality, covariance and scaling
finally restricts the functions Ck(x) to be scalar polynomials in the mass m2 and any other
scalars covariantly built out of the Riemann tensor Rabcd and its covariant derivatives, with the
coefficients of these polynomials given by arbitrary smooth functions of the curvature coupling
ξ. The difference between polynomial and smooth dependence on some of the parameters is
explained by their different properties under scaling transformations. This classification result
had reproduced the earlier results of [HW01], modulo their analytic dependence on ξ vs. our
smooth dependence on ξ, though with more natural hypotheses.

1.2 Structure of the work and main results

This work deals with the classification of Wick polynomials of a rather general locally covariant
bosonic vector-valued quantum field, in the presence of rather general classical background fields.
The constant parameters that usually defining a quantum field, like the mass and coupling
constants, are included in among the classical background fields (and may be restricted to be
constants). Fermionic fields (like the locally covariant Dirac field [Zah14]) are not handled by
our analysis and will be discussed elsewhere.

Our main results are split in two. The first (Theorem 5.2) holds when both the dynamical
and background fields are sections natural vector bundle over spacetime (natural here means
that the bundle transforms in a well-defined way under diffeomorphisms, cf. [KMS93, Ch.IV]).
It gives the structure of the general form of the finite renormalizations of Wick powers, which
are parametrized by differential operators locally depending on the background fields, including
the non-trivial relations between terms that renormalize Wick powers of different degrees. The
simplest examples of natural tensor bundles are trivial bundles, tangent and cotangent bundles,
as well as any direct sums and products thereof. But natural bundles also include more general
examples like bundles of connection coefficients or even jet bundles themselves.

The second main result (Theorem 6.2) holds when we restrict the dynamical and background
fields to be only tensor fields. It completely classifies the differential operators parametrizing
the finite renormalizations of Wick powers to be covariantly constructed from the metric, the
curvature, the background tensor fields and all of their covariant derivatives, and furthermore
to have a certain polynomial structure of bounded degree.

The above results are the first complete and rigorous ones for non-scalar dynamical and
background fields. To supplement our great generality, we illustrate our results with two phys-
ically relevant particular cases: the real vector Klein-Gordon field Aa, possibly with tensorial
coupling to the curvature, and the (ϕ,∇aϕ) pair consisting of the real scalar Klein-Gordon field
and its spacetime derivative.

Similarly to [KM16], the more complex final classification theorem of Wick polynomials
arises by assuming that the Wick products satisfy a certain list of axioms (Definition 3.4) in-
cluding local covariance, scaling, smooth dependence on perturbations of background fields and
commutation relations (kinematic completeness). The relevant commutation relations are quite
general. Since no specific equations of motion are assumed, we only require that the commutator
of two linear quantum fields is a c-number distribution satisfying a certain regularity condition
(which is known to hold for usual causal propagator of a well-posed hyperbolic equation).

Except for some general remarks, we shall not discuss the existence of Wick products satisfy-
ing our set of axioms, same as in [KM16]. We expect that, at least for the Klein-Gordon field and
related fields (e.g., its derivatives), a proof of existence may be obtained by a straightforward
re-adaptation to the vector case field of the reasoning appearing in [HW01] and [HW02] for the
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scalar field by taking advantage of the characterization of Hadamard states and parametrices
for vector field presented in [SV01].

The paper is organized as follows, where we also list the main results of the work.
Section 2 introduces the general notations and the general geometric setup concerning vector

bundles and their symmetric tensor powers, also jet bundles, as well as a brief discussion of the
Peetre-Slovák theorem stated in a form useful for our purposes. This section also includes the
definition and useful identities for the symmetrized product of sections of a vector bundle. The
symmetrized product will be useful for giving index-free versions of various formulas in our
results.

Section 3 is devoted to the introduction the concepts of natural vector bundles, background
geometry, scaling and locally covariant net of algebras of quantum observables on a globally
hyperbolic spacetime. The definitions will take advantage of elementary language of category
theory and basic notions of operator algebras.

Section 4 deals with the precise notion of a general bosonic locally covariant quantum field,
again with the help of notions from category theory. A precise notion of scaling degree is defined
to be used later. The concept of c-number field is also presented.

Section 5 presents the general notion of a Wick power of a general bosonic local quantum
field. The precise definition (Definition 5.2) lists all necessary physical requirements: behavior
of Low Powers, Scaling, Kinematic Completeness, Commutator Expansion, and Smoothness.
Based on these requirements, we prove our first main result in Theorem 5.2. It establishes that
the difference of two different prescriptions for Wick powers with equal order can be expanded as
a sum of lower order Wick powers whose coefficients are, by invoking the Peetre-Slovák theorem,
tensor fields of suitable scaling degrees given by differential operators (of locally bounded order)
locally depending on the background fields. It is difficult to say more about these differential
operators without further assumptions.

Next, in Section 6, the last result is specialised to the case when both the dynamical and
background fields are tensors. After some preparatory technical results, the central theorem
of this paper (Theorem 6.2) is stated and proved. It precisely characterizes the form of the
differential operator coefficients in the general finite renormalization formula of Theorem 5.2. As
mentioned earlier, these coefficients must be linear combinations of tensor valued polynomials,
covariantly constructed out of the curvature tensors, the background field tensors and all of their
covariant derivatives. The number of independent terms and the degrees of these polynomials
are a priori bounded, with the bound determined by the scaling dimension of the Wick power
and the ranks of the tensors involved. The coefficients of these polynomials are locally (in a
precise sense) smooth functions (no longer just polynomial) of finitely many polynomial scalars
covariantly constructed out of the subset of the background fields. Crucially these finiteness
results hold only when all background fields are admissible. Here a background tensor field is
admissible if its physical scaling weight and its tensor rank satisfy an inequality (Definition 6.1).
Those background fields that saturate the inequality are called marginal1 and only they are
allowed to appear non-polynomially in the finite renormalization terms. In comparison with
the treatment of the scalar field in [KM16], this classification demands much stronger results
from the classical invariant theory of the general linear and (Lorentzian) orthogonal groups.
The notion of local smooth dependence on a set of polynomial invariants (Definition C.6) was
actually born out of the necessity of dealing with the complicated orbit structure for the action
of the orthogonal group on background tensors.

1Similar terminology, marginal, relevant and irrelevant fields, appears also in the Wilsonian approach to the
“renormalization group.” We emphasize that the similarity is only superficial, since both refer to some kind of
scaling dimension. Note that the Wilsonian terminology refers to dynamical fields and only to physical scaling,
while ours refers mostly to background fields and to a combination of physical and coordinate scalings.
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The final part of Section 6 is devoted to two examples of physical relevance that illustrate
the various aspects of our classification theorem: the vector Klein-Gordon field Aa (Section 6.1)
and the (ϕ,∇aϕ) pair consisting of the scalar Klein-Gordon field and its spacetime derivative
(Section 6.2)).
The choice to deal with the KG field rather than the Proca one is due to a basic requirement
we and previous works have imposed on Wick powers: they must be smooth functions of the
mass around the zero value. The zero mass m2 → 0 limit is a very delicate issue for Proca field
and gauge invariance should be taken into account. A recent paper on the subject is [SS17]. A
short discussion on this point appears in Remark 13. Even the regularity for the KG (vector
or scalar) field at zero mass is a delicate matter when Wick powers are constructed by the
Hadamard parametrix regularization method, since the corresponding parametrix includes a
term of the form lnm2. Remark 13 also contains a brief discussion on this technical problem.

Finally, three appendices collect technical results needed at various stages of the proof of
Theorem 6.2. Appendix A contains results on (almost) homogeneous functions under scal-
ing. Appendix B contains a convenient version of the Thomas Replacement Theorem, which
roughly restricts any tensorial differential operator that is equivariant under diffeomorphisms to
depend on the derivatives of the metric only through the Riemann curvature and its covariant
derivatives. Appendix C collects fundamental results on smooth invariants of the (Lorentzian)
orthogonal group acting on tensor representations. It should be noted that, even though Ap-
pendices B and C mostly collect results that are known, these results are rather scattered in the
expert literature, and their proofs may be difficult to track down. Thus, for the convenience
of the reader, we have aimed to provide complete proofs when they could be made reasonably
elementary and concise.

2 Geometric setup

Notations. In the following, VM →M denotes a smooth real vector bundle over a manifold
M whose fibres Vp are isomorphic to a given Ra. We shall make use of the auxiliary tensor
bundles V ⊗kM →M and V ∗⊗lM →M , which are bundles of tensor products of k copies of the
bundle VM and l copies of the dual bundle V ∗M respectively. In the following we also consider
two special sub-bundles, namely those of the fully symmetrized contravariant and covariant
tensor products, defined by

V �kM = SkVM ⊂ V ⊗kM , V ∗�l = MSlV ∗M ⊂ V ∗⊗lM

where we denoted with � the symmetric tensor product.

Remark 1. In the following we will consider bundles which are constructed as direct sum, i.e.,

VM =

N⊕
i=1

WiM

for some vector bundles WiM → M . We stress that, in this case, using the distributivity of
tensor product with respect to direct sum, we have

V ⊗kM =
⊕
|P |=k

N⊗
i=1

W⊗pii M, SkVM =
⊕
|P |=k

N⊗
i=1

SpiWiM

where P = (p1, . . . , pN ) is a multi-index and |P | = p1 + · · ·+ pN . It is straight forward to write
the analogous decomposition for V ∗⊗lM and SlV ∗M .
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We will take advantage of the following spaces of smooth sections.

• E (X) := Γ(X) space of smooth sections of the bundle X;

• D(X) space of smooth and compactly supported sections of the bundle X;

where X can be anyone of the introduced bundles. Obviously E (X) ⊃ D(X).

Remark 2. In the sequel, we sometimes write tensors with indices, adopting the well-known
abstract index notation [Wal84]. We use two type of indices: we use the notation with Greek
indices for sections of a generic tensor bundle (for example, vµ1,...,µk denotes a section of V ⊗kM)
and Latin indices for spacetime tensors, i.e., section of tensor products of TM and T ∗M (for
example ta1,...ak denotes a section of T⊗kM).

Remark 3. In the following, if the bundle VM has the introduced direct sum structure, we will
often take advantage of the identification: if E (VM) 3 f =

⊕
i fi we identify fi '

⊕
k δ

k
i fk.

With this identification we can substitute the direct sum with a standard sum:

f =
∑
i

fi.

It is also convenient, for notational reason, to introduce the following contraction product
between tensors. We recall [Pro07, Lem.9.1.1] that fully symmetric tensors are spanned by
decomposable tensors of the form f�l.

Definition 2.1. The l-contraction product of symmetric sections

·l : E (SlV ∗M)× E (SkVM) −→ E (Sk−lVM) with k ≥ l,

is defined pointwise on decomposable tensors g�l ∈ E (SlV ∗M), f�k ∈ E (SkVM) by(
g�l ·l f�k

)
:=

(
k

l

)
〈g, f〉l f�k−l.

and extended by linearity.

Proposition 2.1. Let k, l, s > 0 be such that l ≤ k and s ≤ k − l. For h ∈ E (SsV ∗M), g ∈
E (SlV ∗M) and f ∈ E (SkVM) it holds

h ·s (g ·l f) = g ·l (h ·s f) (2.1)

Proof. It is immediate using the definition. It is sufficient to prove the result for decomposable
tensors and then use linearity to extend the proof to generic tensors. We consider h�s ∈
E (SsV ∗M), g�l ∈ E (SlV ∗M), f�k ∈ E (SkVM). Thus

h�s ·s
(
g�l ·l f�k

)
= h�s ·s

((
k

l

)
〈g, f〉l f�k−l

)
=

(
k − l
s

)(
k

l

)
〈h, f〉s 〈g, f〉l f�k−l−s

=

(
k

s

)(
k − s
l

)
〈h, f〉s 〈g, f〉l f�k−l−s

= g�l ·l
(
h�s ·s f�k

)
.
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We now prove some technical results that will be useful in the subsequent part. In the
following we often use the shorthand notation fk := f�k.

Proposition 2.2. Let g ∈ E (V ∗M), fi ∈ E (VM) and pi ≥ 1 for i = 1, . . . N . The following
relations hold

(a) g ·1
(
gl−1 ·l−1 f

k
i

)
= lgl ·l fk,

(b) g ·1
(
fp1

1 � · · · � f
pN
N

)
=

N∑
l=1

fp1
1 � · · · �

(
g ·1 fpll

)
� · · · � fpNN ,

(c) gl ·l
(
fp1

1 � · · · � f
pN
N

)
=
∑
|Q|=l
qi≤pi

(
N∏
i=1

(
pi
qi

))(
gl ·l

(
f q11 � . . .� f

qN
N

))
fp1−q1

1 � . . .� fpN−qNN .

Moreover, if Q = (q1, . . . , qN ) and P = (p1, . . . , pN ) are multi-indices such that |Q| = |P | = l,
hQ ∈ E

(
�Ni=1S

qiWiM
)

and fi ∈ E (WiM), then

(d) hQ ·l
(
fp1

1 � · · · � f
pN
N

)
= 0 if P 6= Q.

Proof. Relation (a) follows immediately from the definition of contraction product. We prove
relation (b). It is sufficient to prove the relation for the product f1 � f2 and then the relation
(b) follows immediately using the obtained result recursively. Defining f = f1 + f2 we obtain

g ·1 f2 = 2〈g, f〉 � f = 2 (〈g, f1〉+ 〈g, f2〉)� (f1 + f2)

= g ·1 f2
1 + 2〈g, f1〉 � f2 + 2〈g, f2〉 � f1 + g ·1 f2

2

= g ·1 f2
1 + 2(g ·1 f1)� f2 + 2(g ·1 f2)� f1 + g ·1 f2

2

but we also have

g ·1 f2 = g ·1
(
f2

1 + 2f1 � f2 + f2
2

)
= g ·1 f2

1 + 2g ·1 (f1 � f2) + g ·1 f2
2

and then
g ·1 (f1 � f2) = (g ·1 f1)� f2 + f1 � (g ·1 f2).

We now prove relation (c). Applying recursively relation (a) and recalling that ·1 acts as a
derivation (relation (b)), we have, for qi ≤ pi,

gl ·l
(
fp1

1 � · · · � f
pN
N

)
=

1

l!
g ·1 (· · · g·1︸ ︷︷ ︸

l−times

(
fp1

1 � · · · � f
pN
N

))

=
1

l!

∑
|Q|=l

(
l

Q

) N⊙
i=1

g ·1 (· · · g·1︸ ︷︷ ︸
qi−times

fp1
i )

=
∑
|Q|=l

N⊙
i=1

gqi ·qi f
pi
i

=
∑
|Q|=l

(
N∏
i=1

(
pi
qi

)
gqi ·qi f

qi
i

)
fp1−q1

1 � . . .� fpN−qNN

=
∑
|Q|=l

(
N∏
i=1

(
pi
qi

))(
gl ·l

(
f q11 � . . .� f

qN
N

))
fp1−q1

1 � . . .� fpN−qNN
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where the last equality holds because, if f =
∑

i fi,

gl ·l f l =

(∑
i

〈g, fi〉

)l
=
∑
|P |=l

(
l

P

)∏
i

〈g, fi〉pi =
∑
|P |=l

(
l

P

)∏
i

gpi ·pi f
pi
i

but also

gl ·l f l =
∑
|P |=l

(
l

P

)
gl ·l

(
fp1

1 � . . .� f
pN
N

)
.

Finally, we have to prove relation (d). Define h =
∑

i hi and f =
∑

i fi where hi, fi ∈ E (WiM).
Then

hl ·l f l =

(∑
i

〈hi, fi〉

)l
=
∑
|P |=l

(
l

P

)∏
i

〈hi, fi〉pi =
∑
|P |=l

∑
|Q|=l

δPQ

(
l

P

)∏
i

〈hi, fi〉pi ,

but also

hl ·l f l =
∑
|P |=l

∑
|Q|=l

(
l

P

)(
l

Q

)(
hq11 � · · · � h

qN
N

)
·l
(
fp1

1 � . . .� f
pN
N

)
.

Thus (
hq11 � · · · � h

qN
N

)
·l
(
fp1

1 � . . .� f
pN
N

)
= 0, if P 6= Q

and, since hQ is a linear combination of hq11 � · · · � h
qN
N , we have concluded the proof.

After the first part about notations, in this section we discuss some preliminary results: we
briefly recall the notions of jet bundles, just to fix notations, and we present the Peetre-Slovák
theorem, which is the most important result that we will use in the following.
If E → M is a smooth bundle, unless otherwise specified, we henceforth denote the canonical
projection by πE : E →M , the standard fiber by F (E) and Γ(E) indicates the set of the smooth
sections of E (the smooth maps ψ : M → E such that πE(ψ(x)) = x for every x ∈M).

2.1 Jet bundles

In the following we use extensively the notion of jets and jet bundles. Naively, given a bundle
E →M and a section f : M → E, the jet of f at a point p ∈M collects the information about
the coordinate derivatives of f at p up to some order. The collection of all jets then forms the
jet bundle associated to E. In this part we briefly recall some standard notions about jets and
jet bundles [KMS93].

Definition 2.2. Consider a pair of smooth manifolds M , E and the class of smooth functions
f : M → E, in particular E may be a bundle with base M and in this case the relevant set of
functions f is that of smooth sections.
The germ of f at p ∈ M is the equivalence class [f ]p of smooth functions (sections) M → E
that are equal to f on some neighbourhood of p. The r-jet of f at p ∈ M , denoted by jrpf ,
is the equivalence class [f ]rp of smooth functions (sections) M → E that have the same Taylor
expansion at p as f to order r with respect to fixed local coordinate systems in M and E (this
property being independent from the choice of the coordinate patch). When E →M is a smooth
bundle, JrE →M denotes the set of r-jets varying the point in the base, itself a smooth bundle.
Finally, if ψ ∈ Γ(E) is a smooth section, the r-jet extension of ψ, denoted with jrψ ∈ Γ(JrE),
is the section of JrE which collects the r−jets of ψ over each point p ∈M .
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A fiber (JrE)p at p ∈ M is diffeomorphic to Ep × Rsr where Ep is the fiber of E at p and sr
is the number of all (symmetrized) partial derivatives up to order r with respect to any local
chart on the base around p.
The notion of jet extension gives rise to the definition of local adapted coordinates on jet bundles.

Definition 2.3. Let (xa, vi) be a local adapted coordinate chart on a bundle E → M , where
xa are local coordinates on an open domain U ⊆M and (xa, vi) are trivializing coordinates on
the fibers over the open domain Z ⊆ E projecting onto U . This charts extends to an adapted
coordinates chart (xa, viA) on the jet bundle JrE defined as follows. Its domain is Zr ⊆ JrE
is diffeomorphic to Z × Rsr . Moreover

viA (jrψ(p)) = ∂Av
i (jrψ(p)) =

∂

∂xa1
· · · ∂

∂xal
vi (jrψ(p))

for any section ψ of the bundle E and where A = a1 · · · al is a multi-index of size |A| = l with
l = 0, 1, . . . , r.

2.2 The Peetre-Slovák theorem

Let E →M be a smooth bundle. We recall that the afore-mentioned r-jet extension of sections
acts as a map jr : Γ(E) 3 ψ 7→ jrψ ∈ Γ(JrE).

Definition 2.4. Let E →M and F →M be smooth bundles over the same base M . Consider
a map D : Γ(E)→ Γ(F ).

1. D is a differential operator of globally bounded order if there exists an integer
r ≥ 0, the order, and a smooth map

d : JrE → F ,

which leaves fixed the base of the transformed point (πF ◦ d = πJrE) such that for any
section ψ ∈ Γ(E) we have an associated section of the form

D[ψ] = d ◦ jrψ .

2. D is a differential operator of locally bounded order if it satisfies a similar condition
locally. Namely, if for every y ∈M and every ψ0 ∈ Γ(E), there exists

• a neighborhood U ⊆M of y with compact closure;

• an integer r ≥ 0;

• an open neighborhood Zr ⊆ Jr(E) of jrψ0(U) projecting onto U ;

• a smooth function d : Zr → F which leaves fixed the base of the transformed point

such that
D[ψ](x) = d ◦ jrψ(x)

for all x ∈ U and all ψ ∈ Γ(E) with jrψ(U) ⊆ Zr.

By elementary reasoning, the function d is actually uniquely determined by the operator D,
once the domain Zr is fixed, since every point in Zr lies on the graph of some jrψ.

A differential operator D transforms sections ψ to sections D[ψ] with the constraint that the
value D[ψ](x) of the transformed section attained at a point x ∈M depends only on the value of
the initial section ψ at the same point x together with the values of its M -derivatives at x up to
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a certain order k, the jet jkxψ evaluated at the said x. A natural question is how to characterize
these type of local transformations of sections among the whole class of maps Γ(E) → Γ(F ).
An answer is provided by some results known as the Peetre-Slovák theorem we state into two
versions (there is a third more complete version we do not consider here [KMS93, Slo88]).

Theorem 2.3 (Linear Peetre’s Theorem). Let E →M and F →M be vector bundles over the
same base M and Ψ: Γ(E)→ Γ(F ) a map such that Ψ[ψ](x) ∈ F depends only on the germ of
ψ at x for very ψ ∈ Γ(E) and x ∈ M . If Ψ is linear with respect to the natural vector space
structures of Γ(E) and Γ(F ), then Ψ is a differential operator of locally bounded order.

In other words, if Ψ is linear, even if the values Ψ[ψ](x) potentially depends on the germ of ψ
around every considered x ∈ M , actually they only depend on the jet of ψ at x as it is proper
of differential operators. This noticeable result for a function Ψ: E → F , can be made stronger
keeping the requirement of dependence on the germ but relaxing the linearity hypothesis (thus
also dropping the vector space structure of the fibers of E and F ) and replacing linearity for
a suitable regularity condition. This alternate condition demands regularity of Ψ when it acts
on certain smooth families of sections ψs parametrized by s ∈ Rk we go to introduce with
the help of an auxiliary bundle used to specify the joint-smoothness of these families. Given
a smooth bundle E → M and the standard projection π : Rn × M 3 (s, x) 7→ x ∈ M , we
define an associated smooth bundle, called the pullback bundle, p : π∗E → Rn ×M whose
canonical fiber is isomorphic to that of E and the base is Rn ×M . As a set, π∗E = Rn × E
with canonical projection onto its base given by p : π∗E 3 (s, e) → (s, πE(e)) ∈ Rn × M .
The smooth differentiable structure of π∗E is defined accordingly. The smooth projection
q : π∗E 3 (s, e) 7→ e ∈ E restricts to fiber diffeomorphisms q|p−1(s,x) : p−1(s, x)→ π−1

E (x). (This
way the following diagram is commutative,

π∗E E

Rn ×M M

.................................................................... ............
q

.............................................
.....
.......
.....
p

.............................................
.....
.......
.....
πE

............................................ ............
π

and can be used to abstractly define π∗E taking advantage of a certain universal property of
the triple (π∗E, p, q).) It is now clear that a smooth section σ ∈ Γ(π∗E) uniquely defines a
Rn-parametrized jointly-smooth family of sections {ψs}s∈Rn ⊆ Γ(E), where ψs(x) := q ◦ σ(s, x)
for (s, x) ∈ Rn ×M . This observation justifies the following definition.

