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COHEN–MACAULAY BINOMIAL EDGE IDEALS OF

CACTUS GRAPHS

GIANCARLO RINALDO

Abstract. We classify the Cohen-Macaulay binomial edge ideals of
cactus and bicyclic graphs.

Introduction

In 2010, binomial edge ideals were introduced in [6] and appeared inde-
pendently also in [8]. Let S = K[x1, . . . , xn, y1, . . . , yn] be the polynomial
ring in 2n variables with coefficients in a field K. Let G be a graph on vertex
set [n] and edges E(G). For each {i, j} ∈ E(G) with i < j, we associate a bi-
nomial fij = xiyj−xjyi. The ideal J(G) of S generated by fij = xiyj−xjyi
such that i < j , is called the binomial edge ideal of G. Any ideal generated
by a set of 2-minors of a 2 × n-matrix of indeterminates may be viewed as
the binomial edge ideal of a graph.

Algebraic properties of binomial edge ideals in terms of properties of the
underlying graph were studied in [6], [4] and [9]. In [4] and [9] the authors
considered the Cohen-Macaulay property of these graphs. Recently nice
results on Cohen-Macaulay bipartite graphs and blocks have been obtained
(see [7], [2] and [1]).

However, the classification of Cohen-Macaulay binomial edge ideals in
terms of the underlying graphs is still widely open and, as in the case of
monomial edge ideals introduced in [11], it seems rather hopeless to give a
full classification.

The aim of this paper is to extend the results of [10] where we classify
Cohen-Macaulay and unmixed binomial edge ideals J(G) with deviation,
namely the difference between the minimum number of the generators and
the height of J(G), less than or equal to 1. This invariant has an interest-
ing combinatorial interpretation: if J(G) is unmixed than its deviation is
|E(G)| − n + c where c is the number of connected components of G (see
Remark 2.1 of [10]). Hence deviation represents the minimum number of
edges that must be removed from the graph to break all its cycles making
it into a forest (see Chapter 4 of [5]).

In section 2 we give a classification Cohen-Macaulay and unmixed bino-
mial edge ideals J(G) when G is a cactus graph, a graph whose blocks are
cycles. This is a natural extension to the result obtained in [10] and useful
to study binomial edge ideals by the deviation invariant.
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2 GIANCARLO RINALDO

In section 3 as an application of the results obtained in section 2 we
classify the Cohen-Macaulay and unmixed binomial edge ideals J(G) when
G is a bicyclic graph, that is the case of deviation 2.

1. Preliminaries

In this section we recall some concepts and notation on graphs and on
simplicial complexes that we will use in the article.

Let G be a simple graph with vertex set V (G) and edge set E(G). A
subset C of V (G) is called a clique of G if for all i and j belonging to C
with i 6= j one has {i, j} ∈ E(G). A vertex of a graph is called a cutpoint if
the removal of the vertex increases the number of connected components. A
connected subgraph of G that has no cutpoint and is maximal with respect
to this property is a block. A block graph B(G) is a graph whose vertices are
the blocks of G and two vertices are adjacent whenever the corresponding
blocks contain a common cutpoint of G. A connected graph is a cactus if
its blocks are cycles or edges.

Set V = {x1, . . . , xn}. A simplicial complex ∆ on the vertex set V is a
collection of subsets of V such that: (i) {xi} ∈ ∆ for all xi ∈ V ; (ii) F ∈ ∆
and G ⊆ F imply G ∈ ∆. An element F ∈ ∆ is called a face of ∆. A
maximal face of ∆ with respect to inclusion is called a facet of ∆. A vertex
i of ∆ is called a free vertex of ∆ if i belongs to exactly one facet. The clique
complex ∆(G) of G is the simplicial complex whose faces are the cliques of
G. Hence a vertex v of a graph G is called free vertex if it belongs to only
one clique of ∆(G).

We need notation and results from [6] (section 3) that we recall for the
sake of completeness. Let T ⊆ [n], and let T = [n] \T . Let G1, . . . , Gc(T ) be

the connected components of the induced subgraph on T , namely GT . For

each Gi, denote by G̃i the complete graph on the vertex set V (Gi). We set

(1) PT (G) = (
⋃

i∈T

{xi, yi}, J(G̃1), . . . , J(G̃c(T ))),

PT (G) is a prime ideal. Then J(G) is a radical ideal and

J(G) =
⋂

T⊂[n]

PT (G)

is its primary decomposition (see Corollary 2.2 and Theorem 3.2 of [6]).
If there is no possible confusion, we write simply PT instead of PT (G).
Moreover, heightPT = n + |T | − c(T ) (see [6, Lemma 3.1]). We denote by
M(G) the set of minimal prime ideals of J(G).

If each i ∈ T is a cutpoint of the graph GT∪{i}, then we say that T is a

cutset for G. We denote by C(G) the set of all cutsets for G.

Lemma 1.1. [6] PT (G) ∈ M(G) if and only if T ∈ C(G).

Lemma 1.2. [9] Let G be a connected graph. Then J(G) is unmixed if and
only if for all T ∈ C(G) we have c(T ) = |T |+ 1.
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The following observation gives motivation to consider the block graphs
in this context.

Proposition 1.3. Let J(G) be unmixed. Then the block graph B(G) is a
tree.

