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Abstract

We consider goodness–of–fit testing for multivariate stable distributions. The pro-

posed test statistics exploit a characterizing property of the characteristic function of

these distributions and are consistent under some conditions. The asymptotic distribu-

tion is derived under the null hypothesis as well as under local alternatives. Conditions

for an asymptotic null distribution free of parameters and for affine invariance are pro-

vided. Computational issues are discussed in detail and simulations show that with

proper choice of the user parameters involved, the new tests lead to powerful omnibus

procedures for the problem at hand.

Keywords: Characteristic function; Characterization; Goodness-of-fit; Multivariate stable

distribution.

1 Introduction

Let X be a p-variate (p ≥ 1) random vector and φ(t) denote its characteristic function (CF).

It is well known (see Sato, 1999, eqn. 13.1) that X follows a multivariate stable distribution

if for any a > 0, there are b > 0 and c ∈ Rp such that

(φ(t))a = φ(bt)eit
′c t ∈ Rp. (1.1)

The law of X is called strictly stable if (1.1) holds with c = 0. In this paper relation (1.1)

will be exploited to construct goodness-of-fit tests for multivariate stable distributions with

special attention devoted to tests for symmetric stable distributions, and to Cauchy and

normal distributions in particular.

Previous related works closely connected to the approach followed here are those of Csörgő

(1989), Henze & Zirkler (1990), Henze & Wagner (1997), Epps (1999), and Pudelko (2005),
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for testing multivariate normality. Hušková and Meintanis (2007) and Jiménez–Gamero et

al. (2005) extend this approach in order to test for the distribution of random errors in

the context of linear regression models, with special emphasis on testing normality. The

aforementioned tests though should certainly not be confined to testing for normality. In

fact they are in principle meant for general use. Nevertheless, the underlying approach can

not be readily applied to arbitrary distributions. The reason is that in the test statistic,

empirical and parametric CFs are directly compared by means of a distance function which

is not always easy to compute; see e.g., Jiménez–Gamero et al. (2009). This drawback is

clearly evident in the case of testing for the Cauchy distribution. Specifically, while this

direct approach was straightforward to adapt by Gürtler & Henze (2000) and Matsui &

Takemura (2005) in order to test goodness–of–fit to this particular distribution, the general-

ization attempted by Matsui & Takemura (2008) in order to test for an arbitrary univariate

symmetric stable distribution requires numerical integration. Here we circumvent this prob-

lem by using (1.1) in the construction of the test statistic, which characterizes the family of

multivariate stable distributions. Note that the characterization approach is also followed

by Arcones (2007) in the special case of testing for the normal distribution. This approach

leads to the clear advantage of computational simplicity, which is a major issue particularly

in the multivariate setting where high dimensional integration is often troublesome. Also,

depending on the case at hand, one can avoid estimating a location parameter which implies

that in the context of composite goodness–of–fit testing we only need to estimate the co-

variance (or scatter) matrix. Moreover, the characterization approach involves appropriate

choices of the parameters a and b in (1.1) which provides some flexibility in that it allows

one to obtain extremely powerful tests for a large range of alternatives, by appropriately

choosing the values of these user–specified parameters.

The structure of the paper is as follows. In Section 2 we will recall some basic features

of the CF of multivariate stable distributions and discuss the characterization in (1.1). In

Section 3 the test statistics are introduced, the case of testing for the normal and Cauchy

distribution are emphasized, and the asymptotic properties of the proposed test statistic are

derived. Section 4 proposes an affine–invariant version of the new test statistic, presents

computational strategies, and analyses the effect of user–specified parameters. In Section 5

we present simulations results on the power of the tests. Some conclusions and discussion is

contained in Section 6. Several technical arguments are collected in an Appendix.

2 Multivariate stable distributions

First we introduce some basic notation and abbreviations. The identity matrix of dimension

p × p will be denoted by Ip. Also, we will indicate by |A| the determinant of a matrix
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A. The same notation will be used for the norm |x| =
(∑p

j=1 x
2
j

)1/2

of a vector x =

(x1, . . . , xp)
′, while for the inner product of two vectors x, y we will write x′y. We shall

write oP (1) to denote a quantity converging in probability to 0. Finally ‘independent and

identically distributed’ will be abbreviated to i.i.d.. Further, more specialized, notation will

be introduced in Section 3.

The analytic study of stable, and more generally of infinitely divisible, distributions

dates back to Lévy (1937) and Feldheim (1937) and makes use of characterization (1.1) and

other equivalent statements. More recently Press (1972a) obtained the log–CF of a stable

distribution as

logφ(t) = iδ′t− 1

2

m∑
j=1

(t′Σjt)
α/2

[1 + iβ(t;α)] (2.1)

with

β(t;α) =


− tan

(
πα
2

) ∑m
j=1(t

′Σjt)
α/2 w′

jt

|w′
j
t|∑m

j=1(t
′Σjt)

α/2 if α ̸= 1,

2
π

∑m
j=1(t

′Σjt)
1/2 w′

jt

|w′
j
t| log |w

′
jt|∑m

j=1(t
′Σjt)

1/2 if α = 1,

where 0 < α ≤ 2, Σj is a positive definite matrix of rank rj, 1 ≤ rj ≤ p, j = 1, 2, . . .m

and no two Σj’s are proportional; for further details and derivation of the formula see Press

(1972a).

By imposing a symmetry condition around a location vector δ ∈ Rp, i.e. requiring that

φ(t) satisfies e−iδ
′tφ(t) = eiδ

′tφ(−t) for all t ∈ Rp, implies that β = 0, identically in t; thus a

multivariate stable distribution symmetric around δ has logφ(t) = iδ′t− 1
2

∑m
j=1 (t

′Σjt)
α/2 ,

which may also be parametrized in a slightly different way as

φ(t) = eiδ
′t−(t′Σt)α/2

, t ∈ Rp, (2.2)

where Σ is assumed to be positive definite; see also Samorodnitsky & Taqqu (1994, §5.2).
If α = 2, then we have from (2.2) the CF of a multivariate normal distribution with

mean vector δ and covariance matrix 2Σ. The case of the multivariate Cauchy distribution

symmetric around δ is given by (2.2) when α = 1. In this last case as well as for all α ∈ (0, 2),

the matrix Σ will be understood as a general scatter matrix.

From the results above it follows that definition (1.1) is characteristic of general multi-

variate stable distributions. In particular, for the normal and Cauchy cases which we will

consider in more detail we state the following propositions which are easily verified.

Proposition 2.1. Formula (1.1) holds for b =
√
a and c = δ(a −

√
a) if and only if X

follows a multivariate normal distribution with mean δ ∈ Rp.
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Proposition 2.2. Formula (1.1) holds for b = a and c = 0 if and only if X follows a

multivariate Cauchy distribution with location parameter δ ∈ Rp.

Note that the multivariate Cauchy distribution is strictly stable for each δ ∈ Rp, while

the multivariate normal distribution is strictly stable only if δ = 0.

It is straightforward to see from (2.2) that Propositions 2.1 and 2.2 can be generalized

to the family of symmetric stable distributions with arbitrary index α ∈ (0, 2]. Specifically

we have the following:

Proposition 2.3. Formula (1.1) holds for b = a1/α and c = δ(a − a1/α) if and only if X

follows a multivariate stable distribution with index α ∈ (0, 2] which is symmetric around

δ ∈ Rp .

Prop. 2.3 implies that the random variable X follows a symmetric stable distribution of

index α if the equation

(φ(t))a − φ(bt)eit
′c = 0, (2.3)

holds for each a > 0, identically in t ∈ Rp, with b = a1/α and c = δ(a− a1/α).

3 Goodness-of-fit tests

LetXj := (Xj1, ..., Xjp)
′, j = 1, ..., n, denote independent copies ofX, and denote by Sα(δ,Σ)

the distribution with CF given by (2.2). Suppose that on the basis of Xj, j = 1, ..., n, we

wish to test the null hypothesis

H0 : The law of X is Sα(δ,Σ) for fixed α ∈ (0, 2], and for some (δ,Σ) ∈ Rp ×Mp,

where Mp denotes the set of all symmetric positive definite matrices of dimension p× p.

As already mentioned, the characterizations in Section 2 may be used for constructing

goodness–of–fit tests by using the empirical CF of X defined as

φn(t) =
1

n

n∑
j=1

eit
′Xj . (3.1)

Specifically we suggest to replace in the left–hand side of (2.3), φ(·) by φn(·), b by a1/α

and c by δ̂n(a − a1/α) where δ̂n denotes a consistent estimator of the location parameter δ.

However since Sα(δ,Σ) is invariant under affine transformations of the type X 7→ AX + d,

with d ∈ Rp and A a non-singular p× p matrix, it is natural to use in the test statistic the

empirical CF

ϕn(t) =
1

n

n∑
j=1

eit
′Ŷj , (3.2)
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corresponding to the standardized data Ŷj = Σ̂
−1/2
n (Xj − δ̂n), where δ̂n and Σ̂n denote

consistent estimators of the corresponding parameters. In this way we reduce the test to the

standard case of testing Y ∈ Sα(0, Ip), with Y = Σ−1/2(X − δ), i.e. of testing for symmetric

stability with location zero and scatter matrix equal to the identity matrix Ip.

To introduce our test statistic let ϑ = (ϑ1, ϑ2), where the vector ϑ1 = (a, α) ∈ (0,∞) ×
(0, 2] is known and the parameter ϑ2 = (δ,Σ) ∈ Rp × Mp is assumed to be unknown. In

view of (2.6) we suggest to reject the null hypothesis H0 for large values of the test statistic

∆n,w(ϑ1) = n

∫
Rp

|Dn(ϑ1; t)|2w(t)dt, (3.3)

where

Dn(ϑ1; t) = (ϕn(t))
a − ϕn(a

1/αt), (3.4)

and w(·) denotes a non–negative weight function.

The test for multivariate normality corresponds to α = 2 in (3.3) in which case one

typically uses in the place of δ̂n (resp. 2Σ̂n) the sample mean (resp. the sample covariance

matrix) as estimator of δ (resp. 2Σ).

