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“Prediction is very difficult, especially if it’s about the future.”

— Nils Bohr, Nobel laureate in Physics

“Science is essentially an anarchic enterprise: theoretical anarchism is more humanitarian and

more likely to encourage progress than its law-and-order alternatives.”

— Paul Karl Feyerabend, Against Method

“This turkey found that, on his first morning at the turkey farm, he was fed at 9 a.m.

However, being a good inductivist, he did not jump to conclusions. He waited until he had

collected a large number of observations of the fact that he was fed at 9 a.m., and he made

these observations under a wide variety of circumstances, on Wednesdays and Thursdays, on

warm days and cold days, on rainy days and dry days. Each day, he added another observation

statement to his list. Finally, his inductivist conscience was satisfied and he carried out an

inductive inference to conclude, “I am always fed at 9 a.m.”. Alas, this conclusion was shown to

be false in no uncertain manner when, on Christmas eve, instead of being fed, he had his throat

cut. An inductive inference with true premises has led to a false conclusion.”

— Bertrand Russell, The Problems of Philosophy





Abstract

This thesis contributes to the development of distributed networks proposing:

• a technique to enhance the reliability of DV routing protocols;

• a critical analysis of the integration of blockchains in distributed networks.

First, a novel algorithm for the distributed computation of the Load Centrality (LC), a

graph centrality metric, is proposed and then applied for steering the optimization of the

route recovery process of Distance-Vector (DV) routing protocols: this way the algorithm

contributes to the enhancement of the network reliability. The algorithm convergence

is proved also identifying time complexity bounds that are later confirmed by computer

simulations. The proposed algorithm is designed as an extension to the Bellman-Ford one and

can thus be integrated with any DV routing protocol. An implementation of the algorithm in

Babel, a real world DV protocol, is provided in support of this claim. Then an application

of the algorithm is presented: the LC is used to find an optimal tuning for the generation

frequency of the Babel control messages. This tuning technique effectively reduces the impact

of losses consequent to random node failures in the emulations of several real world wireless

mesh networks, without increasing the control overhead.

A second version of the algorithm is designed to be incrementally deployable. This version

can be deployed gradually in production networks also by uncoordinated administrators.

When only a fraction of nodes is upgraded so to participate in the protocol, these upgraded

nodes estimate their LC indexes approximating the theoretical ones. The approximation

error is studied analytically and it is also shown that, even for low penetration ratios of

upgraded nodes in the network, the algorithm accurately ranks nodes according to their

theoretical centrality.

The second contribution of the thesis is the critical discussion of the integration of

blockchain technologies in distributed networks. An initial analysis of the literature con-

cerning blockchain based applications reveals an ambiguity around the term “blockchain”

itself. The term is used, apparently, to identify a number of similar but different technologies

proposed to empower a surprisingly broad range of applications. This thesis prompts there-
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iv Abstract

fore the need of formulating a restrictive definition for the term blockchain, necessary for

clarifying the role of the same blockchain in distributed networks.

The proposed definition is grounded in the critical analysis of the blockchain from

a distributed systems perspective: Blockchains are only those platforms that implement

an open, verifiable and immutable Shared Ledger, independent of any trusted authority.

Observing that the blockchain security grows with the amount of resources consumed to

generate blocks, this thesis concludes that a secure blockchain is necessarily resource hungry,

therefore, its integration in the constrained domain of distributed networks is not advised.

The thesis draws recommendations for a use of the blockchain not in contrast with the

definition. For example, it warns about applications that require data to be kept confidential

or users to be registered, because the blockchain naturally supports the openness and

transparency of data together with the anonymity of users.

Finally a feasible role for the blockchain in the Internet of Things (IoT) is outlined: while

most of the IoT transactions will be local and Off-Chain, a blockchain can still act as an

external and decentralized platform supporting global transactions, offering an alternative

to traditional banking services.

The enhanced reliability of DV routing protocols encourages a wider adoption of dis-

tributed networks, moreover, the distributed algorithm for the computation of centrality

enables applications previously restricted to centralized networks also in distributed ones.

The discussion about the blockchain increases instead the awareness about the limits and

the scope of this technology, inspiring engineers and practitioners in the development of

more secure applications for distributed networks. This discussion highlights, for instance,

the important role of the networking protocols and communication infrastructure on the

blockchain security, pointing out that large delays in the dissemination of blocks of transac-

tions make the blockchain more vulnerable to attacks. Furthermore, it is observed that a

high ability to take control over the communications in the network favors eclipse attacks

and makes more profitable the so called selfish mining strategy, which is detrimental to the

decentralization and the security of blockchains.

The two main contributions of this thesis blended together inspire the exploitation of

centrality to optimize gossip protocols, minimizing block propagation delays and thus the

exposure of the blockchain to attacks. Furthermore, the notion of centrality may be used by

the community of miners to measure the nodes influence over the communication of blocks,

so it might be used as a security index to warn against selfish mining and eclipse attack.



Acknowledgments

I would like to thank first my supervisors, prof. Renato Lo Cigno and prof. Leonardo Maccari,

for their invaluable advice, continuous support and patience during my PhD study. Since

this is a PhD thesis in computer science I hope this funny comparison could lead to a smile:

Renato and Leonardo have been for me like the very best servers, I just had to knock on

their port to find them always available and ready to listen to me. With Renato I always had

a special relationship, characterized by his great equilibrium and contagious curiosity that

always inspired and motivated me so much to literally make me run faster! Leonardo always

inspired me as well especially with his noble attention towards making research for the good

of people, an attention daily witnessed by his funny Community Network T-shirts. Thank you

grandi capi for our passionate discussions which made me appreciate your good heart and

immense wisdom in guiding me, making these years spent working together so special.

I would like to express my gratitude also to Michele Segata and Luca Baldesi, my older

brothers in our beloved Advanced Networking Systems Group, to whom I could always ask

help being sure to receive back a good advice and an encouragement.

I would like to add another special thanks to prof. Alberto Montresor, Christian Consonni

and Alessio Guerrieri. Preparing lab exercises and fabulous assignments on Algorithms and

Data Structures with you became surprisingly funny for the joy of hundreds of students!