Proof. By Theorem 3.5 of [5] each block of the block graph is a complete
graph. We recall that two vertices in B(G) are adjacent when the cor-
responding blocks contain a common cutpoint of G. Moreover for each
cutpoint v, {v} ∈ C(G). By Lemma 1.2 the assertion follows. �

We observe the following (see also Remark 3.1.(i) of [2])

Proposition 1.4. Let v be a vertex of G with neighbor set N(v) = {u ∈
V (G) | {u, v} ∈ E(G)} and let Gv the graph such that V (Gv) = V (G) and
E(Gv) = E(G) ∪ {{u1, u2} | u1 6= u2, u1, u2 ∈ N(v)}. Then

C(Gv) = {T ∈ C(G) | v 6∈ T}.

Proof. If v is a free vertex then E(G) = E(Gv). In fact by definition there
is only one clique containing v, that is all vertices adjacent to v are adjacent
to each other. Hence we assume v is not a free vertex in G. By definition
of the graph Gv v is a free vertex of Gv. This implies by Proposition 1.1 of
[9] that there are no cutsets of Gv containing v.

Let S ⊂ V (G) such that v /∈ S, and let

G1, . . . , Gc1

be the connected components of the graph GS , with v ∈ V (G1). Each
{v, u} ∈ E(G) either intersects S, hence is not in E(GS), or is an edge of
G1 since it is connected through v in G1. In the same way, let H = Gv and
let

H1, . . . ,Hc2

be the connected components of the graph HS, with v ∈ V (H1). Each
{v, u} ∈ E(H) and each {u1, u2} ∈ E(H) with u1, u2 ∈ N(v) either inter-
sects S or is an edge of H1. This implies that Hi = Gi for i = 2, . . . , c1 and
c1 = c2. Moreover

(2) V (Gi) = V (Hi), ∀i = 1, . . . , c1.

In particular this is true for all the cutsets. That is for all T ∈ C(G) then
i ∈ T is a cutpoint of the graph GT∪{i}, and the number of connected

components decreases when S = T \ {i}. The same happens for H, hence
T ∈ C(H). The same argument works in the other direction. �

Corollary 1.5. Let v be a vertex of G that is not free vertex and let Gv

the graph such that V (Gv) = V (G) and E(Gv) = E(G) ∪ {{u1, u2} | u1 6=
u2, u1, u2 ∈ N(v)}. Then

J(G) = J(Gv) ∩Qv

with Qv =
⋂

T∈C(G),v∈T PT (G).
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Proof. Let v ∈ V (G) then J(G) = Qv ∩Qv with

Qv =
⋂

T∈C(G),v∈T

PT (G), Qv =
⋂

T∈C(G),v /∈T

PT (G).

Applying Proposition 1.4, we have that the cutsets in C(Gv) are exactly
the cutsets in C(G) not containing v. Moreover the connected components
induced by any T in G and in Gv have the same set of vertices as stated in
the proof of Proposition 1.4 (see (2)). Using the notation introduced in the

mentioned proof H̃i = G̃i for each connected component, that is

J(Gv) = Qv.

�

Example 1.6. Sometime the ideal Qv in Corollary 1.5 has a natural in-
terpretation. For example let G = C4 with vertices V (C4) = {1, . . . , 4} and
edges {{1, 2}, {2, 3}, {3, 4}, {1, 4}}. Then we obtain

(3) J(G) = J(G1̄) ∩Q1 = J(D) ∩ (x1, y1, x3, y3)

where D, known as diamond graph, has V (D) = V (C4) and E(D) = E(C4)∪
{{2, 4}} and the ring S/Qv is related to the isolated vertex 2 and 4. By
similar argument we obtain

(4) J(D) = J(D2̄) ∩Q2 = J(K4) ∩ (x2, y2, x4, y4)

where K4 is the complete graph with 4 vertices. If G = C5 such an interpreta-
tion fails. Let V (C5) = {1, . . . , 5} and edges {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}.
If we consider J(G) = J(G1̄)∩Q1, then G1̄ is the graph obtained adding the
edge {2, 5} to the cycle C5, as expected by Corollary 1.5, but

Q1 = (x1, y1, f2,3, f4,5, x3x4, x3y4, y3x4, y3y4).

Passing from a block that is not complete to a complete one (see (3),(4)
in Example 1.6 and Figure 2), is useful for our aim thanks to the following
nice result (see Theorem 1.1 of [4]) that we state using our notation

Theorem 1.7. Let G be a graph whose blocks are complete graphs. The
following conditions are equivalent:

(1) J(G) is Cohen-Macaulay;
(2) J(G) is unmixed;
(3) B(G) is a tree.

2. Classification of Cohen-Macaulay cactus graphs

In this section we provide a classification of Cohen-Macaulay binomial
edge ideal J(G) when G is a cactus graphs. Since a binomial edge ideal J(G)
is Cohen–Macaulay (resp. unmixed) if and only if J(H) is Cohen–Macaulay
(resp. unmixed) for each connected component H of G, we assume from
now on that the graph G is connected unless otherwise stated.

We start by the following
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Proposition 2.1. Let J(G) be an unmixed binomial edge ideal. If a cycle
Cl is a block of G then l ∈ {3, 4}.

Proof. We begin observing by [4] and [10] that unmixed binomial edge ideals
containing blocks that are cycles of length 3 and 4 exist. We assume that
exists a cycle Cl in G with l ≥ 5 and J(G) unmixed. Since Cl is a block we
represent G as

(5) G = Cl ∪

(
r⋃

i=1

Gi

)

where r ≥ 0, Gi are subgraphs of G for all i, |V (Gi) ∩ V (Cl)| = 1. Since Cl

is a block we have that {v} = V (Gi)∩ V (Cl) is a cutpoint and all the paths
between u ∈ V (Gi) and w ∈ V (Gj) with i 6= j pass through v (see Theorem
3.1 of [5]).