In turn, for α = 1 in (3.3) a test for the multivariate Cauchy null hypothesis results. Note

that in this case, unlike the general case of Proposition 2.3 where the constant c depends

on the location parameter δ, in Proposition 2.2 this constant is free of δ. However, this fact

alone does not immediately imply that we do not need to use a location standardization by

δ̂n, in the same manner as the non–occurrence of the matrix Σ in Prop. 2.3 does not imply

that we do not need to standardize the data by using Σ̂n. In fact, generally, if we do not

standardize, the asymptotic null distribution of the test statistic ∆n,w(ϑ1) will depend on

the true values of δ and Σ. The case of the Cauchy distribution however is peculiar with

respect to location. To see this notice that for ϑ1 = (a, 1) we have

Dn(ϑ1; t) = (ϕn(t))
a − ϕn(at) = e−it

′Σ̂
−1/2
n δ̂na

[
(φn(Σ̂

−1/2
n t))a − φn(Σ̂

−1/2
n ta)

]
(3.5)

by simple algebra. This last equation implies that the quantity |Dn(ϑ1; t)|2 employed in the

test statistic in (3.3) is location invariant, which in turn means that the value of ∆n,w(ϑ1) does

not depend on the value of δ. For this reason we will simply use Ŷj = Σ̂
−1/2
n Xj as standardized

data in the case of testing for the Cauchy distribution. Moreover the maximum likelihood

(ML) estimator will be used as estimator of Σ. Note at this point that ML estimation

is a standard tool, certainly for normal data, but also in the context of the multivariate

Cauchy and stable distributions; see Auderset et al. (2005) and Nolan (2013) for discussion

and further references. The use of ML estimators has also been suggested by Matsui &

Takemura (2005, 2008) who show good performance of these estimators in comparison to

other methods. We postpone more detailed reference to estimation of parameters of stable

laws to the next section.
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3.1 Behavior of the test statistic under the null hypothesis

In this subsection, we study the behavior of ∆n,w(ϑ1) under the null hypothesis. Here we

consider estimators ϑ̂2,n := (δ̂n, Σ̂n) converging in probability to the true, but unknown

parameter ϑ2 = (δ,Σ). In addition we assume that δ̂n admits the Bahadur representation

√
n(δ̂n − δ) =

1√
n

n∑
j=1

Π(ϑ2;Xj) + rn, (3.6)

where rn is a p-dimensional random vector which tends in probability to 0, and Π(ϑ2; ·) :

Rp → Rp is such that for all ϵ > 0,∫
Rp

Π(ϑ2;x)dF (x) = 0,

∫
Rp

|Π(ϑ2;x)|2+ϵdF (x) <∞. (3.7)

Bahadur representations such as (3.6) are typical when considering the asymptotics of

goodness–of–fit tests. They are essentially generalizations of the notion of consistent and

asymptotically normally distributed estimators. For univariate testing with stable laws, see

Matsui and Takemura (2008). In the current multivariate context, Bahadur representations

are employed by Jiménez–Gamero et al. (2009), while Jiménez–Gamero et al. (2005) use a

more general form, first provided by Jurečková and Sen (1997) for problems involving estima-

tion of regression parameters. In this connection, note that estimation of multivariate stable

laws was first considered by Press (1972b) and Zolotarev (1981) who proposed moment–type

consistent and asymptotically normal estimators. More recently, Ogata (2013) used the idea

of empirical likelihood in obtaining consistent and asymptotically normal estimators of the

parameters of multivariate stable distributions. For classical ML estimation, DuMouchel

(1973) proved that the univariate stable family satisfies Cramér’s conditions for consistency

and asymptotic normality. Using the results of Zolotarev (1981), see Nolan (2013) for a more

recent account, it follows that the existence of first and second derivatives of the densities

of multivariate stable laws follows from the corresponding differentiability of the univariate

densities in DuMouchel (1973). Therefore this basic Cramér condition is satisfied. There

exists also other Cramér conditions–for instance restrictions on the parameter space which

trivially hold in our case–but we will not pursue this issue any further here.

Regarding the weight function we consider positive continuous weight functions w(·)
satisfying,

w(t) ≥ 0, t ∈ Rp, 0 <

∫
Rp

w(t)dt,

∫
Rp

|t|2w(t)dt <∞, (3.8)

(with the first relation holding except possibly in a set of measure zero), and∫
Rp

ζ(t′x)w(x)dx = 0, t ∈ Rp, (3.9)
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for any odd real–valued function ζ (ζ(x) = −ζ(−x), x ∈ R).

Remark 3.1. Weight functions satisfying (3.9) yield test statistics whose limit distributions

are more tractable. Some examples can be found among symmetric functions around 0.

Remark 3.2. From (3.6), by classical arguments,
√
n(δ̂n− δ) converges in distribution to a

zero-mean Gaussian random vector with covariance matrix

Ω(ϑ2) =

∫
Rp

Π(ϑ2;x)Π
′(ϑ2;x)dF (x).

Theorem 3.3. Assume that (3.6)-(3.9) hold. Then, under H0, for all ϑ ∈ (0,∞)× (0, 2]×
Rp ×Mp,

∆n,w(ϑ1) = |Σ1/2|
∫
Rp

S2
n(ϑ; t)w(Σ

1/2t)dt+ oP (1), (3.10)

where for all t ∈ Rp,

Sn(ϑ; t) =
1√
n

n∑
j=1

{
aφ̃a−1(t)

[
cos(t′X∗

j ) + sin(t′X∗
j )− φ̃(t)

]
−
[
cos(a1/αt′X∗

j ) + sin(a1/αt′X∗
j )− φ̃(a1/αt)

]
− t′Π(ϑ2;X

∗
j + δ)Ψ(ϑ; t)

}
,

with φ̃ standing for the CF of X∗
j = Xj− δ, j ≥ 1, and Ψ(ϑ; t) = aφ̃a(t)−a1/αφ̃(a1/αt), t ∈

Rp.

Proof: See Section 7.

Example. Assume X is a p–dimensional Gaussian random vector with mean δ and covari-

ance matrix 2Σ. Then δ̂n can be taken to be the sample mean and can be written in the form

(3.6) with Π(ϑ;x) = x− δ, x ∈ Rp, and rn = 0 ∈ Rp. It is also easy to see that Ω(ϑ2) = 2Σ

and that, since α = 2 in this case, one has

Ψ(ϑ; t) = (a− a1/2)eat
′Σt, t ∈ Rp.

The study of the limit distribution of ∆w,n(ϑ1) will be carried out in conjunction with that

of the process Sn(ϑ; ·). This process can be considered as a random element in a Fréchet

space C(Rp → R) of real-valued continuous function defined on Rp endowed with the metric

ρ(u, v) =
∑
j≥1

2−j
ρj(u, v)

1 + ρj(u, v)
,

where for all j ≥ 1, ρj(u, v) = max|t|≤j |u(t) − v(t)|. In our first main result we provide

the limit distribution of Sn(ϑ; ·) under H0, while in the second result we give the limit

distribution corresponding to ∆n,w(ϑ1).
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Theorem 3.4. Under H0, {Sn(ϑ; ·) : n ≥ 1} converges weakly in C(Rp → R) to a zero-mean

Gaussian process S(ϑ; ·) with covariance kernel

Γ(ϑ; s, t) =

a2 [φ̃(t)φ̃(s)]a−1 [φ̃(t− s)− φ̃(t)φ̃(s)]− aφ̃a−1(t)
[
φ̃(t− a1/αs)− φ̃(t)φ̃(a1/αs)

]
−aφ̃a−1(s)

[
φ̃(a1/αt− s)− φ̃(s)φ̃(a1/αt)

]
+ φ̃[a1/α(t− s)]− φ̃(a1/αt)φ̃(a1/αs)

−aφ̃a−1(s)

∫
Rp

[cos(s′x) + sin(s′x)− φ̃(s)] t′Π(ϑ2;x+ δ)Ψ(ϑ; t)dF̃ (x)

−aφ̃a−1(t)

∫
Rp

[cos(t′x) + sin(t′x)− φ̃(ϑ; t)] s′Π(ϑ2;x+ δ)Ψ(ϑ; s)dF̃ (x)

−
∫
Rp

[
cos(a1/αs′x) + sin(a1/αs′x)− φ̃(a1/αs)

]
t′Π(ϑ2;x+ δ)Ψ(ϑ; t)dF̃ (x)

−
∫
Rp

[
cos(a1/αt′x) + sin(a1/αt′x)− φ̃(a1/αt)

]
s′Π(ϑ2; x+ δ)Ψ(ϑ; s)dF̃ (x)

+Ψ(ϑ; s)Ψ(ϑ; t)s′Ω(ϑ2)t, s, t ∈ Rp, (3.11)

where F̃ and φ̃ denote respectively, the cumulative distribution function and the CF of

X∗
j , j ≥ 1, Π(ϑ; ·) is given in (3.6) and Ψ(ϑ; t) is defined in Theorem 3.3.

Proof: See Section 7.

Corollary 3.5. Assume that the conditions of Theorem 3.3 hold. Then ∆n,w(ϑ1) converges

in distribution to

∆w(ϑ) = |Σ1/2|
∫
Rp

S2(ϑ; t)w(Σ1/2t)dt, (3.12)

where S(ϑ; ·) is the Gaussian process defined in Theorem 3.4.

Proof: The proof can be established in the same lines as the proof of (2.17) of Henze &

Wagner (1997).

Our tests will be shown to be affine invariant under certain conditions (see Section 4).

Then the asymptotic null distribution is free of the parameters δ and Σ. With slight abuse

of terminology we shall call such tests distribution–free. It is true that a test statistic

may be distribution–free even without affine invariance provided that it is based on the

standardized data Ŷj = Σ̂
−1/2
n (Xj − δ̂n); see for instance Quiroz & Dudley (1991). In what

follows we explore this possibility of a non–invariant but distribution–free test statistic.

Corollary 3.6. Assume that the conditions of Theorem 3.3 hold. Then, for α = 1 and

α = 2, the random variable ∆w(ϑ) defined by (3.12) is distribution–free.
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Proof: By the change of variable t = Σ−1/2s, one has :

∆w(ϑ) =

∫
Rp

S2(ϑ; Σ−1/2s)w(s)ds.

For the Cauchy case which corresponds to α = 1, it can be checked easily that Ψ(ϑ; t) =

0, t ∈ Rp. Then, the covariance kernel of the zero-mean Gaussian process S(ϑ; Σ−1/2t) is

given by

a2
[˜̃φ(t)˜̃φ(s)]a−1 [˜̃φ(t− s)− ˜̃φ(t)˜̃φ(s)]− a˜̃φa−1

(t)
[˜̃φ(t− as)− ˜̃φ(t)˜̃φ(as)]

−a˜̃φa−1
(s)

[˜̃φ(at− s)− ˜̃φ(s)˜̃φ(at)]+ ˜̃φ[a(t− s)]− ˜̃φ(at)˜̃φ(as) s, t ∈ Rp,

where ˜̃φ stands for the CF of the Yj := Σ−1/2(Xj − δ), j ≥ 1. Note that this case does not

require any Bahadur representation for δ̂n.

The case α = 2 corresponds to the Gaussian example mentioned earlier. From this, Ψ(ϑ; t) =

(a− a1/2)eat
′Σt, t ∈ Rp and Π(ϑ;x) = x− δ, x ∈ Rp and Ω(ϑ2) = 2Σ. Then, the covariance

kernel of S(ϑ; Σ−1/2t) is given by

a2
[˜̃φ(t)˜̃φ(s)]a−1 [˜̃φ(t− s)− ˜̃φ(t)˜̃φ(s)]− a˜̃φa−1

(t)
[˜̃φ(t− a1/2s)− ˜̃φ(t)˜̃φ(a1/2s)]

−a˜̃φa−1
(s)

[˜̃φ(a1/2t− s)− ˜̃φ(s)˜̃φ(a1/2t)]+ ˜̃φ[a1/2(t− s)]− ˜̃φ(a1/2t)˜̃φ(a1/2s)
−a(a− a1/2)˜̃φa−1

(s)

∫
Rp

[
cos(s′x) + sin(s′x)− ˜̃φ(s)] t′xea|t|2d ˜̃F (x)

−a(a− a1/2)˜̃φa−1
(t)

∫
Rp

[
cos(t′x) + sin(t′x)− ˜̃φ(ϑ; t)] s′xea|s|2d ˜̃F (x)

−(a− a1/2)

∫
Rp

[
cos(a1/2s′x) + sin(a1/2s′x)− ˜̃φ(a1/2s)] t′xea|t|2d ˜̃F (x)

−(a− a1/2)

∫
Rp

[
cos(a1/2t′x) + sin(a1/2t′x)− ˜̃φ(a1/αt)] s′xea|s|2d ˜̃F (x)

+(a− a1/2)2ea(|t|
2+|s|2)s′t, s, t ∈ Rp,

where ˜̃φ and
˜̃
F are respectively the CF and the cumulative distribution function of Yj, j ≥ 1.