Thank you all for the constant help and assistance you gave me while I was moving my first

steps as teaching assistant.

I will never forget the exciting research period spent abroad in Boston, so I am deeply

grateful to prof. Stefano Basagni for having been the best tutor and host I could ever wish to

have. Writing our paper about the blockchain mixing ancient Latin with medieval paintings

has been a pleasure shared also with Francesco Restuccia, Salvatore D’Oro and prof. Tommaso

Melodia, thank you all for your precious support.

I would like to thank all PhD school mates and colleagues in both the University of Trento

and the Northeastern University for having shared with me the hard and the good times of

the daily academic life.

My final heartfelt thanks goes to Takhmina, my family and friends for their encouragement

and support all through my studies.

v





Contents

Abstract iii

1 Introduction 1

1.1 From Centralized to Distributed Networks . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Network Reliability: Failure Recovery Optimization . . . . . . . . . . . . . . . . 5

1.3 Network Security: Blockchain to secure Distributed Networks . . . . . . . . . . 8

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Distributed Routing Protocols and Centrality 13

2.1 Distance-Vector Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Path-Vector Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The Signalling/Performance Trade Off . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 The Pop-Routing Tuning Technique . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Graph Centrality Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Centrality in Networks: Related Works . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Distributed Algorithms for Centrality . . . . . . . . . . . . . . . . . . . . 27

3 Distributed Algorithm for Load Centrality and Application to DV Routing 29

3.1 Distributed Algorithm for the Computation of the Load Centrality . . . . . . . 30

3.1.1 Algorithm Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Conceptual Illustration of Algorithm 1 . . . . . . . . . . . . . . . . . . . . 32

3.2 Incrementally Deployable Algorithm for DV routers . . . . . . . . . . . . . . . . 34

3.2.1 Legacy Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Upgraded Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Conceptual Illustration of Algorithm 3 . . . . . . . . . . . . . . . . . . . . 39

3.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Convergence Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Accuracy Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Application of the LC algorithm to DV protocols . . . . . . . . . . . . . . . . . . 57

vii



viii Contents

3.4.1 Porting Pop-Routing to DV protocols . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Implementation of the Algortihm for LC in a real DV protocol . . . . . 58

3.4.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Blockchain in Distributed Networks 67

4.1 The Blockchain: a Distributed Ledger Technology . . . . . . . . . . . . . . . . . 68

4.1.1 History of Transactions and Double Spending . . . . . . . . . . . . . . . 71

4.1.2 The Blockchain Data Structure . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.3 Proof of Work (PoW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.4 Block Generation Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Security and Limits of the PoW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Nakamoto Model of Double-Spending . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Role of Confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.3 Selfish Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.4 Role of the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.5 Power consumption of the PoW . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Distributed Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Limiting Theorems for Consensus . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.2 Blockchain Trilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Brief Review of Consensus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Voting Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.2 Lottery Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.3 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Algorand: “The Trilemma Solver” . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Main Peculiarities of Algorand . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.2 Main Observations and Comments . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Blockchain in Networking: Related Works . . . . . . . . . . . . . . . . . . . . . . 110

5 Clarifying the Role of the Blockchain for Distributed Networks 115

5.1 Blockchain VS. Traditional Technologies . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 A Connotative Blockchain Definition . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Comparison with other definitions . . . . . . . . . . . . . . . . . . . . . . 122

5.2.2 Permissioned Blockchains or Permissioned Ledgers? . . . . . . . . . . . 122

5.2.3 Proof of Work or Proof of Stake? . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Critique to the Abuses of the Blockchain: List of Common Pitfalls . . . . . . . 127

5.4 Blockchain in Support of the IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.1 Networks of Transaction Channels . . . . . . . . . . . . . . . . . . . . . . 138

5.4.2 Role of the Blockchain in the IoT . . . . . . . . . . . . . . . . . . . . . . . 138



Contents ix

6 Conclusion 141

6.1 Centrality based Optimization of Routing Protocols . . . . . . . . . . . . . . . . 141

6.1.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Blockchain for Securing Distributed Networks . . . . . . . . . . . . . . . . . . . 143

6.2.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

List of Abbreviations 147

Bibliography 153





Chapter 1

Introduction

A reliable and performing network infrastructure is considered today not only a need but a

civil right, as it is crucial for fundamental activities such as reading news, smart working,

purchasing or selling goods, and also for learning online. The network infrastructure is thus

strategic for the advancement of society as it empowers our democracies, education plans

and economies. Especially in these recent times unfortunately populated by pandemics,

fake-news and by the scandals from the big players of Internet, we learned the importance

of computer networks: we want them to be more reliable, to support all our daily businesses,

and more secure to protect our identities and our data across the web. But the challenges

to make our networking infrastructures more reliable and secure are many. The today

dominating networking paradigm based on private, for-profit Internet Service Providers

(ISPs), which is almost the only option for billions of users to access the Internet, hides in

fact several threats.

An ISP is a company that offers to residential and business users services related to

the Internet, the main ones being access to the World Wide Web and e-mail. The users

fees, together with the public funding provided by national agencies for the development

of broadband connectivity, constitute the principal revenues for the ISPs, while the major

costs comes from the CAPEX and OPEX1 necessary to install and maintain the networking

infrastructure. The just depicted networking paradigm, with users that pay their ISPs and

completely rely on them to access the network, exposes citizens to a number of risks:

• Privacy: All the data of a user are transmitted through the network of its ISP. This ISP can

identify the information flows belonging to the user, track its behaviors, inspect and even

resell the user data.

1 CAPEX: “Capital expenditures”, comprise major purchases that will be used in the future.
OPEX: “Operating expenditures”, represent day-to-day costs that are necessary to keep a business running.
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2 1 Introduction

• Neutrality: The ISP can restrict the access of the user to portions of the Internet (DNS

blocking2), redirect users only to commercial partners while boycotting others, and can

even censor users contents, such as private messages or commercial advertisements.

• Digital Divide: ISPs are for-profit companies, thus they focus their investments on the

networking infrastructure in those areas with an higher expected return of investments.

These are densely populated, industrialized areas, while rural territories are usually left

“unconnected”, deepening the digital divide problem of poor communities [1].