Let V (Cl) = {i1, i2, . . . , il} such that {ij , ij+1} is an edge of G with
j = 1, . . . , l − 1 and {i1, il} is an edge of G, too. We observe that if T
is {ij , ik} such that {ij , ik} /∈ E(Cl) then T ∈ C(G). Moreover GT has at
least two connected components induced by the remaining l − 2 vertices of
Cl. Assuming G is unmixed there are exactly 3 connected components in GT
and this implies that one of the vertices in T is a cutpoint and the other is
not a cutpoint. Thanks to this observation we easily obtain a contradiction.
We give the proof for the sake of completeness. We observe that in the cut-
set {i1, i3} we may assume without loss of generality that i1 is the cutpoint
and i3 is not a cutpoint. By the same argument focusing on {i1, il−1}, il−1

is not a cutpoint. If we consider {i2, il−1} and {i3, il} we obtain that i2 and
il are cutpoints. Let T1 = {i2, il} since GT 1

has 4 connected components we
obtain a contradiction. �

Proposition 2.2. Let J(G) be an unmixed binomial edge ideal. If a cycle
C4 is a block of G then it satisfies the following (C4)-condition

• there are exactly two cutpoints in C4 and they are adjacent.

Proof. By Proposition 2 of [10] we know that a graph satisfying the thesis
exists. We prove that all the other cases are not unmixed. Let V (C4) =
{1, 2, 3, 4} and let E(C4) = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}. We assume the
same representation of G given in (5). Suppose that either r = 0 or r = 1
with cutpoint 1. Then c({2, 4}) = 2. Hence it is not unmixed. Let r ≥ 2
and assume that 1 and 3 are cutpoints then c({1, 3}) = 4. Hence J(G) is
not unmixed. �

Definition 2.3. A graph G is decomposable (resp. indecomposable) if exists
(resp. does not exist) a decomposition

(6) G = G1 ∪G2

with {v} = V (G1)∩V (G2) such that v is a free vertex of ∆(G1) and ∆(G2).
By a recursive decomposition (6) applied to each G1 and G2, after a finite
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Figure 1. B(G) is a path.

number of steps we obtain

(7) G = G1 ∪ · · · ∪Gr

where G1, . . . , Gr are indecomposable and for 1 ≤ i < j ≤ r either V (Gi) ∩
V (Gj) = ∅ or V (Gi) ∩ V (Gj) = {v} and v is a free vertex of ∆(Gi) and
∆(Gj). The decomposition (7) is unique up to ordering and we say that G
is decomposable into indecomposable graphs G1, . . . , Gr.

Lemma 2.4 (See [9]). Let G be a decomposable graph with decomposition
G = G1 ∪ G2 and V (G1) ∩ V (G2) = {v}. Then J(G) is Cohen-Macaulay
(resp. unmixed) if and only if J(G1) and J(G2) are Cohen-Macaulay (resp.
unmixed).

Our aim is to prove that every Cohen-Macaulay cactus graph G is decom-
posable into indecomposable graphs G1, . . . , Gr such that the block graph
B(Gi) is a path for 1 ≤ i ≤ r. Hence it is necessary as a first step to classify
the indecomposable Cohen-Macaulay cactus graphs whose block graph is a
path. To reach this goal we use from now on the following notation. Let
G be a graph such that B(G) is a path defined on the following sets (see
Figure 1)

(8)
vertices of B(G) {B1, . . . , Bl}
edges of B(G) {{Bi, Bi+1} | i = 1, . . . , l − 1}
cutpoints of G {wi = vi+1 | i = 1, . . . , l − 1}

and such that wi = vi+1 ∈ V (Bi) ∩ V (Bi+1), with i = 1, . . . , l − 1.

Lemma 2.5. Let G be a graph such that B(G) is a path. We use notation
(8). If |V (Bi)| ≥ 3 for all 1 < i < l then the power set of {w1, . . . , wl−1} is
a subset of C(G).

Proof. We use induction on t the cardinality of T ∈ C(G). If t = 1 since
each wi is a cutpoint of G the claim follows. Let 2 ≤ t < l − 1 and

T = {wi1 , wi2 , . . . wit} with 1 ≤ i1 < i2 < · · · < it ≤ l − 1.

Let wj ∈ {w1, . . . , wl−1}\T and assume without loss of generality that j < i1
and i1 ≥ 2. We observe that the graph GT has the connected component
H = B1 ∪ . . . ∪ Bi1−1 ∪ B′

i1
where B′

i1
is obtained removing the vertex wi1

from the block Bi1 . Since by hypothesis Bi1 has more than two vertices, B′
i1
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contains at least one vertex, v′i1 , that is not a cutpoint in G. Hence H
{wj}

has two connected components: one containing a vertex in V (B1) \ {w1}
and one containing the vertex v′i1 . That is wj is a cutpoint of GT and
T ∪ {wj} ∈ C(G). �

By Proposition 2.1, Example 1.6 and Theorem 1.7 is useful for our aim
to compute the primary decompositions of J(G) whose blocks are complete
graphs, cycles C4 and diamond graphs D (see also Figure 2).

Proposition 2.6. Let G be a graph such that B(G) is a path. We use
notation (8). Let B1 = Km1

, Bl = Kml
with m1, ml ≥ 2 and

Bi ∈ {C4,D,Kmi
| mi ≥ 3} for 2 ≤ i ≤ l − 1

with the following labelling on the vertices of the blocks Bi ∈ {C4,D}:

• V (C4) = {vi, v
′
i, wi, w

′
i}, E(C4) = {{vi, wi}, {vi, v

′
i}, {v

′
i, w

′
i}, {wi, w

′
i}};

• V (D) = {vi, v
′
i, wi, fi}, E(D) = {{vi, wi}, {vi, v

′
i}, {v

′
i, fi}, {wi, fi}, {v

′
i, wi}}.