Definition 2.5. Given smooth bundle E → M and the associated pullback bundle π∗E →
Rk×M , σ ∈ Γ(π∗E) is called smooth n-dimensional family of sections of E. If furthermore
there exists a compact subset K ⊆M such that σ(s, x) = σ(s′, x) if x 6∈ K and s, s′ ∈ Rn, then
σ is said to be a smooth compactly supported n-dimensional variation.

We are in a position to state the relevant definition about the necessary regularity required in
the Peetre-Slovák Theorem [KMS93, Slo88].

Definition 2.6. Given smooth bundles E → M and F → M , a map Ψ: Γ(E)→ Γ(F ) is reg-
ular if it maps smooth n-dimensional families of sections to smooth n-dimensional families of
sections for every natural n. Ψ is weakly regular (cf. [KM16, Apx.A]) if it maps smooth com-
pactly supported n-dimensional variations to smooth compactly supported n-dimensional varia-
tions for every natural n.

Theorem 2.4 (Peetre-Slovák Theorem). Let E →M and F →M be smooth bundles over the
same base M and Ψ: Γ(E)→ Γ(F ) a map such that, Ψ[ψ](x) ∈ F depends only on the germ of
ψ at x for every ψ ∈ Γ(E) and x ∈M . If Ψ is weakly regular, then it is a differential operator
of locally bounded order.
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It is worth pointing out that there is an alternative version of the Peetre-Slovák theorem,
which uses differentiability in the sense of Bastiani in place of our regularity hypothesis (see
Thmeorem VII.3 of [BDLGR17], whose proof is a special case of the proofs given for the slightly
more general Theorems VII.5,7). It is also argued in [BDLGR17] that these two hypotheses
should in any case be equivalent, because Γ(E) is a Fréchet space in the usual Whitney topology.
This alternative version cannot immediately replace the version that we will need below, because
weak regularity coincides with regularity only in the physically uninteresting case of compact M .
However, there is no reason why Theorem VII.3 of [BDLGR17] could not be strengthened along
the lines of Appendix A of [KM16], where we discussed strengthening the original Peetre-Slovák
theorem from regularity to weak regularity. It remains an open question whether our version of
weak regularity or such an alternative version based on Bastiani differentiability would be easier
to verify in practice.

3 Algebras of quantum observables over spacetimes with back-
ground classical fields

Within this section we describe the general settings in which we study the renormalization of
bosonic fields in curved spacetime. We consider a quantum field over a time-oriented globally-
hyperbolic spacetime (M,g) of dimension n. It is convenient to start from M as a simple
smooth manifold. In general, in addition to the quantum field, there are some classical assigned
background fields on M . They influence the evolution of the quantum field, for example because
they may be present in the equation of motion of the quantum field. The first necessary
background field is the metric itself g, however further tensor or spinor fields may enter the
theory. Background fields are described as sections b of a suitable bundle BM → M . Here,
however, we do not assume a precise form for the fibers of BM which will be completely fixed
later. Since we are working with a locally covariant framework [BFV03], we have to deal
with all bundles of (definite types of) background fields simultaneously and coherently for every
globally-hyperbolic spacetime. To this end, we introduce all mathematical structures we need to
appropriately describe background fields in a locally covariant framework equipped with other
technical structures which will be useful later. We will take advantage of some elementary
notions of the theory of categories.

3.1 Background geometries

A notion which will play a crucial technical role in our result is the action of the multiplicative
group R+ as group of physical dilations. We state a general and abstract definition.

Definition 3.1. A bundle E → M is said to be dimensionful if it is equipped with a smooth
action of the multiplicative group R+ := (0,+∞)

R+ × E 3 (λ, e) 7→ eλ ∈ E,

called scaling. It is assumed that every bundle diffeomorphism E 3 e 7→ eλ ∈ E leaves fixed
each fiber of E (so that the λ-parametrized family of these restrictions to a given fiber defines a
group representation of R+ in terms of fiber diffeomorphisms).
A dimensionful bundle is said to be dimensionless if the action is chosen to be everywhere
trivial.

Remark 4. Every vector bundle or a cone sub-bundle of a vector bundle (a cone is a subset of
a vector space that is invariant under multiplication by positive real numbers, e.g., the cone of
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metrics of Lorentzian signature in the vector space of symmetric 2-tensors) can be viewed as
dimensionful, since it can be equipped with a well-defined multiplication by scalars with some
fixed power p ∈ R on its fibers: t 7→ λpt.

Next we pass to introduce some relevant categories which will be specialized later.

• Man is a category of smooth manifolds. Here objects are connected smooth manifolds M
of fixed dimension n and morphisms are smooth embeddings χ : M →M ′.

• Bndl is a category of dimensionful smooth bundles. Here objects πE : E →M are smooth
bundles over a smooth base of fixed dimension n. Since a smooth bundle is locally trivializ-
able, its typical fiber is diffeomorphic to a fixed manifold F with possibly some additional
structures (e.g., a vector space structure) compatible with the smooth structure. Mor-
phisms are smooth maps ξ : E → E′ that are both

(i) fiber preserving: πE′ ◦ξ = χξ ◦πE for uniquely associated smooth maps χξ : M →M ′

and preserving the additional structure of the fiber if any,

(ii) equivariant with respect to scaling: ξ(e)λ = ξ(eλ) for λ ∈ R+ and e ∈ E.

Remark 5. The definition applies also when a scaling action is not defined. In this case the
standard scaling action is assumed to be the trivial one, i.e., the bundles are supposed to be
dimensionless.

The interplay of a class of manifolds, which will be later interpreted as spacetimes, with cor-
responding bundles, which represent background classical fields (including the metric), and
implementing the ideas of local covariance is encapsulated in a certain type of functor [BFV03]
that we define below into a very general fashion. Later we specialize it to the case relevant to
our work.

Definition 3.2. A natural (dimensionful) bundle is a functor H : Man→ Bndl such that, using
the notation HM := H(M) for every M ∈ Man, a morphism χ : M → M ′ has an associated
morphism Hχ : HM → HM ′ with πHM ′ ◦Hχ = χ ◦ πHM and Hχ is a local diffeomorphism (a
diffeomorphism onto its image).

Given a morphism χ : M →M ′ and exploiting the fact that Hχ is a local diffeomorphism, it is
possible to construct a pullback action on sections of the associated bundles

χ∗ : E (HM ′)→ E (HM)

which is completely defined by requiring that

h′ ◦ χ = Hχ ◦ (χ∗h′) for h′ ∈ E (HM ′). (3.1)

Since the morphism Hχ is equivariant, the scaling commutes with the pull-back, i.e.,

χ∗(h′λ) = (χ∗h′)λ with λ ∈ R+.

Furthermore, exploiting the compactness of the support of the elements of D(HM), also a
natural push-forward map χ∗ : D(HM)→ D(HM ′) arises immediately. It is defined as follows

(χ∗f) (p′) = Hχ|χ−1(p′)f(χ−1(p′)) , (3.2)

for f ∈ D(HM) and p′ ∈ χ(M) and the right-hand side is extended to the zero function for
p′ 6∈ χ(M).
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Finally, if H,H ′ : Man→ Bndl are natural bundles, the duals H∗, H ′∗, the direct sum H ⊕H ′
and tensor product H ⊗H ′ also define natural bundles.

Dealing with a general framework of relativistic quantum field theory, a relevant natural
bundle, denoted by B : Man→ Bndl, is

BM = S̊2T ∗M

N⊕
i=1

(
T⊗kiM ⊗ T ∗⊗liM

)
(3.3)

where S̊2T ∗M ⊂ S2T ∗M is the bundle of Lorentzian metrics over M and some choice of tensor
powers ki and li. We will later use BM as the bundle of background fields for a model of
quantum fields. Scalar fields in particular are admitted when ki = li = 0. As previously
observed, the bundles (3.3) are naturally dimensionful. The sections of these type of bundles
represent the non-quantized fields of definite type assigned in every spacetime simultaneously
and coherently. The metric is one of these given fields. Let us state a pair of precise definitions
adding some further relevant details concerning the effective action of R+.

Definition 3.3. B : Man→ Bndl is the natural bundle of the form (3.3), with fixed ki, li.
A background field is a section b : M → BM . A pair (M,b) is a background geometry,
provided the section b = (g, t1, . . . , tN ) is such that (M,g) is a time-oriented globally hyperbolic
spacetime.
The action of R+ on the bundles of the form (3.3) is such that, for every background field,

(g, t1, . . . , tN ) 7−→
(
λ−2g, λs1t1, . . . , λ

sN tN
)
, (g, t1, . . . , tN ) ∈ E (BM) λ ∈ R+ , (3.4)

for given reals si independent from the section and M . Each such transformation is called
physical scaling transformation.

Definition 3.4. Referring to the natural bundle B : Man→ Bndl of the form (3.3), we define
the following associated categories.

(a) BkgG is the category of background geometries, having time-oriented background
geometries as objects and morphisms given by smooth embeddings χ : M → M ′ that preserve
the background fields, χ∗b′ = b on M , the time orientation, and causality (every causal curve
between χ(p) and χ(q) in M ′ is the χ-image of a causal curve between p and q in M).

(b) BkgG+ is the category of oriented background geometries having oriented and
time-oriented background geometries as objects and morphisms as in BkgG, but also required to
preserve the spacetime orientation.

Remark 6. The group of physical scaling transformations acts on the above categories as
(M,b) 7→ (M,bλ), for any λ ∈ R+. By equivariance of the pullback of background fields,
physical scalings actually act as functors, BkgG→ BkgG and BkgG+ → BkgG+ respectively.

3.2 The net of local quantum observables

The introduced formalism permits us to describe the net algebras of local quantum observables
on our background geometries. We explicitly only deal with BkgG, but everything we say can
be trivially re-adapted to BkgG+.

Definition 3.5. A net of algebras (of local quantum observables) W is an assignment
of a complex unital ∗-algebra W(M,b) to every background geometry (M,b) in BkgG together
with an assignment of an injective unital ∗-algebra homomorphism ιχ : W(M,b) → W(M ′,b′)
to every morphism in BkgG, respecting compositions and associating identities to identities. In
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other words W : BkgG→ Alg is a functor from the category of background geometries into the
category of (complex) unital ∗-algebras whose morphisms are injective unital ∗-algebra homo-
morphisms. Further, we require that W respects (i) scaling and (ii) the time slice axiom, as
described below.

(i) Physical scaling transformations (M,b) 7→ (M,bλ) are represented in terms of ∗-algebra
isomorphisms σλ : W(M,b)→W(M,bλ) such that σ1 = id and σλ ◦ σλ′ = σλλ′. Varying
(M,b), scaling transformations must commute with embeddings, i.e., they act as natural
isomorphisms σλ : W → Wλ between the ∗-algebra valued functors W and Wλ, the latter
defined by Wλ(M,b) =W(M,bλ).

(ii) Given a morphism χ : M → M ′ between the background geometries (M,b) and (M ′,b′),
if the image χ(M) ⊆ M ′ contains a Cauchy surface for (M ′,g′), then the induced ∗-
homomorphism ιχ : W(M,b)→W(M ′,b′) is a ∗-isomorphism.

We refer to a similar functor W : BkgG+ → Alg with analogous properties as a net of algebras
as well.

Remark 7.
(1) The unit of every algebra W(M,b) will be simply denoted by 1 in place of a cumbersome
notation 1(M,b).
(2) The scaling axiom is necessary because we will be required to compare local algebras
defined on a given manifold which are identified by scaling transformations. These algebras
must be viewed as distinct since their background fields are different. Therefore to compare
them we need to assume that there is an isomorphism σλ identifying them. In more physically
minded presentations this structure is not discussed and the said identification is hidden in the
formalism.

The time slice axiom has a consequence which will play a fundamental role in the sequel, in
particular for the application of the Peetre-Slovák Theorem.

Proposition 3.1. Referring to Definition 3.5 consider (M,b) , (M,b′) ∈ BkgG (resp. BkgG+)
such that b = b′ with identical temporal orientation outside a compact region K ⊆ M . There
exists a unital ∗-algebra isomorphism

τ : W(M,b)→W(M,b′)

such that τ |W(N,b|N ) : W(N,b|N ) → W(N,b′|N ) is the identity for every (N,b|N ) ∈ BkgG

(resp. BkgG+) satisfying N ∩ J+
(M,b)(K) = ∅.

Proof. The proof is based mainly on the time slice axiom (Definition 3.5). See [KM16, Sec.3]
for more details.

4 Quantum fields

We have so far discussed all the mathematical structures we need to describe background fields
and the abstract notion of a net of quantum observables. At this abstract level we may introduce
the definition of quantum fields as special elements of the algebras of observables [BFV03].

Definition 4.1. Fix a net of local quantum observables W as in Definition 3.5 and a natural
vector bundle V . A quantum V -field is an assignment Φ(M,b) of an algebra-valued distribution

Φ(M,b) : D(V ∗M)→W(M,b)

to each background geometry (M,b) ∈ BkgG.
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The given definition does not yet assume any particular relation between Φ(M,b) and Φ(M ′,b′)

when (M,b) and (M ′,b′) are connected by a morphism χ of BkgG. A quantum field Φ is said
to be locally covariant when each pair of Φ(M,b) and Φ(M ′,b′) is in fact connected according to a
natural rule arising from the definition of a natural bundle, translating into the mathematical
language the ideas of locality and general covariance.

Definition 4.2. A quantum V -field Φ (Definition 4.1) with respect to the net of local quantum
observables W as in Definition 3.5 is said to be locally covariant if it satisfies the following
identity for each morphism χ : (M,b)→ (M ′,b′) where b = χ∗b′,

ιχ
(
Φ(M,b)(f)

)
= Φ(M ′,b′) (χ∗f) , ∀f ∈ D(V ∗M). (4.1)

where χ∗ is the push-forward with respect to a natural bundle, as in (3.2).

Remark 8.
(1) It is usual to require that the field Φ has a definite scaling degree dΦ ∈ R with respect to
the action of physical scaling. However, when Φ has multiple components, different components
of a V -field can be grouped together by their scaling degree, giving rise to the decomposition
of the field bundle as in Remark 1. Then the role of the scaling degree is played by a globally
diagonalizable endomorphism dφ : VM → VM , whose eigen-subspaces constitute the bundle

decomposition VM =
⊕N

i=1WiM and whose eigenvalues correspond to the weights of these field
sub-bundles. Alternatively, once this field bundle decomposition is known, the endomorphism
dΦ can be identified with its eigenvalues (dΦ1 , . . . , dΦN ). Informally written, the relation between
the scaling of background fields and Φ means that

(g, t1, . . . , tN ) 7−→
(
λ−2g, λs1t1, . . . , λ

sN tN
)

=⇒ Φ 7−→ λdΦΦ, (g, t) ∈ Γ(BM) . (4.2)

To formulate a precise statement valid also for V -fields exploiting our formalism we need a
precise scaling procedure based on the isomorphism σλ introduced in Definition 3.5. If Φ is a
quantum V -field, we can define the rescaled quantum V -field SλΦ as

(SλΦ)(M,b)(f) = σ−1
λ (Φ(M,bλ)(λ

nf)) , λ ∈ R+ , (4.3)

where n is the dimension of the spacetime M and σλ is the algebra isomorphism introduced in
Definition 3.5. It should be clear here that both Φ(M,b) and (SλΦ)(M,b) are element of the same

algebraW(M,b) due to the presence of σ−1
λ in the second case. The factor λn just compensates

the scaling of the volume form dg 7→ λ−ndg when g 7→ λ−2g. A mathematically rigorous version
of (4.2) is now

(SλΦ)(M,b)(f) = λdΦΦ(M,b)(f) , (M,b) ∈ BkgG , f ∈ D(VM) , λ ∈ R+ .

(2) As usual, it is convenient to think of the algebra-valued distribution Φ as a formal point-like
field Φµ(x) smeared with a test section f ∈ D(V ∗M). In the sequel, we will make extensive
use of the case when V is replaced by SkV . Then we may write the formal point-like field
Φµ1···µk(x) smeared with a test section f ∈ D(SkV ∗M) as

Φ(M,b)(f) =

∫
M

Φµ1···µk(x)fµ1···µk(x) dg(x) ,

where dg(x) is the volume form induced by the metric g on M .
Similarly, if C is any function that maps a background geometry b to a distribution on a
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certain space of test functions C(M,b) : D(SkVM)→ R, it is heuristically convenient to use the
distributional notation

C(M,b)(f) :=

∫
M
C[M,b]µ1···µk(x)fµ1···µk(x) dg(x) , f ∈ D(SkV ∗M), (4.4)

where the formal c-number field C[M,b]a1···ak(x) may not be smooth. Such a function C will
be named a c-number SkV -field. If the sections C[M,b] are smooth for every (M,b) (i.e.,
C[M,b] ∈ E (SkV ∗M)), C is said to be a smooth c-number SkV -field. From now on we
systematically identify C(M,b)(f) with the corresponding trivial element, a so called c-number,

C(M,b)(f)1 of W(M,b). In this sense a c-number SkV -field is a sub-case of a quantum SkV -
field and, for instance, the scaling action (4.3) applies to these particular quantum fields as well.

(3) If in addition C satisfies the identity

C(M,χ∗b′)(f) = C(M ′,b′)(χ∗f) , (4.5)

for every background morphism χ : (M,b) → (M ′,b′) (so b = χ∗b′) and every test section
f ∈ D(SkV ∗M), then C defines a locally covariant c-number SkV -field.
Using the definitions of pull-back χ∗ : E (SkV ∗M ′)→ E (SkV ∗M) and push forward χ∗ : D(SkVM)→
D(SkVM ′) , it is easy to prove that if C is described by C[M,b] ∈ E (SkV ∗M) for every choice
of (M,b) by means of (4.4), then (4.5) is equivalent to

C[M,χ∗b′](x) =
(
χ∗C[M ′,b′]

)
(x) , (4.6)

for every background morphism χ : (M,b)→ (M ′,b′) (with b = χ∗b′) and x ∈M .

5 Wick powers of quantum boson fields

In this section we want to study the renormalization of Wick powers of a generic quantum boson
field. Before discussing this problem, we have to introduce a useful definition concerning the
notion of physical scaling introduced in Section 3.1.

Physical scaling degree. Physical scaling will be used together with the notion of homoge-
neous and almost homogeneous scaling degree. Since these notions are quite abstract we can
present them into a general inductive definition [KM16, Def.2.3].

Definition 5.1. Consider a linear representation ρ : R+ → GL(W ) of the multiplicative group
R+ on a vector space W whose action is indicated by W 3 F 7→ Fλ := ρ(λ)F ∈ W , for every
λ ∈ R+.

(a) An element F ∈W is said to have homogeneous degree k ∈ R if

Fλ = λkF, for all λ ∈ R+.

(b) An element F ∈ W is said to have almost homogeneous degree k ∈ R and order
l ∈ N if l ≥ 0 is an integer such that (with the sum over j is omitted when l = 0)

Fλ = λkF + λk
l∑

j=1

(
logj λ

)
Gj , for all λ ∈ R+,

and for some Gj ∈W depending on F , which have respectively almost homogeneous degree
k and order l− j. An element that is almost homogeneous of order l = 0 is homogeneous
by definition.
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In the rest of the paper we will exploit several technical results about physical scaling in concrete
application, all reported in Appendix A, with the exception of the next general lemma, proved
in [KM16, Lem.2.5].

Lemma 5.1. Referring to Definition 5.1, consider a pair of vector spaces W,W ′ endowed with
corresponding representations of R+. Concerning (b) below, assume also that there is a product
W ×W ′ → V such that (i) V admits a representation of R+ and (ii) the map W ×W ′ → V is
equivariant: FλF

′
λ = (FF ′)λ for F ∈W , F ′ ∈W ′ and λ ∈ R+. The following facts hold.

(a) A linear combination of two elements F, F ′ ∈ W of almost homogeneous degree k and
order l is of almost homogeneous degree k and order l.

(b) A product of an element F ∈ W , of almost homogeneous degree k and order l, and an
element F ′ ∈W ′, of almost homogeneous degree k′ and order l′, has almost homogeneous
degree k + k′ and order l + l′.

General settings. Our general setting is the following:

1. We start with a bundle VM which is constructed as a direct sum of vector bundles

VM =

N⊕
i=1

WiM. (5.1)

2. We consider a locally covariant quantum V -field A(M,b) : D(VM) → W(M,b) and we
characterize it as a quantum boson field in the following way. We assume that the com-
mutator of two V -fields [A(M,b)(f), A(M,b)(g)] is a c-number, i.e.,

[A(M,b)(f), A(M,b)(g)] = C(M,b)(f ⊗ g)1, (5.2)

where C(M,b) ∈ D ′(VM × VM) is a distribution with some suitable properties (e.g.,
for boson fields it vanishes for spacelike separated arguments). Thus, Schwartz’ kernel
theorem implies that a unique continuous linear map ∆(M,b) : D(VM)→ D ′(VM) exists
such that [∆(M,b)(g)](f) = C(M,b)(f ⊗g). We require moreover that ∆(M,b)(g) is regular
in the sense that

∆(M,b) : D(VM)→ E (V ∗M), (5.3)

where we used the fact that E (V ∗M) ⊂ D ′(VM). There are many ways to implement this
requirement in practical cases, for example our assumption holds when the dynamics of
the field A is ruled by any hyperbolic field equation in view of the theorem of propagation
of singularities (in this case ∆(M,b) is simply the causal propagator, see Section 6.1 for an
example). More generally it holds when some microlocal spectrum (cf. [KM15], [BF09,
Ch.4]) hypothesis on the wavefront set of n-point functions is assumed with respect to
relevant classes of states even in the absence of a field equation2.

If we use explicitly the decomposition (5.1) the map ∆(M,b) can be seen as a direct sum
of maps

∆(M,b) =
N⊕
l=1

N∑
j=1

∆lj
(M,b),

where ∆lj
(M,b) : D(WjM)→ E (W ∗l M).

2(5.3) is valid when WF (C(M,b)) 63 (x, y, px, py) with either px = 0 or py = 0 and this is guaranteed as soon
as some standard microlocal spectrum condition on C(M,b) is valid, in particular if C(M,b) is a bisolution of a
hyperbolic field equation.

18



M

BM

K

b0

bs

Figure 1: We consider compactly supported variations of background fields.