• Efficiency: Many networking applications requires the exchange of traffic between users

that are geographically close. Some examples are the emails exchanged between the em-

ployees that work in the same department, the downloads of news from local newspapers,

up to the exchange of information that smart-cars may perform to implement coordinated

maneuvers.3 For all these applications a local handling of the user traffic would be more

efficient than sending information flows through the remote cloud-services of an ISP.

The aforementioned issues are intrinsic for the centralized networking paradigm domi-

nating nowadays.

Characteristics of Distributed Networks

Distributed networks offer an alternative networking paradigm. The most popular and

widely studied distributed networks are Wireless Mesh Networks (WMNs) [3,4] and Ad hoc

networks [5–7], both characterized by multi-hop communications among devices composing

a network that is unplanned, dynamic and self-healing. A further characteristic of distributed

networks is their typical mesh topology, as shown in Figure 1.1.

Ad hoc networks are small-scale local networks made of a few (tens) portable devices

which may also exhibit some degree of mobility. As of today there are more than 3.5 billions

of smartphones around the world, all equipped with Wi-Fi chips so that, in principle, it should

be easy to configure an ad hoc network to share contents among a little group of friends, or

whenever needed. However, in most of the smartphones the ad hoc networking feature is

disabled, even if their Operating Systems (OSs) (Android or iOS are the most popular) would

support it. It may be speculated that the ad hoc networking feature is disabled because it is a

threat to telcos. In principle, in fact, one can easily communicate with nearby users, for free,

just relying on Wi-Fi at the unlicensed ISM band of 2.4 GHz. A user allowed to do so would

become less willing to pay the full price of a subscription to a cellular carrier, legitimately

2 DNS blocking or filtering, is a strategy to filter out some domain names from the Internet Registries to
make them unreachable. More on: https://en.wikipedia.org/wiki/DNS_blocking

3 See for example platooning, i.e., a techinque to drive a group of vehicles together. More on https:
//en.wikipedia.org/wiki/Platoon_(automobile)

https://en.wikipedia.org/wiki/DNS_blocking
https://en.wikipedia.org/wiki/Platoon_(automobile)
https://en.wikipedia.org/wiki/Platoon_(automobile)
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Figure 1.1 – Baran [2] introduced the concept of “Distributed Network” in 1964 illus-
trating the differences with centralized and decentralized networks. Copyright © 1964,
IEEE.

asking to cut out those costs related to local communication services not performed anymore

on the licensed bands of the carrier. Anyhow, there is no technical reason for restraining

ad hoc networking, so it can be imagined that ad hoc networks will become popular and

available to users as soon as business policies will change.

Wireless Mesh Networks (WMNs) are instead static and larger networks made of wire-

less devices, they can cover areas that range from a building to a whole district, or even a city.

Mesh networks do not exhibit any hierarchical structure, this also means that there are no

key strategic nodes that, if attacked, will bring down the whole network. The lack of critical

point of failures makes mesh networks to be considered as the most robust networks, which

therefore find different successful applications in the industrial and military sectors, and

they are also popular to extend the WiFi coverage at home. Nonetheless, the mesh network

design finds its most remarkable application in Community Networks (CNs).

Community Networks (CNs) are mesh networks built spontaneously by a community

of people mainly to share the access to Internet, but also to own and manage the network

infrastructure collectively, without relying on an ISP. The growth of CNs in the last years

has been remarkable [8] with different research disciplines attracted by the peculiar socio-

technical features of CNs, including their potential to de deployed with little costs in rural

areas affected by digital divide [9]. However, the lack of a sustainable and scalable organi-

zational model for CNs puts their existence in continuous peril [10,11], as much as for ad

hoc networks.
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1.1 From Centralized to Distributed Networks

The problems inherent in centralized models of networking motivate the search of new

decentralized paradigms able to blend together reliability, security and sustainability. The

word decentralization is used to indicate the process of transferring the control of the network

from central, authoritative entities to more peripheral ones, distributing management and

decision making activities over the whole network. Accomplishing this process would free

users from the discriminatory power of the private, for-profit ISPs, that are ultimately the root

problem for both the insecurity and the unsustainability of the today evolution of networks.

Distributed networks can play a role of paramount importance in this process. They can

represent, for instance, the answer to the users need of having a distributed and direct control

over the network infrastructure and over their own data, shared on the same network.

The paradigmatic shift from central to distributed management of networks described so

far requires not only new technologies for making networks economically sustainable and

independent from private, business operators, but further requires new adaptations of the

traditional network-control mechanisms that should be tailored for distributed networks, for

the ultimate goal of enhancing their reliability. In this regard, automatic failure recovery is a

key process which needs to be re-engineered as an online and distributed function, so to

address the peculiar structural properties of large and decentralized networks.

The implementation of an open, transparent and decentralized platforms able to safeguard

user rights and protect the privacy of data is another relevant research direction, with the goal

of improving the current technologies that empower distributed networks. The question of

whether the blockchain can be successfully integrated into distributed networks to implement

a technically feasible and socio-economically sustainable governance model, as originally

proposed and explored in [12], is particularly central for this thesis. The blockchain is always

described, in fact, as a decentralized technology for the support of economical transactions

which in principle can empower an efficient market suitable for distributed networks.

The enhancement of distributed networks has been the goal that inspired my research of

novel solutions to achieve greater reliability and security. In this thesis I present two main

contributions:

1. A new failure recovery technique for more reliable distributed networks, further intro-

duced in Section 1.2;

2. A critical analysis about the integration of the blockchain technology inside the network

infrastructure as a measure to enhance security (Section 1.3).
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1.2 Network Reliability: Failure Recovery Optimization

Failure recovery is a classic networking problem, crucial for the reliability of any network.

The reliability of communication services depends, in fact, on the ability of the network to

automatically detect failures and instantiate self-repair mechanisms. This means minimizing

the interruption of all networking services consequent to a potential failure and, ultimately,

enhance the network reliability.