Then T ∈ C(G) if and only if T ⊆ V ⊔ V ′ where V = {w1, . . . , wl−1},

V ′ =



⋃

Bi=C4

{v′i, w
′
i}


 ∪



⋃

Bi=D

{v′i}




and satisfying the following conditions:

(1) if v′i ∈ T then wi ∈ T and vi /∈ T ;
(2) if w′

i ∈ T then vi ∈ T and wi /∈ T .

Proof. For the sake of completeness we give the equivalent conditions to (1)
and (2) that are:

(1’) if vi ∈ T or wi /∈ T then v′i /∈ T ;
(2’) if wi ∈ T or vi /∈ T then w′

i /∈ T .

Suppose T is a cutset. Then v ∈ T is not a free vertex. Hence it follows T ⊆
V ⊔ V ′. In fact a vertex fi in a diamond graph is a free vertex in the clique
{v′i, wi, fi} and the same holds for all the vertices that are not cutpoints
in a block that is a complete graph. Moreover, if T ⊆ V then it satisfies
condition 1. and 2. in a trivial way. Hence we assume v′ ∈ T with v′ ∈ V ′.
That is either v′ = v′i ∈ V (Bi) with Bi ∈ {C4,D} or v′ = w′

i ∈ V (Bi) with
Bi = C4. We consider only the case v′ = v′i ∈ V (Bi) with Bi = C4 since the
other cases follow by similar argument. Since T is a cutset, the graph GS

with S = T ∪ {v′i} has a cutpoint in v′i. Hence the two vertices vi and w′
i

that are adjacent to v′i in G must belong to GS , that is vi and w′
i are not in

T . By the same reason since v′i is a cutpoint in GS and since wi is adjacent
to vi and w′

i in G, too, then wi /∈ S and wi ∈ T . That is condition (1) is
satisfied.

Now suppose T ⊆ V ⊔V ′ satisfying conditions (1) and (2) and let n′ = |V ′|.
We prove that T is a cutset by induction on n′. If n′ = 0 that is T ⊆ V ,
then it is a cutset by Lemma 2.5.
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Let n′ ≥ 1 and let v′2 ∈ V ′ then B2 ∈ {C4,D} (see Figure 2). We
assume B2 = C4 since the other case is similar. By conditions (1) and (2’).
w2 ∈ T and neither v2 nor w′

2 belongs to T . That is the graph GT contains
2 connected components, B1 and the isolated vertex w′

2, and a subgraph of
H = B′

3 ∪B4 ∪ · · · ∪Bl, where B′
3 is obtained removing the vertex w2 = v3

from B3.
We claim that T ′ = T \ {v′2, w2} is a cutset of H. Moreover HT ′ has

a connected component containing a vertex in B3 that is adjacent to w2.
By the claim it easily follows that T is a cutset of G and GT contains
the following connected components: B1, the isolated vertex w′

2, and the
connected components of HT ′ .

If B3 is a complete graph then B′
3 is a complete graph, too. Hence H

satisfies the hypothesis of our Proposition and T ′ is a cutset by induction
hypothesis. If B3 = D then B′

3 is the complete graph K3. Moreover v′3 /∈ T
by condition (1’) applied to w2 = v3 ∈ T . Hence the set T ′ contains at most
the cutpoint w3. Also in this case the graph H satisfies the hypothesis of
our Proposition and T ′ is a cutset by induction hypothesis. If B3 = C4 then
B′

3 is a path of length 2 whose edges are

{v′3, w
′
3}, {w

′
3, w3}.

We note that also in this case v′3 /∈ T by condition (1’), and T contains at
most one of the vertices w3 and w′

3. In fact v′3 is the free vertex of the path
and only one of the cutpoints w3, w

′
3 can appear in T ′. Moreover we can

apply induction hypothesis on the subgraph H ′ obtained removing v′3 from
H.

By similar argument to the previous case we obtain the assertion under
the assumption w′

2 ∈ V ′. In this case B2 = C4, v2 ∈ T and GT contains
the following connected components: the isolated vertex v′2, B

′
1, obtained

removing the vertex v2 = w1 from B1, and the connected components of
HT ′ with H = B3 ∪ · · · ∪Bl and T ′ = T \ {w′

2, v2}. �

Corollary 2.7. Let G be a graph that satisfies the hypothesis of Proposition
2.6. Then J(G) is unmixed.

Proof. By Lemma 1.2 it is sufficient to show that c(T ) = |T | + 1 for all
T ∈ C(G). Thanks to Lemma 2.5, T = {wi1 , wi2 , . . . wit} ⊆ {w1, . . . , wl−1}
with 1 ≤ i1 < i2 < · · · < it ≤ l − 1 is a cutset of G. We note that