Since in both cases, the zero–mean process S(ϑ; Σ−1/2t) has a covariance kernel free of

the unknown δ and Σ, it follows that ∆(ϑ) is distribution–free.

Now, assume that |Σ1/2|w(Σ1/2t) is the density function of some positive measure ηΣ with

support Rp. Denote by L2 = L2(ηΣ) the collection of functions g defined on Rp such that∫
Rp g

2(t)dηΣ(t) < ∞. For g1, g2, g ∈ L2, ⟨g1, g2⟩ =
∫
Rp g1(t)g2(t)dηΣ(t) and ||g||L2 = ⟨g, g⟩ 1

2

respectively stand for the usual inner product and norm on L2.
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From our assumptions, the function Γ(ϑ; s, t) defined by (3.11) satisfies
∫
Rp Γ(ϑ; t, t)dηΣ(t) <

∞. Thus, it is a positive semidefinite kernel. Consequently, the integral operator ∇Γ defined

on L2 by

∇Γg(s) =

∫
Rp

Γ(ϑ; s, t)g(t)dηΣ(t) (3.13)

admits eigenvalues λ1, λ2, . . . sorted so that λ1 ≥ λ2 ≥ . . . ≥ 0, and eigenfunctions f1, f2, . . .

which form an orthonormal basis for L2.

Corollary 3.7. Under the conditions of Theorem 3.3, ∆n,w(ϑ1) has asymptotically the same

distribution as
∑

j≥1 λjχ
2
j , where λj and χ2

j , j ≥ 1, are respectively the eigenvalues of ∇Γ

and i.i.d. random variables following a chi–squared distribution with one degree of freedom.

Proof: From our assumptions, the Gaussian process S(ϑ; ·) defined in Theorem 3.4 is a

random element of L2. It has the following Karhunen-Loève representation

S(ϑ; t) =
∞∑
j=1

Njfj(t), t ∈ Rp,

where for all j ≥ 1, Nj = ⟨S(ϑ; ·), fj⟩ are independent zero–mean Gaussian random variables

with variances λj. It follows from this that ||S(ϑ; ·)||2L2
=

∑∞
j=1N

2
j . Recall that E(N2

j ) =

λj ≥ 0, j ≥ 1. For nil λj’s, the corresponding Nj’s are nil in probability. For positive λj’s,

one can observe that Zj = Nj/
√
λj, j ≥ 1, are iid standard Gaussian random variables.

Thus,

∆w(ϑ) =

∫
Rp

S2(ϑ; t)dηΣ(t) = ||S(ϑ; ·)||2L2
=

∞∑
j=1

λjZ
2
j .

The result then follows from Corollary 3.5.

In practice the distribution of
∑∞

j=1 λjχ
2
j is approximated by that of

∑J
j=1 λjχ

2
j , for an

arbitrary large J . However, since the λj’s are unknown they have to be estimated. In the

present setting, one can estimate them by considering the eigenvalues of the operator ∇Γ̂n
,

where Γ̂n(s, t) = Γ̂((ϑ1, ϑ̂2,n); s, t) is any consistent estimator of Γ(ϑ; s, t). More explicitly,

one may estimate the λj’s by the λ̂j’s from the Fredholm integral equations

∇Γ̂n
f̂j = λ̂j f̂j, j ≥ 1.

A natural estimator of Γ(ϑ; s, t) can be obtained by taking the empirical counterpart in

the expression given in (3.11), in which ϑ = (ϑ1, ϑ2) is replaced by (ϑ1, ϑ̂2,n). The computa-

tion of the cumulative distribution function of
∑J

j=1 λ̂jχ
2
j may be carried out by using the

formulas in Matsui & Takemura (2008) p. 556, or the results in Subsection 3.3 of Deheuvels

& Martynov (1996). From this, an approximation of the critical value of the test can then

be obtained.
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3.2 Behavior of the test statistic under local alternatives

In this subsection, we study the behavior of ∆n,w(ϑ1) under a sequence of local alternatives.

In this case the most appropriate setting is that of contiguous alternatives which converge to

the null hypothesis at a certain rate. Note that the notion of contiguity was introduced by

Le Cam (1960) and later popularized in the monograph of Roussas (1972). A more recent

account on the theory of contiguity is provided by Le Cam (1986). For our purposes, we

follow the formulation in Henze & Wagner (1997), Pudelko (2005) and Jiménez–Gamero

et al. (2009), and consider a sequence of alternatives Hn
1 that the law of X has density

f(1 + n−1/2h), where f is the density function of Sα(δ,Σ) and h is a function such that∫
f(x)h(x)dx = 0.

We first state a contiguity result useful for the study of the power of tests under local

alternatives.

Proposition 3.8. Assume that σ2 =
∫
h2(x)f(x)dx <∞. Then the hypotheses H0 and Hn

1

are contiguous.

Proof: As in the proof of Theorem 3.1 of Henze & Wagner (1997), the log-likelihood ratio of

Hn
1 against H0, Λn(X1, . . . , Xn), can be written under H0 as

Λn(X1, . . . , Xn) =
1√
n

n∑
j=1

h(Xj)−
1

2n

n∑
j=1

h2(Xj) + oP (1). (3.14)

Then under H0, by the law of large numbers, the second term in the right-hand side of (3.14)

converges to −σ2/2 and by the central limit theorem, the first term converges in distribution

to a zero-mean Gaussian random variable with variance σ2. The contiguity of H0 and Hn
1

then follows from Proposition 7 of Le Cam (1986).

Theorem 3.9. Assume that the assumptions of Theorem 3.3 and Proposition 3.8 hold.

Then, under Hn
1 , Sn(ϑ; ·) converges weakly in C(Rp → R) to a Gaussian process S̃(ϑ; ·) with

mean function

c(ϑ; t) =

∫
Rp

{
aφ̃a−1(t) [cos(t′x) + sin(t′x)]−

[
cos(a1/αt′x) + sin(a1/αt′x)

]
−t′Π(ϑ2;x+ δ)Ψ(ϑ; t)

}
h(x+ δ)f(x+ δ)dx, t ∈ Rp, (3.15)

and covariance kernel Γ(ϑ; s, t), s, t ∈ Rp defined in Theorem 3.4.

Proof: In Section 7, where the details are postponed, one studies the finite-dimensional

distributions of Sn(ϑ; ·) and its tightness under Hn
1 .
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Corollary 3.10. Under the conditions of Theorem 3.9, under Hn
1 , ∆n,w(ϑ1) converges in

distribution to

∆̃w(ϑ) = |Σ1/2|
∫
Rp

S̃2(ϑ; t)w(Σ1/2t)dt,

where S̃(ϑ; ·) is the Gaussian process defined in Theorem 3.9.

Proof: By contiguity, equation (3.10), which holds under H0, also holds under Hn
1 . Then,

using Theorem 3.9 and the reasoning of the proof of Theorem 3.2 of Henze & Wagner (1997)

one can establish this result.

Corollary 3.11. Under the conditions of Corollary 3.10, and under Hn
1 , ∆n,w(ϑ1) has

asymptotically the same distribution as
∑

j≥1 λjχ
2
j(ξj), where χ2

j(ξj), j ≥ 1, are inde-

pendent random variables following non–central chi–squared distributions with one degree

of freedom and non–centrality parameter ξ2j . For the non–centrality parameter we have

ξj = λ−1
j ⟨c(ϑ; ·), fj(·)⟩ where the λj’s and fj(·)’s stand for the eigenvalues and eigenfunc-

tions of the operator ∇Γ defined in (3.13).

Proof: It is easy to see that from Corollary 3.10, the processes S̃(ϑ; ·) and c(ϑ; ·)+S(ϑ; ·) have
the same distribution. Recall S̃(ϑ; ·) is the Gaussian process defined in Theorem 3.9 and

c(ϑ; ·) is given by (3.15). As in the proof of Theorem 3.9, the Karhunen-Loève decomposition

of S̃(ϑ; ·) is given by:

S̃(ϑ; t) =
∑
j≥1

Ñjfj(t), t ∈ Rp,

where for all j ≥ 1, Ñj = Nj + ξj, with the Nj’s defined in the proof of Corollary 3.7. It

is clear that for all j ≥ 1, Ñj ∼ N(ξj, λj), and ∆̃w(ϑ) = ||S̃(ϑ; ·)||2L2
=

∑
j≥1 λjχ

2
j(ξj). The

result is then obtained by the application of Corollary 3.10.

Remark 3.12. The distribution of
∑

j≥1 λjχ
2
j(ξj) can be approximated by using the same

tools as for
∑

j≥1 λjχ
2
j (see the end of the previous subsection). This can allow for the

approximation of the local power of the test, which depends upon the weight function w. An

optimal choice of this function can be the one that maximizes the local power. However, the

way w is linked to the λj’s is not explicit. Therefore, maximizing the local power with respect

to w may not be an easy task.

3.3 Consistency under fixed alternatives

We now consider the consistency of the test which rejects the null hypothesis H0 for large

values of ∆n,w(ϑ1) under a fixed alternative distribution. To do so, assume that not only

under H0, but also under this fixed alternative hypothesis, say HA, the estimator (δ̂n, Σ̂n)

12



attains a certain probability limit ϑA = (δA,ΣA) ∈ Rp ×Mp. Assume also that the weight

function satisfies (3.8).

Proposition 3.13. Let X ∈ Rp denote an arbitrary random variable. Assume further that

under the fixed alternative hypothesis HA, the estimator of (δ,Σ) satisfies

(δ̂n, Σ̂n) → ϑA = (δA,ΣA) ∈ Rp ×Mp, (3.16)

in probability. Then under HA,

∆n,w(ϑ1)

n
→

∣∣∣Σ1/2
A

∣∣∣ ∫
Rp

|D(ϑA; τ)|2w(Σ1/2
A τ)dτ, (3.17)

in probability, where for all t ∈ Rp, D(ϑA; t) = (φA(t))
a−φA(a

1/αt), with φA(·) denoting the

CF of X − δA.

Proof: We can write from (3.3)

∆n,w(ϑ1)

n
=

∫
Rp

|Dn(ϑ1; t)|2w(t)dt, (3.18)

where Dn(·, ·) is defined by (3.4). Since |ϕn(t)| ≤ 1, we have |ϕn(t)a| ≤ 1; then it follows

that,

|Dn(ϑ1; t)|2 ≤ 4, ∀a > 0. (3.19)

Also recall ϕn(·) defined by (3.2), and notice that ϕn(t) = e−iδ̂
′
nτnφn(τn), with τn = Σ̂

−1/2
n t,

and φn(·) defined in (3.1). Then under assumption (3.16) and due to the uniform convergence

of the empirical CF (see Ushakov, 1999, Theorem 3.2.1) we have

ϕn(t) → e−iδ
′
AτAφ(τA) = φA(τA), (3.20)

and

ϕn(a
1/αt) → e−ia

1/αδ′AτAφ(a1/ατA) = φA(a
1/ατA), (3.21)

almost surely, where τA = Σ
−1/2
A t. Equations (3.20) and (3.21) imply that |Dn(ϑ1; t)|2 →

|D(ϑA; τA)|2, which together with (3.19), and Lebesgue’s theorem of dominated convergence

yield the result in (3.17), and the proof is complete

Due to (3.8) and for fixed a, the right–hand side of (3.17) is positive unless D(ϑA; t) = 0,

identically in t. This however implies that (2.3) holds with b = a1/α and c = δ(a − a1/α),

which according to Proposition 2.3 is true if and only if X follows a multivariate symmetric

stable distribution. Consequently the test that rejects the null hypothesis for large values of

∆n,w(ϑ1) is consistent against each fixed alternative distribution for which the assumptions

in Proposition 3.13 are satisfied.
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4 Computation and affine invariance

In this section we discuss and compare some strategies of computation of the test statistics.