An initial strategy to enhance the network’s reliability could be the deployment of a

powerful failure detecting systems, able to timely catch any anomaly so to trigger repair

mechanisms as soon as possible. To this purpose, the network must be frequently controlled:

control messages are periodically exchanged by all the components of a network precisely

to verify, continuously over time, that all devices are working as expected. These control

messages tend to be called with curious names such as heartbeat or keep-alive. These names

reflect the fact that possible network failures, such as the abrupt shut-down of a node

because of a loss of power or the removal of a link because a cable has been cut during road-

works, appear to the network as the sudden death of one of its component. Increasing the

frequency of such control messages, to faster detect these failures, would be a naive attempt

for upgrading the failure-discovery process as it would lead, unfortunately, to a greater

occupation of the network bandwidth, hence to a reduction of the overall performance of

the network. On this observation is based one of the fundamental trade-offs of networking:

the performance/control trade-off.

The simple selection of default values for those timers that regulate the generation

frequency of control messages has been, for many years, the only and basic approach

adopted by network administrators to balance control and performance. These timers had

to be short enough to catch anomalies in reasonable time, but not so short to generate a

constant storm of control messages. In general, for all popular networking protocols, such

timer-values were chosen empirically many years ago and then standardized by publishing

them in the official documentations of such protocols. Most of today’s networks are still

configured with these decades old timer-values, installed globally in all the network devices.

This simple approach makes the network configuration uniform and easy, also leading to

generally acceptable performance. However, advanced strategies for a fine-grained tuning

of the frequency of control messages can improve the naive approach based on default

timer-values deployed globally.

The first contribution of this thesis is the porting of an optimal strategy for the tuning

of control messages from centralized to decentralized networks. This strategy originally

called Pop-Routing [13,14] introduced the pioneering idea of exploiting centrality metrics, a
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graph-theoretical tool, to tune the generation frequency of control messages on a per-node

basis, according to the node centrality with respect to the rest of the network.

Pop-Routing leverages on the observation that the most central nodes of a network play

a strategical role and, compared to peripheral nodes, have a larger influence on the overall

performance of the network. Consider for example Figure 1.2, where nodes are colored

according to their Betweenness Centrality (BC) index, highlighting the strategic importance

of the most central (yellowish) nodes with the respect to the darker ones. A failure of a yellow

node in the core of the network would result in a greater disruption of the communications

insisting over the network, while a fault in a peripheral sector would limit the damages

mostly to that sector only. Starting from this observation, with Pop-Routing the generation

frequency of control messages for central nodes is increased, and is instead decreased for

peripheral nodes. The overall generation rate of control messages in the network is kept

constant, still, it has been shown that Pop-Routing reduces the average duration and impact

of network failures. This tuning strategy is called Pop-Routing since it resembles traditional

equalizers for Pop-music, that typically enhance central audio frequencies while diminish

lateral (low/high) ones.

The knowledge of the nodes centrality in the network is necessary to enable the Pop-

Routing strategy and, in its original formulation [13], Pop-Routing was based on the notion

of the Betweenness Centrality (BC). The state-of-the-art algorithm for the computation of

BC is the Brandes’algorithm [15], which is a centralized algorithm that requires the full

knowledge of the network topology (in form of a graph), to be executed correctly. The

requirement of owning a global graph knowledge limited the application of Pop-Routing

to the networks configured with centralized routing protocols,4 the only kind of protocols

that collects this complete information in all the routers of the network. Distributed routing

protocols were therefore excluded from the benefits of the Pop-Routing strategy, unless a

new way for computing centrality could be developed on top of an only partial and local

topological information.

A first contribution of this thesis is the development of such distributed algorithm that

enables the computation of the Load Centrality (LC) (a centrality metric similar to the original

BC) exploiting only the information contained in routing tables, which is an information

locally maintained and updated by all the nodes of any network. Such distributed algorithm is

a minimal extension of the Bellman-Ford algorithm —which is at the heart of all distributed

routing protocols— thus it is general and simple enough to be easily embedded in all

distributed networks. This thesis also reports a concrete example of how implementing the

distributed computation of LC in a real-world routing protocol, namely Babel [16], the tuning

4 Routing protocols are responsible for the identification of the best paths to be used to route (ergo transmit)
information efficiently in a computer network.
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Figure 1.2 – An example of graph with the nodes colored as a function of their Between-
ness Centrality (BC).

of the Babel’s control messages according to the Pop-Routing methodology led to a reduction

of the impact of failures in the network, effectively enhancing the network reliability [17,18].

New proposals for the advancement of routing protocols such as the introduction of a

distributed version of Pop-Routing have the tendency to be accepted with enthusiasm only in

small networks under the administration of a single central administrator, while it is harder

to convince different administrators of larger networks to do the same. The reason behind

this common phenomenon is that the introduction of a protocol enhancement necessarily

means upgrading the software run by all routers. In the worst case this upgrade must be

executed at the same time on all routers, as not always the updated software is backward-

compatible with the legacy one already deployed and running in the network, therefore an

incomplete deployment of the upgrade would lead to continuous communication failures

between upgraded and legacy routers. In practice the entire network must be temporarily

shut-down to reboot all routers with the new updated software, interrupting all networking

services for the time necessary for the upgrade routine. For a single administrator that

control a small network it is easier to execute this maintenance procedure minimizing the

service interruption. It is enough to determine a period of time in which the network is not

significantly used (usually during the night) and then perform a coordinated upgrade of the

few routers that compose the network. Finding an agreement among different administrators

on a single day in which many more routers should go under a synchronized maintenance

procedure is instead much harder. This coordination problem introduces the need of making

the new software incrementally deployable: i.e., it should be backward-compatible and it

should be possible to gradually update smaller portions of the network without causing

malfunctions due to software incompatibilities. Moreover, the benefits brought by the
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upgrade should become immediately effective, even if only a small subset of routers has

been updated.

A second contribution presented in this thesis is the development of a more sophisticated

version of the original algorithm for LC that is incrementally deployable [18]. With the new

incrementally deployable version of the algorithm it is possible to show that, even at low

penetration ratio, the upgraded nodes are able to accurately rank nodes according to their

centrality. This result enhances the flexibility of the Pop-Routing methodology, and constitute

a step forward toward its wider adoption in distributed networks.