(9) GT = G1 ⊔G2 ⊔ · · · ⊔Gt+1

where G1 = B1 ∪ · · · ∪Bi1−1 ∪B′′
i1
, Gt+1 = B′

it+1 ∪Bit+2 ∪ · · · ∪Bl and

Gj = B′
ij+1 ∪Bij+2 ∪ · · · ∪Bij+1−1 ∪B′′

ij+1
with j = 2, . . . , t

and B′′
i is the block obtained removing wi from Bi, B

′
i is the block obtained

removing wi−1 = vi from Bi. We easily observe that Gi is connected for
1 ≤ i ≤ t + 1. Hence c(T ) = t + 1. Now let T ⊔ T ′ ∈ C(G) with T =
{wi1 , wi2 , . . . wit} ⊆ {w1, . . . , wl−1} and T ′ ∩ {w1, . . . , wl−1} = ∅ with t′ =
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Figure 2. Cases B2 ∈ {C4,D,K4} of Theorem 2.8

|T ′| > 0. This implies that v′ ∈ T ′ is either v′i or w
′
i of Bi ∈ {C4,D}. If we

focus on T the representation of GT in (9) holds in this case, too. Without
loss of generality let v′ ∈ V (G1). Since the only cutpoint that induces the
connected component G1 is wi1 , by condition (1) of Proposition 2.6, v′ = v′i1 .
Hence

(10) G
T∪{v′i1

}
= (G1){v′i1}

⊔G2 ⊔ · · · ⊔Gt+1

where (G1){v′i1}
= B1∪· · ·∪Bi1−1⊔{v} where v = fi1 if Bi1 = D or v = w′

i1

if Bi1 = C4 and c(T ∪{v′i1}) = (t+1)+1 where the last summand is induced
by the isolated vertex v. The same argument holds for all v′ ∈ T ′. �

Theorem 2.8. Let G be a graph that satisfies the hypothesis of Proposition
2.6. Then J(G) is Cohen-Macaulay.

Proof. We start observing that dimS/J(G) = n+1. This follows by Corol-
lary 2.7 and the formula (see [6])

(11) dimS/J(G) = max{n− |T |+ c(T )}.

Hence it is sufficient to prove that depthS/J(G) ≥ n + 1 using induction
on l, the number of blocks of G. Our strategy is to focus on the block
B2. In particular when B2 ∈ {D,C4} (see Figure 2) we consider the vertex
v′ ∈ {v′2, w

′
2} and the following exact sequence

(12) 0 −→ S/J(G) −→ S/Qv′ ⊕ S/J(G′) −→ S/(Qv′ + J(G′)) −→ 0

with G′ = Gv′ . By Corollary 2.5, J(G′) is a binomial edge ideal and the
graph G′ satisfies the hypothesis of our Theorem but with a second block
that has less cutsets than B2 (see Figure (2)). Moreover S/Qv′ (respectively
S/Qv′ +J(G′)) is a tensor product of 3 (respectively 2) quotient rings whose
definining ideals are binomial edge ideals, and it is Cohen-Macaulay using
induction. To obtain this goal we have three cases to study: B2 = Km2

,
B2 = D and B2 = C4. We start induction with l = 3.

Case B2 = Km2
. S/J(G) is Cohen-Macaulay by Theorem 1.1 of [4].

Case B2 = D. We set G′ = Gv2′ . By Proposition 1.4 we have E(G′) =
E(G) ∪ {{v2, f2}}, that is the second block in G′ is the complete graph on
the vertices {v2, v

′
2, w2, f2}. By Corollary 1.5, J(G) = J(G′) ∩ Qv′

2
, where

Qv′
2
= P{v′

2
,w2} = (xv′

2
, yv′

2
)+ (xw2

, yw2
)+ J(B1)+ J(B′

3) and B′
3 is obtained

by removing the vertex w2 = v3 from the complete graph B3. By Depth
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Lemma applied on the sequence (12) with v′ = v′2 we obtain the assertion.
In fact G′ is Cohen-Macaulay by the case B2 = Km2

and its depth is n+ 1.
Let S′ = S/(xv′

2
, yv′

2
, xw2

, yw2
), we obtain

(13) S/Qv′
2

∼= S′/J(B1) + J(B′
3)

∼=

∼=
K[{xi, yi} : i ∈ V (B1)]

J(B1)
⊗K[xf2 , yf2 ]⊗

K[{xi, yi} : i ∈ V (B′
3)]

J(B′
3)

where the 3 quotient rings associated to the complete graphs B1, B
′
3 and

the isolated vertex f2 are Cohen-Macaulay. Using the formula (11) for each
ring, and adding the results thanks to (13), we obtain

depthS/Qv′
2
= |(V (B1) + 1) + (1 + 1) + (|V (B′

3)|+ 1) = n+ 1.

By the same argument depthS/(Qv′
2
+ J(G′)) = n. In fact

(14) S/Qv′
2
+ J(G′) ∼= S′/J(B1 ∪ E′) + J(B′

3)
∼=

∼=
K[{xi, yi} : i ∈ V (B1) ∪ {f2}]

J(B1 ∪ E)
⊗

K[{xi, yi} : i ∈ V (B′
3)]

J(B′
3)

where E is the edge {w1 = v2, f2}. Hence J(B1 ∪E) is Cohen-Macaulay by
Theorem 1.1 of [4]. By Depth Lemma the assertion follows.

Case B2 = C4. We set v′ = w′
2 and G′ = Gw2

′ . By Proposition 1.4
we have E(G′) = E(G) ∪ {{v′2, w2}}, that is the second block in G′ is a
diamond, hence J(G′) is Cohen-Macaualy by the case B2 = D. Moreover
depthS/Qv′ = n+1 and depthS/Qv′ +J(G′) = n. In fact Qv′ = P{v2,w′

2
} =

(xw′

2
, yw′

2
) + (xv2 , yv2) + J(B′

1) + J(B3), where B′
1 is the complete graph

obtained removing the vertex v2 = w1 from the graph B1. Using a repre-
sentation of S/Qv′ similar to (13) we easily obtain the assertion. Moreover
Qv′+J(G′) = (xw′

2
, yw′

2
)+(xv2 , yv2)+J(B′

1)+J(B3∪E) where E is the edge

{v′2, w2}. Also in this case we obtain the assertion using a representation of
S/Qv′ + J(G′) equivalent to the one used in (14).