3. Since we assumed a bundle constructed as in (5.1), the V -field A(M,b) can be written as
a N -tuple of Wi-fields

A(M,b) =
(
(A1)(M,b), . . . , (AN )(M,b)

)
.

We assume that each Wi-field (Ai)(M,b) scales homogeneously under physical scaling with
degree dAi ∈ R, i.e.,

(SλAi)(M,b)(f) = λdAi (Ai)(M,b)(f) , (M,b) ∈ BkgG , f ∈ D(WiM) , λ ∈ R+ .

We will say that the V -field A(M,b) scales homogeneously with degree RN 3 dA =
(dA1 , . . . dAN ) under physical scaling.

4. We then consider the Wick powers Ak of A. These quantum fields Ak have the physical
interpretation of products of k factors A evaluated at the same point x. Formally, assuming
a geometric background (M,b) has been fixed,

Akµ1...µk
(x) = (Aµ1 · · ·Aµk)(x) .

It is worth stressing that these quantum fields are not elements of the sub unital ∗-algebra
generated by 1 and elements A(f) since these elements are associated with kernels formally
evaluated at different points of spacetime, i.e., they are linear combinations of objects
Aµ1(x1) · · ·Aµk(xk). Thus Wick powers need a specific definition which, as is well-known,
involves some renormalization procedure.
Finally, we stress that, using the decomposition introduced in Remark 1, the Wick powers
Ak can be written as a sum

Ak(f) =
∑
|P |=k

(
k

P

)
Ak
(
fp1

1 � · · · � f
pN
N

)
=:

∑
|P |=k

(
k

P

)
AP
(
fp1

1 , · · · , fpNN
)
, (5.4)

where P = (p1, . . . , pN ) is a multi-index and
(
k
P

)
= k!∏N

i=1 pi!
. The last equality is intended

as a definition.

We assume an axiomatic viewpoint stating five axioms regarding Wick powers. These axioms
do not determine them, but determine the degrees of freedom due to the different possible choice
of renormalization procedures and classify the finite renormalization counterterms. Regarding
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the 5th requirement in the definition below, for clarity we recall the notion of a compactly
supported variation from Definition 2.5. If (M,b) is a background geometry, the jointly smooth
function B = bs(x) with s ∈ Rm and x ∈ M defines a smooth m-dimensional (m ≥ 0 integer)
family of smooth compactly supported variations of b if bs(x) = b(x) for x ∈ M and bs(x) =
bs′(x) for s, s′ ∈ Rn and x 6∈ K for a fixed compact K ⊆M depending on the family. According
to Proposition 3.1, we can identify each algebraW(M,bs) withW(M,b) by means of the unital
∗-algebra isomorphism

τs : W(M,b)→W(M,bs) , (5.5)

which reduces to the identity on every spacetime (N,gs|N ) if N ∩ J+
(M,g)(K) = ∅.

Definition 5.2 (Wick powers for general boson fields). Consider a net of algebrasW on the cat-
egory of background geometries BkgG (resp. BkgG+) and a locally-covariant quantum V -field
A (Definition 4.2) with A(M,b) : D(VM)→W(M,b) for every (M,b) ∈ BkgG (resp. BkgG+).

A class of Wick powers {Ak} of A, for k = 0, 1, 2, . . . is a family of symmetric locally-
covariant quantum SkV -fields (so that each k defines an assignment of algebra-valued distribu-
tion Ak(M,b) : D(SkVM) → W(M,b) to every (M,b) ∈ BkgG (resp. BkgG+) respecting (4.1))
satisfying the following requirements.

1. Low powers. A0 = 1, the unit c-number field, A1 = A, the V -field.

2. Scaling. With respect to the decomposition (5.4), each component AkP of the Wick power
Ak is almost homogeneous of degree 〈P,dA〉 = p1dA1 + · · · pNdAN , with respect to the
action of physical scalings Sλ in (4.3); that is, there exists an integer l ≥ 0 and quantum
k-tensor fields Bj such that

SλA
P = λ〈P,dA〉AP + λ〈P,dA〉

l∑
j=1

(
logj λ

)
Bj ,

where each Bj is itself almost homogeneous of degree 〈P,dA〉 and order l − j. (Every
degree is supposed to be independent from the choice of the background geometry).

3. Kinematic completeness. For any (M,b), an element a ∈ W(M,b) satisfies

[a,A(M,b)(f)] = 0 for every f ∈ D(VM)

iff a = α1, with α ∈ C and 1 the unit element of the algebra.

4. Commutator expansion. Each Wick power Ak also satisfies the following properties3:[
Ak(M,b)(f), A(M,b)(g)

]
= iAk−1

(M,b)(∆(M,b)(g) ·1 f), f ∈ D(SkVM), g ∈ D(VM)

(5.6)
where ∆(M,b) : D(VM)→ E (V ∗M) is a given map.

5. Smoothness. If (M,b) ∈ BkgG (resp. BkgG+), we require that there exist a class of

states S(M,b) onW(M,b) such that if ω ∈ S(M,b), the expectation values ω ◦ τ−1
s

(
Ak(M,bs)

(f)
)

(with f ∈ D(SkVM)) can be written as

ω ◦ τ−1
s

(
Ak(M,bs)

(f)
)

=

∫
M
ωµ1···µk(s, x)fµ1···µk(x)dg(x),

3We recall that there is a factor k hidden in the contraction product.
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for some jointly smooth kernels

Rm ×M 3 (s, x) 7→ ωµ1···µk(s, x) ∈ R,

for every smooth m-parameter family of compactly supported variations bs of b on M and
τs : W(M,b)→W(M,bs) defined as in (5.5) and every integer m ≥ 0.

6. Hermiticity. For all background geometry (M,b) and f ∈ D(V ∗M), we require that

A(M,b)(f) = A(M,b)(f)∗

where * denotes the corresponding operation in the ∗-algebra W.

Remark 9. While the first four axioms, and also the last one, are standard requirements, we
would like to comment briefly the smoothness axiom. We require that any Wick powers has
smooth expectation value both with respect to x, the coordinate on spacetime manifold, and
s, the parameter that labels the variations of b. The smoothness with respect to x reflect the
physical idea that a renormalized observables is smooth since we have removed all singularity in
the renormalization procedure. The joint smoothness in (x, s) is a version of the parametrized
microlocal spectrum condition that was introduced in [KM16, Def.3.5(iv)], as a substitute for
the old analyticity condition of Hollands and Wald [HW01].

Remark 10. In components, i.e., with respect to equation (5.4), the commutator expansion
axiom, for j ∈ 1, . . . , N and a multi-index P , becomes[

Ap1
1 · · ·A

pN
N

(
fp1

1 , · · · , fpNN
)
, Aj(gj)

]
=

i

N∑
l=1

Ap1
1 · · ·A

pl−1
l · · ·ApNN

(
fp1

1 , · · · , (∆lj(gj) ·1 fpll ), · · · , fpNN
)
.

(5.7)

To show this, fixing a background geometry (M,b), consider gj ∈ (W ∗M)j and f =
∑

j fl with
fl ∈WlM , where we have used the identification introduced in Remark 3, i.e.,

gj = (0, . . . , gj , . . . , 0), fj = (0, . . . , fj , . . . , 0).

We recall that, by definition,

Ap1
1 · · ·A

pN
N

(
fp1

1 , · · · , fpNN
)

:= Ak
(
fp1

1 � · · · � f
pN
N

)
,

then, using Proposition 2.2,[
Ap1

1 · · ·A
pN
N

(
fp1

1 , · · · , fpNN
)
, Aj(gj)

]
=
[
Ak
(
fp1

1 � · · · � f
pN
N

)
, A(gj)

]
= iAk−1

(
N∑
l=1

∆lj(gj) ·1
(
fp1

1 � · · · � f
pN
N

))

= i
N∑
l=1

Ak−1
(
fp1

1 � · · · �
(

∆lj(gj) ·1 fpll
)
� · · · � fpNN

)
,

which by definition is equal to (5.7).
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5.1 General renormalization formula for Wick products of a quantum boson
field

If {Ãk}k=1,2,... and {Ak}k=1,2,... are two families of Wick powers of the same quantum V -field A,
our task is now to find a formula relating these two pairs of Wick powers relying on the fact that
both classes satisfy the above set of general axioms. The following theorem is a generalization
of [KM16, Lem.3.3]

Theorem 5.2. Let {Ãk}k=1,2,... and {Ak}k=1,2,... be two families of Wick powers (Definition 5.2)
of the same locally-covariant quantum V -field A (Definition 4.2) of homogeneous scaling de-
gree dA ∈ RN . Then there exists a family of smooth locally-covariant c-number SkV -fields
{Ck}k=1,2,..., where C1 = 0, such that, for every k = 1, 2, . . .,

Ãk(M,b)(f) = Ak(M,b)(f) +
k−1∑
l=0

Al(M,b) (Ck−l[M,b] ·k−l f) , (5.8)

where (M,b) ∈ BkgG (resp. BkgG+) and f ∈ D(SkV ∗M). In components equation (5.8) turns
out to be

ÃP(M,b)

(
fp1

1 , . . . fpNN
)

=AP(M,b)

(
fp1

1 , . . . fpNN
)

+
k−1∑
l=0

∑
|Q|=l
qi≤pi

(
N∏
i=1

(
pi
qi

))
AQ(M,b)

((
CP−Qk−l [M,b] ·k−l fP−Q

)
f q11 , . . . , f qNN

)
(5.9)

where Q = (q1, . . . , qN ), P = (p1, . . . , pN ) are multi-indices and Ck =
∑
|Q|=k C

Q
k .

Finally, for every fixed M ∈Man,
(i) the map

Γ(BM) 3 b 7→ Ck[M,b] ∈ E (SkV ∗M)

is a differential operator of locally bounded order. Regarding components of the coefficients
CQk [M,b] ∈ E (

⊙N
i=1 S

qiW ∗i M);

(ii) each CQk [M,b] scales almost homogeneously of degree 〈Q,dA〉 under the physical scaling
transformation on b.

Proof. In the first part of the proof we write A(f) in place of A(M,b)(f) and we adopt similar
notations for the other involved fields, for the sake of notational simplicity. For all k, the
difference

Ãk(f)−Ak(f) = Dk(f), f ∈ D(SkVM)

defines, by construction, a symmetric locally-covariant quantum V ⊗k-field of order k, in partic-
ular is self-adjoint. Using Axiom 1 and the commutator expansion (5.6) in Axiom 4, it is easy
to show that

[Dk(f), A(g)] = iDk−1 (∆(g) ·1 f) . (5.10)

Dk(f) is an element of the algebra W(M,b) and we go to prove that it can be expanded as a
linear combination of elements of the form Al.
We proceed by induction in k. The thesis holds for k = 1 and C1 = 0 since, using again Axiom
1, D1(f) = 0 for all f ∈ D(V ∗M). Suppose now that (5.8) holds for k− 1 with respect to some
functions Ci : Γ(BM) → E (SiV ∗M), i = 1, 2, . . . , k − 1, that satisfy all the desired properties.
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We intend to establish the validity of the thesis also for i = k. Consider the Wick polynomial,
for f ∈ D(SkVM),

Wk(f) :=
k−1∑
l=1

Al(Ck−l[M,b] ·k−l f).

We stress that the sections Ck−1[M,b], Ck−2[M,b], . . . , C1[M,b] appearing in the sum, by hy-
potheses are smooth and have all the desired properties stated in the theorem. Writing Ck−1

in place of Ck−1[M,b], we have:

[Dk(f)−Wk(f), A(g)] = iDk−1(∆(g) ·1 f)−
k−1∑
l=1

[
Al(Ck−l ·k−l f), A(g)

]
= i

k−2∑
l=0

Al (Ck−1−l ·k−1−l ∆(g) ·1 f)−
k−1∑
l=1

iAl−1(∆(g) ·1 Ck−l ·k−l f)

= i
k−1∑
l=1

Al−1 (Ck−l ·k−l ∆(g) ·1 f)−Al−1 (∆(g) ·1 Ck−l ·k−l f) = 0,

where we have used Proposition 2.1. Thus, we can conclude that [Dk(f)−Wk(f), A(g)] = 0 for
any test function g. Due to Axiom 3 we must therefore have

Dk(f)−Wk(f) = Ck(f)1, (5.11)

where Ck(f) is real and must define a locally-covariant c-number SkV -field since it is a difference
of that type of fields.

Next, we will appeal to the Peetre-Slovák theorem to characterize the dependence of Ck(f)
on the background field b. This theorem has two main hypotheses: locality and weak regularity,
which we verify by the covariance and smoothness axioms, respectively. Let us consider any
smooth variation of the background field bs, together with a corresponding family of distin-
guished states ω(s) = ω ◦ τ−1

s . Then, the smoothness axiom implies that the left-hand side
of

ω(s) (Dk,bs(f)−Wk,bs(f)) = Ck,bs(f) ,

is a distribution with smooth real kernel (it is real due to the hermiticity axiom), meaning that
so is Ck,bs(f), with Ck[M,bs] ∈ E (SkV ∗M) denoting its integral kernel for fixed s. Moreover,
the axiom also implies that Ck[M,bs](x) is jointly smooth in (x, s) and hence weakly regular.
On the other hand, the covariance requirement implies that the dependence of Ck[M,b](x)
at any point x ∈ M is local, for any fixed manifold M . Namely, using smaller and smaller
neighborhoods M ′ 3 x with M ′ ⊆M viewed as background geometries on their own right (when
equipped with the restriction of b to M ′), covariance with respect to the inclusion embeddings
χ : M ′ 3 x′ 7→ x′ ∈M implies that Ck[M,b](x) depends only on the germ of b at x.

Thus the map Ck[M, ·] is local and weakly regular. The Peetre-Slovák theorem implies
that Γ(BM) 3 b 7→ Ck[M,b] ∈ E (SkV ∗M) is a differential operator of locally bounded order.
Summing up, we have proved that

Ãk(f)−Ak(f) = Dk(f) = Wk(f) + Ck(f)1 =
k−1∑
l=0

Al (Ck−l ·k−l f) ,

where all coefficients Cl[M,b] from l = 0 to l = k have all properties stated in the thesis,
but the scaling property which must be still established for Ck only. Choosing as test function
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f = fp1
1 �· · ·� f

pN
N and using relation (c) and (d) from Proposition 2.2, we obtain immediately

the formula (5.9).
Proceeding again by induction, thanks to the scaling property of AP , ÃP and (CQk−l)

l=k−1
l=1 ,

CQk is a linear combination of products of terms with almost homogeneous degree that add up

to 〈Q,dA〉. Thus, by Lemma 5.1, CQk itself has almost homogeneous degree 〈Q,dA〉, and thus

SλC
Q
k 1 = λ〈Q,dA〉CQk 1 + λ〈Q,dA〉

l∑
j=1

(
logj λ

)
BQ
j ,

where Sλ is the action of physical scalings on fields here applied to a c-number field, with BQ
j

some other quantum fields of almost homogeneous degree 〈Q,dA〉. Using again the kinematic
completeness of A, we find that BQ

j = FQj 1 are also c-number fields. Now, exploiting the

definition of Sλ as in (4.3), we find that SλC
Q
k 1 = CQk 1, and similarly for the FQj . Therefore,

we find that for every x ∈M ,

CQk [M,bλ](x) = λ〈Q,dA〉Ck[M,b](x) + λ〈Q,dA〉
l∑

j=1

(
logj λ

)
FQj [M,b](x),

is an almost homogeneous element of degree 〈Q,dA〉 of the vector space of maps Γ(BM) →
E (�Ni=1S

qiW ∗i M) under the action F [M,b] 7→ F [M,bλ]. The proof is concluded.

We have finally obtained a general formula, (5.8), that classifies all finite renormalizations
counterterms of Wick powers of a generic locally-covariant boson vector field A, where the
coefficients Ck[M,b] depends on the type of vector bundle VM and the nature of background
fields b of the field A. For this reason, in order to study in detail these coefficients, we have to
consider physically relevant models.

6 Tensor fields and renormalizations of their Wick powers

In this section we consider a class of physically relevant models and we study in detail the
renormalization counterterms Ck introduced in the last section. We choose as bundles

VM =

N⊕
i=1

T ∗⊗kiM, BM = S̊2T ∗M ⊕

 K⊕
j=1

T ∗⊗ljM


which means that we are considering as fields an N -tuple of tensor fields with different tensor
ranks

A = (A1, . . . , AN ) Ai : D(T⊗kiM) −→W(M,b) (6.1)

and we will say that A has tensor rank k = (k1, . . . , kN ). As background fields we consider the
metric g together with other (covariant) tensor fields tj of rank lj

(g, t1, . . . , tK) , g ∈ E (S̊2T ∗M), tj ∈ E (T ∗⊗ljM).

Regarding physical scaling, we assume the most general situation, i.e.,

Ai 7−→ λdAiAi (g, t1, . . . , tK) 7−→
(
λ−2g, λs1t1, . . . , λ

sKtK
)

λ ∈ R+

under physical scaling transformation, where sj ∈ R for j = 1, . . . ,K. We require also another
property of the background fields, encoded in the following
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Definition 6.1. A background field tj is called admissible if its rank lj and its degree under
physical scaling sj fulfill the following condition

lj + sj ≥ 0.

If the above relation is an equality, then we also call tj marginal. By convention, let us order
the background fields such that each tj for j = 1, . . . ,K0 ≤ K is marginal and collectively denote
them by z = (t1, . . . , tK0). To emphasize their distinction from other background fields, we will
also use the notation zj = tj.

Remark 11. We have chosen all dynamical and background tensor fields to be purely covariant,
i.e., to be sections of powers of the cotangent bundle T ∗M . This choice is motivated purely
by convenience and the desire not to complicate our notation even further. Our main results,
Theorems 5.2 and 6.2, hold in easily adapted forms also for contravariant or mixed tensors, as
well as for tensors of symmetric, antisymmetric, or any other symmetry type. One does have to
note that, in the definition of admissible and marginal background fields (Definition 6.1), the
tensor rank lj must be taken to be the number of covariant tensor indices minus the number of
contravariant indices of tj .

Before studying the exact form for the renormalization counterterms in this case, we need
to recall some results.

Preparatory definitions and results. In this paragraph, we introduce various local co-
ordinate systems on BM and JrBM together with the description of a particular class of
diffeomorphisms called coordinate scalings.
Let (xa) be a local coordinate chart on the open set U ⊆M and let (xd, gab, . . . , (tj)a1...alj

, . . .)

be the corresponding adapted local coordinates on Z ⊆ BM where by definition Z projects
onto U and, more strongly, each fiber BMx is completely included in Z if x ∈ U .

• Covariant coordinates. According to Definition 2.3, the chart (xa) on U induces cor-
responding adapted local coordinates on JrBM called covariant coordinates(

xa, gab,A, (tj)a1...alj ,A

)
on the afore-mentioned domain Zr ⊆ JrBM,

where only n(n+1)/2 metric components are considered because gab is a symmetric tensor.

• Contravariant coordinates. Since Lorentzian metrics are non-degenerate, they admit
an inverse denoted, using a standard notation, with gab. We correspondingly obtain
induced coordinates gabA on jets of the inverse-metric bundle. Using the notation gAB =
ga1b1 · · · galbl , for |A| = |B| = l, we define the following functions:

g = |det gab| , gab,A = gABgabB , (tj)
a1...alj ,A = gAB(tj)

a1...alj
B ,

where we have chosen fully contravariant coordinates for tensor bundles. We have then
obtained the set of local contravariant coordinates(

xa, gab,A, (tj)
a1...alj ,A

)
on Zr ⊆ JrBM.

• Rescaled contravariant coordinates. We can obtain another coordinate set by a
suitable rescaling of the previous one: we introduce a factor of the form gα, with α ∈ R,
to rescale the coordinates (n is the dimension of M):(

xa, g, g−
1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)

on Zr ⊆ JrBM.
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It should be noticed that the functions g and g−
1
n gab are not functionally independent

due to the identity g−1 =
∣∣det gab

∣∣. So, to make an honest the coordinate system, we

(implicitly) omit one of the components of g−
1
n gab and replaced by g. The relevance of

the rescaled contravariant coordinates consists of the fact since sj is the (physical) scaling
degree of tj these coordinates without the coordinate g,(

xa, g−
1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)

are invariant under physical scaling.

• Curvature coordinates. Since we have a Lorentzian metric g, we can always define the
Levi-Civita connection ∇ and the Riemann tensor R. By well-known formulas, we can
also regroup the second order jet coordinates of the metric into the components of the
Christoffel symbols Γabc and the components of the fully covariant Riemann tensor R̄abcd.
An alternative way to regroup the components of the Riemann tensor is into the following
fully contravariant tensor S, with components

S̄abcd := gaa
′
gbb
′
R̄

(c d)
a′ b′ .

We denote by Γabc,A the components of the ∂A coordinate derivatives of Γabc, by S̄abcd,A the

components of the symmetrized contravariant ∇A = ∇(a1 · · · ∇al) derivatives of S, with
(t̄j)

a1...alj ,A the components of the symmetrized contravariant derivatives of (tj)
a1...alj . It

is possible to prove [AT94, AT96] that(
xa, gab,Γ

a
(bc,A), S̄

ab(cd,A), (t̄j)
a1...alj ,A

)
defines a complete coordinate system on Zr ⊆ JrBM , which we call curvature coordinates.

• Rescaled curvature coordinates. Analogously to rescaled contravariant coordinates,
we can rescale the curvature coordinates obtaining a new coordinate system(

xa, g, g−
1
n gab,Γ

a
(bc,A), g

3
n

+ 1
n
|A|S̄ab(cd,A), g

lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A
)
.

As before, removing g form the set of rescaled curvature coordinates we find a set of
coordinates which is fixed under physical scaling (since sj is the scaling degrees of tj).

• We call a diffeomorphism M → M a coordinate scaling around of p ∈ M if, in a
neighborhood of p whose closure is included in the domain U ⊆ M of local coordinates
(xd) centered at p itself, it acts as

xa 7−→ µ−1xa (a = 1, . . . , n)

for some µ > 0, and smoothly extends to the identity before reaching the boundary
of U . More precisely, defining t := − lnµ, the class of coordinate scaling around
p is represented by the one-parameter group of diffeomorphisms {φt}t∈R of the whole
M leaving p fixed generated by the globally defined vector field V a = −hxa ∂

∂xa , where
h ∈ C∞0 (M) vanishes before reaching the boundary of U and attains the constant value 1
in a neighborhood of p. We stress that, unlike physical scaling, these transformation are
induced by diffeomorphisms of M .
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Lemma 6.1. Consider an admissible background field tj. Then all its rescaled coordinates have
positive or null scaling weight under coordinate scaling. In particular the rescaled coordinates
scale as

g
lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A 7−→ µlj+sj+|A|g
lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A

Proof. Under coordinate scaling we have the following rescaling

(t̄j)
a1...alj ,A 7→ µ−lj−|A|(t̄j)

a1...alj ,A g 7→ µ2ng.