1.3 Network Security: Blockchain to secure Distributed

Networks

In our daily use of Internet we continuously need to trust many private companies for the

collection and management of our data. For example, when we register an account on

a social network we provide sensitive data like our name, surname and date of birth to

the company that own the social network. We expect these data to be used only for legit

purposes such as friendly display our name to let our friends recognize us in the network,

but not to post fake-news on our behalf or to use our account to spread spam messages.

Essentially, everyday the data of many users end up in big data-bases under the operational

and exclusive control of private companies: we need to trust these companies, hoping that

no unlawful use of our identity will be done within the closed walls of their data-centers.

Not only our digital identity is in the hands of private companies, but also our money. For

instance, when we purchase some product online, we need to trust the banking institution

that issued our credit/debit card for correctly transferring the proper amount of money from

our account to the one of the online retailer. Again, in this process we implicitly need to

trust the payment circuit selected to handle our transaction, and many users probably do

not know exactly which security measures are put in place to safeguard the online transfers

of money. If, by any chance, our transaction will be handled on the popular Visa payment

network, as users we may be surprised to learn that our transaction is just one among the

hundreds of billions of transactions yearly processed by Visa, and all these transactions that

happens worldwide are processed actually in just 4 big data-centers,5 protected by the most

advanced military technologies.6 However, despite the strong military defense, it also means

5 The map of the Visanet data-centers available at https://baxtel.com/data-centers/visanet
6 The security measures include hydraulic bollards that can stop a vehicle traveling up to 50 mph, beyond

a traditional biometric scan to be admitted. More on https://www.networkcomputing.com/networking/
inside-visas-data-center

https://baxtel.com/data-centers/visanet
https://www.networkcomputing.com/networking/inside-visas-data-center
https://www.networkcomputing.com/networking/inside-visas-data-center
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that it is enough to break into only few data-centers, for example with a software virus or

corrupting an employee, to potentially steal the money of billions of persons.

Private companies centralize in their own networking infrastructure most of our data,

and we hold them responsible for the safekeeping and for the legit use of them. We trust

these private companies because we believe that most of the time such companies are really

trustworthy and that, after all, violations are rare and our rights could be defended in the

courts if necessary. However, unfortunately, Internet scandals that involve the big tech

giants in massive violations of users data are daily on the news, with public institutions and

authorities not able to take an action against these violations, establishing a disconcerting

picture of the dominant paradigm constituted by private, opaque service providers. The

people awareness about this concerning model motivates the research for new paradigms

where users can always transparently verify where their data are stored and who can access

them.

The blockchain is a novel technology that came into the limelight with the advent of

cryptocurrencies, promising to be an open, transparent, secure and decentralized solution for

the management of data. It came to the forefront as constitutional technology of the Bitcoin,

the most popular cryptocurrency that starting from March 2021 exceeds the trillion of US

dollars in market capitalization.7 The features of the blockchain, i.e., its decentralization

together with the ability to tolerate extremely powerful cyberattacks, attracted the interest

of many research communities, including the networking one that was hoping to find in the

blockchain a solution to securely decentralize classic networking functions. The hype around

the blockchain led to an extremely large number of disparate proposals of using the blockchain

for many applications comprising supply chain management [19–22], e-voting [23–30], the

Smart Grid [31–38], healthcare [39–42], banking [43,44], smart cities [45–47] and vehicular

and aerial networks [48–66]. Many surveys collect together the various efforts of applying

the blockchain to different sectors, including to the networking domain [67–75]. This vast

application range leads to think to the blockchain as to an almost universal technology, not

limited anymore to cryptocurrencies but able to empower new networking applications as

well.

This apparent universality of the blockchain may be surprising. The original Bitcoin

blockchain, in fact, became well known not only for its high security and decentralization

but also for the extreme energetic costs needed to run it together with the high latency

of Bitcoin transactions, which lead to very poor performance in terms of Transactions per

Second (TPS): less than 10 TPS on average [76]. Such inefficiencies are hardly tolerable by

any networking applications.

7 Statistics about the market capitalization of Bitcoin are available at https://www.statista.com/
statistics/377382/bitcoin-market-capitalization

https://www.statista.com/statistics/377382/bitcoin-market-capitalization
https://www.statista.com/statistics/377382/bitcoin-market-capitalization
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A deeper inspection of applications different from cryptocurrencies reveals how the char-

acteristics of the original Bitcoin blockchain have been diluted, if not completely transformed,

when moving to new application domains. For example in the original and iconic cryptocur-

rencies (e.g., Bitcoin and Ethereum) the blockchain plays the role of a shared ledger that

transparently record all transactions to enable a distributed validation of them without in-

volving trusted intermediaries, so much that the resulting ledger is open to anonymous users.

For this reason the original blockchains are said to be permissionless, i.e., users do not need

to be first registered and then authorized by any authority to start performing transactions

trough the blockchain. This also means that an extremely powerful cryptographic security

measure becomes necessary to protect the blockchain from cyber-attacks. For example, the

same Bitcoin and Ethereum adopt an extremely secure but power-hungry mechanism called

Proof of Work (PoW), wich is also the root cause for their well known poor performance.

On the contrary, newly proposed blockchains are completely different so much to be

called permissioned. In permissioned blockchains the resulting ledger is not open to anyone,

the access is rather controlled by a discriminatory authority (or consortium) that grant the

permission to perform transactions only to registered users. This coming back to a centralized

paradigm is not without consequences: doubts about the security of permissioned blockchains

are legit as much for centralized platforms controlled by private companies since, after all,

their degree of centralization is the same.

The doubts raised so far about the true efficiency and security of the blockchain are the

ground for a further contribution of this thesis, i.e., an examination of the recent literature

related to the blockchain technologies and applications, which culminates in a novel, critical

analysis about the integration of the same blockchain in the networking domain. The main

thesis conveyed by the critical analysis is the following. The blockchain is not a universal

technology, rather, the blockchain is characterized by a set of specific features —precisely

identified in the analysis— advantageous for a limited number of applications, above all for

cryptocurrencies. For the greatest majority of the different applications proposed in the last

years, including those belonging to the networking domain, the blockchain results instead to

be inappropriate and poor-performing.

1.4 Thesis Organization

The first contribution concerning the optimization of distributed routing protocols for the

achievement of a greater reliability is discussed in the rest of the thesis as follows.