Let l > 3. Case B2 = Km2
. By Lemma 2.4 applied on the graphs

G1 = B1 and G2 = B2 ∪ · · · ∪ Bl, since G1 is a complete graph and G2

is Cohen-Macaulay by induction hypothesis, we obtain that G is Cohen-
Macaulay.

Case B2 = D. As in the case B2 = D with l = 3, setting G′ = Gv2 ′ ,
the second block in G′, namely B′

2, is the complete graph on the vertices
{v2, v

′
2, w2, w

′
2}, hence

G′ = B1 ∪B′
2 ∪B3 ∪ · · · ∪Bl.

Therefore J(G′) is Cohen-Macaulay using induction hypothesis and Lemma
2.4 applied onB1 andB′

2∪B3∪· · ·∪Bl. By Corollary 1.5Qv′
2
=
⋂

T∈C(G),v′
2
∈T PT (G).

Thanks to condition (1) of Proposition 2.6 for each T ∈ C(G) with v′2 ∈ T
then w2 ∈ T and v2 /∈ T . Hence Qv′

2
= J(B1) + (xv′

2
, yv′

2
, xw2

, yw2
) + J .

We claim that J = J(H), where H = B′
3 ∪ B4 ∪ · · · ∪ Bl, with B′

3 ob-
tained removing the vertex w2 = v3 from B3. By the claim, and defining
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S′ = S/(xv′
2
, yv′

2
, xw2

, yw2
), we obtain a representation of S/Qv′

2
by tensor

product similar to (13), that is

K[{xi, yi} : i ∈ V (B1)]

J(B1)
⊗K[xf2 , yf2 ]⊗

K[{xi, yi} : i ∈ V (H)]

J(H)
,

and using induction hypothesis on H we obtain the assertion. The claim
follows proving the condition

(15) T ∈ C(H) if and only if T ∪ {v′2, w2} ∈ C(G).

Proof of (15). Case B3 = D. Let B′
3 = K3 on the vertices {v′3, f3, w3}, then

H satisfies Proposition 2.6. Let T ∈ C(H). To prove that T∪{v′2, w2} ∈ C(G)
it is enough to check conditions (1) and (2) for all the vertices v′ ∈ T ′ =
(T ∪{v′2, w2})\{w1, . . . , wl−1}. If v

′ ∈ V (B2)∩T
′ then v′ = v′2 and it satisfies

condition (1). If v′ ∈ V (Bi) ∩ T ′ with 4 ≤ i ≤ l then it satisfies condition 1.
and 2. with respect to G since it satisfies the same conditions with respect
to H. We end this implication observing that V (B3)∩T ′ = ∅. If T ⊆ V (H)
with T /∈ C(H) either there exists a block in {B4, . . . , Bl} such that either
(1) or (2) is not satisfied or there exists v ∈ V (B′

3) with v 6= w3. In both
cases T ∪ {v′2, w2} does not satisfy (1) and (2) with respect to G.

The cases B3 ∈ {Km3
, C4} follow by similar argument. We only point

out some facts when B3 = C4. B′
3 is a path defined on the vertex set

{v′3, w
′
3, w3} and edges {v′3, w

′
3}, {w

′
3, w3}. In this case is useful to consider

H = E ∪H ′ where E is the edge {v′3, w
′
3} and H ′ is obtained removing the

vertex v′3 from H. Then H ′ satisfies the hypothesis of the Proposition and
it is Cohen-Macaulay by induction. By Lemma 2.4 applied to H ′ and E we
obtain that J(H) is Cohen-Macaulay, too. Moreover by Lemma 2.3 of [9]
we have

C(H) = C(H ′) ∪ {T ∪ {w′
3} : T ∈ C(H ′) with w3 /∈ T}.

Observe that the graph studied in this case is decomposable with respect to
the vertex v2. Hence also the graphs

(16) B2 ∪ · · · ∪Bl with B2 = D is Cohen-Macaulay.

Case B2 = C4. Let G
′ = Gw2

′ . As in the case B2 = C4 and l = 3, the second
block of G′ is D. Then J(G′) is Cohen-Macaulay by the case B2 = D with
l > 3, and J(G) = J(G′) ∩Qw′

2
with Qw′

2
=
⋂

T∈C(G),w′

2
∈T PT (G). We claim

that Qw′

2
= J(B′

1)+ (xw′

2
, yw′

2
)+ (xv2 , yv2)+ J(H) where B′

1 is the complete
graph obtained removing v2 = w1 from B1. Moreover, using the notation
introduced in Proposition 1.4,

H = (B3 ∪B4 ∪ · · · ∪Bl)v3 = (B3)v3 ∪B4 ∪ · · · ∪Bl.

By the claim it follows, defining S′ = S/(xv2 , yv2 , xw′

2
, yw′

2
), the following

representation of S/Qw′

2

K[{xi, yi} : i ∈ V (B′
1)]

J(B′
1)

⊗K[xv′
2
, yv′

2
]⊗

K[{xi, yi} : i ∈ V (H)]

J(H)
.
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Figure 3. Tree and unicyclic Cohen-Macaulay indecompos-
able graphs.

We focus on the last factor since the other ones are exactly equivalent to
the ones already studied. The block (B3)v3 is either a complete graph or a
diamond graph with v3 a free vertex. In both cases it is Cohen-Macaulay
by induction hypothesis and (16). The claim follows by the condition

(17) T ∈ C(H) if and only if T ∪ {v2, w
′
2} ∈ C(G).