First of all we will present closed computational formulas in the case that the parameter

a figuring in (2.3) is equal to an integer ≥ 2; this choice, besides being convenient from

the computational point of view, will not essentially change the power properties of the

procedures as it will be clear from the further analysis and simulations.

We will develop a general formulation which, by proper choice of parameters, covers all

tests discussed here. To this end, let
∑

j1,...ja
denote the multiple sum

∑n
j1=1 · · ·

∑n
ja=1 and

notice that the quantity defined by (3.4) may be written as

Dn(ϑ1; t) =
1

na

n∑
j1,...,ja

eit
′(Ŷj1+···+Ŷja ) − 1

n

∑
j1

eia
1/αt′Ŷj1 . (4.1)

Following some further algebra, we get

|Dn(ϑ1; t)|2 =
1

n2a

∑
j1,...,j2a

cos
(
t′(Ŷj1 + · · ·+ Ŷja − Ŷja+1 − · · · − Ŷj2a)

)
+

1

n2

∑
j1,j2

cos
(
a1/αt′(Ŷj1 − Ŷj2)

)
− 2

na+1

∑
j1,...,ja+1

cos
(
t′(Ŷj1 + · · ·+ Ŷja − a1/αŶja+1)

)
.

(4.2)

Then if we employ (4.2) in the definition of the test statistic in (3.3) we readily obtain

∆n,w(ϑ1) =
1

n2a−1

∑
j1,...,j2a

Iw

(
Ŷj1 + · · ·+ Ŷja − Ŷja+1 − · · · − Ŷj2a

)
+

1

n

∑
j1,j2

Iw

(
a1/α(Ŷj1 − Ŷj2)

)
− 2

na

∑
j1,...,ja+1

Iw

(
Ŷj1 + · · ·+ Ŷja − a1/αŶja+1

)
,

(4.3)

where

Iw(x) =

∫
Rp

cos(t′x)w(t)dt.

Following Henze & Wagner (1997), the specific choice w(t) = exp [−γ|t|2], γ > 0, will

be given special emphasis since in this case we have Iw(x) =
(
π
γ

)p/2
e−

|x|2
4γ , which clearly

facilitates computations by allowing a closed formula for the test statistic in (4.3). As

it will be seen this weight function is also suitable when the test statistic is computed

directly via equation (3.3) by means of numerical integration. For the purposes of the

following analysis we will write ∆n,γ(a) for the test statistic figuring in (4.3) corresponding

to w(t) = exp [−γ|t|2].
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Remark 4.1. Equation (4.3) with Ŷj = Σ̂
−1/2
n Xj provides a general computational formula

for the test statistic corresponding to the null hypothesis H0 with α = 1 (Cauchy null hy-

pothesis) while the same formula with Ŷj = Σ̂
−1/2
n (Xj − δ̂n) corresponds to the test statistic

for the null hypothesis H0 with α = 2 (Gaussian null hypothesis).

Besides computational simplicity, the choice of the weight function w(t) = exp [−γ|t|2] is
further suggested by the important property of affine invariance. To see this write ∆n,γ(a) :=

∆n,γ(a;X1, ..., Xn) for the test statistic based on the observations X1, ..., Xn, and likewise for

δ̂n and Σ̂n. Then we have the following:

Proposition 4.2. If for each d ∈ Rp and each non–singular p× p matrix A, the estimators

(δ̂n, Σ̂n) of (δ,Σ) are such that

δ̂n(AX1 + d, ..., AXn + d) = Aδ̂n(X1, ..., Xn) + d,

and

Σ̂n(AX1 + d, ..., AXn + d) = AΣ̂n(X1, ..., Xn)A
′,

then the test statistic in (4.3) with weight function w(t) = exp [−γ|t|2], satisfies

∆n,γ(a;AX1 + d, ..., AXn + d) = ∆n,γ(a;X1, ..., Xn),

for each integer value of a.

Proof: From (4.3) it is easy to see by simple algebra that the test statistic ∆n,γ(a) depends

on the observations only via Djk = (Xj − δ̂n)
′Σ̂−1

n (Xk − δ̂n), where δ̂n = δ̂n(X1, ..., Xn)

and Σ̂n = Σ̂n(X1, ..., Xn) . Naturally if we have data X̃j = AXj + d, j = 1, ..., n, then

the test statistic will depend on D̃jk = (X̃j − δ̃n)
′Σ̃−1

n (X̃k − δ̃n), where δ̃n = δ̂n(X̃1, ..., X̃n)

and Σ̃n = Σ̂n(X̃1, ..., X̃n). The proof follows since clearly D̃jk = Djk, under the standing

assumptions.

Remark 4.3. An affine invariant test for multivariate normality has been developed by Henze

& Wagner (1997), while in Henze (2002) one may find an excellent review of affine invariant

tests for normality. Here affine invariance generalizes beyond the case α = 2 for our tests.

Moreover, it is evident from the reasoning above that in the computation of ∆n,γ(a), we do

not need to compute the square root of Σ̂n.

Although quite elegant and simple, the computation of ∆n,γ(a) by means of equation

(4.3) requires n2a operations; this becomes soon intractable and Monte Carlo numerical

evaluation of ∆n,γ(a) can provide precise estimates with lower computational time. Table 1

below provides computational results of the test statistic ∆n,γ(a) for the bivariate Cauchy
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null hypothesis, for (γ, a) = (1, 2), and sample size n = 10, 30, 50 and 100, with three

computational strategies: [1] exact evaluation by (4.3); [2] a simple Monte Carlo rule, where

the integral figuring in the right–hand side of (3.3) is estimated by (1/m)
∑m

j=1 |Dn(ϑ1, Nj)|2
(with ϑ1 = (a, α) = (2, 1)) where Nj, j = 1, . . . ,m, is an i.i.d. sample from a bivariate

zero–mean normal distribution with covariance matrix equal to (1/2γ)I2. This procedure

is quickly implementable in most softwares; [3] a Quasi Monte Carlo approach where the

integral is again evaluated as in [2] but using instead a deterministic sequence. In this

case we have implemented the NIntegrate with the option Quasi Monte Carlo function of

Mathematica 8.0 software. In strategy [2] we set m = 50000 while in case [3] we allowed

Mathematica 8.0 to use up to 106 points if required; exploiting symmetries in the CF, the

region of integration has been set as t = (t1, t2)
′ with 0 < t1 <∞ and −∞ < t2 <∞.

Method → Exact MC QMC

Time Value Time Diff Time Diff

n = 10 0.1 2.8249 4.5 0.0176 0.8 0.0280

n = 30 9.2 2.6079 9.7 0.0268 1.6 0.0044

n = 50 62.2 2.7993 15.0 0.0299 2.5 0.0057

n = 100 928.3 2.0713 25.7 0.0136 3.6 0.0026

Table 1: Cauchy test: Time (in seconds) and value of ∆n,1(2) for the test statistic by three strategies of

computation: by formula (4.3) (Exact); Monte Carlo (MC) and Quasi Monte Carlo (QMC). For MC and

QMC the absolute difference (Diff) with respect to the Exact method is reported.

As we see, both Monte Carlo strategies produce accurate estimates. The timing required

by the exact formula becomes soon quite large with the sample size n. On the other hand,

the QMC method implemented with Mathematica 8.0 is much faster with respect to the

other two methods.

Now we pass to the discussion of the choice of the user–specified parameters γ and a

of the test statistic figuring in eqn. (4.3), with w(t) = e−γ|t|
2
. Although we have mostly

considered the case a = 2, generally speaking this value may not be an optimal choice for

the test statistic ∆n,γ(a). In what follows we investigate the behavior of the test statistic

∆n,γ(a) as a function of a. To this end, and in view of Prop. 3.13 we analyze the asymptotic

behavior of the proposed test statistics based on the quantity

∆γ(a) =

∫
Rp

|(φ(t))a − φ(a1/αt)|2e−γ|t|2dt, (4.4)

i.e., we consider this measure of deviation for distributions in their standard form with

δ = 0 and Σ ≡ Ip). For the univariate case p = 1, Figure 1 reports, as a function of a
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and for different choices of γ, the values of ∆γ(a) corresponding to the test statistic for the

Cauchy null hypothesis, and for the case of Student–t, symmetric stable, normal, and logistic

distribution, as alternatives.

As it can be seen, all cases are quite similar, (we noted the same behavior even with

other parameter values), i.e., the limit of the test statistic, under each alternative and for

a > 1, increases with a. Inspection of the graphs suggests that the power of the tests should

generally increase quite sharply with values of a > 2, e.g. a = 4 or a = 6.

Also for fixed value of a, ∆γ(a) appears to be decreasing as a function of γ. Consequently,

a large value of γ reduces the size of the limiting test statistic and should result in lower

power. Here the reason for this behavior is probably due to the excessive weight that large

values of γ place on informative sections of (4.4). Note that a value of γ = 0.025 gives

the highest values of the test statistics under the alternative. These graphs however do not

consider variability of the test statistic and a larger value of γ should contribute to reduce

excessive oscillations of the estimates ϕn(t) for large t.

In the case of the test for normality we might expect a similar behavior given the close

analogy of the two test statistics. Some cases are reported in Figure 2. As we see low values

of γ and high values of a obtain the largest values for ∆γ(a). Note that in comparison with

the Cauchy test, even larger a values should be used. Nevertheless the case a = 6 seems to

yield high power values. As a final overall comment, we would suggest that a value around

a = 6 coupled with a small value of γ should yield a powerful test statistic for normality

as well as for the Cauchy null hypothesis. This suggestion will be investigated by means of

simulations.

5 Monte Carlo analysis

We perform here a simulation study in order to investigate the actual performance of the

test statistics under various alternatives. Specifically, we analyze univariate (p = 1) and

multivariate (p = 2 and p = 4) tests for the Cauchy null hypothesis, the hypothesis of

symmetric stability with α = 1.5 and the hypothesis of normality. However, while for the

Cauchy and normal cases we consider a general composite hypothesis, i.e. with unspecified

location and scale parameters, in the multivariate stable case the simple hypothesis where

δ = 0 and Σ = I2 is considered. This last choice is dictated by the extremely large computing

time required by the power simulations with an estimation step added in the stable case.

The simulations were carried out with a number of M Monte Carlo samples of size n, and

correspond to a q% significance level. In each case we report the percentage of rejection of
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Figure 1: Value of ∆γ(a) for the Cauchy null hypothesis under different alternatives.

the null hypothesis H0 rounded to the nearest integer.

In the simulations the following alternatives are considered:

1) Student–t distributions with ν degrees of freedom, denoted with tν ;

2) symmetric α-stable distributions indicated with Sα := Sα(0, Ip);

3) the (univariate) standard normal distribution, N(0, 1);

4) the generalized Burr-Pareto logistic distribution with normal marginals, with param-

eters λ and µ, denoted by BP (λ, µ) (Cook & Johnson (1986)). Note that the case

λ→ ∞ and µ = 0 corresponds to independent normals;

5) a multivariate normal mixture, denoted NM(κ, δ, ρ1, ρ2) obtained by κN(0, ρ1) + (1−
κ)N(δ, ρ2) and where N(δ, ρ) indicates a multivariate normal distribution with mean

vector δ and covariance matrix with unit diagonal elements and off–diagonal elements

equal to ρ.
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Figure 2: Value of ∆γ(a) for the normal null hypothesis under different alternatives.