• Chapter 2 provides the fundamental notions about distributed routing protocols and

centrality metrics;
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• Chapter 3 presents the distributed algorithm for the computation of Load Centrality

(LC) and the results of its application to improve the resilience properties of distributed

routing protocols.

Then the thesis moves to the critical analysis about the integration of the blockchain in

distributed networks. This analysis is provided as the base for the formulation of a restrictive

definition of the term “blockchain” [77,78]. This definition is necessary to serve one main

purpose of this thesis, namely, clarifying the possible role of the blockchain in the context

of distributed networks. Albeit pivotal for this thesis, the author acknowledges a limit

of the proposed blockchain definition, i.e., its partiality, since the arguments supporting

the proposed definition are grounded in a selection of recent works that does not cover

systematically the whole literature.

Despite the declared partiality the critical analysis offered by this thesis blends together

technical and historical arguments that evolve around the transverse Distributed Consensus

Problem, a key problem which lies at the origin of the blockchain technology. The critique to

the blockchain technology is therefore structured as follows:

• The fundamentals on the blockchain and on the Distributed Consensus Problem are

covered in Chapter 4. A brief survey on consensus protocols is included in Section 4.4,

preceded by a discussion about the fundamental theorems that highlight the inescapable

trade-offs for any such protocol (Section 4.3);

• Chapter 5 conveys the critique to the integration of the blockchain in the domain of

distributed networks.





Chapter 2

Distributed Routing Protocols

and Centrality

A computer network is usually modeled by a graph G(V,E) where:

• V is the set of vertexes (or nodes) of the graph, and models the devices that compose

the network such as routers;

• E is the set of edges (or arches) of the graph, and models the links that interconnect

all devices.

A routing protocol identify the best-paths in the network graph to be used for routing

traffic from any source to any destination. At this stage the formal definition of best paths is

not necessary but these could be, for example, the fastest, the shortest or those with greater

capacity. Identifying such paths is of the utmost importance for the overall performance of

the network, since all the messages exchanged in the network will flow through these paths.

The identification of the best-paths can be seen from a purely operational perspective

as the process of updating the Routing Tables, i.e., those tables installed in each router that

match reachable destinations with the address of the node towards which the traffic should

be forwarded, called next-hop. In fact, when a router chooses a new next-hop for a given

destination d it means it has learnt a new best-path towards d, and thereafter it will use the

new next-hop (updated in the routing table) to forward the traffic destined to d. Once a

router has learnt the best-paths, then the forwarding process becomes as simple as this:

• Received packets of information are inspected looking for the destination tag;

• A lookup in the routing table reveals the address of the favorite next-hop;

• The router forward the packet to that next-hop.

13
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This way packets are progressively sent along the best route up to the final destination.

Summing up, a router runs a routing protocol to identify best-paths and the selection of a

best-path towards a given destination is reflected by the update, in the routing table, of the

preferred next-hop for that destination.

The challenges for routing protocols

Although apparently simple, keeping routing tables updated hides different challenges that

routing protocols have to address. First of all routing protocols must be aware of the network

status to identify the best-paths, however, the network is dynamic and evolves over time.

Secondly, given a network state represented by a graph, the pure algorithmic problem

of searching the best paths in the graph arises as well. For this latter problem the space

left for further research towards a more efficient and optimized search of best-paths in a

graph is little. Shortest-paths algorithms are in fact well-known in the literature so that

the Dijkstra and the Bellman-Ford algorithms already efficiently solve the best-path search

problem and are always used, respectively, in centralized (Link-State) and in distributed

(Distance/Path-Vector) protocols.

Network Dynamism

The challenges deriving from the network dynamism open instead a greater space for research.

The network dynamism is evident in circumstances of failures such as the abrupt shut-down

of a router or the drop of a communication link that may happen, for example, because

of a loss of power or of the cut of a cable during roadworks. These kind of events modify

the topology of the network and to take them into account the failed component should be

removed from one of the two sets of nodes or edges. Also the installation of a new router

or link results trivially in a new node or edge to be added to the network graph. Beyond

simple additions/removals, the quality alterations of the various components are also an

important source of dynamism and are relevant for the selection of the best-paths as well.

In other terms the link-quality is a dynamic property fundamental for the formal definition

of best-paths. Possible link quality metrics could be, e.g., the latency or the capacity, and

accordingly a path could be defined to be the best one for connecting a pair of end-points if

the sum of the latencies of the links that compose this path is the minimum, or if the sum of

the link capacities is the maximum. Beside the problem of formally defining the link-quality

and path metrics, it is important to notice that such metrics can change over time for many

reasons such as channel interference or network congestion.
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Control messages

Routing protocols cannot ignore the network dynamism: it turns out that all routing protocols

dictate to exchange periodic messages to constantly monitor the network status, thus to

discover new neighbors, detect failures and to measure link-quality metrics. These periodic

messages called control messages collect the necessary information to steer the routing process,

which is instead responsible for processing this information so to identify the best-paths. Two

fundamental processes have been described: i) the periodic exchange of messages to monitor

the network status and ii) the routing process. The way these processes are implemented

define two broad classes of routing protocols, namely Link-State (LS) and Distance-Vector

(DV) protocols.

Link-State (LS) protocols in a nutshell

The LS protocols are characterized by the adoption of the Dijkstra algorithm for finding

the shortest paths in the network graph. To run the Djikstra algorithm a node of the graph

must be chosen as “source”, then an efficient exploration of links starting from the source

node produces a shortest-path tree that covers all other nodes reaching them following only

shortest (best) paths. A router that owns the full graph knowledge can run the Dijkstra

algorithm precisely to identify all shortest-paths from itself (set as source node) toward any

destination. This way it also identifies the next-hops to be recorded in its routing table.

LS protocols are said to be centralized since the routers need to accumulate the full graph

knowledge to run Dijkstra. To this purpose whenever the network topology changes (a failure

occurred or the quality of a link changed) then a Link-State-Advertisement (LSA), which is

a message that reports the new topological information, must be broadcast in the whole

network to let all routers update their graph first, then run Dijkstra again, and finally update

their routing table if new best-paths have emerged. LS protocols are more often deployed in

small networks under a single and centralized administration as long as the broadcast of any

topological change can become too frequent and inefficient over large networks.