To prove (17) we use Proposition 2.6 and similar arguments to the ones used
to prove (15). �

Lemma 2.9. Let G be an indecomposable cactus graph such that B(G) is a
path. We use notation (8). The following conditions are equivalent:

(1) J(G) is Cohen-Macaulay;
(2) J(G) is unmixed;
(3) One of the following 2 cases occurs

(a) G ∈ {K2, C3}.
(b) G has C4 subgraphs that satisfy the (C4)-condition, l ≥ 3 and

(i) B1, Bl ∈ {C3,K2},
(ii) B2 and Bl−1 are C4,
(iii) Bi ∈ {C3, C4} for 3 ≤ i ≤ l − 2 and if Bi = C3 then

Bi+1 = C4.

Proof. (1) ⇒ (2). It is a known fact. (2) ⇒ (3). By Proposition 2.1 only K2,
C3 and C4 are admissible blocks. Since every vertex of a complete graph is a
free vertex, we observe that every cactus graph whose blocks are K2 and C3

and not C4 is Cohen-Macaulay and is decomposable in single blocks. Now
suppose that the block graph is a path containing one or more blocks that
are C4. By Proposition 2.2 a block C4 has two cutpoints, thus neither B1

nor Bl is C4. Since by hypothesis G is indecomposable, two complete graphs
cannot be adjacent in B(G). We end observing that if a K2 is between two
cycles C4 it is not unmixed (see also Remark 4.7 of [2]). (3) ⇒ (1). The
implication follows applying Theorem 2.8. �

Example 2.10. Thanks to Lemma 2.9 we obtain the Cohen-Macaulay in-
decomposable graph of trees and unicyclic graphs shown in Figure 3. The
bicyclic with the same properties are in Figure 4. From now on we underline
the free vertices by a circle around them.
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Figure 4. Bicyclic Cohen-Macaulay indecomposable cactus graphs.
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Figure 5. A non unmixed cactus graphs with B(G) that is a tree.

Theorem 2.11. Let G be a cactus graph. We use notation (8). The fol-
lowing conditions are equivalent

(1) J(G) is Cohen-Macaulay;
(2) J(G) is unmixed;
(3) B(G) is a tree, G is decomposable into indecomposable graphs G1, . . . , Gr,

and such that B(Gi) is a path and Gi satisfies one of the equivalent
conditions of Lemma 2.9 for 1 ≤ i ≤ r.

Proof. (1) ⇒ (2). It is a known fact. (3) ⇒ (1). It follows by Lemma
2.4. (2) ⇒ (3). By Proposition 1.3 the block graph of G is a tree. Let
t be the number of vertices of B(G) having degree greater than two. We
make induction on t. If t = 0 then the block graph B(G) is a path and
the assertion follows by Lemma 2.4 and Lemma 2.9. Let t > 0 and let
B be a a vertex of B(G) whose degree is greater than 2. By Proposition
2.1 and Proposition 2.2, B = C3. Suppose that C3 has a vertex v such
that {v} = V (G1) ∩ V (G2), G = G1 ∪ G2 and v is a free vertex of ∆(G1)
and ∆(G2). Since G1 and G2 are cactus with number of blocks of degree
greater than 2 less than t, by induction hypothesis we are done. Suppose
by contradiction that in each of the 3 vertices of C3 the graph G is not
decomposable. Then C3 is adjacent to 3 blocks C4 as in figure 5, where G1,
G2 and G3 are intended as cactus subgraphs of G. We observe that the set
T containing the 6 vertices, indicated as filled dots in figure, is a cutset. But
GT has 6 components. Hence J(G) is not unmixed. Contradiction. �
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Figure 6. A Cohen-Macaulay cactus graphs.

Example 2.12. In figure 6 we have that G is the union of 4 indecompos-
able Cohen-Macaulay cactus graphs joined by free vertices (surrounded by a
circle). That are : a K2; a C3; one containing a K2, a C3 and a C4; one
containing 2 K2, one C3 and 3 C4.

3. Classification of Cohen–Macaulay bicyclic graphs

In this section thanks to the classification of Cohen-Macaulay binomial
edge ideals of cactus graphs we classify the ones that are bicyclic, namely
the ideals of deviation 2. In fact a cactus graph having 2 cycles as blocks
is in particular a bicyclic graph. Hence we focus our attention on bicyclic
graphs G that are not cactus. In this case there exists one block B1 in G
such that

(18) B1 =
3⋃

i=1

Pi

where P1, P2 and P3 are paths, V (Pi) ∩ V (Pj) = {a, b} for 1 ≤ i < j ≤ 3
and if B is a block of G with B 6= B1 then B is an edge.

Remark 3.1. The set T = {a, b}, where a and b are defined in (18), is a
cutset. Assume from now on that the ideal J(G) is unmixed. Let li be the
length of the path Pi in (18) such that

1 ≤ l1 ≤ l2 ≤ l3.

If l1 = 1, that is {a, b} ∈ E(G), then a is a cutpoint and b is not a cutpoint.
In fact by Lemma 1.2, c(T ) = 3. But we have exactly two connected compo-
nents induced by the paths P2 and P3. Hence there exists another connected
component in GT that is not a subgraph of B1 and the assertion follows. By
a similar argument if l1 > 1 then neither a nor b is a cutpoint.

All over the section we use the notation defined in (18) and Remark 3.1.
We call these graphs non-cactus bicyclic graphs.

Lemma 3.2. Let G be a non-cactus bicyclic graph such that J(G) is un-
mixed. We use notation (18). Then
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(1) each path Pi has length less than 4;
(2) at most one path Pi has length 3.