Then the result follows immediately.

We are finally ready to state and prove our main result, which generalizes Theorem 3.1
of [KM16].

Theorem 6.2. Let {Ak}k=1,2,... and {Ãk}k=1,2,... be two families of Wick powers (Definition 5.2)
of the same locally-covariant quantum V -field A of homogeneous scaling degree dA ∈ RN and
tensor rank k (same as in Theorem 5.2), where the natural vector bundle V =

⊕N
i=1Wi is the

N -tuple introduced in (6.1). Assume also that all background fields b, sections of the bundle
BM (Definition 3.3), are admissible (Definition 6.1). Recall also from Theorem 5.2 the renor-
malization coefficients Ck, k = 1, 2, . . . (with C1 = 0) appearing in (5.8) when comparing two
families of Wick powers of A. Finally, recall the notation Rabcd for the Riemann tensor, ∇a for
the Levi-Civita connection of gab, and εa1···an for the associated Levi-Civita tensor.

Then the following facts hold:

(a) If Q = (q1, . . . , qN ) is a multi-index with |Q| = k such that 〈Q,dA + k〉 =
∑N

i=1 qi(dAi +

ki) < 0, then the corresponding component CQk of the renormalization coefficient Ck van-
ishes.

(b) If A is locally covariant with respect to the category BkgG (Definition 3.4), then for every
background geometry (M,b), every x ∈ M and each k = 1, 2, . . ., the renormalization
coefficients Ck are given by differential operators of globally bounded order

Ck[M,b](x) = Ck

(
gab(x), Rabcd(x), . . . ,∇e1 · · · ∇ehRabcd(x), . . .

. . . (tj)a1···alj (x), . . . ,∇e1 · · · ∇er(tj)a1···alj (x), . . .
)
,

where Ck(· · ·) is a tensor field covariantly constructed from its arguments, whose structure
is described in more detail below.

(c) If A is locally covariant with respect to the category BkgG+ (Definition 3.4), then for every
background geometry (M,b), every x ∈ M and each k = 1, 2, . . ., the renormalization
coefficients Ck are given by differential operators of globally bounded order

Ck[M,b](x) = Ck

(
gab(x), εa1···an , Rabcd(x), . . . ,∇e1 · · · ∇ehRabcd(x), . . .

. . . (tj)a1···alj (x), . . . ,∇e1 · · · ∇er(tj)a1···alj (x), . . .
)
,

where Ck(· · ·) is a tensor field covariantly constructed from its arguments, whose structure
is described in more detail below.
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In both (b) and (c), by covariantly constructed we mean that the Ck are equivariant functions
of their tensorial arguments, at each x ∈M , in the sense of Lemma C.8. That is, each Ck(. . .)
is a linear combination of finitely many covariantly constructed tensors that are polynomial in
gab, g

ab and the rest of the tensorial arguments, with scalar coefficients that are smooth functions
depending locally (Definition C.6) on finitely many polynomial scalars covariantly constructed
from the tensor fields z, which consist of those background tensors tj that are marginal according
to Definition 6.1. Moreover, the functional form of the Ck(· · ·) does not depend on (M,b).

Finally, each Ck can be written as Ck =
∑
|Q|=k C

Q
k with respect to the multiplet decomposi-

tion V =
⊕N

i=1Wi, where Q is a multi-index and where each CQk is homogeneous degree under
physical scalings. More precisely, it scales as

CQk 7→ λ〈Q,dA〉CQk ,

when its arguments are rescaled according to

(tj)a1···alj 7→ λsj (tj)a1···alj , gab 7→ λ2gab , εa1···an 7→ λnεa1···an , Rabcd 7→ λ−2Rabcd

(the covariant derivatives are fixed under rescaling). These scaling properties fix the upper bound
on the differential and polynomial order of CQk .

Remark 12. Before going on to the proof, how it resembles and differs from the proof of Theo-
rem 3.1 of [KM16], which proved a similar result but only for scalar dynamical and background
fields. Generally speaking, the structure of the two proofs are similar, which are broken down
into roughly the same number of steps, roughly in the same sequence. In both cases, we start out
by knowing that the renormalization coefficients Ck[M,b] are differential operators of locally
bounded order. Hence, each Ck is given by a smooth function defined on the jet bundle JrBM
of the background fields, at least when applied to sections b whose jets fall into some open
neighborhood in the jet bundle. The remaining steps gradually fix the structure of the Ck more
and more rigidly, while also expanding its domain of definition on JrBM , ultimately extending
it to the entire jet bundle and thus showing that it is of globally bounded differential order. The
structure of Ck is first restricted by appealing to its properties under physical scaling, using
results from Appendix A. One immediate difference in the new proof is the need to keep track
of different (both physical and coordinate) scaling weights for the different components of the
Ck. Next, the structure of the Ck is further restricted by its local covariance, meaning that it
commutes with diffeomorphisms. The results from Appendix B, provide the necessary tools for
that, which essentially consist of a strengthened version of the Thomas Replacement Theorem
reported in [KM16, Prop.2.6]. Finally, local covariance is once again used to fix the final form
of the Ck, by using the results of Appendix C, which essentially strengthen the classification of
equivariant and isotropic tensors reported in [KM16, Prop.2.7,Lem.2.8]. These supporting re-
sults needed to be strengthened, compared to the ones used in [KM16], because of the transition
from only scalar dynamical and background fields to tensorial ones. While, the results reported
in Appendices B and C are not original, they are somewhat difficult to locate in the existing
literature. Thus, when possible to do so in a reasonably concise and elementary manner, they
are reported with proofs and references to more specialized literature.

Proof. We already know that, from the Peetre-Slovák theorem (see Section 2.2), the coefficients
CQk define a differential operator

Γ(BM) 3 b 7→ CQk [M,b] ∈ E

(
N⊙
i=1

SqiT ∗⊗kiM

)
⊆ Γ

(
N⊙
i=1

SqiT ∗⊗kiM

)
of locally bounded order as established in Theorem 5.2. The rest of the proof is broken down
into five steps, which are described in more detail below.
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1. Physical scaling. We now take advantage from almost homogeneity under physical scaling
of the components of the coefficients CQk to find their functional form. Consider a Lorentzian
manifold M endowed with a metric g0, as well as a point y ∈M and an open neighborhood of
U of y with compact closure. We also assume that g0 restricted to U is flat. Consider also a
coordinate system (xd) on U centered at y. These coordinates induce adapted local coordinates
on Zr ⊆ JrBM , which we write as(

xa, g, gab, g
ab,A, (t1)a1...al1 ,A, . . . , (tK)a1...alK ,A

)
.

Recall that the coordinates (g, gab) are functionally independent up to the identity |det gab| = g.
We already know that b 7→ CQk [M,b](x) is a differential operator of locally bounded order, thus

for g0, y and U (defined as above), there exists an integer r ≥ 0 such that CQk is a differential
operator on U of local order r when acting on sections of BM close to b0 := (g0, tj = 0)4. In
other words, there exists a neighbourhood Zr1 ⊆ Zr ⊆ JrBM of jryb0, projecting onto U , and a
function

FQk : Zr1 −→
(
�Ni=1S

qiT ∗⊗kiM
)

(
xa, g, gab,A, (tj)

a1...alj ,A
)
7−→ FQk

(
xa, g, gab,A, (tj)

a1...alj ,A
)
,

such that
CQk [M,b](x) = FQk (jrb(x)) , (6.2)

for any section b ∈ Γ(BM |U ) such that jrb(U) ⊆ Zr1 . Without loss of generality, but possibly
shrinking the domain of Fk, we choose it in such a way that

Zr1 ' U ×W r
1

(
g, gab,A, (tj)

a1...alj
,A
)

(xa)

.......................................................... ........
....

.............................................
.....
.......
.....

.

At the moment, we are very far from arguing that Zr1 = JrBM especially because, using the
Peetre-Slovák theorem we only know that the order of the differential operator Ck is locally
bounded and a finite global bound may not exist. During the proof we will gradually enlarge
the domain Zr1 to eventually cover all of JrBM while maintaining the identity (6.2). The

differential order r of CQk may increase in the process, but will remain finite. These extensions
will be labeled by an increasing index j in Zrj . Presently j = 1.

Theorem 5.2 implies that CQk and hence the function FQk scales almost homogeneously with
degree 〈Q,dA〉 under physical scaling of the background fields. Thus, thanks to Lemma A.1
and Lemma A.2, there exists an integer l > 0 and function Bj on Zr1 , for h = 0, . . . , l, such that

FQk = g−
〈Q,dA〉

2n

l∑
h=0

logh
(
g−

1
2n

)
Bh, (6.3)

where each Bh is invariant under the action of physical scaling. Therefore, adopting rescaled
coordinates (which are invariant under physical scaling), Bh cannot depend on g and can be
written as

Bh = Bh

(
xd, g−

1
n gab, g

1
n

+ 1
n
|A|gab,A, . . . , g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A, . . .

)
.

4We stress that the flatness assumption on g0 is not a strong requirement because the flat metric is only
the section with respect to which we consider variations. At the moment we can consider only metrics in a
neighbourhood of g0 but we will gradually enlarge it to the whole set of Lorentzian metrics. A similar argument
is also valid for all tj , which at the moment have to be close to the sections tj = 0.
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We now extend the domain Zr1 to a larger domain Zr2 ⊆ JrBM . We define Zr2 to be the smallest
domain invariant under physical scaling and containing Zr1 . That is, we can write it as

Zr2 ' R+ × U ×W r
2

(
g−

1
n gab, g

1
n+ 1

n |A|gab,A, g
lj
n +

sj
2n+ 1

n |A|(tj)
a1...alj

,A
)

(g)
(
xd
)

............................................................... ........
....

.............................................
.....
.......
.....

.............................................
.....
.......
.....

.

Up to now, we know that the identity (6.2) holds only when the germ of b at x ∈ M projects
onto one of the jets in the domain Zr1 ∈ JrBM , but the function FQk , via formula (6.3), has

a unique extension to Zr2 that scales almost homogeneously and agrees with FQk on Zr1 . The
identity (6.2) must remain valid also for germs at x that projects onto Zr2 since any element
of b′ ∈ Zr2 , using the action of physical scaling, can be brought back to b ∈ Zr1 , i.e., b′ = bλ
for some λ > 0. Since CQk [M,b] scales almost homogeneously and is already defined on Zr2 , we

conclude that it must coincide there with the unique extension of FQk .

2. Diffeomorphism covariance. We consider now the covariance properties of the coeffi-
cient CQk under diffeomorphisms. In the previous paragraph, we fixed a point y ∈ M and a
fixed background geometry b0. But, since that choice was arbitrary, all the same results are
also valid for any other choice of y′ ∈ M , open neighborhood U ′ ⊆ M of y′ and background
geometry b′0, so long as b′0 = χ∗b0 on U ′, where χ : M → M is some diffeomorphism such
that χ(y′) = y. The Peetre-Slovák theorem gives us a differential operator of order r′ on a
domain Z ′r

′
2 ⊆ Jr

′
BM . The diffeomorphism covariance of CQk then implies that the order may

be chosen the same, r = r′.
We now extend the domain Zr2 to a larger domain Zr3 ⊆ JrBM . We define Zr3 to be the small-

est domain invariant under Diff(M) and containing Zr2 . Since the coefficient CQk is Diff(M)-

covariant, the function FQk is itself Diff(M)-covariant on Zr3 . The case of orientation preserving
diffeomorphisms Diff+(M) is strictly analogous.
Now we can use Thomas replacement theorem (Theorem B.3) in order to eliminate the depen-
dence of FQk on some of the coordinates on Zr3 . We apply Theorem B.3 separately to the various
functions Bh appearing in (6.3), obtaining

g−
〈Q,dA〉

2n Bh

(
xa, g−

1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)

= g−
〈Q,dA〉

2n Gh

(
g−

1
n gab, g

3
n

+ 1
n
|A|S̄ab(cd,A), g

lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A
)
,

where each g−
〈Q,dA〉

2n Gj is equivariant under the action of GL(n) (respectively GL+(n)). In
particular, Gj does not depend on the coordinates (xa) and (Γa(bc,A)). Since Zr3 is Diff(M)U -
invariant it has the structure:

Zr3 ' U × Ln × Rγ ×W r
3

(xa) (gab)
(

Γa
(bc,A)

) (
g

3
n+ 1

n |B|S̄ab(cd,B), g
lj
n +

sj
2n+ 1

n |A|(t̄j)
a1...alj

,A
)

..........................................................
.....
.......
.....

..........................................................
.....
.......
.....

......................................................
.....
.......
.....

.......................................................................... ........
....

.

The second factor describes the metrics at a fixed point p ∈ U and coincides with the full
set Ln of non-degenerate bilinear forms on Rn with Lorentzian signature. This is because the
fiber action of the subgroup of Diff(M) which leaves p fixed is the action of the whole GL(n)
which, in turn, acts transitively on Ln. W r

3 contains at least the point with all components
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g
3
n

+ 1
n
|B|S̄ab(cd,B) and g

lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A vanishing (in particular because g0 is flat on U).
W r

3 is invariant under the said natural action of the whole GL(n). The same argument applies
to Diff+(M) and GL(n)+.

3. Covariance under coordinate scaling. Now we use the equivariance of the function
FQk under the action of a subgroup of GL(n) (respectively GL+(n)), the subgroup of coordinate
scaling.5 We can rewrite the set of coordinates over Ln ×W r

3 (the remaining coordinates xa

and Γa(bc,A) of Zr3 do not appear in the explicit form of FQk as already established) as(
g, g−

1
n gab, z

j , qi
)

Here the coordinates are grouped together along with the following idea: (g−
1
n gab, z

j) have
weight 0 under coordinate scaling (i.e., zj , j = 1, . . . ,mz, are precisely the rescaled components
of those undifferentiated coordinates of the background fields ti satisfying li+si = 0, or precisely
the components of the marginal background fields z, Definition 6.1), g transforms as g → µ2ng
and all remaining coordinates, here denoted by qi, i = 1, . . . ,mq, have positive weight (di > 0)
under coordinate scalings. There are no coordinates with negative weight (Lemma 6.1).
Lets recall that FQk is a (

⊙N
i=1 S

qiT ∗⊗kiM)-valued function and that the vector k = (k1, . . . , kN )
is constructed with the tensor ranks ki. Then the general diffeomorphism equivariance of the
function FQk specialized to coordinate scalings (centered at some base point (xa), which could

be arbitrary within the domain of definition of FQk ), implies the identity

FQk

(
g, g−

1
n gab, z

j , qi
)

= µ−〈Q,k〉FQk

(
µ2ng, g−

1
n gab, z

j , µdiqi
)

= g−
〈Q,dA〉

2n

l−1∑
h=0

µ−〈Q,dA+k〉 logh
(
µ−1g−

1
2n

)
Gh

(
g−

1
n gab, z

j , µdiqi
) (6.4)

for any point in Zr3 and any µ > 0. As we mentioned in the previous part, the limit (g−
1
n gab, z

j , 0)
of the argument of the functions Gh as µ→ 0, belongs to the domain of the function Gh, which
is smooth there. Therefore we have the Taylor expansions

Gh

(
g−

1
n gab, z

j , qi
)

=
∑
|I|<Nq

Gh,I

(
g−

1
n gab, z

j
)
qI +O

(
qNq
)
,

around (g, g−
1
n gab, z

j , 0), where I = i1 · · · imq is a multi-index with respect to the coordinates
(qi), the coefficients Gh,I are smooth, and Nq > 0 is an integer such that

〈d, I〉 =

mq∑
j=1

djij > 〈Q,dA + k〉 for all I such that |I| ≥ Nq.

5This part of the proof is analogous to part 4. of the proof of Theorem 3.1 in [KM16]. Unfortunately, that
earlier argument contained an error when eliminating logarithmic terms from Fk. This error has been corrected
in the current argument, which should also be considered retroactively inserted into the proof given in [KM16].
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This choice guarantees that each error term O(qNq) is mapped to O(µ〈Q,dA+k〉+1) under the
substitution qi 7→ µdiqi as µ→ 0. Thus we obtain

FQk

(
g, g−

1
n gab, z

j , qi
)

= g−
〈Q,dA〉

2n

l−1∑
h=0

µ−〈Q,dA+k〉 logh
(
µ−1g−

1
2n

)
Gh

(
g−

1
n gab, z

j , µdiqi
)

= g−
〈Q,dA〉

2n

l−1∑
h=0

∑
|I|<Nq

µ〈d,I〉−〈Q,dA+k〉 logh
(
µ−1g−

1
2n

)
Gh,I

(
g−

1
n gab, z

j
)
qI

+ µ−〈Q,dA+k〉O
(
µ〈Q,dA+k〉+1

)
. (6.5)

Now, if we take the limit µ→ 0, the left-hand side of (6.5) does not change, being independent
of µ, and in particular remains bounded. Hence, for equality to hold, any term on the right-hand
side of (6.5) that independently goes to ∞ as µ → 0 must vanish. That is, the coefficient of
each µp logh µ term with p < 0 or p = 0, h > 0 must be zero. Actually taking the µ → 0 limit
on the right-hand side of (6.5) we obtain the identity

FQk

(
g, g−

1
n gab, z

j , qi
)

=
∑

〈d,I〉=〈Q,dA+k〉

g−
〈Q,dA〉

2n G0,I

(
g−

1
n gab, z

j
)
qI . (6.6)

All terms 〈d, I〉 > 〈Q,dA + k〉 were set to zero by the limit, which by consistency means that
they had zero coefficients to begin with. Notice that this identity implies that the function
FQk scales homogeneously with degree 〈Q,dA〉 (that is, it has almost homogeneous order zero).
This sum could conceivably be empty, if it happens that 〈Q,dA + k〉 < 0 (recall that di > 0),
which can only happen if some of the combinations dAi + ki < 0. In that case, FQk = 0 and the

corresponding component CQk of the renormalization coefficient Ck vanishes, which proves part
(a) of the theorem.

We can now enlarge again the domain of the function FQk along the fibers, where the identity
(6.2) holds, from Zr3 to Zr4 ⊆ JrBM . The new domain is isomorphic to

Zr4 ' U × Ln × W4 × Rγ ×Rmq

(xa)
(
g−

1
n gab

)(
zj
) (

Γa
(bc,A)

) (
g

3
n+ 1

n |A|S̄ab(cd,A), g
lj
n +

sj
2n+ 1

n |A|(t̄j)
a1...alj

,A
)
lj+sj+2|A|>0

..........................................................
.....
.......
.....

......................................................
.....
.......
.....

..........................................................
.....
.......
.....

......................................................
.....
.......
.....

................................................................................. ........
....

.

The function FQk extends uniquely to Zr4 as a covariant function under coordinate scaling.
Essentially we have enlarged the factor W r

3 to W4 × Rmq . We can do that because all the
(qi) coordinates have positive weight under coordinate scaling, so that their domain can be
extended to all of Rmq . The range of the (zj) coordinates is limited to W4 ⊂ Rmz because these
coordinates are invariant under coordinate scaling. Note that the dependence of FQk on the Rδ

factor in Zr4 is polynomial and remember that FQk does not depend on the factor U × Rγ (see
previous part).

4. Global definition. It is now the moment to expand the domain Zr4 to all JrBM , for an
appropriate choice of r. In (6.6), a generic qI is of the form∏

|A|,|B|

(
S̄ab(cd,A)

)pS,|A| (
(t̄j)

a1···alj ,B
)pj,|B|

,
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where all the p-exponents are non-negative integer numbers and pj,0 = 0 if lj + sj = 0. The
constraint 〈d, I〉 = 〈Q,dA + k〉 in (6.6) can be written explicitly as

〈Q,dA + k〉 =
∑
|A|,|B|

(2 + |A|)pS,|A| + (sj + lj + |B|)pj,|B|.

By the admissibility of the background fields (Definition 6.1), we have sj + lj ≥ 0. Hence,
the coefficients of the p-exponents are non-negative and grow linearly with |A| and |B|. Thus,
there exists a bound on the maximum values of |A|, |B| with non-zero p-exponents. Let rk
be the maximum number of derivatives of the curvature or background tensors for which the
p-exponents are non-zero. Note that rk depends only on the structure of the bundle BM and
k, and not on the chosen domain Zr4 . Then we can set r = rk in all the previous parts of the
proof, i.e., we end up with a domain

Zrk4 ⊆ J
rkBM, Zrk4 = U × Ln ×W4 × Rδ.

We can now extend one last time the domain Zrk4 keeping the order of Fk globally bounded. The
factor Ln is already maximal since it contains all Lorentzian metrics. At the beginning of the
proof we chose as the initial domain Zr1 a neighbourhood of the point jry(g0, tj = 0) ∈ JrBM .
Recall that we later split the coordinates on JrBM into two groups, the q-coordinates, identified
by positive scaling weights (sj+lj > 0), and the z-coordinates, identified by zero scaling weights
(sj + lj = 0), the components of the marginal tensor fields z (Definition 6.1). What was
essential for the subsequent arguments was that, for each allowed value of the z-coordinates,
(z, q = 0) was also contained in Zr1 , because q ◦ jry(g0, tj = 0) = 0. However, the condition
z(y) = z ◦ jry(g0, tj = 0) = 0 did not play a significant role. Thus, the entire proof would work
without any changes had we chosen different background fields tj such that still q◦jry(g0, tj) = 0,
but z(y) = z ◦ jry(g0, tj) assuming an arbitrary value. Then, having a priori fixed r = rk, the
functions Fk on different Zr1 domains would necessarily agree on overlaps (since they are merely
local expressions of the globally defined differential operator Ck) and the union of all the Zr1
domains would cover arbitrary values of the z-coordinates. Thus, having already performed the
extension of the domain into the q-coordinates, we can set W 4 = Rmq in Zr4 . In other words we
can set

Zr4 = Zrk4 = π−1 (U) (6.7)

for some open neighborhood U ⊂M of y ∈M , where π : JrkBM →M .
The union of all those open sets U , when y varies in M , completely covers M . Thus,

the corresponding domains Zr4 completely cover JrkBM . Thus, the globally defined differen-

tial operator Ck is of globally bounded order at most rk and its components CQk : JrkBM →⊗N
i=1 S

qiT ∗⊗kiM have the form (6.2) when restricted to a domain of the form Zrk4 with the

functions FQk satisfying (6.6).