In Table 2 we report rejection rates at a 10%-significance level corresponding to the test

statistic for the univariate Cauchy null hypothesis.

Note that power increases quite sharply with a and with γ. However further simulation

results not shown here confirm, as we expected from the discussion in the previous section,

that a value of γ which is too large results in loss of power. The results are quite clear in

the sense that for all the cases considered, a good suggestion seems to favor values around

a = 6 and γ = 2.5.

The results of Table 2 are comparable with those appearing in Table 7 of Gürtler &

Henze (2000) and Tables 5 and 6 of Matsui & Takemura (2005) which consider CF-based

tests for the univariate Cauchy distribution as well as other classical tests. We see that the

choice of a = 6 and γ = 2.5 always yields greater power than the CF–based and other test

statistics considered in those papers, and often by a wide margin. Moreover, the power of

the test based on ∆n,2.5(6) is also comparable with the power of the UMP invariant test

against normality discussed in Gürtler & Henze (2000).

The results in Tables 3 and 4 correspond to the test for the multivariate Cauchy distri-
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γ → 0.025 0.1 0.5 1 2.5

a → 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6

t1 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10

t2 13 24 33 15 31 41 16 36 47 16 41 52 16 43 54

t4 19 52 70 24 63 79 35 74 87 41 79 89 45 84 92

t5 21 58 77 28 71 86 41 82 91 48 87 94 54 89 96

t10 26 72 88 36 83 94 55 92 98 66 95 98 73 97 99

S0.5 49 72 75 62 82 85 74 84 89 78 84 90 83 87 89

S0.8 14 15 13 15 17 17 19 16 19 21 16 21 28 22 21

S1.2 11 16 18 12 17 21 12 16 23 11 16 25 9 20 25

S1.5 17 37 48 20 46 58 26 50 64 29 51 66 28 60 68

S1.7 22 57 70 29 67 81 43 75 86 49 76 88 53 85 89

N(0, 1) 33 83 94 47 92 98 72 96 99 81 97 100 89 99 100

Table 2: Percentage of rejection of the test for the univariate Cauchy null hypothesis; Sample size n = 50,

a = 2, 4, 6, γ = 0.025, 0.1, 0.5, 1, 2.5; Significance level q = 10%, M = 5000 Monte Carlo trials.

bution for which we are not aware of previous simulations reported in the literature.

Note that in general the choice a = 6 and γ = 2.5 always yields highest power or nearly

so, with the exception of stable distributions with index of stability α < 1, i.e. when the

alternative has heavier tails than the null hypothesis; however the power of this choice is

never trivial compared to other cases.

In Tables 5 and 6 a test for the simple null hypothesis of a multivariate S1.5(δ,Σ) is

considered, with (δ,Σ) fixed and set to their standard values δ = 0 and Σ = I2. Regarding

appropriate values for the user–specified parameters a and γ, analogous remarks to those

made above for the results of Tables 3 and 4 apply. In the absence of previous results in the

literature which could serve as basis for comparison, we can say that the power of the test

for the simple hypothesis is satisfactory.

Tables 7 and 8 report power values of the 5%-significance level test for multivariate

normality against Student–t and mixtures of normal distributions. The results reported are

similar to the previous ones in the sense that the combination a = 6 and γ = 2.5 appears to

be the best choice as it renders the highest power values, or close to that, in nearly all cases.

These results can be compared to those in Tables 6.1 and 6.2 of Henze & Zirkler (1990) and

Table 4 of Székely & Rizzo (2005). As we see, the power values of Tables 7 and 8, for the

case a = 6 and γ = 2.5, are generally similar or higher compared to the values reported in

those papers.

Table 9 reports an excerpt, for a = 6, of the power values of the 5%–significance level
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n → 20 50

γ → 0.5 1 2.5 0.5 1 2.5

p a → 4 6 4 6 4 6 4 6 4 6 4 6

2 t1 10 10 9 9 11 10 9 8 9 9 9 9

t2 28 36 31 39 38 47 52 63 61 70 66 76

t4 54 69 61 75 68 80 91 98 96 99 98 99

t5 62 76 68 81 77 86 96 100 99 100 99 100

t10 73 87 81 90 88 94 99 100 100 100 100 100

4 t1 9 10 11 11 10 11 10 11 9 9 11 10

t2 21 17 27 29 41 37 37 32 51 40 65 55

t4 37 34 61 55 75 72 78 69 93 86 98 95

t5 43 36 66 63 83 79 87 77 97 93 99 99

t10 57 52 81 78 94 90 97 92 100 99 100 100

Table 3: Percentage of rejection of the test for the multivariate Cauchy null hypothesis against

t-alternatives; p = 2, 4, n = 20, 50, a = 4, 6, γ = 0.5, 1, 2.5; q = 10%, M = 3000 (p = 2), M = 1000 (p = 4).

n → 20 50

γ → 0.5 1 2.5 0.5 1 2.5

p a → 4 6 4 6 4 6 4 6 4 6 4 6

2 S0.5 37 21 38 18 44 16 94 91 96 96 97 97

S0.8 8 4 7 3 8 3 18 13 21 16 23 18

S1.2 19 18 20 20 24 25 28 32 33 39 34 41

S1.5 42 46 47 50 54 58 76 83 83 88 88 92

S1.7 63 70 69 73 77 82 95 98 98 99 99 99

4 S0.5 21 14 17 14 13 8 71 43 78 48 77 50

S0.8 7 8 5 8 6 6 14 13 14 9 19 11

S1.2 14 14 20 21 24 23 24 19 29 22 36 29

S1.5 34 30 48 46 61 56 67 52 85 69 92 88

S1.7 51 41 71 66 82 77 92 78 98 91 100 98

Table 4: Percentage of rejection of the test for the multivariate Cauchy null hypothesis against

Stable-alternatives; p = 2, 4, n = 20, 50, a = 4, 6, γ = 0.5, 1, 2.5; q = 10%, M = 3000 (p = 2), M = 1000

(p = 4).
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n → 20 50

γ → 0.5 1 2.5 0.5 1 2.5

p a → 4 6 4 6 4 6 4 6 4 6 4 6

2 t1 31 26 41 31 53 38 63 59 75 70 86 81

t2 15 18 16 17 16 18 19 21 19 21 19 21

t4 11 17 10 17 6 14 14 22 13 22 10 20

t5 11 19 10 18 6 14 16 26 14 26 11 25

t10 12 21 10 20 6 13 25 44 25 47 19 44

4 t1 25 16 33 21 47 30 51 35 70 53 84 68

t2 15 15 18 18 16 17 19 18 24 22 28 26

t4 13 16 12 21 8 21 17 20 15 25 13 29

t5 13 20 12 22 6 23 18 21 17 28 20 44

t10 15 24 15 31 9 30 31 42 38 58 49 75

Table 5: Percentage of rejection of the test for multivariate symmetric stability with α = 1.5 against

t-alternatives; p = 2, 4, n = 20, 50, a = 4, 6, γ = 0.5, 1, 2.5; q = 10%, M = 3000 (p = 2), M = 1000 (p = 4).

n → 20 50

γ → 0.5 1 2.5 0.5 1 2.5

p a → 4 6 4 6 4 6 4 6 4 6 4 6

2 S0.8 55 45 68 54 81 63 93 91 98 96 99 98

S1.2 17 14 22 17 27 19 30 28 36 32 47 39

S1.5 10 11 10 11 9 10 11 10 9 9 10 11

S1.7 10 12 9 11 6 9 12 15 9 16 12 16

S1.9 12 14 11 14 6 11 24 30 14 35 30 39

4 S0.8 48 32 62 43 69 49 89 73 96 87 99 93

S1.2 13 12 19 13 22 17 21 14 31 22 43 30

S1.5 9 9 10 10 10 11 11 10 11 10 12 11

S1.7 10 10 9 11 8 12 13 13 15 15 17 21

S1.9 11 12 12 15 11 17 20 20 31 30 42 53

Table 6: Percentage of rejection of the test for multivariate symmetric stability with α = 1.5 against

Stable-alternatives; p = 2, 4, n = 20, 50, a = 4, 6, γ = 0.5, 1, 2.5; q = 10%, M = 3000 (p = 2), M = 1000

(p = 4).
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n → 20 50

γ → 0.5 1 2.5 0.5 1 2.5

p a → 4 6 4 6 4 6 4 6 4 6 4 6

2 t1 92 94 95 96 97 97 100 100 100 100 100 100

t2 50 54 60 61 72 70 90 88 94 94 98 97

t4 14 17 21 21 34 31 42 33 44 45 69 62

t5 10 12 15 16 25 22 30 20 29 30 54 45

t10 6 6 8 7 11 10 13 7 10 9 20 16

4 t1 94 96 97 98 99 99 100 100 100 100 100 100

t2 52 60 66 69 82 79 94 97 98 98 100 100

t4 14 17 24 24 40 34 39 45 53 55 83 77

t5 10 12 14 14 31 27 25 30 34 38 68 59

t10 5 5 6 6 11 11 10 12 9 10 24 18

Table 7: Percentage of rejection of the test for multivariate normality; against t-alternatives; p = 2, 4,

n = 20, 50, a = 4, 6, γ = 0.5, 1, 2.5; q = 10%, M = 3000 (p = 2), M = 1000 (p = 4).

n → 20 50

γ → 0.5 1 2.5 0.5 1 2.5

p a → 4 6 4 6 4 6 4 6 4 6 4 6

2 NM(.5, 2, 0, 0) 9 8 11 10 9 10 20 18 26 25 25 25

NM(.5, 4, 0, 0) 71 66 75 74 54 65 100 100 100 100 100 100

NM(.5, 0, .9, 0) 9 9 11 11 16 15 20 22 28 28 37 36

NM(.5, .5, .9, 0) 11 11 12 12 17 16 20 23 32 30 40 39

NM(.9, 2, 0, 0) 6 7 7 7 12 12 10 9 16 14 26 23

NM(.9, 4, 0, 0) 36 34 48 44 67 62 76 76 89 87 96 95

4 NM(.5, 2, 0, 0) 7 7 12 10 10 14 31 27 35 29 32 31

NM(.5, 4, 0, 0) 30 22 41 36 33 38 96 92 100 99 96 98

NM(.5, 0, .9, 0) 24 24 32 31 42 39 75 73 87 86 92 89

NM(.5, .5, .9, 0) 22 22 34 30 49 46 81 78 90 87 94 91

NM(.9, 2, 0, 0) 7 7 9 9 18 16 18 16 19 15 41 31

NM(.9, 4, 0, 0) 24 20 36 32 58 48 72 70 85 84 96 94

Table 8: Percentage of rejection of the test for multivariate normality; against NM -alternatives; p = 2, 4,

n = 20, 50, a = 4, 6, γ = 0.5, 1, 2.5; q = 10%, M = 3000 (p = 2), M = 1000 (p = 4).
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γ γ

λ µ 0.5 1.0 2.5 λ µ 0.5 1.0 2.5

0.1 -1.0 68 81 93 1 -1.0 7 10 13

-0.5 69 83 92 -0.5 6 9 11

0.0 73 84 93 0.0 7 8 11

0.5 74 85 94 0.5 6 10 12

1.0 81 85 94 1.0 7 9 13

0.5 -1.0 10 15 22 10 -1.0 5 6 7

-0.5 12 16 24 -0.5 5 6 7

0.0 12 17 26 0.0 4 6 6

0.5 13 19 29 0.5 4 6 6

1.0 14 20 31 1.0 4 7 7

Table 9: Percentage of rejection of the test for bivariate normality against BP (λ, µ) distributions; n = 50,

a = 6, γ = 0.5, 1, 2.5; q = 5% M = 3000.

test for bivariate normality against the generalized Burr-Pareto logistic distribution for some

choices of the parameters λ and µ. Overall simulation results again indicate that the choice

a = 6 and γ = 2.5 obtain the highest power. Table 9 can be compared with Table 4 in

Doornik & Hansen (2008) where we see that the power values of Table 9, for γ = 2.5, are

generally similar or higher compared to all the tests considered there, with the exception of

the Mardia (1970) test which performs quite well for this distribution.