Proof. (1). Suppose by contradiction that exists a path P ∈ {P1, P2, P3}
of length l ≥ 4. Let a, a1, c, b1 and b, 5 distinct vertices of V (P ), with
{a, a1}, {b, b1} ∈ E(P ). Let T = {a, b} and suppose that neither a nor b
is a cutpoint. We observe that T1 = {a, b1} is a cutset. Hence c(T1) = 3.
But in GT 1

there are two connected components that are subgraphs of B1,
one containing the vertex c and one containing the vertex b. Hence there
exists another block B2 different from B1 that contains the vertex b1. Let
E(B2) = {{b1, b

′
1}}. By the same argument there exists a block B3 such

that E(B3) = {{a1, a
′
1}}. The set T2 = {a1, b1} is a cutset and induces

4 components in GT 2
: The first containing a and b, the second containing

a′1, the third containing b′1, and the fourth containing c. Contradiction. By
similar argument is left to the reader to check that if a cutpoint and b is not
a cutpoint, then T1 = {b, c} is a cutset with c a cutpoint. Hence we have a
contradiction focusing on the cutset {a, c}.

(2). Suppose by contradiction that exist 2 paths P1 and P2 of length 3
such that

V (Pi) = {a, ai, bi, b}, E(Pi) = {{a, ai}, {ai, bi}, {bi, b}} for i = 1, 2.

By Remark 3.1 we assume the vertex b is not a cutpoint and we focus on the
cutset T = {b, a1}. GT has two connected components that are subgraphs
of B1, one containing the vertex a and one containing the isolated vertex
b1. Hence there exists another block B2 different from B1 that contains the
vertex a1. Let E(B2) = {{a1, a

′
1}}. By the same argument there exists a

block B3 such that E(B3) = {{a2, a
′
2}}. The set T1 = {b, a1, a2} is a cutset

with 5 components in GT 1
: the first containing a, the second (respectively

the third) containing a′1 (respectively a′2) and the 2 isolated vertices b1 and
b2. Contradiction. �

Lemma 3.3. Let G be a non-cactus bicyclic graph. Then J(G) is Cohen-
Macaulay (respectively unmixed but not Cohen-Macaulay) if and only if
B(G) is a tree and G is decomposable into indecomposable graphs G1, . . . , Gr,
and such that G1 is one of the graphs in Figure 7 (respectively Figure 8).

Proof. Let (l1, l2, l3) ∈ N
3 where li is the length of the paths Pi. By Remark

3.1 and Lemma 3.2 we have to study the following 4 cases:

(1, 2, 2), (1, 2, 3), (2, 2, 2), (2, 2, 3).

Case (1, 2, 2). Since l1 = 1 we obtain the graph on the left in Figure 7
that is Cohen-Macaulay. In fact, if we consider the cone from the vertex a
to the two connected components given by the isolated vertex f3 and the
path whose edges are {f1, b} and {b, f2}, by Theorem 3.8 of [9], we have the
assertion.
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Figure 7. Bicyclic Cohen-Macaulay non-cactus graphs.

Case (1, 2, 3). Since l1 = 1 we obtain the graph on the right in figure 7
removing the vertex f3. Using similar argument to the one used in Propo-
sition 2.2, we obtain that the only candidate is exactly the graph in figure
7 and

C(G) = {∅, {a}, {a1}, {a, a1}, {a, b}, {a, b1}, {a1, b}, {a, a1, b}}.

We focus on the cutpoint a. By Corollary 1.5 we obtain J(G) = J(Ga)∩Qa,
moreover Qa = (xa, ya)+J(P ) where J(P ) is the binomial edge ideal of the
path with

E(P ) = {{f1, b}, {b, b1}, {b1, a1}, {a1, f3}},

C(P ) = {∅, {a1}, {b}, {b1}, {a1, b}}.

The ring S/Qa is Cohen-Macaulay of dimension 8 and it has two compo-
nents: The path P on 5 vertices and the isolated vertex f2. We also observe
that J(Ga) is the cone from the vertex a1 to the vertex f3 and the graph
obtained attaching the edge {b1, b} to the complete graph whose vertices are
{a, b, f1, f2}. Hence J(Ga) is Cohen-Macaulay of dimension 8, too. More-
over Qa + J(Ga) is a binomial edge ideal that is equal to the previous cone
removing the vertex a, hence it is Cohen-Macaulay of depth 7. By the Depth
Lemma applied on the following exact sequence the assertion follows

0 −→ S/J(G) −→ S/Qa ⊕ S/J(Ga) −→ S/(Qa + J(Ga)) −→ 0.

Cases (2, 2, 2) and (2, 2, 3). These two cases are unmixed if and only if
we add the edges as in figure 8. Moreover we already found them in [10],
Example 3.2 and 3.3. In that paper by symbolic computation we observed
that they are not Cohen-Macaulay. In [2] there is an argument for the non
Cohen-Macaualyness of the bipartite one, the one on the right of figure 8.

�

Now we are ready to give the main result of the section.

Corollary 3.4. Let G be a bicyclic graph. Then J(G) is Cohen-Macaulay
if and only if B(G) is a tree, G is decomposable into indecomposable graphs
G1, . . . , Gr, and such that one of the following cases occurs:

(1) G1 and G2 are in the set of unicyclic graphs in Figure 3;
(2) G1 is one of the bicyclic cactus graphs in Figure 4;
(3) G1 is one of the bicyclic non-cactus graphs in Figure 7.
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Figure 8. Bicyclic unmixed but non Cohen-Macaulay non-
cactus graphs.
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