5. GL(n)-equivariance. In this last point, we intend to give a precise form of the function FQk
exploiting their GL(n)-equivariance. From the previous discussion we know that the function
FQk satisfying (6.2), is defined on the domain Zrk4 ' U × Rγ × Z4, but it depends only on the
coordinates corresponding to the factor Z4 = Ln × Rmz × Rmq . We also know the following:

1. the dependence is polynomial with respect to the standard coordinates on the Rmq factor;

2. the coefficients g−
〈Q,dA〉

2n G0,I(g
− 1
n gab, z

j) of these polynomials depend only on Ln × Rmz .
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Each factor in Z4 carries a tensor density representation of GL(n) (resp. GL+(n)) arising from
the action of the subgroup of Diff(M) (resp. Diff+(M)) which leaves fixed a given point of U .
More precisely, if u ∈ GL(n):

1. on Ln the action is given by (u,g) 7→ |detu|−
2
n u⊗2g;

2. on Rmz , which which corresponds to the rescaled components g
lj
n

+
sj
2n (t̄j)

a1···alj , j =
1, . . . ,K0, of the marginal background tensor fields z = (t1, . . . tK0) (Definition 6.1), the

action is given by (u, tj) 7→ |detu|
lj
n

+
sj
2n u⊗ljtj ;

3. on Rmq , which corresponds to the rescaled components g
lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1···alj ,A, for lj +

sj + 2|A| > 0, and g
3
n

+ 1
n
|A|S̄ab(cd,A), for |A| ≥ 0, also decomposes into a direct sum of

corresponding tensor density representations

Rmq =
⊕
α

Rα,

where Rα carries a tensor density representation of rank nα;

4. the fibers of the bundle where the functions FQk : Z4 →
⊗N

i=1 S
qiT ∗⊗kiM take their values

also carry a representation of GL(n) (resp. GL+(n)), which obviously decomposes into a
direct sum of tensor density representations, which we will denote by

T =
⊕
β

Tβ,

where Tβ has rank nβ.

Note also that, the homogeneous polynomials Pδ of degree δ on Rmq carry the representation

(uP ) (ρ) := P
(
u−1ρ

)
, for any u ∈ GL(n), P ∈ Pδ, ρ ∈ Rmq .

This representation on polynomials is made up of direct sums of symmetric tensor powers of
Rmq and hence itself also decomposes into a direct sum of tensor density representations

Pδ =
⊕
γ

Sδγ ,

where Sδγ has rank nδγ .

From the above remarks, it is easy to see that the equivariance of the functions FQk (see
Proposition C.1 for the relation between invariant and equivariant functions) and the linear
independence of the monomials qI on Rmq implies that the polynomial coefficients in (6.6) are
themselves smooth equivariant maps

G0 : Ln × Rmz → T ⊗ P〈Q,k〉 =
⊕
β,γ

Tβ ⊗ S〈Q,k〉γ . (6.8)

See [KM16], point 5. of the proof of the main Theorem 3.1, for a more detailed elaboration of
this argument.

Now, since the components (G0)β,γ are equivariant tensor densities (Definition C.3), we can
invoke the classification Lemma C.8 to conclude that each (G0)β,γ is, up to an overall power
of g = |det gab|, a tensor of appropriate rank built covariantly out of gab, g

ab, εa1···an(g) and
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the tensor components of z, t
a1···alj
j , for j = 1, . . . ,K0. To be more precise, each (G0)β,γ is

a finite linear combination of Tβ ⊗ S
〈Q,k〉
γ terms, each built from a tensor product of finitely

many aforementioned ingredients (possibly repeating) followed by any number of index contrac-
tions or permutations, with coefficients being smooth functions of all possible polynomial scalar
invariants covariantly constructed from the same ingredients,

(G0)β,γ = gαβ,γ
∑
m

cmβ,γ(gab, ε
a1···an(g), . . . , t

a1···alj
j , . . .)Pmβ,γ(gab, ε

a1···an(g), . . . , t
a1···alj
j , . . .) .

Lemma C.8 also tells us that, in each case, there are only finitely many algebraically independent
polynomial scalar invariants that the coefficients cmβ,γ can depend on and there are only finitely
many tensor valued polynomials Pmβ,γ that are linearly independent up to a redefinition of the

cmβ,γ coefficients. The dependence on ε(g) is allowed only in the GL(n)+ case. Also, note that

for the contractions G0,Iq
I to remain equivariant, all the explicit appearances of powers of

g = |det gab| must cancel.
Finally, combining the above conclusions with (6.6), we can say that

FQk = FQk

(
gab, gab, ε

a1···an(g), . . . , (zj)a1···alj , . . . ; g
ab, εa1···an(g), . . . , Sab(cd,A), . . . , (tj)a1···alj ,A, . . .

)
,

(6.9)
where the dependence on the second group of arguments is purely polynomial, while the depen-
dence on first group of arguments is smooth with respect to finite set of algebraically independent
scalar polynomial invariants that can be formed from them by tensor products and contractions.
Recall that we have used the notation zj = tj , for j = 1, . . . ,K0, that is for those background
tensor fields such that are marginal, satisfying sj + lj = 0. This completes the proof.

After the proof of this very general model, we can move on to some more physically relevant
models.

6.1 Vector Klein-Gordon field

We now consider a specific quantum vector field in order to investigate in detail the form
of the coefficients Ck in (5.8): we focus on the vector Klein-Gordon field. The classical
configurations of the vector KG field over an oriented globally hyperbolic spacetime (M,g) are
smooth 1-forms, i.e., sections of the cotangent bundle T ∗M , namely A ∈ E (T ∗M). The vector
KG equation, where we include also a coupling term with the curvature R, reads

−�gA+m2A+ ξRA = 0 (6.10)

where m2 and ξ are here smooth real-valued functions on M (they can be constant functions,
but in general we admit that m2 and ξ can vary on the spacetime). When passing to the
quantum formulation, the locally-covariant quantum vector KG field, indicated by the
same symbol A, is defined as in Definition 4.2 with k = 1 and VM = T ∗M . Moreover we have
the following requirements.

(a) The net of local quantum observablesW including the vector KG field is as in Definition 3.5
is fixed according to equation (6.10), which suggests that the natural bundle of background
fields is the one completely defined by

BM = S̊2T ∗M ⊕ R⊕ R, (6.11)

so that the sections M → BM are triples b = (g,m2, ξ). (The metric g affects the theory
because it enters �g, R (also derived) and even the Levi-Civita tensor ε in case one deals
with the category of background geometries BkgG+ instead of BkgG).
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(b) The natural vector bundle is completely fixed by requiring

VM = T ∗M

and the morphism Vχ, whose associated pushforward on test sections is exploited to define
the notion of local covariance as in Definition 4.2, is nothing but the natural lift of the
embeddings χ : M →M ′ to the corresponding tangent bundles.

(c) According to its mass dimension,6 the physical scaling degree of the vector KG field is
dA = (n − 4)/2 when g 7→ λ−2g, m2 7→ λ2m2 and ξ 7→ ξ according to (3.4). We recall
that the presence of covariant derivatives do not change this rescaling behaviour as the
coordinates are dimensionless.

(d) We stress that all background fields of this model are scalars of non-negative physical
scaling weight and hence are admissible according to Definition 6.1.

Remark 13.
(1) The quantum vector KG field, in addition to the requirements in Definition 4.2, it is

also supposed to verify (6.10) in a distributional sense for every background geometry

A(M,b)

(
(−�g +m2 + ξR)f

)
= 0 ∀f ∈ D(TM) . (6.12)

Though this fact does not play any role in our work, it implies several relevant facts which are
mentioned in the some of subsequent remarks. Moreover, exactly as does the Klein-Gordon
equation for the scalar field, this equation of motion plays a crucial role in the construction of
an explicit algebra of Wick polynomials [HW01].

(2) It is well-known [BD15, Sec.3.3.1] that the KG operator P = −� + m2 + ξR is Green
hyperbolic for every choices of the involved given smooth functions (m2 may attain non-positive
values in particular) and thus the retarded and advanced Green operators of P exist. In partic-
ular the function ∆(M,b) discussed in (4) Remark 5.2 in this case is the causal propagator of
the KG equation [BD15, Sec.3.3.1]. As a consequence of the standard properties of the causal
propagator, we also have that [A(M,b)(f), A(M,b)(g)] = 0 when the supports of f and g are
causally disjoint.

(3) As is well-known, exactly as for the scalar field (e.g., see [BD15, Sec.3.3.1]), the statement
of the time-slice axiom for the locally covariant vector field A can be sharpened, based on the
properties of the causal propagator of equation of motion (6.12). Namely, if O is an open
neighborhood of any Cauchy surface of (M,g) and f ∈ D(TM), then A(M,b)(f) = A(M,b)(h)
for a suitable h ∈ D(TM), depending on f , whose support is contained in O.

(4) When defining the Wick products Ak(M,b)(f), the class of states S(M,b) appearing in the
smoothness requirement in Definition 5.2 should be naturally interpreted as consisting of the
extensions of Hadamard states [SV01] from the unital ∗-subalgebra W0,(M,b) ⊂ W(M,b) to the
whole ambient algebra, where W0(M,b) is generated by 1 and products of elements A(M,b)(f).

(5) It is worth also stressing that the case m = 0, even if the spacetime is Minkowski
one, does not correspond to the quantization of the electromagnetic field (within Lorenz-gauge
choice). Indeed, we are dealing here with the algebraic approach and, in a given spacetime, the
(Weyl) ∗-algebra of vector KG field is well defined for every choice of the function m2 which
may also attain negative values, because its definition only relies on the fact that the spacetime
is globally hyperbolic and on the nature of the operator P = −� + m2 + ξR which is Green
hyperbolic. The existence of Hadamard states playing a role in requirement 5 can be proved

6E.g., assuming that both the terms summed in the Lagrangian density of the vector KG field field
m2gabAaAb

√
g and gab(∇A)a(∇A)b

√
g are dimensionless once supposed ~ = c = 1.
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with a standard deformation argument even in Minkowski spacetime for m2 ≤ 0 constantly:
it is enough to smoothly change the function m2 in the past of a Cauchy surface Σ until it
becomes a constant function with value m2

0 > 0 in the past a second Cauchy surface Σ′ in the
past of Σ in Minkowski spacetime. Next, in the past of Σ′ one may construct the standard
Poincaré-invariant vacuum for (constant) squared mass m2

0 > 0 and spin-1 particles. This state
can be viewed as a state over the algebra in the future of Σ when taking advantage of time
slice axiom and it remains Hadamard in view of the known singularity propagation property of
Hadamard states. Obviously, for the algebra of fields in the future of Σ, the constructed state
is not the Poincaré-invariant vacuum which cannot be defined if m2 < 0 (constantly) and the
problem with negative-norm states would immediately arise for m2 = 0 (usually removed by
means of the Gupta-Bleuler treatment which also lower to 2 the physical degrees of freedom
of particles associated to the field from the 3 degrees of freedom of massive spin-1 particles).
This way also the m2 ≤ 0 theory in Minkowski spacetime admits Hadamard states, but none
of them is a Poincaré-invariant vacuum. In other words, for m2 = 0, our vector KG field field
does not describe photons. In the algebraic approach, photons are described by including gauge
invariance into the algebra of fields from scratch which is a more complicated procedure than the
one we are discussing [Hol08, FR12]. Using some delicate adiabatic changes of mass procedures
similar to the ones pointed out above it is however possible, at least for the scalar field, to
transform vacua states into vacua states with different masses [DHP17, DD16, DG17].

(6) It is also worth commenting on the existence of prescriptions of Wick polynomials that
are smooth in m2, including at m2 = 0. For that, it is important to recall the precise form of the
smoothness axiom (Definition 5.2, Axiom 5) and that the main candidate for such a construction
is point splitting regularized with a Hadamard parametrix. That is, in the simplest k = 2 case,
what we must check is the joint smoothness of the integral kernel ωab(s, x) in the expression

lim
y→x

ω ◦ τ−1
s

(
Aa (M,bs)(x)Ab (M,bs)(y)−Hab (M,bs)(x, y)1

)
= ωab(s, x), (6.13)

where Hab (M,bs)(x, y) is the Hadamard parametrix and ω is any Hadamard state on the algebra
W(M,b0), with b0 = (g0,m

2 = m2
0, ξ = ξ0) and bs a compactly supported variation thereof.

It is well-known that, already on (even dimensional) Minkowski space with m2 = m2
0 constant,

the Hadamard parametrix Hab(x, y) contains terms proportional to vm2(x, y) log(µ2σ(x, y)),
where σ(x, y) is the squared geodesic distance, µ2 is an arbitrary dimensionful constant, and
the dependence of vm2 on m2 is bilocal and smooth. On the other hand, the Wightman 2-point
function ωm2(Aa(x)Ab(y)), where ωm2 is the Fock vacuum, also contains terms proportional to
log(m2σ(x, y)). Thus, we expect that the point split regularization

lim
y→x

ωm2
0
(Aa(x)Ab(y)−Hab(x, y)1) (6.14)

gives rise to a smooth function of x for m = m0 fixed, because of the cancellation of singular
σ(x, y)-dependent terms. However, we also expect that the arising result contain terms propor-
tional to logm2

0/µ
2. Thus, at first glance, it might seem that the desired smoothness property

in (6.13) would not hold because of a logarithmic singularity encountered as m2 varies from m2
0

to 0 as a function of s. This is not the case because a careful comparison of (6.13) and (6.14)
reveals that they are not analogous expressions. In fact, one can never represent the family ωm2

of Fock vacua as ωm2
0
◦τ−1

s for some fixed constant m2
0 and an s-dependent compactly supported

variation thereof, because the difference m2−m2
0 would not be compactly supported. To clarify

some further information about m2-regularity at m2 = 0, it is useful to observe that, with ω
fixed in (6.13), the difference between Aa (M,b0)(x)Ab (M,b0)(y) and τ−1

s (Aa (M,bs)(x)Ab (M,bs)(y))
can be expressed using advanced and retarded propagators for the vector KG operators respec-
tively on (M,b0) and (M,bs). We expect and conjecture that the retarded propagator smoothly
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depend on the difference m2(s, x)−m2
0, establishing the wanted smoothness property. Though

we do not have a demonstration of that, we outline a possible way to construct a proof in the
next paragraph. (The above conclusions are implicit in the discussion of Section 5.2 of [HW02].)

To argue that the retarded propagator with mass m2(s, x) has smooth dependence on
m2(s, x)−m2

0, when the difference has compact support, we will refer to some results from [DHP17].
More precisely, we can express the retarded propagator ∆R

m2 in terms of the retarded propa-
gator ∆R

m2
0

and an operator Rm2
0

(Lemma 3.10 in [DHP17]), where Rm2
0

= [1+∆R
m2

0
(m2−m2

0)]−1

(Proposition 3.8 in [DHP17]). This comes down to the perturbative expression, cf. Equation (43)
in [DHP17],

∆R
m2 =

∑
n≥0

[
−∆R

m2
0

(
m2 −m2

0

)]n
∆R
m2

0
.

Lemma B.1 of [DHP17] uses the support properties of ∆R
m2

0
to show that the above series,

together with all of its functional derivatives with respect to the difference m2 −m2
0, converges

when m2
0 = 0 and the background spacetime is Minkowski. Though we do not have a proof and

the issue should be investigated elsewhere, it seems plausible that the same proof generalizes to
more general globally hyperbolic spacetimes.

With the concrete case of the vector KG field, Theorem 5.2 can be sharpened to give a
more explicit expression for the renormalization coefficients Ck. In terms of algebra valued
distributions, equation (5.8) can be rewritten as

˜Ab1 · · ·Abk(x) = Ab1 · · ·Abk(x) +

k−1∑
l=0

(
k

l

)
Ck−l[M,b](b1···bk−l(x)Ab1 · · ·Abl)(x) (6.15)

with Ck[M,b]b1···bk(x) ∈ (T ∗x )⊗kM fully symmetric. Using Theorem 6.2 we can immediately
obtain a precise form of the symmetric covariant k-tensor fields Ck[M,b]. For example, if we
choose n = 4 and k = 2 we obtain for all f ∈ D(S2TM)

Ã2
(M,b)(f) = A2

(M,b)(f)

+ 1
((
y1m

2g + y2Rg + y3Ric + y4�ξg + y5∇2ξ + y6g(∇ξ)2 + y7(∇ξ)�2
)
·2 f
)

which can be written in terms of distributional fields, omitting explicit x-dependence for sim-
plicity, as

ÃaAb = AaAb +
(
y1gabm

2 + y2gabR+ y3Rab

+ y4gab�ξ + y5∇(a∇b)ξ + y6gab∇cξ∇cξ + y7∇(aξ∇b)ξ
)
,

where yj(x) := Yj(ξ(x)) and Yj , for j = 1, . . . , 5, are dimensionless smooth functions which do
not depend on the chosen spacetime. Obviously, in concrete physical theories the final values
of some background fields like m2 and ξ are taken to be everywhere constant. In this case all
derivatives of these fields disappear. In particular

ÃaAb = AaAb +
(
y1gabm

2 + y2gabR+ y3Rab
)
,

where the yj := Yj(ξ) turn out to be true renormalization constants independent form the
chosen spacetime.
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6.1.1 Vector Klein-Gordon field with tensor curvature coupling

It is possible to complicate a bit the previous example by adding a non-trivial background field.
We consider a tensorial coupling to the scalar curvature in the vector KG equation, i.e.,

−�gAa +m2Ab +RξbaAb = 0. (6.16)

Lowering the upper index of the coupling tensor, ξab = gacξ
c
b , we have a fully covariant back-

ground 2-tensor field. We will take ξab to be symmetric, both for simplicity and because
only symmetric tensorial coefficients are compatible with the existence of a Lagrangian den-
sity for (6.16). Then, the bundle of background field is now completely defined by

BM = S̊2T ∗M ⊕ R⊕ S2T ∗M (6.17)

and the sections M → BM are triples b = (g,m2, ξ). The background field ξ is marginal7 since
the tensor index lM = 2 and the physical scaling weight sM = −2, hence satisfying lM +sM = 0.
Clearly, ξab is the only marginal background field. All other hypotheses remain invariant with
respect to the previous example.

To apply our main Theorem 6.2, we first need to analyze the structure of the scalar poly-
nomial invariants on the fibers of S2T ∗M under the action of O(1, n − 1) (or SO(1, n − 1))
and the separability of closed orbits by these invariants. As is well known [Pro07, Sec.11.8], a
generating set of the polynomial invariants is given by the contractions(

tr ξ = ξaa , tr ξ
2 = ξbaξ

a
b , . . . , tr ξ

n = ξa2
a1
ξa3
a2
· · · ξa1

an

)
, (6.18)

which, as indicated, can be interpreted as traces of successive powers of ξba, interpreted as n-
dimensional endomorphisms (or n×n matrices). All higher order contractions are algebraically
dependent due to the Cayley-Hamilton identity. The result obtained in Theorem 6.2 applied to
this case when, for example, we choose n = 4 and k = 2 gives, omitting the x-dependence for
simplicity,

ÃaAb = AaAb +
(
y1gabm

2 + y2gabR+ y3Rab + y4m
2ξab + y5ξabR+Bξ

)
,

with all terms that vanish when the background fields are constant collected in

Bξ = y6gab�ξ
c
c + y7∇(a∇b)ξcc + y8gab∇cξdd∇cξdd + y9gcd∇(aξ

cd∇b)ξcc
+ y10

(
∇(a∇b)ξcd

)
ξcd + y11∇(aξ

cd∇b)ξcd + y12gab (�ξcd) ξ
cd + y13gab∇cξde∇cξde

+ y14ξab�ξ
c
c + y15ξab∇cξdd∇cξdd + y16�ξab + y17ξab (�ξcd) ξ

cd + y18ξab∇cξde∇cξde

+ y19ξcd∇(aξ
cd∇b)ξcc + y20ξcdξef∇(aξ

ef∇b)ξcd ,

where the yi are locally smooth functions our invariant scalars (6.18) in the sense of Defini-
tion C.6 and Proposition C.7.

Now, we analyse in detail the structure of the coefficients yi. In general, illustrating the
phenomenon discussed in Appendix C, our invariant polynomials do not separate the closed
orbits of O(1, n − 1) (or SO(1, n − 1)) acting on the fibers of S2T ∗M . For instance, given an
orthonormal basis v0

a, . . . , v
3
a with v0 timelike and the rest spacelike, the following symmetric

tensors with distinct λ0, . . . , λ4 cannot be distinguished by invariant polynomials

ξ = −λ0v
0
av

0
b + λ1v

1
av

1
b + λ2v

2
av

2
b + λ3v

3
av

3
b and ξ′ = −λ1v

0
av

0
b + λ0v

1
av

1
b + λ2v

2
av

2
b + λ3v

3
av

3
b ,

7In the Lagrangian density, the curvature coupling term becomes RgadgbcξacAbAd
√
−g.
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even though they belong to different orbits. The orbits are distinct because any linear transfor-
mation mapping ξ to ξ′ must exchange the λ0- and λ1-eigenvectors, hence exchanging a spacelike
vector with a timelike vector, which cannot be done by any element of O(1, n − 1). Other ex-
amples of this kind can be constructed by looking at the complete classification of the orbit
types of symmetric 2-tensors [SKM+03, Sec.5.1]. On the other hand, invariant polynomials do
distinguish the orbit of ξ from the orbit of any other point in a sufficiently small neighborhood,
because the case of distinct eigenvalues allows us to choose the eigenvectors smoothly under
small variations, and small variations of timelike (spacelike) vectors remain timelike (spacelike).
Thus, the subsets where invariant polynomials can locally distinguish orbits must be separated
by a “barrier” (the Z0 subset of Proposition C.7). Since any continuous path from ξ to ξ′ must
pass through some tensor with degenerate eigenvalues, we can take Z0 to consist of all tensors
with at least two equal eigenvalues. The open sets Zj of Proposition C.7 can then be identified
with the connected components of Z \ Z0, where Z is a generic fiber of S2T ∗M .

The reason why the set Z0 ⊂ Z and the partition Z \ Z0 =
⋃
j Zj is consistent with

Proposition C.7 is that Z0 is actually the zero-set of an invariant polynomial p0(ξ) = disc(ξ),
known as the matrix discriminant. It is defined by requiring that, for diagonalizable tensors
with eigenvalues λi, it takes the value

disc (ξ) =
∏
i<j

(λi − λj)2 ,

which can be shown to coincide with the polynomial disc (ξ) = det
(
tr ξi+j−2

)n
i,j=1

[Par02,

Lem.1]. In the n = 4 case, it has the explicit form

disc (ξ) = det


tr I tr ξ tr ξ2 tr ξ3

tr ξ tr ξ2 tr ξ3 tr ξ4

tr ξ2 tr ξ3 tr ξ4 tr ξ5

tr ξ3 tr ξ4 tr ξ5 tr ξ6

 ,

where we recall that tr ξ5, tr ξ6 are algebraically dependent on lower order contractions due to the
Cayley-Hamilton identity. Thus, the coefficients yi are locally smooth functions (Definition C.6)
of the scalar polynomials invariants (6.18), i.e.,

yi(x) = [Yi]S2T ∗M (tr ξ(x), tr ξ2(x), tr ξ3(x), tr ξ4(x)) ,

for i = 1, . . . , 20, with respect to the partition Z \Z0 =
⋃
j Zj indicated above, with Z a generic

fiber of S2T ∗M .