Given that the simulation results reported here indicate a = 6 and γ = 2.5 as a good

choice, nearly uniformly, Table 10 and 11 report the critical values for the corresponding

test ∆n,2.5(6) for p = 1, . . . , 4. The results indicate rapid convergence of the quantiles to

their asymptotic values. The last row of the table indicates the quantiles approximated by a

lognormal distribution obtained by equating expectation and second moment. As the results

show a very good agreement for either tests, we would suggest using the log normal–derived

quantiles for an approximate test. This would considerably simplify the application of the

test in practice.

6 Conclusions

We have presented a class of weighted L2–type statistics with which we are able to address

the problem of testing the composite goodness–of–fit for the family of multivariate symmetric

stable distributions, for the first time in the literature. The test statistics are based solely on

the empirical CF and are affine invariant under proper choice of the weight function and of
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p = 1 p = 2 p = 3 p = 4

n 10% 5% 10% 5% 10% 5% 10% 5%

10 2.291 2.615 2.225 2.548 2.063 2.239 2.231 2.410

30 2.557 3.004 2.105 2.354 1.898 2.039 2.056 2.196

50 2.594 2.996 2.061 2.273 1.837 1.944 2.030 2.164

100 2.593 3.015 2.043 2.245 1.814 1.905 2.014 2.131

LNA 2.577 2.993 2.036 2.190 1.816 1.891 2.027 2.138

Table 10: Critical values for the test for the Cauchy null hypothesis; a = 6, γ = 2.5, M = 5000 (p = 1, 2),

M = 3000, (p = 3, 4).

p = 1 p = 2 p = 3 p = 4

n 10% 5% 10% 5% 10% 5% 10% 5%

10 0.275 0.330 0.513 0.574 0.775 0.831 1.079 1.137

30 0.266 0.342 0.505 0.579 0.750 0.803 1.046 1.111

50 0.264 0.334 0.484 0.555 0.759 0.820 1.041 1.112

100 0.256 0.324 0.493 0.569 0.754 0.821 1.048 1.111

LNA 0.261 0.358 0.498 0.577 0.745 0.811 1.040 1.105

Table 11: Critical values for the test for the normal null hypothesis; a = 6, γ = 2.5, M = 5000 (p = 1, 2),

M = 3000, (p = 3, 4).

the estimators of the unknown distributional parameters. The main theoretical properties of

the test statistics are studied in detail. Among others it was shown that at least for testing

the Cauchy and the normal null hypothesis these statistics are free of parameters even

without affine invariance. Also the computational analysis carried out in conjunction with

the Monte Carlo results reported narrows down the choice of good user–specified parameter

values required in order to achieve a test procedure with high power. There are several

directions for future research. One is to extend the test statistics to non–symmetric stable

distributions and with unspecified tail index and/or asymmetry index. At the same time

it would be interesting to consider the same problem not with simple i.i.d. data but with

structured data possibly involving dependence as in the case of the stable GARCH model of

Bonato (2012).
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7 Appendix

In the proofs of our results, we repeatedly make use of the inequality

(υ1 + υ2 + . . .+ υm)
ℓ ≤ mℓ−1(υℓ1 + υℓ2 + . . .+ υℓm), (7.1)

where the υi’s are non–negative numbers.

The proof of Theorem 3.3 rests on three preliminary lemmas that we state and establish

in the sequel.

Denote by φ̃n the empirical characteristic functions of the X∗
j ’s. For all t ∈ Rp, define

the stochastic process

Rn(ϑ; t) = aφ̃a−1(t)
√
n [φ̃n(t)− φ̃(t)]−

√
n
[
φ̃n(a

1/αt)− φ̃(a1/αt)
]

−t′
√
n
(
δ̂n − δ

)
iΨ(ϑ; t),

where i is the complex number satisfying i2 = −1.

Lemma 7.1. Let ψ : Rp → Rp be a linear transformation. Assume that (3.8) holds. For all

n ≥ 1, define the random variables

Tψn =

∫
Rp

∣∣∣ψ(t)′√n(δ̂n − δ
)
Ψ(ϑ;ψ(t))

∣∣∣2w(t)dt
Uψ
n =

∫
Rp

∣∣√n [φ̃n(ψ(t))− φ̃(ψ(t))]
∣∣2w(t)dt, V ψ

n = (Uψ
n )

1/2

Wψ
n =

∫
Rp

∣∣∣∣∣ψ(t)′ 1√
n

n∑
j=1

Π(ϑ2;X
∗
j + δ)Ψ(ϑ;ψ(t))

∣∣∣∣∣
2

dw(t)

Zψ
n =

∫
Rp

|Rn(ϑ;ψ(t))|2w(t)dt.

Then the sequences (Tψn )n≥1 (Uψ
n )n≥1, (V

ψ
n )n≥1, (W

ψ
n )n≥1 and (Zψ

n )n≥1 are tight.

Proof: Let ψ : Rp → Rp be a linear transformation. Note that for all t ∈ Rp, |ψ(t)| ≤ C|t|
for some positive universal constant C. For the tightness of (Tψn )n≥1, write

Tψn ≤ C
∣∣∣√n(δ̂n − δ

)∣∣∣2 ∫
Rp

|t|2w(t)dt.

Then, by Remark 3.2 and the fact that the integral in the right-hand side of the last inequality

is finite, (Tψn )n≥1 is tight. The tightness of (Wψ
n )n≥1 can be established using the same

arguments.
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We now turn to the tightness of (Uψ
n )n≥1. Denote by z the conjugate of a complex number

z. One can check that

∣∣√n [φ̃n(ψ(t))− φ̃(ψ(t))]
∣∣2 =

1

n

n∑
j=1

∣∣∣e−iψ(t)′X∗
j − φ̃(ψ(t))

∣∣∣2
+
∑∑

j ̸=ℓ

(
e−iψ(t)

′X∗
j − φ̃(ψ(t))

)(
e−iψ(t)

′X∗
ℓ − φ̃(ψ(t))

)
.

Since the expectations of the cross terms are nil one has from above that

E
∣∣√n [φ̃n(ψ(t))− φ̃(ψ(t))]

∣∣2 = 1

n

n∑
j=1

E|e−iψ(t)′X∗
j − φ̃(ψ(t))|2 ≤ 4.

By Tonelli’s theorem,

E(Uψ
n ) =

∫
Rp

E
∣∣√n [φ̃n(ψ(t))− φ(ψ(t))]

∣∣2w(t)dt ≤ 4C.

The application of Markov’s inequality to Uψ
n yields the tightness of (Uψ

n )n≥1. The tightness

of (V ψ
n )n≥1 follows immediately. Indeed, by Jensen’s inequality, one has [E(V ψ

n )]2 ≤ E(Uψ
n ),

from which it can be seen that E(V ψ
n ) ≤

√
E(Uψ

n ) ≤ 2C.

For the tightness of (Zψ
n )n≥1, the triangle inequality and the inequality (7.1) give, for all

n ≥ 1,

Zψ
n ≤ 9a2

∫
Rp

∣∣√n [φ̃n(ψ(t))− φ̃(ψ(t))]
∣∣2w(t)dt

+9

∫
Rp

∣∣√n [φ̃n(a1/αψ(t))− φ̃(a1/αψ(t))
]∣∣2w(t)dt.

+9

∫
Rp

|ψ(t)′
√
n(δ̂n − δ)|2|Ψ(ϑ;ψ(t))|2w(t)dt.

The tightness of (Zψ
n )n≥1 then follows from those of (Tψn )n≥1 and (Uψ

n )n≥1.

Lemma 7.2. Assume that (3.6)-(3.8) hold. Then, under H0,

∆n,w(ϑ1) = |Σ̂1/2
n |

∫
Rp

|Rn(ϑ; t)|2w(Σ̂1/2
n t)dt+ oP (1).

Proof: Note that for all a > 0, α ∈ (0, 2] and t ∈ Rp,

ϕn(t) = e−it
′Σ̂

−1/2
n δ̂nφn(Σ̂

−1/2
n t) and ϕn(a

1/αt) = e−a
1/αit′Σ̂

−1/2
n δ̂nφn(a

1/αΣ̂−1/2
n t).
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From this, for all a > 0, α ∈ (0, 2] and t ∈ Rp, one can write

ϕan(t)− ϕn(a
1/αt) = e−ait

′Σ̂
−1/2
n δ̂nφan(Σ̂

−1/2
n t)− e−a

1/αit′Σ̂
−1/2
n δ̂nφn(a

1/αΣ̂−1/2
n t).

By the change of variable τ = Σ̂
−1/2
n t, one has for all ϑ1 = (a, α) ∈ (0,∞)× (0, 2],

∆n,w(ϑ1) =

∫
Rp

|Qn(ϑ1; τ)|2w(Σ̂1/2
n τ)|Σ̂1/2

n |dτ,

where for all t ∈ Rp,

Qn(ϑ1; t) =
√
n
[
e−ait

′δ̂nφan(t)− e−a
1/αit′δ̂nφn(a

1/αt)
]
.

Adding and subtracting appropriate terms, for all ϑ1 = (a, α) ∈ (0,∞) × (0, 2] and for all

t ∈ Rp, one can write

Qn(ϑ1; t) =
√
n
{
e−ait

′δ̂n [φan(t)− φa(t)]− e−a
1/αit′δ̂n

[
φn(a

1/αt)− φ(a1/αt)
]

+
[
e−ait

′δ̂nφa(t)− e−a
1/αit′δ̂nφ(a1/αt)

]}
.

Under H0, by first-order Taylor expansions of the complex-valued functions z 7→ za and

x 7→ eix, one can see that there exist a complex-valued function φ0,n(t) and a p-dimensional

random vector δ̃n such that for all t ∈ Rp, |φ0,n(t)−φ(t)| ≤ |φn(t)−φ(t)|, |δ̃n− δ| ≤ |δ̂n− δ|
and

Qn(ϑ1; t) = Rn(ϑ; t) + εn(ϑ; t), (7.2)

where for all ϑ ∈ (0,∞)× (0, 2]× Rp ×Mp, εn(ϑ; ·) is the complex-valued function defined

for all t ∈ Rp by

εn(ϑ; t) = a(φa−1
0,n (t)− φa−1(t))e−ait

′δ̂n
√
n [φn(t)− φ(t)]

+aφa−1(t)
(
e−ait

′δ̂n − e−ait
′δ
)√

n [φn(t)− φ(t)]

+
(
e−a

1/αit′δ̂n − e−a
1/αit′δ

)√
n
[
φn(a

1/αt)− φ(a1/αt)
]

−t′
√
n
(
δ̂n − δ

)
i
[
a
(
e−iat

′δ̃n − e−iat
′δ
)
φa(t)− a1/α

(
e−ia

1/αt′δ̃n − e−ia
1/αt′δ

)
φ(a1/αt)

]
.