DV routing protocols are instead distributed: more details on the distributed routing

paradigms are covered in Sections 2.1 and 2.2

2.1 Distance-Vector Protocols

Routing protocols can be divided according to the need of routers to know or not the complete

network state in form of a graph. On one hand there are LS protocols, where all routers

need to acquire such full graph knowledge thanks to LSA messages enabling this way the

Dijkstra algorithm. On the other hand there are DV routing protocols, where routers do
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not need the same complete graph knowledge to discover all the reachable destinations

in the network. LS protocols are also said to be “centralized” because with them routers

need to accumulate (in other terms “centralize”) also the topological information that comes

from remote nodes, e.g., the state of all network links. DV protocols are instead said to be

“distributed”, as nodes just need to exchange information with their direct neighbors. This

section focuses on distributed routing protocols, especially on DV ones.

To enable DV routing routers must only perform two actions:

1. Measure the distance from their neighbors;

2. Keep sharing with neighbors the information they learned about reachable destinations

and the distance from them;

Neighbor discovery and distance

A DV router periodically broadcast HELLO messages to discover neighbors that, if present,

reply with another HELLO. The reception of a reply to an HELLO means that a bidirectional

link between the two neighbors has been established. The subsequent frequent exchange of

HELLO messages on the link is useful to estimate the quality of this link. The link-quality can

be expressed in terms of many metrics like, for example, the link-delay or the probability of

successfully sending a packet over the channel. In general, especially in wireless networks,

the quality of a link degrades with the growth of the distance separating two neighbors: it

turns out the most popular link-quality metrics take low values for good quality links and

high values for bad ones, thus they may be thought of as values of distance. The link-quality

metrics are also called link costs or, in a more graph-theoretic perspective, edge weights.

Update messages to send vectors of distances

DV routers keep updated a vector with distance values associated to all known destination

in the network. This distance-vector gives the name to the DV family of routing protocols.

At boot a node does not know any destination except himself, so it initializes his distance

vector only with a 0 to indicate the “zero distance” of this node from itself.8 Right after

booting a node starts exchanging HELLO messages, this ways it discovers its neighbors and

also measures the quality of the link (distance) with them. The node can hence extends its

distance vector with the just learned distances from its neighbors. A node does not send only

HELLO messages, but also UPDATE (a.k.a. “advertisement” or “announcement”) messages.

An UPDATE message is a pair of value (d, m) that a node v periodically broadcast to any

neighbors u to inform u that v is at distance m from destination d. Figure 2.1 illustrates an

8 Configuring a node some administrators may choose a value of distance different from zero for the
destinations exported by this node to implement advanced routing strategies.
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A B C3 2

Destination Distance Next-Hop

A 2 + 3 = 5 B

B 2 B

C 0 //

(A,3)

Figure 2.1 – An illustration of an UPDATE message in a DV protocol and of the routing
table of a node, C in the present case. In this example the nodes A and B are separated
by a link of quality equal to 3, while C is at distance 2 from B. B already learned the
existence of A thanks to an UPDATE message previously sent from A to B. Consequently B
can send an UPDATE over the link of length 2 to inform C that A is reachable via B itself,
thanks to a route whose length is equal to 3. C has no other shorter routes available for
reaching A, so C will install in its routing a table a route towards A whose length is equal
to 2+ 3= 5 choosing B as next-hop.

update sent from node B to C in order to advertise the availability of a route for reaching

destination A. The illustration shows also the routing table of node C: the destination, the

distance and the next-hop are recorded in this table for each route available to node C.

Routing Table notation

The following notation will be used in the rest of this thesis for operations with the Routing

Table (RT). Let v be the node that manipulate its routing table, its routing table RT will be

considered as a dictionary mapping destinations d to next-hops and distances expressed

in some given metric m. The square brackets operator is used to retrieve the information

recorded in the RT associated to a particular destination d, e.g., RT[d] = (m, NH). The tuple

(m, NH) reports the distance of v from d as m, while NH is the next-hop chosen by v to

forward traffic towards destination d. The dot notation will be used to access single fields of

a tuple, for example: RT[d].NH. The ‘()’ will be the dictionary operator to be invoked to get

the list of the dictionary keys. For example, it can be used to get the set of known destinations

recorded in the routing table as in RT() = [d0, d1 . . . dN]. The ‘[]’ and ‘{}’ symbols refer to the

empty list and dictionary, respectively. The NH symbol does not indicate a necessarily single

next-hop, but can represents a list of them, therefore, NH can capture routing protocols that

implement multipath routing.
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The Bellman-Ford criterion

Let s be a neighboring node that is sending an UPDATE, and let c(s) be the cost of the link

with s. On reception of an advertisement (d, m) sent from s the receiving node processes the

advertisement and updates its routing table according to the Bellman-Ford criterion:

if c(s) +m< RT[d].m

⇒ RT[d] = (c(s) +m, s)

Essentially, a node that discovers a shorter path for some destination updates its distance

from that destination and records the neighbor that announced the shortest path as favorite

next-hop. Paths identified according to the Bellman-Ford criterion are minimal (shortest) by

induction. The < operator ensures, in fact, that paths are built as minimal combination of

subpaths that are minimum by hypothesis provided that routers advertise only minimum

routes. The Bellman-Ford criterion also ensures that shortest-paths are loop-free, i.e., packets

going from any source to any destination will not traverse the same node twice. Loop-

freedom is a fundamental property for routing because, if a packet were to enter in a loop, it

would remain stuck there without being ever delivered successfully.

The Limits of DV routing

A router sending an UPDATE to notify a topological change triggers a recursive message-

passing process. During this process the sent UPDATE may need to traverse the whole network,

so the worst case convergence time for DV routing protocols is linear w.r.t. the network

diameter.9 If routers send UPDATES periodically instead of sending such messages as soon as

they acquire new routing information, then the routing phase may take a large amount of

time to converge, especially in large-scale networks. Moreover, DV protocols empower only

simple minimum-distance routing strategies, while network administrators often need more

advanced routing policies to implement their business strategies.