6.2 Scalar field with derivative

We now consider the renormalization of Wick powers of a scalar field with its first deriva-
tive. The classical configurations of the scalar KG field over an oriented globally hyperbolic
spacetime (M,g) are smooth real-valued functions, i.e., sections of the bundle T ∗⊗0M = M×R,
namely ϕ ∈ E (T ∗⊗0M) = C∞(M). Similarly to the previous case we have the following equation
of motion

−�gϕ+m2ϕ+ ξRϕ = 0, (6.19)

where m2 and ξ are smooth real-valued functions on M (they can be constant functions, but
in general we admit that m2 and ξ can vary on the spacetime). Since we want to consider
renormalization of a scalar field with its first derivative, we construct the field Φ as the pair of
fields

Φ = (ϕ,∇aϕ) .
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When passing to the quantum formulation, the locally-covariant quantum field Φ, indicated
by the same symbol Φ, is defined as in Definition 4.2, with the following details.

(a) As in the previous case, the net of local quantum observablesW including the scalar field,
as in Definition 3.5, is fixed according to equation (6.19), which suggests that the natural
bundle of background fields is the one completely defined by

BM = S̊2T ∗M ⊕ (M × R)⊕ (M × R), (6.20)

so that the sections M → BM are triples b = (g,m2, ξ).

(b) The natural vector bundle is completely fixed by requiring

VM = (M × R)⊕ TM

and the morphism Vχ, whose associated pushforward on test sections is exploited to define
the notion of local covariance as in Definition 4.2, is nothing but the natural lift of the
embeddings χ : M →M ′ to the corresponding tangent bundles.

(c) According to its mass dimension8, the physical scaling degree of the field Φ is

dΦ =

(
n− 2

2
,
n− 2

2

)
,

when g 7→ λ−2g, m2 7→ λ2m2 and ξ 7→ ξ according to (3.4). We recall that the presence
of covariant derivatives do not change this rescaling behaviour as the coordinates are
dimensionless.

(d) We stress that all background fields of this model are scalars of non-negative physical
scaling weight and hence are admissible according to Definition 6.1.

For this specific model, using Theorem 5.2 and Theorem 6.2, we can immediately obtain a
renormalization formula and a precise form of the renormalization counterterms. For example,
if we choose n = 4 and k = 2 we obtain, in terms algebra valued distributions and for brevity
omitting the all dependence on the spacetime point x,

ϕ̃2

ϕ̃∇aϕ

˜∇(aϕ∇b)ϕ

 =

 ϕ2

ϕ∇aϕ
∇(aϕ∇b)ϕ

+

 α1m
2 + α2R+Aξ,m2

β1∇aR+Bξ,m2

gab
(
γ1(m2)2 + γ2m

2R+ γ3R
2
)

+
(
γ4m

2 + γ5�
)
Rab + Cξ,m2


where all α-, β-, and γ-coefficients are smooth functions of ξ and

Aξ,m2 = α3∇aξ∇aξ + α4�ξ ,

Bξ,m2 = β2∇am2 + β3m
2∇aξ + β4R∇aξ + β5Rab∇bξ

+ β6(∇bξ∇bξ)∇aξ + β7�ξ∇aξ + β8∇bξ∇(b∇a)ξ + β9∇a�ξ ,
Cξ,m2 = γ6∇(aξ∇b)m2 + γ7m

2∇(aξ∇b)ξ + γ8R∇aξ∇bξ + γ9Rab∇cξ∇cξ + γ10Rc(a∇b)ξ∇cξ
+ γ11gab∇cξ∇cm2 + γ12gabm

2∇cξ∇cξ + γ13gabR∇cξ∇cξ + γ14gabR
bc∇bξ∇cξ

+ γ15∇(a∇b)m2 + γ16m
2∇(a∇b)ξ + γ17�ξ∇(a∇b)ξ + γ18R∇(a∇b)ξ + γ19Rab�ξ

+ γ20gab�m
2 + γ21gabm

2�ξ + γ22gab(�ξ)
2 + γ23gabR�ξ

+ γ24∇(aξ∇b)�ξ + γ25∇(a∇b)�ξ
+ γ26gab∇cξ∇c�ξ + γ27gab�

2ξ

8E.g., assuming that both the terms summed in the Lagrangian density of the scalar field m2ϕ2√g and
∇aϕ∇aϕ

√
g are dimensionless in natural ~ = c = 1 units.
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are terms which depend on covariant derivatives of ξ and m2. Thus, if we choose constant values
for m2 and ξ:

ϕ̃2

ϕ̃∇aϕ

˜∇(aϕ∇b)ϕ

 =

 ϕ2

ϕ∇aϕ
∇(aϕ∇b)ϕ

+

 α1m
2 + α2R

β1∇aR
gab
(
γ1(m2)2 + γ2m

2R+ γ3R
2
)

+
(
γ4m

2 + γ5�
)
Rab

 .

Also, if we wanted to maintain the Leibniz rule ∇aϕ2 = 2ϕ∇aϕ (cf. [HW05]), we would have
to require 2β1 = α2, with the further requirements 2β2 = α1, 2β3 = α′1, 2β4 = α′2, 2β6 = α′3,
2β7 = α′4, 2β8 = 2α3 and 2β9 = α4 (where ′ denotes d

dξ ) for other coefficients in the case of

non-constant m2 and ξ.

Remark 14. Following the same ideas of this section, it is possible to renormalize a scalar field
with derivatives of arbitrary order. If we construct the (m+ 1)-tuple

(ϕ,∇a1ϕ,∇a1∇a2ϕ, . . . ,∇a1 · · · ∇amϕ) ,

i.e., if we choose as bundle of dynamical fields

VM =
m⊕
i=0

T ∗⊗iM,

we can use Theorem 5.2 and Theorem 6.2 as we did in this section to obtain a renormalization
formula with all renormalization counterterms. With the same idea it is possible to renormalize
any tensor fields with an arbitrary number of derivatives.

7 Conclusions

This paper has focused on the general notion of Wick powers for general boson fields within the
formulation of locally covariant algebraic quantum field theory on globally hyperbolic curved
spacetimes. For us, a general boson field is a section of an arbitrary natural vector bundle of the
spacetime (where naturality implies a well defined transformation law under diffeomorphisms).
Besides the metric, the spacetime is also allowed to carry arbitrary classical background fields
(also sections of natural vector bundles). In particular we have viewed the mass and other
parameters as such background fields.

We define Wick powers axiomatically (Definition 5.2). Our list of axioms simply generalizes
the axioms that were used for the scalar field in [KM16], which in turn descend from those given
in [HW01] (with the crucial difference that their “analytic dependence” axiom was replaced by
our “smooth dependence” axiom). Our main results consist of a classification of all possible finite
renormalizations of Wick powers, which refer to the ambiguities in their axiomatic definition.
Our work provides the first rigorous and complete such classification for non-scalar fields. The
are analogous to those given in [KM16], but become more complicated in the details, due to
the higher degree of generality.

The first half of our main result (Theorem 5.2), by an application of the Peetre-Slovák the-
orem, reduces finite renormalizations of a k-th Wick power to a linear combination of Wick
powers of lower order with coefficients Ck that are differential operators locally depending on
the background fields, of fixed physical scaling weight and transforming covariantly under dif-
feomorphisms. The second half of our main result (Theorem 6.2) is specialized to the case when
both the dynamical and background fields are restricted to be tensors (e.g., the case of connec-
tion fields is not covered), by an application of a general version of the Thomas Replacement
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theorem (Appendix B) and some fundamental results from smooth classical invariant theory
of the orthogonal group O(1, n − 1) or SO(1, n − 1) (Appendix C), reduces the Ck to linear
combinations of finitely many tensor polynomials covariantly constructed from the curvature,
the background tensor field, and all of their covariant derivatives. This finiteness result crucially
depends on an admissibility criterion for all the background fields (Definition 6.1), which relates
the physical scaling weight of a background field with its tensor rank by an inequality. The
structure of these tensor polynomials is controlled by their physical scaling weights. It is possible
that for a given tensor type and scaling weight the list of such polynomials is empty, meaning
that the corresponding component of Ck vanishes. The strongest departure from the results
of [KM16] is in the structure of the scalar coefficients in front of these polynomial terms. These
coefficients are actually allowed to depend smoothly (not just polynomially) on the background
fields, but in a very restricted way. Namely, they are allowed to locally be smooth functions
only of a finite number of scalar polynomial invariants constructed covariantly from the subset
of marginal background fields (those that saturate the admissibility inequality). The notion
of local smooth dependence on these scalar invariants (cf. Definition C.6 and Proposition C.7)
can be made precise only by looking at the structure of the orbits of the action of O(1, n − 1)
or SO(1, n − 1) on the marginal background tensor fields. In the scalar Klein-Gordon case
considered [KM16], the only marginal background field was the scalar curvature coupling ξ.

We illustrate our results in detail with two physically relevant examples, checking in par-
ticular that they satisfy all the admissibility hypotheses: the vector Klein-Gordon field Aa
(Section 6.1), possibly coupled to the curvature through a tensor background field ξab (Sec-
tion 6.1.1), and the case of Klein Gordon scalar field ϕ accompanied by its spacetime derivative
∇aϕ (Section 6.2).

Several open issues remain and certainly deserve investigation. First of all, a theorem of ex-
istence for Wick polynomials should be established. This should be possible with existing tools,
since the standard Hadamard parametrix regularization method [HW02] should be suitable for
vector fields too, as discussed in Section 6.1. The main problem is to check that our “smooth
dependence” axiom is actually satisfied by this method. We have already made more detailed
comments on this in Section 4 of [KM16]. As remarked at the end of Section 2.2, it might be
practically easier to verify the “smooth dependence” axiom when expressed in terms of Bastiani
differentiability [BDLGR17], rather than our weak regularity (Definition 2.6).

Second, the constructed formalism should be so enlarged, possibly adding or changing some
axioms, to cover the more delicate case of the Proca field. Here the main problem is that the
zero mass limit m2 → 0 is known not to be smooth (see [SS17] for a careful recent discussion),
whereas one of our axioms for Wick powers requires regularity exactly at the zero value of
the mass. Some related remarks about subtleties with regular mass dependence appear in
Remark 13.

Third, our results should be generalized to more general kinds of bosonic fields (for instance
non-tensorial fields like connections) and also to fermionic fields (for instance Dirac spinor fields).
We believe that such extensions should be fairly straightforward by building on the ground work
that we have already laid. Such extensions will be discussed in forthcoming work.

A different and much more difficult extension would regard the renormalization of time or-
dered products of Wick powers, extending the existing results [HW01, HW02, HW05], which are
again currently available only in the scalar case. All these issues will be investigated elsewhere.
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A Technical result on physical scaling

In this Appendix we report some results from [KM16, Sec.2.4] with some generalization in order
to consider the case of a tensor valued function. We recall that in Section 6 we have defined
the bundle of background fields as

BM = S̊2T ∗M ⊕

 K⊕
j=1

T ∗⊗ljM

 (A.1)

and that the physical scaling transformation on the sections of Γ(BM) is given by

BM 3 (p,g(p), tj(p)) 7−→
(
p, λ−2g(p), λsjtj(p)

)
∈ BM,

where λ ∈ R+ defines the scaling transformation.
This (globally defined) representation of the multiplicative group R+ can be written in local

coordinates
xa 7→ xa, gab 7→ λ−2gab, (tj)a1...alj

7→ λsj (tj)a1...alj
.

This transformation lifts to a transformation of the jet bundle JrBM . In local coordinates

xa 7→ xa, gab,A 7→ λ−2gab,A, (tj)a1...alj ,A
7→ λsj (tj)a1...alj ,A

.

With respect to the Definition 5.1, we are interested in the case W = C∞
(
JrBM,SkV ∗M

)
.

Moreover, since we have to consider also smaller domains Zr ⊆ JrBM (with Zr not invariant
under physical scaling), it is more convenient to consider the infinitesimal version of these
transformations, which are effected by the following vector field9

e = −2gab,A∂
ab,A + sj(tj)a1...alj ,A

∂
a1...alj ,A,

in the sense that the induced action on tensor functions on JrBM satisfies

d

dλ

∣∣∣∣
λ=1

Fλ = LeF, (A.2)

where Le is the Lie derivative, F ∈W and Fλ ∈W is the transformed under physical scaling of
F . We stress that, since the physical scaling transformation is globally defined, the vector field
e is globally defined on JrBM .

Lemma A.1. A smooth function F : JrBM → SkV ∗M that has almost homogeneous degree
k and order l when the action F → Fλ is the one induced by physical scaling transformations,
satisfies

(Le − k)l+1 F = 0.

9We use the following notation

∂ab,A :=
∂

∂gab,A
∂
a1...alj

,A
:=

∂

∂(tj)a1...alj ,A

and an analogous one for contravariant coordinates.
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Integral curves of e

Level sets of g

Proof. If F is an almost homogeneous function of degree k and order l, using equation (A.2),
we obtain

(Le − k)F = G(l−1),

where G(l−1) is an almost homogeneous function of degree k and order l − 1. If we repeat this
operation l we obtain an homogeneous function G(0) of degree k:

(Le − k)l F = G(0).

Since, for all homogeneous function B, we have (Le − k)B = 0 the proof is concluded.

Thanks to this result, we can give an infinitesimal definition of homogeneous and almost
homogeneous function. This definition is very useful since we have to consider function defined
on a subset Zr ⊆ JrBM which is not invariant under physical scaling.

Definition A.1. A smooth function F : Zr ⊆ JrBM → SkV ∗M , where Zr is an open subset
which may coincide with all of JrBM , is said to have almost homogeneous degree k ∈ R
and order l ∈ N (with l ≥ 0) under physical scalings if it satisfies the identity

(Le − k)l+1 F = 0.

If l = 0, F is said to have homogeneous degree k ∈ R.

In the contravariant coordinates (xa, gab,A, (tj)
a1...alj ,A), defined in Section 6, finite and in-

finitesimal physical scalings take the form

xa 7→ xa, g 7→ λ−2ng, gab,A 7→ λ2+2|A|gab,A, (tj)
a1...alj ,A 7→ λsj+2|A|(tj)

a1...alj ,A

e = (2 + 2|A|) gab,A∂ab,A + (sj + 2|A|) (tj)
a1...alj ,A∂a1...alj ,A

(A.3)

where, as remarked previously, we use g as coordinate in place of one of the gab. Since e is
everywhere non zero its integral curves form a foliation of JrBM and hence of Zr. Moreover,
since Leg−

1
2n = g−

1
2n , g restricts to a global coordinate on each orbit of e and then the level

sets of g form another foliation of JrBM , transverse to the integral curves of e. For this reason
it is convenient to study the structure of almost homogeneous function in rescaled coordinates:(

xa, g, g−
1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)
.
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Note that each of these functions but g is invariant under physical scaling. In our notation, we
mean that the coordinates g and g−

1
n gab are functionally independent only up to the identity

g = |det gab|.

Lemma A.2. Suppose that Zr ⊆ JrBM is an open set equipped with either coordinates
(xa, gab,A, (tj)

a1...alj ,A) or some other coordinate system introduced in Section 6, and F : Zr →
SkV ∗M is a smooth function that has almost homogeneous degree k and order l with re-
spect to physical scaling. Then there exist uniquely defined homogeneous of degree 0 functions
Bj : Zr → SkV ∗M , for j = 0, 1, . . . , l, such that

F = g−
k
2n

l∑
j=0

logj
(
g−

1
2n

)
Bj .

In particular, using rescaled contravariant coordinates, each Bj can be taken independent of g
and written in the form

Bj = Bj

(
xa, g−

1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)
.

Proof. The proof is the same as [KM16, Lem.2.4] (since it is based on the notion of Lie deriva-
tive).

B Thomas replacement theorem

In this section we state and give a mostly self-contained proof of a version of the Thomas
Replacement Theorem B.3, which basically states that any non-linear differential operator that
depends on a Lorentzian (or pseudo-Riemannian) metric and a finite number of any kind of
other tensor fields while itself transforming as a tensor field under diffeomorphisms must be
expressible as a function of the covariant derivatives of the Riemann curvature and the other
tensor arguments. This is a rather old result, with versions of it going back to the work
of Thomas [Tho34] and in some form even to earlier works of Christoffel [Chr69]. However,
it has since then taken on a folk nature, making it difficult to find precise references that
state the result in a form most convenient for our applications, give a complete proof, with
modern notation and terminology, that is concise and without an overabundance of formalism.
If one omits at least some of the above conditions, the result of Theorem B.3 can be found
in [Sch54, §III.7], [KMS93, §§28.14,33.10], and [Slo92, Thm.3]. Thus, this section aims to be of
convenience to the reader and to those who will need prove related but slightly different results,
which could be useful when tensors are replaced by more general natural geometric objects
(like connections or possibly higher order jets) or even spinors. Such results could be useful
in investigating finite renormalizations of Wick polynomials of fields with these more general
transformation properties. Our attempt at providing such a useful reference is not the first and
similar material, motivated by the heat kernel approach to the Index Theorem, can be found
in [Gil73, ABP73]. These references concentrate on differential forms covariantly constructed
from the metric, so the final results we state here are somewhat more general.

Let BM →M be a natural bundle of the form

BM = (S2T ∗ ⊕ T k1 ⊗ T ∗l1 ⊕ · · · ⊕ T kN ⊗ T ∗lN )M, (B.1)

where T k ⊗T ∗lM is the bundle of (k, l)-tensors. Consider the curvature coordinates introduced
in Section 6 (which is a version of the system (25) from [KM16]) on JrBM , which we consider
with a slight change of notation,

(xa, gab,Γ
a
bC , Qab,C , t

a1···ak1
b1···bl1 ,C

, . . . t
a1···akN
b1···blN ,C

), (B.2)
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where the multi-indices C = c1 · · · c|C| range through the sizes |C| = 1, . . . , r. They have the
symmetry properties ΓabC = Γa(bC), Qab,C = Q(ab),C = Qab,(C) and Qa(b,C) = 0. The notational

change is that we use the notation Qab,cdE instead of S̄ab(cd,E) that was introduced in Section 6.
The reason for the change is that the Q-notation is better adapted to some index manipulation
of which we will make use below. The above coordinates are defined by the relations

ΓabcD ◦ jrg = ∂(DΓabc)[g], (B.3)

Qab,cdE ◦ jrg = ∇(ES̄cd)ab[g], (B.4)

t
a1···aki
b1···bki ,C

= ∇(C)t
a1···aki
b1···bki

, (B.5)

with |D| ≥ 0 and |E| ≥ 0, where

Γabc[g] =
1

2
gae(∂bgce + ∂cgbe − ∂egbc) (B.6)

are the usual Christoffel symbols and we recall that S̄abcd[g] = R̄a(c|b|d)[g], which of satisfies

S̄abcd[g] = S̄cdab[g] = S̄(ab)cd[g] = S̄ab(cd)[g] and S̄a(bcd) = 0. (B.7)

All coordinates, other than (xa,Γa(bc,A)), correspond to components of tensor densities (Defi-

nition C.2) transforming under GL(n), where GL(n) is interpreted as the quotient of Diffx(M),
the subgroup of diffeomorphisms fixing the point x ∈ M , by the subgroup of diffeomorphisms
with vanishing Jacobian at x.

Remark 15. In the context of the use of Young diagrams to describe irreducible representations
of GL(n) [Ful96], we can say the following. Given a point x ∈ M , we can choose a section
β : M → BM such that (gab, Qab,C) ◦ jrβ(x) take on arbitrary values consistent with the sym-
metry type of the tensors (gab has covariant (2) Young type, while Qab,C has contravariant
(|C|, 2) Young type written in the row-symmetric convention [Pen60, p.193]).

Given the particular symmetrizations that we have applied in defining the coordinates ΓabC
and Qab,cdE , it is not immediately obvious that the system (B.2) really is a local coordinate
system on JrBM . This result is stated in Lemma (B.1). Our main reference for this result
is [AT94],10 some of whose results are also reported in [AT96]. A version of the coordinates (B.2)
was introduced in Equation (2.18) of [AT94]. The structural results presented below can also
be found in the more recent and detailed [Jen15]. There are two non-trivial facts that need to
be noted.

Lemma B.1. (a) The coordinates (B.2) actually constitute a complete coordinate system on
JrBM , as can be seen from the inversion formulas

∂cgab = 2gd(aΓ
d
b)c, (B.8)

∂Cgab = 2gd(aΓ
d
b)C −

2(|C| − 1)

|C|+ 1
Qab,C + (l.o.t|C|−1)abC (|C| ≥ 2). (B.9)

(b) The total coordinate and covariant derivatives act as follows (superscripted symmetriza-
tions are performed later):

∂cgab = 2gd(aΓ
d
b)c, (B.10)

∂bΓ
a
C = ΓabC +

2

|C|+ 1
Qab,C + l.o.t|C|−1(g,Γ, Q)abC (|C| ≥ 2), (B.11)

∇cQab,C = Qab,cC +
2

|C|+ 2
Qc(a,b)C +

|C|
|C|+ 2

Q(c1c2,c3···c|C|)abc

+ l.o.t|C|−1(g,Q)c,ab,C (|C| ≥ 2). (B.12)

10Although the technical report [AT94] is unpublished, its authors have kindly shared it with us.
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In each case, l.o.tr depends on gab and its derivatives only up to order r, and only via given
coordinates when indicated.

Proof. The inversion formulas follow from equations (2.7) and (2.17) of [AT94].
The total derivative formulas follow directly11 from the structure equations (2.19), (2.19)

and (2.22) of [AT94].

Lemma B.2. For any point x ∈ M , there exists a vector field ξ ∈ X(M) such that ξa(x),
∇aξb(x) and ∂Cξ

a(x), with |C| ≥ 2, can be selected arbitrarily.

Theorem B.3. Let F : V ′rx ⊆ JrBM → T k ⊗ T ∗lM be a smooth bundle map that is defined on
a Diff(M)-invariant domain V ′rx and is Diff(M)-equivariant, given by

F a1···ak
b1···bl = F a1···ak

b1···bl (x, g,Γ, Q, t) (B.13)

in adapted coordinates (B.2) on a chart V r
x ⊆ V ′rx . That is, given a diffeomorphism χ : M →M ,

we have χ∗ ◦ F = F ◦ prχ∗, where on the left χ∗ is the pullback along χ acting on the tensor
bundle T k⊗T ∗lM , while on the right prχ∗ is the r-jet prolongation of the pullback along χ acting
on the bundle BM of background fields. Then, when restricted to a chart V r

x ⊆ V ′rx covered by
adapted coordinates (B.2), F must be expressible as

F a1···ak
b1···bl = Ga1···ak

b1···bl (g,Q, t), (B.14)

where the function G is equivariant with respect to the action of GL(n) on its arguments and
the action of GL(n) on the fibers of T k ⊗ T ∗lM .