Now, one has easily that∫
Rp

|Qn(ϑ1; t)|2w(Σ̂1/2
n t)|Σ̂1/2

n |dt

=

∫
Rp

|Rn(ϑ; t)|2w(Σ̂1/2
n t)|Σ̂1/2

n |dt+
∫
Rp

|εn(ϑ; t)|2w(Σ̂1/2
n t)|Σ̂1/2

n |dt

+

∫
Rp

εn(ϑ; t)Rn(ϑ; t)w(Σ̂
1/2
n t)|Σ̂1/2

n |dt+
∫
Rp

Rn(ϑ; t)εn(ϑ; t)w(Σ̂
1/2
n t)|Σ̂1/2

n |dt

=

∫
Rp

|Rn(ϑ; t)|2w(Σ̂1/2
n t)|Σ̂1/2

n |dt+ϖ1,n +ϖ2,n +ϖ3,n.
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One then has to show that ϖi,n, i = 1, 2, 3, vanish in probability as n grows. For the first

term, using (7.1), one can write

ϖ1,n ≤ 16a2
∫
Rp

|φa−1
0,n (t)− φa−1(t)|2

√
n [φn(t)− φ(t)] |2w(Σ̂1/2

n t)|Σ̂1/2
n |dt

+16a2
∫
Rp

∣∣∣e−ait′δ̂n − e−ait
′δ
∣∣∣2 ∣∣√n [φn(t)− φ(t)]

∣∣2w(Σ̂1/2
n t)|Σ̂1/2

n |dt

+16

∫
Rp

∣∣∣e−a1/αit′δ̂n − e−a
1/αit′δ

∣∣∣2 ∣∣√n [φn(a1/αt)− φ(a1/αt)
]∣∣2w(Σ̂1/2

n t)|Σ̂1/2
n |dt

+16

∫
Rp

[
t′
√
n
(
δ̂n − δ

)]2

×
∣∣∣a(e−iat′δ̃n − e−iat

′δ
)
φa(t)− a1/α

(
e−ia

1/αt′δ̃n − e−ia
1/αt′δ

)
φ(a1/αt)

∣∣∣2
×w(Σ̂1/2

n t)|Σ̂1/2
n |dt

= ϖ1,1,n +ϖ1,2,n +ϖ1,3,n +ϖ1,4,n.

Let (Tn) be a sequence of real numbers tending to infinity such that the sequence

(log(Tn)/n) tends to 0. Write :

ϖ1,1,n = C

∫
|t|≤Tn

|φa−1
n (t)− φa−1(t)|2

∣∣∣√n [φn(Σ̂−1/2
n t)− φ(Σ̂−1/2

n t)
]∣∣∣2w(t)dt

+C

∫
|t|>Tn

|φa−1
n (t)− φa−1(t)|2

∣∣∣√n [φn(Σ̂−1/2
n t)− φ(Σ̂−1/2

n t)
]∣∣∣2w(t)dt

= ϖ
(1)
1,1,n +ϖ

(2)
1,1,n.

Since the function t 7→ |φa−1
n (t) − φa−1(t)| is bounded on Rp, by the change of variable

τ = Σ̂
1/2
n t, one can write the following inequality

ϖ
(1)
1,1,n ≤ C sup

|t|≤Tn
|φa−1
n (t)− φa−1(t)|2

∫
t∈Rp

∣∣∣√n [φn(Σ̂−1/2
n t)− φ(Σ̂−1/2

n t)
]∣∣∣2w(t)dt.

Observing that, by Lemma 7.1 the random integral in the right-hand side of the last in-

equality is tight and recalling from Theorem 3.2.1 of Ushakov (1999) that sup|t|≤Tn |φa−1
n (t)−

φa−1(t)|2 goes almost surely to 0 as n tends to infinity, one can conclude that ϖ
(1)
1,1,n tends

in probability to 0. To handle the convergence in probability to 0 of ϖ
(2)
1,1,n, recalling that

t 7→ |φa−1
n (t)− φa−1(t)| is bounded on Rp, one can write

ϖ
(2)
1,1,n ≤ C

∫
|t|>Tn

∣∣∣√n [φn(Σ̂−1/2
n t)− φ(Σ̂−1/2

n t)
]∣∣∣2w(t)dt.
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Then, using Tonelli’s theorem as in the proof of Lemma 7.1, one has that

E

(∫
|t|>Tn

∣∣∣√n [φn(Σ̂−1/2
n t)− φ(Σ̂−1/2

n t)
]∣∣∣2w(t)dt) ≤ 4

∫
Rp

I|t|>Tnw(t)dt,

where IΞ stands for the indicator function on a set Ξ ⊂ Rp. Now, since I|t|>Tnw(t) → 0 as

n tends to infinity, since I|t|>Tnw(t) ≤ w(t) and
∫
Rp w(t)dt < ∞, it follows from Lebesgue

convergence theorem that the right-hand side of the last inequality tends to 0 as n tends to

infinity. It is clear from this that E(ϖ
(2)
1,1,n) tends to 0 as n tends to infinity. An application

of Markov’s inequality shows that ϖ
(2)
1,1,n tends in probability to 0, as n tends to infinity.

For the convergence of ϖ1,2,n, observe that the function t 7→ |e−ait′δ̂n − e−ait
′δ|2 =

[cos(at′δ̂n)− cos(at′δ)]2 + [sin(at′δ̂n)− sin(at′δ)]2 is bounded on Rp. Hence,

ϖ1,2,n ≤ C sup
t∈Rp

∣∣∣e−ait′δ̂n − e−ait
′δ
∣∣∣2 ∫

Rp

∣∣√n [φn(t)− φ(t)]
∣∣2w(Σ̂1/2

n t)|Σ̂1/2
n |dt.

By a change of variable, it is easy to see from Lemma 7.1 that the above random integral is

tight. Since supt∈Rp |e−ait′δ̂n −e−ait′δ|2 tends in probability to 0 as n tends to infinity, one can

conclude, as for ϖ1,1,n, that ϖ1,2,n tends in probability to 0. The convergence in probability

of ϖ1,3,n to zero can be handled in the same way. For the last term, using (7.1), write

ϖ1,4,n ≤ C
∣∣∣√n(δ̂n − δ

)∣∣∣2 [a2 ∫
Rp

∣∣∣e−iat′δ̃n − e−iat
′δ
∣∣∣2 |t|2w(Σ̂1/2

n t)|Σ̂1/2
n |dt

+a2/α
∫
Rp

∣∣∣e−ia1/αt′δ̃n − e−ia
1/αt′δ

∣∣∣2 |t|2w(Σ̂1/2
n t)|Σ̂1/2

n |dt
]
. (7.3)

Making once again the change of variable τ = Σ̂
1/2
n t, the first integral in the right-hand side

of (7.3) can be bounded by

|Σ̂−1/2
n |2

∫
Rp

∣∣∣e−iat′Σ−1/2
n δ̃n − e−iat

′Σ
−1/2
n δ

∣∣∣2 |t|2w(t)dt.
Since δ̃n and Σ

−1/2
n δ̃n tends in probability to δ and Σ−1/2δ respectively, the term |e−iat′Σ

−1/2
n δ̃−

e−iat
′Σ

−1/2
n δ|2, which is bounded by 4, tends in probability to 0. It is now easy to see by the

Lebesgue convergence theorem, that the first integral in (7.3) tends in probability to 0. The

convergence in probability to 0 of the second integral in (7.3) can be proved in the same way.

By Remark 3.2,
√
n
(
δ̂n − δ

)
tends in distribution to a mean-zero p-dimensional Gaussian

random vector. Whence, ϖ1,4,n tends in probability to 0 and so does ϖ1,n.

To handle the convergence in probability of ϖ2,n and ϖ3,n, write, by the Cauchy–Schwarz

inequality

ϖ2,n ≤ Cϖ
1/2
1,n

(∫
Rp

∣∣√n [φn(t)− φ(t)]
∣∣2w(Σ̂1/2

n t)|Σ̂1/2
n |dt

)1/2

.
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By Lemma 7.1, the second term in the right-hand side of the above inequality is tight. As

ϖ1,n tends in probability to 0, so do ϖ2,n and ϖ3,n = ϖ2,n.

Lemma 7.3. Assume that (3.6)-(3.8) hold. Then, under H0, for all ϑ1 = (a, α) ∈ (0,∞)×
(0, 2],

∆n,w(ϑ1) = |Σ1/2|
∫
Rp

|Rn(ϑ; t)|2w(Σ1/2t)dt+ oP (1).

Proof: Adding and subtracting appropriate terms, one obtains

|Σ̂1/2
n |

∫
Rp

|Rn(ϑ; t)|2w(Σ̂1/2
n t)dt

= |Σ1/2|
∫
Rp

|Rn(ϑ; t)|2w(Σ1/2t)dt+
(
|Σ̂1/2

n | − |Σ1/2|
)∫

Rp

|Rn(ϑ; t)|2w(Σ̂1/2
n t)dt

+
(
|Σ̂1/2

n | − |Σ1/2|
)∫

Rp

|Rn(ϑ; t)|2
[
w(Σ̂1/2

n t)− w(Σ1/2t)
]
dt

= |Σ1/2|
∫
Rp

|Rn(ϑ; t)|2w(Σ1/2t)dt+ θ1,n + θ2,n.

One has to show that θ1,n and θ2,n are oP (1)’s. For the first, one can write the following

inequality

|θ1,n| ≤ C
∣∣∣|Σ̂1/2

n | − |Σ1/2|
∣∣∣ ∫

Rp

|Rn(ϑ; t)|2w(Σ̂1/2
n t)dt.

Hence θ1,n tends in probability to 0, as the random integral is tight (apply Lemma 7.1) and

||Σ̂1/2
n | − |Σ1/2|| tends in probability to 0.

To prove the convergence of θ2,n, by the triangle inequality and suitable changes of

variable, one has :

|θ2,n| ≤ C
∣∣∣|Σ̂1/2

n | − |Σ1/2|
∣∣∣

×
{
|Σ̂−1/2

n |
∫
Rp

∣∣∣Rn(ϑ; Σ̂
−1/2
n t)

∣∣∣2w(t)dt+ |Σ−1/2|
∫
Rp

∣∣Rn(ϑ; Σ
−1/2t)

∣∣2w(t)dt}.
By lemma 7.1, the random integrals in the brackets are tight. Since Σ̂n is consistent to Σ,

|Σ̂1/2
n | − |Σ1/2| tends in probability to 0 and so does θ2,n.

Proof of Theorem 3.3: By Lemmas 7.2 and 7.3, it suffices to prove that∫
Rp

|Rn(ϑ; t)|2w(Σ1/2t)dt =

∫
Rp

|Sn(ϑ; t)|2w(Σ1/2t)dt+ oP (1).
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For this, we first show that, for all ϑ = (a, α) ∈ (0,∞)× (0, 2]× Rp ×Mp,∫
Rp

|Rn(ϑ; t)|2w(Σ1/2t)dt =

∫
Rp

|R̃n(ϑ; t)|2w(Σ1/2t)dt+ oP (1),

with

R̃n(ϑ; t) = aφ̃a−1(t)
√
n [φ̃n(t)− φ̃(t)]−

√
n
[
φ̃n(a

1/αt)− φ̃(a1/αt)
]

−it′ 1√
n

n∑
j=1

Π(ϑ2;X
∗
j + δ)Ψ(ϑ; t), t ∈ Rp.