Proof. The pullback χ∗F of a bundle map F : JrBM → T k ⊗ T ∗lM by a diffeomorphism
χ : M → M is defined by the identity χ∗ ◦ F = (χ∗F ) ◦ prχ∗, which can be illustrated by the
following commutative diagram:

T k ⊗ T ∗lM T k ⊗ T ∗lM JrBM JrBM T k ⊗ T ∗lM

M M M M M

χ∗ F

prχ∗ χ∗F

χ =
χ

=

, (B.15)

where the first and last columns should be identified. The equivariance condition then just says
that χ∗F = F .

Given a vector field ξ ∈ X(M), we denote the corresponding 1-parameter family of diffeo-

morphisms s 7→ χξs ∈ Diff(M), meaning ξ = d
dsχ

ξ
s|s=0. The Lie derivative of a tensor field

t : M → T k ⊗ T ∗lM or a jet βr : JrBM is defined in the usual way:

Lξβr =
d

ds
pr(χξs)

∗ ◦ βr ◦ χξs
∣∣∣∣
s=0

Lξt =
d

ds
(χξs)

∗ ◦ t ◦ χξs
∣∣∣∣
s=0

.

The Lie derivative with respect to a vector field ξ of a section α : M → AM of a diffeomorphism-
natural bundle AM → M defines a section that we denote (α,Lξα) : M → V AM , where
V AM → AM → M is the compound vertical tangent bundle of AM → M . When AM → M

11Unfortunately, the last term on the first line of (2.22) in [AT94] has the wrong index structure. It can be
corrected by re-deriving the result from the proof of Theorem 2.6 in [AT94].
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is a vector or affine bundle, we can identify V AM ∼= (A⊕A)M and consider the Lie derivative
as a section Lξα : M → AM .

The infinitesimal version of the equivariance condition (χξs)∗ ◦F = F ◦ pr(χξs)∗ for F is then

d

ds

[
(χξs)

∗ ◦ F − F ◦ pr(χξs)∗
]
◦ βr ◦ χξs

∣∣∣∣
s=0

= (F ◦ βr,Lξ(F ◦ βr))− V F ◦ (βr,Lξβr) = 0, (B.16)

for any section βr : M → JrBM , and with V F : V JrBM → V (T k⊗T ∗l) is a bundle map given
by the restriction of the tangent map of F , TF : T (JrBM) → T (T k ⊗ T ∗lM) to the vertical
tangent bundle V JrBM ⊂ T (JrBM).

For tensors, the Lie derivative has the following well-known form:

(Lξt)a1···ak
b1···bk = ξc∂ct

a1···ak
b1···bk

− (∂a′1ξ
a1)t

a′1···ak
b1···bl − · · · − (∂a′kξ

ak)t
a1···a′k
b1···bl

+ (∂b1ξ
b′1)ta1···ak

b′1···bl
+ · · ·+ (∂blξ

b′l)ta1···ak
b1···b′l

(B.17)

= ξc∇cta1···ak
b1···bk

− (∇a′1ξ
a1)t

a′1···ak
b1···bl − · · · − (∇a′kξ

ak)t
a1···a′k
b1···bl

+ (∇b1ξb
′
1)ta1···ak

b′1···bl
+ · · ·+ (∇blξ

b′l)ta1···ak
b1···b′l

. (B.18)

where ∇c is the Levi-Civita connection defined by the metric gab (though the same formula also
holds with any symmetric connection). We have specifically chosen the curvature coordinates

(xa,ΓabC , Qab,C , t
a1···ak1
b1···bl1 ,C

, . . . t
a1···akN
b1···blN ,C

) (B.19)

on JrBM so that the coordinate components of the Lie derivative of a holonomic r-jet, say the
extension jrβ of a section β : M → BM , are given by (Lemma B.1(b))

ΓaC ◦ Lξjrβ = ∂Cξ
a + l.o.t|C|−1;r+1(ξ; g,Γ, Q)aC ◦ jr+1β, (B.20)

gab ◦ Lξjrβ = (gca∇bξc + gcb∇aξc) ◦ j1β, (B.21)

Qab,C ◦ Lξjrβ = 2∇(aξ
b′Qb)b′,C ◦ jrβ + |C|∇(c1|ξ

c′Qab,c′|c2...c|C|) ◦ j
rβ

+ ξc∇c(Qab,C ◦ jrβ)

=

(
2∇(aξ

b′Qb)b′,C + |C|∇(c1|ξ
c′Qab,c′|c2...c|C|)

+ ξcQab,cC +
2

|C|+ 2
ξcQc(a,b)C +

|C|
|C|+ 2

ξcQ(c1c2,c2···c|C|)abc

+ ξcl.o.tr(g,Q)c,ab,C

)
◦ jr+1β, (B.22)

t
a1···aki
b1···bli

◦ Lξjrβ = ξc∇ct
a1···aki
b1···bli

+∇b1ξb
′
1t
a1···aki
b′1···bli

+ · · ·+∇bli ξ
b′li t

a1···aki
b1···b′li

−∇a′1ξ
a1t

a′1···aki
b1···bli

− · · · − ∇a′ki ξ
aki t

a1···a′ki
b1···bli

, (B.23)

where l.o.t|C|−1;r+1(ξ; g,Γ, Q) stands for terms that may only involve coordinates on Jr+1BM
and derivatives of ξa up to order |C|−1, while l.o.tr(g,Q) does not depend on Γ or ξ and depends
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equivariantly on the g and Q coordinates on JrBM . Let us also introduce the following notation
for the components of the vertical tangent map V F , with (βr, β̇r) : M → V JrBM :

V F ◦ (βr, β̇r) =
(
F ◦ βr, (gab ◦ β̇r)[(∂g)abF ] ◦ βr

+ (ΓabC ◦ β̇r)[(∂Γ)bCa F ] ◦ βr + (Qab,C ◦ β̇r)[(∂Q)abCF ] ◦ βr

+ (t
a1···aki
b1···bli ,C

◦ β̇r)[(∂t)
b1···bliC
a1···aki F ]

)
. (B.24)

When β̇r = Lξjrβ, the compositions with β̇r should be expanded using Equations (B.20), (B.21)
and (B.22). What is important to note is that all the resulting terms, with the exception of
those proportional to (∂Γ)bCa (· · ·), will be proportional to either ξa or ∇aξb.

On the other hand, translating the tensor Lie derivative to covariant derivatives, we have

Lξ(F ◦ jrβ)a1···ak
b1···bl = ξa

′∇a′(F a1···ak
b1···bl ◦ j

rβ)

− (∇a′1ξ
a1)F

a′1···ak
b1···bl ◦ j

rβ − · · · − (∇a′kξ
ak)F

a1···a′k
b1···bl ◦ j

rβ

+ (∇b1ξb
′
1)F a1···ak

b′1···bl
◦ jrβ + · · ·+ (∇blξ

b′l)F a1···ak
b1···b′l

◦ jrβ. (B.25)

What is important to note is that each term is proportional to either ξa or ∇aξb. In principle, we
could expand the ξa

′∇a′(F a1···ak
b1···bl ◦j

rβ) term further, by using the chain rule. However, the chain
rule here cannot be written solely in terms of covariant derivatives and the explicit expression
in coordinate derivatives leads to rather complicated formulas that will not be immediately
necessary.

Then, choosing ξa(x) = 0 and ∇aξb(x) = 0 (Lemma B.2), the infinitesimal equivariance
condition (B.16), expanded using Equations (B.25) and (B.24), by eliminating all terms pro-
portional to ξa or ∇aξb reduces to(

∂Cξ
a + l.o.t|C|−1;r+1(ξ; g,Γ, Q)aC

)
(∂Γ)Ca F

a1···ak
b1···bl ◦ j

r+1β(x) = 0, (B.26)

for arbitrary jr+1β at x ∈ M . Since ∂Cξ
a(x) can still be chosen arbitrarily, for |C| ≥ 2, even

with ξa(0) = 0 and ∇aξb(x) = 0 (Lemma B.2), we find that (∂Γ)Ca F
a1···ak
b1···bl (x, g,Γ, Q) = 0 at any

value of its arguments. In other words, we have part of the desired conclusion:

F a1···ak
b1···bk (x, g,Γ, Q, t) = Ha1···ak

b1···bk (x, g,Q, t), (B.27)

with H : JrBM → T k⊗T ∗lM still Diff(M)-equivariant. It remains to show that H is a GL(n)-
equivariant function of its tensorial arguments at any x ∈M and that the dependence on xa is
trivial.

Since the dependence on the Γ-coordinates is trivial, choosing ξa(x) = 0 and ∇aξb(x) = Jba ∈
GL(n) at some point x ∈ M , the infinitesimal equivariance condition (B.16), again expanded
using Equations (B.25) and (B.24), simplifies to

− Ja1

a′1
H
a′1···ak
b1···bl − · · · − J

ak
a′k
H
a1···a′k
b1···bl + J

b′1
b1
Ha1···ak
b′1···bl

+ · · ·+ J
b′l
bl
Ha1···ak
b1···b′l

=
(

2Jb
′

(aQb)b′,C + |C|Jc′(c1|Qab,c′|c2···c|C|)
)

(∂Q)abCHa1···ak
b1···bl

+ (gcaJ
c
b + gcbJ

c
a) (∂g)

abHa1···ak
b1···bl

+
(
Jc
′

(c1|t
a1···aki
b1···bli ,c

′|c2···c|C|)
− Ja1

a′1
t
a′1···aki
b1···bli ,C

− · · · − Jaki
a′ki
t
a1···a′ki
b1···bli ,C

+ J
b′1
b1
t
a1···aki
b′1···bli ,C

+ · · ·+ J
b′li
bli
t
a1···aki
b1···b′li ,C

)
(∂t)

b1···bliC
a1···aki H

a1···ak
b1···bl , (B.28)
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where H is seen as a function on the product of the tensor bundles of appropriate ranks and
index structures. We were justified by cancelling the composition with (x, g,Q, t) ◦ jrβ because
β can be chosen so that these coordinate components have arbitrary values with respect to the
corresponding tensor type. The resulting identity is precisely the infinitesimal version of the
GL(n)-equivariance condition [KMS93, Slo88] of H at x ∈M , with x arbitrary.

Finally, we need to show that Ha1···ak
b1···bl (x, g,Q, t) is actually independent of xa in any adapted

coordinate system on JrBM induced from coordinates (xa) on M . We apply the equivariance
condition (B.16) to H with an arbitrary choice of ξa(x) 6= 0 and ∂aξ

b(x) = 0 at some x ∈ M .
In this case, according to (B.17), we can replace the action of Lξ on tensors at x ∈ M by the
derivative operator ξa

′
∂a′ in adapted coordinates induced by the coordinates (xa):

(ξa
′
∂a′gab ◦ jrβ)(∂g)

abHa1···ak
b1···bl ◦ j

rβ

+ (ξa
′
∂a′Qab,C ◦ jrβ)(∂Q)abCHa1···ak

b1···bl ◦ j
rβ

+
(
ξa
′
∂a′t

a1···aki
b1···bli ,C

)
(∂t)

b1···bliC
a1···aki H

a1···ak
b1···bl ◦ j

rβ

= ξa
′
∂a′ |g,Q,t=const.H

a1···ak
b1···bl ◦ j

rβ + (ξa
′
∂a′gab ◦ jrβ)(∂g)

abHa1···ak
b1···bl ◦ j

rβ

+ (ξa
′
∂a′Qab,C ◦ jrβ)(∂Q)abCHa1···ak

b1···bl ◦ j
rβ

+
(
ξa
′
∂a′t

a1···aki
b1···bli ,C

)
(∂t)

b1···bliC
a1···aki H

a1···ak
b1···bl ◦ j

rβ. (B.29)

Cancelling the common terms from both sides of the above identity, we obtain the condition

ξa
′
∂a′ |g,Q=const.H

a1···ak
b1···bl ◦ j

rβ = 0. (B.30)

Because the choices of x ∈ M , ξa(x) and jrβ(x) were all arbitrary, we can then conclude that
Ha1···ak
b1···bl (x, g,Q, t) = Ga1···ak

b1···bl (g,Q, t), in an arbitrary adapted coordinate system on V r
x ⊂ JrBM ,

for some function G : V r
x ⊂ JrBM → T k ⊗ T ∗lM .

C Invariant theory

The goal of this section is to state and prove the Equivariance Lemma C.8, which general-
izes some results proven in [KM16, Sec.2.6]. This Lemma is used in the proof of our main
Theorem 6.2 to characterize all smooth GL(n)-equivariant (resp. GL+(n)-equivariant, if we
restrict ourselves to transformations that preserve spacetime orientation) tensor-valued maps
that depend on a Lorentzian metric and any number of tensorial arguments.

The main difference with the previous weaker [KM16, Lem.2.8] is the allowed dependence
on other tensors besides the metric. As a result of this generalization, the final characterization
is a bit more complicated. In particular, while any such equivariant map is still polynomial
in the metric g, its inverse g−1 and possibly the Levi-Civita tensor ε(g), it may depend on
the additional tensor arguments z in two different ways. First, being tensor-valued, any such
equivariant may will be polynomially and covariantly constructed from g, g−1, ε(g) and the
tensor components of z, but the coefficients in these polynomial will be allowed to depend in an
essentially arbitrary smooth way on invariant scalar polynomials built out of g, g−1, ε(g) and
the tensor components of z.

The precise statements and proofs of these results depend on some fundamental notions and
facts from classical invariant theory of the GL(n) and O(1, n−1) (resp. GL+(n) and SO(1, n−1)
in the oriented case) groups. Invariant theory, which studies invariants of linear representations
of groups and other related topics) is a highly developed subject (we will only mention [Pro07]
and [GW09] as an introduction to the literature), but the majority of the literature, especially at
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the introductory level, focuses on polynomial invariants on representations of complex algebraic
groups. Thus, it is not always easy to locate some (even classical) results in the context of
real Lie groups and smooth (rather than polynomial) invariants. For the convenience of the
reader, we summarize the relevant notions and results below and, when possible, try to provide
reasonably concise and elementary proofs that are not easy to extract from the literature.

In the following we will use the one point space ∗ ∼= R0 with the trivial action of GL(n) of
any of its subgroup thereon.

Definition C.1. Let X and Y be spaces carrying actions of the group G, respectively ρ
(X)
u : X →

X and ρ
(Y )
u : Y → Y for u ∈ G, in terms of bijective maps resp. X → X and Y → Y . A map

f : X → Y is said to be equivariant if it commutes with the action of G:

f ◦ ρ(X)
u = ρ(Y )

u ◦ f, for every u ∈ G.

In the spacial case Y = R carrying the trivial representation, an equivariant f : X → R is called
a (scalar) invariant. We denote the space of all scalar invariants by SX . When X is a vector
space, we denote the subspace of (scalar) polynomial invariants by PX ⊆ SX . The subspace
PkX ⊂ PX consists of all homogeneous polynomials of degree k.

With the above definitions, it is easy to establish a relation between scalar invariants and
equivariant maps for linear group representations by the following obvious

Proposition C.1. Let X and Y be finite dimensional vector spaces with linear representations
of the group G, and denote by Y ∗ the dual linear of Y equipped with the contragredient rep-
resentation of G. If f : X → Y is an equivariant map, then f∗(x, y∗) := y∗ · f(x) is a scalar
invariant f∗ : X × Y ∗ → R. If h : X × Y ∗ → R is a scalar invariant, then ∂h

∂y∗ |y∗=0 : X → Y is

an equivariant map. Moreover, for any equivariant map f : X → Y , ∂f∗

∂y∗ |y∗=0 = f .

Definition C.2. Let Mp
n be the space of p-multilinear forms on Rn and consider the natural

linear action of GL(n) thereon. Denote by Mp
n
∗

the dual of Mp
n, with the contragredient GL(n)

representation on it. Let T be a finite-dimensional real vector space carrying a representation
of GL(n).

1. If T , with respect to some linear embedding T ↪→ Mp
n ⊗ M q

n
∗
, is invariant under the

action of GL(n), and if (the representation carried by) T is the restriction of the action of
GL(n) on Mp

n ⊗M q
n
∗
, then T is called tensor representation of GL(n). We call (p, q)

the (covariant, contravariant) tensor rank of T and p+ q the total tensor rank of
T .

2. If T is as in 1., but the action of GL(n) 3 u 7→ ρ(u) on T is given by a tensor representa-
tion up to a multiplication by |detu|s, then T is called tensor density representation
of GL(n). We call s the tensor weight of T .

3. Denote by η ∈ M2
n is the standard Minkowski metric with signature (−+ · · ·+), and by

ε ∈Mn
n the standard antisymmetric Levi-Civita tensor. The orthogonal subgroup O(1, n−

1) ⊂ GL(n) (resp. SO(1, n − 1) ⊂ GL+(n)) is the stabilizer subgroup of η under the
action on M2

n. A tensor (density) representation of the orthogonal group is a restriction
of a tensor density representation of the general linear group.

Remark 16. Clearly, since for any u ∈ O(1, n − 1), |detu| = 1 and (u−1)T = ηuη−1 in the
fundamental representation, the restriction of any two tensor density representations of GL(n)
to O(1, n − 1) or SO(1, n − 1) are linearly equivalent as long as their total tensor rank is the
same. So it is sufficient to talk only about tensor (rather than tensor density) representations
of these subgroups.
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Remark 17. Below, some results about a group G and its representations require as a hypothesis
that G be reductive. There are several different flavors of reductive groups (cf. [Pro07, Sec.7.3]),
not all of them being equivalent, with different ones serving as natural hypotheses for different
results. The general property that they share is that each representation from a certain class
is completely reducible (i.e., no reducible but indecomposable representations may occur). For
the sake of uniformity, we specialize all results stated below to linearly reductive groups, even
if the original result could be stated under looser hypotheses. First, note that a real (complex)
algebraic group is a subgroup of GL(n;R) (GL(n;C)), for some n, that is also a real (complex)
algebraic subvariety (it is defined by polynomial equations). A real (complex) linearly reductive
group G is a real (complex) algebraic group such that each real (complex) finite dimensional
rational representation of G is completely reducible. Here polynomial and rational mean with
respect to the matrix elements of the embedding of G into GL(n;R) (GL(n;C)). Obviously,
any real algebraic group gives rise to a complex algebraic group, its complexification, simply by
extending the defining polynomial equations from GL(n;R) to GL(n;C). A priori, the property
of being reductive is different for a real algebraic group and its complexification. Fortunately, we
only need to appeal to such hypotheses for the real orthogonal groups O(1, n−1) := O(1, n−1;R)
and SO(1, n−1) := SO(1, n−1;R), both of which are known to be linearly reductive, and so are
their complexifications O(1, n−1;C) and SO(1, n−1;C) (see [Pro07, Sec.7.3.2], [RS90, Sec.5.2]).
Unless explicitly mentioned, below we always refer to real groups and their representations on
real vector spaces.

Definition C.3. Let Ln ⊂ M2
n denote the space of Lorentzian bilinear forms (non-degenerate,

with signature (−+ · · ·+)), and let it inherit the natural action of GL(n) (resp. GL+(n)).
Let Z =

⊕
j Zi and T =

⊕
j Tj be finite sums of tensor density representations of GL(n)

(resp. GL+(n)). We will refer to a smooth equivariant map

τ : Ln × Z → T (C.1)

as a GL(n)-equivariant tensor density (resp. GL+(n)-equivariant tensor densities).
The space of GL(n)-equivariant tensor densities will be denoted by EZ,T . The space of GL+(n)-
equivariant tensor densities will be denoted by ẼZ,T . In the special case when T = R carries the
trivial representation, we call SZ := EZ,R (resp. S̃Z := ẼZ,R) the space of scalar invariants.

Definition C.4. Let Z =
⊕

i Zi and T =
⊕

j Tj be finite sums of tensor representations of
O(1, n− 1) (resp. SO(1, n− 1)). We will refer to a smooth equivariant map

τ : Z → T (C.2)

as the space of O(1, n − 1)-isotropic tensors (resp. SO(1, n − 1)-isotropic tensors). The
space of O(1, n−1)-isotropic tensors will be denoted by EZ,T . The space of SO(1, n−1)-isotropic
tensors will be denoted by ĨZ,T .

The above definitions can be contrasted with the Definitions 2.6–7 of [KM16]. There, the
simpler notion equivariant and isotropic tensors did not allow for dependence on the extra
parameter space Z and use the simpler notations ET ∼= E∗,T and IT ∼= I∗,T , where ∗ = R0 is
the 1-point space or equivalently the trivial vector space (with complete analogy in the oriented
case).

Proposition C.2. With the notation of Definitions C.3 and C.4, the space of equivariant tensor
densities EZ,T (resp. ẼZ,T ) is isomorphic to the space of isotropic tensors IZ,T (resp. ĨZ,T ).
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Proof. Here we use the same logic as in [KM16, Lem.2.8], where it is spelled out a bit less
tersely. Let η ∈ Ln ∼= GL(n)/O(1, n− 1) ∼= GL+(n)/SO(1, n− 1), where the orthogonal group
is interpreted as the stabilizer subgroup of η. The equivariance of τ : Ln × Z → T implies
that τ(η, uz) = uτ(η, z), whenever u ∈ GL(n) and u · η = η, meaning that τ(η,−) : Z → T
is O(1, n − 1) (resp. SO(1, n − 1)) equivariant. On the other hand, since any Ln 3 g = ug · η
for some ug ∈ GL(n), the knowledge of τ(η,−) uniquely determines the equivariant extension
τ(g, z) := ugτ(η, u−1

g z). Clearly, this correspondence is bijective.

For the fundamental representations of O(1, n − 1) and SO(1, n − 1), homogeneous poly-
nomials, invariant linear functionals and isotropic tensors all have a very explicit description.
We give this description below in several different versions, related as follows. Any polynomial
on a vector space that is invariant under the action of a linear representation can be written
as a sum of invariant homogeneous polynomials. Any invariant homogeneous polynomial of
degree p is also naturally a linear functional on a p-fold symmetric tensor product of the orig-
inal representation and vice versa. By duality, the adjoint of a linear functional on a p-fold
tensor product representation defines an equivariant map from ∗ to the dual of the p-fold tensor
product representation.

Proposition C.3. Let Mp
n and η be as in Definition C.4, let V p = (Rn)p be the space of

(v1, . . . , vp) of p-copies of vectors in the fundamental representation of O(1, n−1) (or SO(1, n−
1)), and let T =

⊕
j Tj be a finite sum of tensor representations of ranks pj of O(1, n− 1) (or

SO(1, n− 1)).

1. Polynomials p(v1, · · · , vp) ∈ PV p invariant under the simultaneous action of O(1, n − 1)
on its arguments are generated by the contractions ηabv

a
i v
b
j , with i, j = 1, . . . , p.

Polynomials p(v1, · · · , vp) ∈ PV p invariant under the simultaneous action of SO(1, n− 1)
on its arguments are generated by the contractions ηabv

a
i v
b
j and εa1···apv

a1
i1
· · · vapip , with

i, j, ik = 1, . . . , p.

2. The isotropic tensors Ipn are linear combinations of tensor products of copies of ηab with
arbitrarily permuted indices.
The isotropic tensors Ĩpn are spanned by tensor products of ηab and εa1···an with arbitrarily
permuted indices.

3. All O(1, n − 1)-invariant linear functionals on Mp
n are spanned by arbitrary complete

contractions of a tensor ta1···ap ∈M
p
n with copies of ηab, in an arbitrary order of indices.

All SO(1, n − 1)-invariant linear functionals on Mp
n are spanned by arbitrary complete

contractions of a tensor ta1···ap ∈M
p
n with copies of ηab and εa1···an, in an arbitrary order

of indices.

4. All degree k homogeneous polynomial scalar O(1, n − 1)-invariants p(t) ∈ PkT on T are
spanned by complete contractions of tensor products

(tj1)a1
1···a1

pj1

· · · (tjk)ak1 ···akpjk
(C.3)

with copies of ηab, when t =
⊕

j tj.

All degree k homogeneous polynomial scalar SO(1, n − 1)-invariants p(t) ∈ PkT on T are
spanned by complete contractions of tensor products (C.3) with copies of ηab and εa1···an.

This proposition sometimes goes under the name of the joint tensor version of the First
Fundamental Theorem (FFT) of invariant theory ofO(1, n−1) (respectively SO(1, n−1)). While
this specific version is well-known folklore, it is difficult to find with a concise statement and
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proof, especially for part 3. Thus, we briefly sketch a proof below, summarizing the arguments
from [Pro07, Sec.11.2.1] and [Pro07, Sec.11.6.8].

Proof. Parts 2–4 basically follow from part 1, so we first discuss these implications and then
discuss a proof of part 1.

2. Note that the scaling transformations (v1, . . . , vi, . . . , vp) 7→ (v1, . . . , λvi, . . . , vp) for λ ∈ R,
with i = 1, . . . , p, commute with the action of the group on V p. Hence, any invariant polynomial
on V p decomposes into a sum of invariant polynomials with fixed homogeneous degrees in each
of the vector arguments v1, . . . , vp. Since we can put Mp

n in bijection with polynomials on V p

which are homogeneous of degree 1 in each vector argument, the desired claims about Ipn and
Ĩpn immediately follow.

3. Part 3 follows directly from part 2 by duality, since η defines a non-degenerate inner
product on Mp

n by pairwise contraction of indices.
4. Since the decomposition T =

⊕
j Tj is into tensor representations, we have the equivariant

embeddings Tj →M
pj
n . As in the proof of part 2, the group representation on T commutes with

separately multiplying each Tj by a scalar. Hence, degree k homogeneous polynomials, which
are in bijection with the symmetric tensor power SkT ∗, decompose into⊕

∑
j qj=k

⊗
j

SqjT ∗j

and invariant polynomials respect this decomposition. Thus, to characterize all invariant poly-
nomials in T , it is sufficient to characterize invariant linear functionals on spaces of the form⊗

j S
qjTj , each of which come with equivariant embeddings into MP

n with P =
∑

j qjpj . The

pullback along this embedding is a surjective equivariant map (MP
n )∗ →

⊗
j S

qjT ∗j . Now, invok-
ing the fact that both O(1, n− 1) and SO(1, n− 1) are linearly reductive groups (Remark 17),
both (MP

n )∗ and
⊗

j S
qjT ∗j decompose into direct sums of irreducible representations (for ei-

ther group). The equivariance of the pullback map means that it diagonalizes with respect to
the decomposition of the two spaces into isotypic components (maximal subspaces consisting of
copies of a single irreducible representation) and its surjectivity means that it remains surjective
on each isotypic component. The subspace invariant under the action of the group is simply
one of the isotypic components (corresponding to the trivial representation) and hence every
invariant linear functional on

⊗
j S

qjTj comes from pulling back an invariant linear functional

from MP
n . Finally, the result of part 3 implies the desired structure of invariant polynomials on

T .
1. To prove part 1, we first reduce p to p = n. Then, we proceed by induction on n. We

will use several times the following elementary fact: if both the variables yi and a polynomial
p(x; y) =

∑
I pI(x)yI are invariant under a group action, then the individual coefficients pI(x)

are also individually invariant. Another useful elementary fact is that two polynomials that
agree on a non-empty open set agree everywhere.

First, assume that the desired conclusion holds for V n. If p < n, then the desired con-
clusion follows from identifying invariant polynomials p(v1, . . . , vp) with invariant polynomials
p1(v1, . . . , vp, . . . , vn) that are constant with respect to the vp+1, . . . , vn arguments. Consider-
ing an invariant polynomial p(v1, . . . , vp) with p > n, we can restrict it to the open subset of
V p where the first v1, . . . , vn vectors are linearly independent. Then, for i > n, we can write
vi =

∑n
j=1w

j
i vj , where the wij are invariant scalars. In fact, the wji can be explicitly written as
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polynomials in the contractions ηabv
a
j v
b
k and (det1≤j,k≤n ηabv

a
j v
b
k)
−1. Hence,

p(v1, . . . , vn, vn+1, . . . , vp) = p

v1, . . . , vn,
∑
j

wjn+1vj , . . . ,
∑
j

wjpvj


= p1(v1, . . . , vn;wji )

= p2

(
ηabv

a
j v
b
k, εa1···anv

a1
1 · · · v

an
n ;wji

)
,

where p1 is also polynomial in its arguments and p2 is another polynomial that exists by applying
to the w-coefficients of p1 our earlier hypothesis that the desired conclusion holds for V n. The
contractions in the arguments of p2 up to the semicolon involve only the vectors v1, . . . , vn.
Plugging in the explicit rational expressions for the wij into the arguments of p2, since the result
equals the polynomial p, all the denominators must cancel and we end up with an identity

p(v1, . . . , vp) = p3(ηabv
a
j v
b
k, εa1···anv

a1
i1
· · · vanin ) ,

where now the contractions may involve any of the v1, . . . , vp vectors, which holds for some
polynomial p on an open subset of V p and hence everywhere. Of course, the contractions with
ε appear only in the case of SO(1, n− 1).

Next, assume the inductive hypothesis that the desired conclusion holds for O(1, n′−1) and
SO(1, n′ − 1) for all 0 < n′ < n, with the n′ = 1 case being trivial. Consider an invariant
polynomial p(v1, . . . , vn), which we can restrict to the open subset of V n where arguments are
linearly independent and the first v1, . . . , vn−1 vectors span a hyperplane with a η-spacelike
oriented unit normal vector v. Then, we can always write

vn = λv + w1v1 + · · ·+ wn−1vn−1 ,

where the wi are invariant scalars. In fact, the wi can be explicitly written as polynomials in
ηab(vi)

a(vn)b and (ηab(vi)
a(vi)

b)−1. Hence,

p(v1, . . . , vn) = p(v1, . . . , vn−1, λv + w1v1 + · · ·+ wn−1vn−1)

=
∑
k

p1,k(v1, . . . , vn−1;wi)λk ,

for some polynomials p1,k. Consider for now only the invariance of p under the subgroup of
SO(1, n − 1) that fixes the spacelike vector v up to a sign, which corresponds to λ 7→ ±λ
(the negative sign only accompanies those transformations that change the orientation of the
hyperplane orthogonal to v). Let us identify this orthogonal hyperplane with Rn′ , where n′ =
n − 1 and let the η′ and ε′ denote the restrictions of η and ε to the hyperplane. The above
mentioned subgroup can hence be identified with O(1, n′ − 1) acting on Rn′ and preserving η′.
The invariance of p, together with the identification of v1, . . . , vn−1 with vectors in Rn′ , implies
that the w-coefficients of the p1,k are invariant under O(1, n′−1) for even k and invariant under
SO(1, n′ − 1) for odd k, and more specifically the odd k coefficients are also odd under the
change of orientation of Rn′ . It is now helpful to note that λ2 can be written as a polynomial
in ηab(vi)

a(vj)
b (including i, j = n) and wi, while

ε′a1···an−1
va1

1 · · · v
an−1

n−1 λ = εa1···anv
a1
1 · · · v

an−1

n−1 v
an
n .

Thus, for even k, we have

p1,k(v1, . . . , vn−1;wi)λk = p2,k(η
′
abv

a
i v
b
j ;w

i)(λ2)k/2

= p3,k(ηabv
a
i v
b
j ;w

i) ,
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for some polynomials p2,k, with i, j ≤ n − 1 in its arguments before the semicolon, and p3,k,
with i, j ≤ n in its arguments before the semicolon. For odd k, we have

p1,k(v1, . . . , vn−1;wi)λk = p2,k(η
′
abv

a
i v
b
j ;w

i)ε′a1···an−1
va1

1 · · · v
an−1

n−1 λ(λ2)(k−1)/2

= p3,k(ηabv
a
i v
b
j ;w

i)εa1···anv
a1
1 · · · v

an
n ,

for some polynomials p2,k, with i, j ≤ n − 1 in its arguments before the semicolon, and p3,k,
with i, j ≤ n in its arguments before the semicolon. Note that higher powers of ε′ never needed
to be considered because of the usual identity relating tensor powers of ε′ with permutations
of products of η′. Plugging in the explicit rational expressions for the wi into the arguments of
p3,k, since the result equals the polynomial p, all the denominators must cancel and we end up
with an identity

p(v1, . . . , vn) = p4(ηabv
a
j v
b
k, εa1···anv

a1
i1
· · · vanin ) ,

for some polynomial p4, where now the contractions may involve any of the v1, . . . , vp vectors.
It is important to note that, up until now, the above identity has only been established for
v1, . . . , vn−1 orthogonal to a given spacelike unit vector v. Fortunately, once we note that
there always exists a transformation in SO(1, n− 1) that will transform any set of n− 1 vectors
orthogonal to another unit spacelike vector v′ into a set of n−1 vectors orthogonal to a given v,
the invariance of both the original polynomial p and the individual invariance of each argument
of the polynomial p4 implies that the above identity between p and p4 holds for any v. So
the above identity between p and p4 holds on an open subset of V n and hence everywhere. Of
course, the contractions with ε appear only in the case of SO(1, n− 1).

This concludes the proof.

Remark 18. In the inductive step of the above proof, we reduced the problem from O(1, n− 1)
to O(1, n − 2), by restricting to a subspace orthogonal to a spacelike vector, relying crucially
also on the transitive action of O(1, n − 1) on the open subset of spacelike vectors. Clearly,
the inductive step could have also used a timelike vector instead, without interfering with these
crucial properties. It should also be clear that the same argument would work directly in the
case of any O(p, q), with reductions to either O(p, q − 1) or O(p − 1, q) both being possible
inductive steps.

Before stating and proving our Equivariance Lemma C.8, we need the following fundamental
results from invariant theory.

Proposition C.4 (Hilbert [Pro07, Sec.14.1], [Mic08, §7.2]). Let G be a linearly reductive group
with a rational representation on a finite dimensional vector space Z. Then the algebra of
polynomial scalar G-invariants on Z is finitely generated.

Definition C.5. Let G be a linearly reductive group with a rational representation on a finite
dimensional vector space Z and let pi ∈ C∞(Z), i = 1, . . . , NZ , be a generating set for the
algebra of polynomial scalar G-invariants (Proposition C.4). A smooth function σ ∈ C∞(Z)
is said to be stably G-invariant if it is constant along each joint level set of the invariant
polynomials pi, i = 1, . . . NZ .

Clearly, any function that is stably G-invariant is also G-invariant, but the converse is not
always true. Also, it is easy to see that the definition is independent of the choice of the gener-
ating polynomials pi. The stability in this definition is meant with respect to complexification,
since upon replacing G with its complexification the orbits become larger, while the invariant
polynomials remain the same, in a way that invariant polynomials do completely separate all
closed orbits, which erases the difference between G-invariant and stably G-invariant functions.
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In Section 6.1.1, we discuss the action of O(1, n− 1) on the subspace of symmetric forms in M2
n

(in this case, the action coincides with that of SO(1, n− 1)). There, we give an explicit list of a
generating set of scalar invariant polynomials and also discuss the structure of the orbits. That
case also gives an explicit example of the difference between G-invariant and stably G-invariant
functions, because invariant polynomials do not separate closed orbits on symmetric bilinear
forms.

The following results seem to be close to the state of the art in characterizing the smooth
scalar invariants that apply to our cases of interest. Unfortunately, we actually require a some-
what strengthened version of these results (though see also [Sto08] for more recent work), which
we state below in Proposition C.7, but whose proof we do not discuss (Remark 19).

Proposition C.5 (Luna [Lun76], [Mic08, §7.14] [KMS93, §26.3]). Let G be a linearly reductive
group with a rational representation on a finite dimensional vector space Z and let pi ∈ PZ ,
i = 1, . . . , NZ , be a generating set for the algebra of polynomial scalar G-invariants (Proposi-
tion C.4). Then a smooth stably G-invariant function σ ∈ C∞(Z) can always be written as
σ = Σ(p1, . . . , pNZ ) where Σ is a smooth function of its arguments.

Though, as indicated above, the statement of Luna’s theorem can be found in several refer-
ences, as far as we know, a proof is available only in the original reference [Lun76], written in
French. However, the more recent result on the structure of invariants of finite Ck differentia-
bility [Rum98] does use a proof that is logically similar to Luna’s.

Proposition C.6 (Richardson [Ric73, Thms.2.3,4.1]). Let G be a linearly reductive group with a
linearly reductive complexification and a rational representation of on a finite dimensional vector
space Z. Let pi ∈ C∞(Z), i = 1, . . . , NZ , be homogeneous polynomials generating the algebra of
polynomial scalar G-invariants on Z (Proposition C.4). Then, there is a p0 = P (p1, . . . , pNZ )
polynomial in its arguments and, with Z0 = p−1

0 (0), a partition Z \Z0 =
⋃
j Zj into finite union

of disjoint connected open subsets (Zj) where each Zj is stable under the action of G and, for
each j and for any two points z1, z2 ∈ Zj the stabilizer subgroups Gz1 , Gz2 ⊆ G are conjugate in
G.

The following definition is rather technical, but is necessary to precisely capture the differ-
ence between the behavior of smooth invariants and polynomial invariants (or analytic, or even
stable smooth invariants).

Definition C.6. Let Z be a finite dimensional vector space, pi ∈ C∞(Z), i = 1, . . . , NZ , be a
set of homogeneous polynomials on Z, and p0 = P (p1, . . . , pNZ ) a polynomial in its arguments.
With Z0 = p−1

0 (0), consider a partition Z \ Z0 =
⋃rZ
j=1 Zj into pairwise disjoint open sets

Zj, for some rZ < ∞. We say that a function σ ∈ C∞(Z) is locally a smooth function
of the polynomials pi with respect to the partition (Zj) if there exist Σj ∈ C∞(RNZ ),
j = 1, . . . , rZ , such that σ = Σj(p1, . . . , pNZ ) on Zj. We say that σ is a function of the pi
(globally) if we can choose Σj = Σi, for i, j = 1, . . . , rZ . We write σ = [Σ]Z(p1, . . . , pNZ ).

Proposition C.7 (extended Luna-Richardson). Let G be a linearly reductive group with a
linearly reductive complexification and a rational representation on a finite dimensional vec-
tor space Z. Also, let pi ∈ PZ , i = 1, . . . , NZ , be homogeneous polynomials generating the
algebra of polynomial scalar G-invariants on Z (Proposition C.4). Then, there exists a p0 =
P (p1, . . . , pNZ ) polynomial in its arguments and, with Z0 = p−1

0 (0), a partition Z\Z0 =
⋃rZ
j=1 Zj

into pairwise disjoint open G-invariant sets, such that any G-invariant function σ ∈ C∞(Z)
is locally a smooth function σ = [Σ]Z(p1, . . . , pNZ ) of the polynomials pi with respect to the
partition (Zj) (Definition C.6).
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Remark 19. The proof of Proposition C.7 follows from combining the details of the proofs of
Propositions C.5 and C.6, which can be found in the original references [Lun76] and [Ric73]
respectively. Discussing a complete proof goes beyond the scope of the current work and will
be discussed elsewhere.

Combining the results presented so far allows us to finally formulate the main Equivariance
Lemma that is needed in the proof of our main Theorem 6.2.

Lemma C.8 (Equivariance). Consider finite sums of tensor density representations Z =
⊕

j Zj
and T =

⊕
j Tj of GL(n) (resp. GL+(n)), and its natural action on Ln. Recall also (Defini-

tions C.3, C.4) the notion of invariant scalars (SZ , S̃Z ⊂ C∞(Ln × Z)), equivariant tensors
(EZ,T , ẼZ,T ⊂ C∞(Ln × Z;T )) and isotropic tensors (IZ,T , ĨZ,T ⊂ C∞(Z;T )), as well as their
characterizations (Propositions C.1, C.2 and C.3)

1. There exist diagonalizable intertwiners sZ : Z → Z and sT : T → T such that (u, z) 7→
|detu|−sZ (u · z) and (u, t) 7→ |detu|−sT (u · t), for u ∈ GL(n), z ∈ Z and t ∈ T , define
tensor representations ( i.e., with density weight zero) on Z and T . Denoting these tensor
representations by Z ′ and T ′, we have EZ,T ∼= EZ′,T ′ (resp. EZ,T ∼= EZ′,T ′).

2. When Z carries a tensor representation and p ∈ SZ (resp. S̃Z) such that p(g, z) is poly-
nomial in z, then p is a covariantly constructed scalar that is polynomial in the tensor
components of g, g−1 and z (resp. of g, g−1, ε(g) and z).

3. There is a finite number of invariant pi ∈ SZ (resp. S̃Z), i = 1, . . . , NZ , such that each
pi(g, z) is a homogeneous polynomial in z and each σ ∈ SZ (resp. S̃Z) is locally a smooth
function σ = [Σ]Z(p1, . . . , pNZ ) of the invariant polynomials pi, i = 1, . . . , NZ , as in
Proposition C.7.

4. There is a finite number of equivariant tensors qj ∈ EZ,T (resp. ĨZ,T ), j = 1, . . . , NZ,T ,
whose components are homogeneous polynomials on Z, such that each τ ∈ IZ,T (resp. ẼZ,T )

is of the form τ =
∑NZ,T

j=1 σjqj with σj ∈ SZ (resp. S̃Z).

Proof. After we establish point 1, we can without loss of generality assume that Z and T consist
of direct sums of only tensor representations.

1. By hypotheses, both Z and T reduce to a sum of tensor density representations. This
means that there exist diagonalizable intertwiners sZ : Z → Z and sT : T → T such that
(u, z) 7→ |detu|−sZ (u · z) and (u, t) 7→ |detu|−sT (u · t), for u ∈ GL(n), z ∈ Z and t ∈ T , define
tensor representations on Z and T . Let us refer to the corresponding representations as Z ′ and
T ′. If τ : Ln × Z → T is an equivariant map with respect to the tensor density representations
on Z and T , then

τ ′(g, z′) = |det g|−sT τ(g, |det g|sZ z′) (C.4)

defines an equivariant map τ ′ : Ln × Z ′ → T ′ with respect to the corresponding tensor repre-
sentations. Clearly, this operation can be reversed.

2. Recall that, in our notation, SZ ∼= EZ,R (resp. S̃Z ∼= ẼZ,R) where R carries the trivial
representation. Then, by Proposition C.2, we have the isomorphism SZ = IZ,R (resp. S̃Z =
ĨZ,R). Under this isomorphism, an invariant p(g, z) is polynomial in z iff the corresponding
pη(z) = p(g = η, z) is polynomial. Moreover, by the classification Proposition C.3, any such
polynomial pη(z) consists of a complete contraction of products of the tensor components of
z with copies of η (and also ε in the oriented case). Recalling the details of the restriction of
tensor representations to the orthogonal subgroup (Remark 16), the invariant extension p(g, z)
of pη(z) clearly constitutes the same complete contraction of products of the tensor components
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of z, but with every occurrence of η replaced by either gab (when contracting two contravariant
indices), gab (when contracting two covariant indices) or δba (when contracting a covariant and a
contravariant index). Respectively, a contraction with ε is replaced by a contraction with ε(g)
with its indices appropriately raised or lowered by g. Thus, we arrive at the desired conclusion
about the polynomiality of p(g, z) in g, g−1 (and resp. ε(g)).

3. Recall the isomorphism SZ ∼= IZ,R (resp. S̃Z ∼= ĨZ,R) from point 2. Then, the desired
conclusion follows from Proposition C.7, noting that O(1, n−1) (resp. SO(1, n−1)) is a linearly
reductive Lie group (and so is its complexification, cf. Remark 17) and any tensor representation
(Definition C.2) is obviously rational. The finiteness of the number of generating invariant
polynomials pi ultimately follows from Hilbert’s theorem (Proposition C.4), which can obviously
be chosen to be homogeneous.

4. It follows from Proposition C.1 that any equivariant τ ∈ EZ,T (resp. ẼZ,T ), can be written
as a gradient τ(g, z) = ∂

∂t∗σ(g, z, t∗)
∣∣
t∗=0

, for some invariant σ ∈ SZ×T ∗ (resp. S̃Z×T ∗) that is
linear in the t∗ arguments. On the other hand, point 3 implies that

σ = [Σ]Z×T ∗(p1, . . . , pNZ , Q1, . . . , QNZ,T )

is locally a smooth function of the invariants polynomial on Z × T ∗, split into the pi that do
not depend on the T ∗, and the Qi that depend on the T ∗ only linearly. By combining the chain
rule with the notion of local dependence on polynomials (Definition C.6), we get

τ(g, z) =
∂

∂t∗
[Σ]Z(p1, . . . , pNZ , Q1, . . . QNZ )

∣∣∣∣
t∗=0

=

NZ,T∑
j=1

[
∂

∂Qj
Σ

]
(p1, . . . , pNZ , Q1, . . . , QNZ )

∣∣∣∣
Qj=0

∂Qj
∂t∗

∣∣∣∣
t∗=0

=

NZ,T∑
j=1

σj(g, z)qj(g, z),

with the obvious definitions for σj and qj . This concludes the proof.
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