Recall that φ̃n and φ̃ are respectively the empirical and the characteristic functions of

the X∗
j ’s. Clearly, using (3.6) one has easily, for all t ∈ Rp,

Rn(ϑ; t) = aφ̃a−1(t)
√
n [φ̃n(t)− φ̃(t)]−

√
n
[
φ̃n(a

1/αt)− φ̃(a1/αt)
]

−it′ 1√
n

n∑
j=1

Π(ϑ2;X
∗
j + δ)Ψ(ϑ; t)− it′rnΨ(ϑ; t).

Now, using this expression and integrating |Rn(ϑ; t)|2 with respect to w(Σ1/2t)dt yields∫
Rp

|Rn(ϑ; t)|2w(Σ1/2t)dt

=

∫
Rp

|R̃n(ϑ; t)|2w(Σ1/2t)dt− i

∫
Rp

t′rnR̃n(ϑ; t)Ψ(ϑ; t)w(Σ1/2t)dt

+ i

∫
Rp

t′rnR̃n(ϑ; t)Ψ(ϑ; t)w(Σ1/2t)dt+

∫
Rp

(t′rn)
2|Ψ(ϑ; t)|2w(Σ1/2t)dt. (7.4)

We have to show that the second, third and fourth terms in the right-hand side of (7.4) are

all asymptotically negligible. To handle the last one, observe that∫
Rp

(t′rn)
2|Ψ(ϑ1; t)|2w(Σ1/2t)dt ≤ C|rn|2

∫
Rp

|t|2w(t)dt.

Since rn tends in probability to 0 and the integral in the right-hand side of the above

inequality is finite, the last term in the right-hand side of (7.4) tends in probability to 0. The

change of variable τ = Σ1/2t in the second and third terms and the fact that |Ψ(ϑ; t)|2 ≤ C

allow to see, after applying the Cauchy–Schwarz inequality to each of them, that they can

be bounded by

C

(∫
Rp

|R̃n(ϑ; Σ
−1/2t)|2w(t)dt

)1/2(
|rn|2

∫
Rp

|t|2w(t)dt
)1/2

,
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which tends in probability to 0, since the first factor is tight by Lemma 7.1 and the second

tends in probability to 0.

Note that as the X∗
j ’s are symmetric around 0, φ̃ is a real-valued function. In the present

setting, it has the form

φ̃(t) = e−(t′Σt)α/2

, t ∈ Rp. (7.5)

It is easy to check that expanding |R̃n(ϑ; t)|2 and integrating with respect to w(Σ1/2t)dt, the

use of the assumption (3.9) and the equality (7.5) yields :∫
Rp

|R̃n(ϑ; t)|2w(Σ1/2t)dt =

n−1
{∫

Rp

a2φ̃2(a−1)(t)

[∑
j,k

cos[t′(X∗
j −X∗

k)]− 2nφ̃(t)
∑
j

cos(t′X∗
j ) + n2φ̃2(t)

]

−aφ̃a−1(t)

[
2
∑
j,k

cos[t′(X∗
j − a1/αX∗

k)]− 2nφ̃(t)
∑
j

cos(a1/αt′X∗
j )

]
−2nφ̃(a1/αt)

∑
j

cos(t′X∗
j ) + 2n2φ̃(t)φ̃(a1/αt)

+
∑
j,k

cos[a1/αt′(X∗
j −X∗

k)]− 2nφ̃(a1/αt)
∑
j

cos(a1/αt′X∗
j ) + n2φ̃2(a1/αt)

−2aφ̃a−1(t)
∑
j,k

sin(t′X∗
j )t

′Π(ϑ2;X
∗
k + δ)Ψ(ϑ; t)

−2
∑
j,k

sin(a1/αt′X∗
j )t

′Π(ϑ2;X
∗
k + δ; δ)Ψ(ϑ; t)

+
∑
j,k

t′Π(ϑ2;X
∗
j + δ)t′Π(ϑ2;X

∗
k + δ)|Ψ(ϑ; t)|2

}
w(Σ1/2t)dt. (7.6)

Now, expanding S2
n(ϑ; t) (see the equation below (3.10)) and using cos(c−d) = cos(c) cos(d)+

sin(c) sin(d), even and odd functions appear in the resulting expression. Integrating this

expression with respect to w(Σ1/2t)dt under the condition (3.9), integrals with odd integrand

vanish and one obtains the right-hand side of (7.6). This ends the proof of Theorem 3.3.

Proof of Theorem 3.4: As in Gürtler & Henze (2000) or Matsui & Takemura (2008), we first

work in C(Θ → R), the space of real-valued continuous function defined on a compact subset
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Θ of Rp endowed with the supremum norm ||u||∞ = supt∈Θ |u(t)|. For all (x, t) ∈ Rp × Θ,

define the real-valued function

k(x; t) = aφ̃a−1(t) [cos(t′x) + sin(t′x)]−
[
cos(a1/αt′x) + sin(a1/αt′x)

]
− t′Π(ϑ2;x+ δ)Ψ(ϑ; t).

Recall that F̃ is the cumulative distribution function of X∗
j = Xj − δ, j = 1, 2, ..., n. It can

be checked easily that the function (s, t) 7→ k(s, t) satifies the requirements of Csörgö (1983):

• the function x 7→ k(x; t) is Borel measurable on Rp for any t ∈ Θ;

• the function t 7→ k(x; t) is continuous on Θ for almost all x with respect to dF̃ ;

• the transformation t 7→
∫
Rp k(x; t)dF̃ (x) = aφ̃a(t) − φ̃(a1/αt) is a continuous function

on the compact set Θ.

Denote by F̃n(x), the empirical distribution function of the X∗
j ’s. It is a trivial matter that

Sn(ϑ; t) has the representation

Sn(ϑ; t) =

∫
Rp

k(x; t)d
{√

n
[
F̃n(x)− F̃ (x)

]}
. (7.7)

Hence, Sn(ϑ; ·) can be seen as a random element of C(Θ → R). The study of its weak

convergence can be obtained using the results of Csörgö (1983) after checking conditions (i)∗

and (ii)∗ in that paper. The condition (i)∗ immediately holds. Indeed, for every ϵ > 0, by

(7.1), the moment assumption (3.7) and the continuity of the function t 7→ tΨ(ϑ; t) on the

compact set Θ ⊂ Rp, one has that∫
Rp

sup
t∈Θ

|k(x; t)|2+ϵdF̃ (x) <∞.

For checking the second condition (ii)∗, adding and subtracting appropriate terms, one has,

for all s, t ∈ Θ,

k(x; s)− k(x, t) = a
[
φ̃a−1(s)− φ̃a−1(t)

]
[cos(t′x) + sin(t′x)] (7.8)

+aφ̃a−1(s) {[cos(t′x)− cos(s′x)] + [sin(t′x)− sin(s′x)]}
−
{[

cos(a1/αt′x)− cos(a1/αs′x)
]
+
[
sin(a1/αt′x)− sin(a1/αs′x)

]}
−{s′Π(ϑ2;x+ δ))Ψ(ϑ; s)− t′Π(ϑ2;x+ δ)Ψ(ϑ; t)} .

By a first-order Taylor expansion of the complex-valued function z 7→ za−1, and by the

fact that φ̃ is the characteristic function of a random vector symmetric around 0, for some

positive constant C1, the first term in (7.8) can be bounded by

2a(a− 1) |E[cos(t′X∗
1 )− cos(s′X∗

1 )]| ≤ C1|t− s|γ/2, s, t ∈ Θ.
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Proceeding as above, one has, for some positive constant of the same nature as C1 :

|Ψ(ϑ; s)−Ψ(ϑ; t)| ≤ C1

[
|φ̃(t)− φ̃(s)|+ |φ̃(a1/αt)− φ̃(a1/αs)|

]
≤ C1|t− s|γ/2.

Using the last inequality, it is easy to see that for some positive constants C2 and C3, the

last term in (7.8) can be bounded by

C|t− s|γ/2
(
C2|t− s|1−γ/2 + C3

)
|Π(ϑ; x+ δ)|.

Finally, it is easy to see that for some positive constant C4, each of the remaining terms in

(7.8) can be bounded by C4|t− s|γ/2|x|γ/2, so that

|k(x; s)− k(x, t)| ≤ C|t− s|γ/2M(x, v(s, t)), (7.9)

where for all (s, t) ∈ Θ2, v(s, t) = s− t and for all (x, t) ∈ Rp×Θ, M(x, t) = C1+C4|x|γ/2+
(C2|t|1−γ/2 + C3)|Π(ϑ; x+ δ)| trivially satisfies∫

Rp

sup
t∈Θ

M2(x, t)dF̃ (x) <∞.

Hence, Sn(ϑ; ·) satisfies the required conditions of Csörgö (1983). Thus, it converges weakly

to a zero-mean Gaussian process S(ϑ; ·) with covariance kernel as stated in Theorem 3.3.

Since the compact set Θ is arbitrary, this weak convergence also holds in the Fréchet space

C(Rp → R) endowed with the metric ρ defined earlier. As indicated in Gürtler & Henze

(2000), this extension can be seen by adapting the reasoning of Karatzas & Shreve (1988),

p.62. This concludes the proof of the result.

Proof of Theorem 3.9: We first study the convergence of Sn(ϑ, ·) under Hn
1 , as a random

element of C(Θ → R), for an arbitrary compact set Θ ⊂ Rp. For this, we study its finite-

dimensional distributions and its tightness under Hn
1 .

It easy to check that under H0, for Λn given by (3.14),

lim
n→∞

Cov(Sn(ϑ; t),Λn) =

∫
Rp

k(x, t)f(x+ δ)h(x+ δ)dx = c(ϑ; t), t ∈ Rp

and that for all k ∈ N and for t1, . . . , tk ∈ Rp, the joint limiting distribution of the (k + 1)-

dimensional random vector(Sn(ϑ; t1), . . . , Sn(ϑ; tk),Λn)
′ is Gaussian with mean (0, . . . , 0,−σ2/2)′

and covariance matrix

(
Φ ϱ

ϱ′ σ2

)
where Φ = (Γ(ϑ; tℓ, tm) : 1 ≤ ℓ,m ≤ k) and ϱ =

(c(ϑ; t1), . . . , c(ϑ; tk))
′, with Γ(ϑ; ·) given by (3.11) and c(ϑ; ·) given by (3.15). Whence,

by Le Cam’s third lemma, under Hn
1 , the finite–dimensional distributions of Sn(ϑ; ·) con-

verge to those of S̃(ϑ; ·). Since Sn(ϑ; ·) converges weakly under H0, it is tight under H0.

35



Thus, by contiguity, it is also tight under Hn
1 . Hence, under Hn

1 , Sn(ϑ; ·) converges weakly to

S̃(ϑ; ·). Its weak convergence in the Fréchet space C(Rp → R) can be obtained as indicated

in the proof of Theorem 3.4.
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J. Jurečková, P. K. Sen, Asymptotic representations and interrelations of robust estimators

and their applications. In: Maddala and Rao (eds.) Handbook of Statistics, Vol. 15 (1997).

467–512. North Holland.

I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, Springer (1988).

L. LeCam, Locally asymptotically normal families of distributions. In: University of Cali-

fornia Publications in Statistics, Vol. 3, (1960) 37–98.

L. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer-Verlag (1986).
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