Advanced routing strategies require flexible and expressive policies to evaluate and rank

candidate paths for communication. Path-Vector (PV) protocols, described in Section 2.2,

support these kind of policies empowering, for example, the advanced routing strategies of

the Border Gateway Protocol (BGP), the routing protocol of Internet.

9 The diameter of a graph (or network) is the maximum distance between any pair of vertices.
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2.2 Path-Vector Protocols

The Border Gateway Protocol (BGP) [79] is de facto the only routing protocol of the Internet.

The Internet is essentially the network of all Autonomous Systems (ASes), where an AS is a

collection of routers under a single organization’s control identified by a unique Autonomous

System Number (ASN). In a network diagram like the one shown in Figure 2.2 ASes are

represented by clouds, and the depicted network devices residing at the margins of ASes are

called border routers. The company or institution that governs a given AS can choose BGP

AS3

AS2

AS1

8.8.8.0/24

AS-path: AS1

AS-path: AS2,AS1

AS-path: AS3,AS2,AS1

Figure 2.2 – An illustrative example of the Internet as a network connecting different
Autonomous Systems (ASs). Each cloud represent an AS, which is a network itself
potentially made of many internal routers. At the border of each AS a BGP router must
be installed to establish a link with neighbouring ASs.

as protocol to route internal traffic. When used for this purpose BGP is called internal-BGP

(iBGP). With iBGP all routers must be connected to each other forming a full mesh and to

alleviate scalability problems Route Reflectors [80] are commonly deployed. Anyhow, the

main purpose of BGP is to establish relationships between border routers that belong to

different ASes. In this context the protocols is called external-BGP (eBGP). The acronym

BGP will be used in place of eBGP, since the main duties of the BGP are precisely to establish

external relationships between different ASes and to support inter-ASes routing.

Like any other routing protocol BGP defines the rules and format of messages that routers

must exchange to learn about reachable networks. For instance, a BGP node advertises known

routes to neighbors by sending UPDATE messages. An UPDATE message includes a section to

describe the attributes of paths used to route information. Some path attributes are mandatory

and must always be included in an UPDATE while others are optional. BGP is known for

accepting optional transitive attributes, i.e., attributes that may not be recognized by all
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BGP routers but, if received, should be forwarded even if not parsed. The most important

attribute among the mandatory ones is the AS-path, where an AS-path is a sequence of

ASNs indicating the list of ASes that a packet will be routed through to reach the advertised

network. BGP is said to be a path-vector protocol because of the continuous exchange of

AS-paths vectors among routers.

Path-selection and policies in BGP

Sharing AS-paths is crucial to ensure loop-freedom. A path that contains two occurrences of

the same ASN cannot be selected to route traffic. BGP does not mandate any further strict

rule apart from this fundamental one, network administrators are thus free to define local

policies for path selection. These policies are kept secret and not shared with neighbors,

import and export filters are defined as well to limit the the amount of information shared

with other BGP speakers. The flexibility of BGP is fundamental for Internet operators to

implement their commercial strategies, for example, to decide to route traffic to partner

ASes while avoiding competitors. This same flexibility is also the origin of the notorious

complexity of BGP, with operators that defined over time complex (if not bizarre) rules to

tweak the protocol in the effort of increasing their revenues.

Hierarchical topology of Internet

The commercial relationships between ASes heavily influence the Internet topology as noted

in [81], giving rise to a hierarchic topology that is far from a random graph. In this hierarchic

topology BGP nodes can be classified into four categories: T, M, CP and C nodes. “Tier-1” (T)

nodes are at the top of the hierarchy, they are known to be only few [82] and fully connected

in a clique. T nodes establish peering agreements to exchange traffic with each others, while

they are connectivity providers for mid-level (M) nodes. The Customers (C) and Content

Providers (CP) are at the bottom of the hierarchy with the difference that C nodes always

pay their connectivity providers, while CP nodes can also establish peering relationships

with other CP or with M nodes.

Nodes and links classification

Nodes (aka ASes, but sometimes this classification holds also for single routers) can be

further distinguished into stub and transit. Stub nodes belong to the C or CP classes and are

those nodes that export network prefixes. This means they represent some reachable network

and thus they can be sources/destinations of traffic. Conversely transit routers are never

senders or recipients of traffic but are part of the infrastructure as connectivity providers.

Relationships between ASes can be classified as well. A link is of type customer-provider
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when a BGP node pays its neighbor for the provided connectivity, otherwise is a peering link

when the two neighbors agree to exchange traffic with each others for free.

2.3 The Signalling/Performance Trade Off

In the overview of routing protocols reported so far (Sections 2.1 and 2.2) it can be noticed

how these protocols generate a considerable amount of control traffic without actually

conveying any valuable information. Control messages are, in fact, a technical need only,

while computer networks are meant to support the traffic of other contents such as emails,

files, pictures or videos. The traffic in a network can thus be divided in two categories:

• Payload traffic, which is the aggregation of all those messages/packets that flow in the

network carrying the really essential data;

• Control traffic, refers instead to those messages like HELLOS and UPDATES of DV proto-

cols that are necessary for the correct functioning of the network but that do not carry

any truly valuable data.

The control traffic is also known as signalling traffic provided that control messages are

substantially signals exchanged by routers to timely notify events relevant for the routing

process, e.g., the change of a link cost. The signalling traffic turns out to be at the same

time necessary for the network functioning but not properly useful to convey true data

across the network. It is thus considered as an inevitable cost to be minimized as much as

possible. However, an excessive reduction of control messages can lead to the malfunction

of the network while an opposite excessive increase of signals would represent an inefficient

use of the network bandwidth. The control/performance trade off described so far is of

fundamental importance for the efficient implementation of failure recovery techniques: these

techniques are adopted in case of failures to timely re-route traffic around the failed network

components.

For example, whenever a link between nodes n and m stops working, all the routes

insisting over that link fail as well. The traffic sent along these routes will get lost until n

and m will detect the failure (because of not received HELLO messages) and then initiate a

re-routing routine. In a LS network this re-routing process would consist in the broadcast

of LSA messages that will trigger a repetition of the Dijkstra algorithm on the graph G′ =
(V,E \ {(m, n)}), i.e., the network graph once updated with the removal of the (m, n) link.

Re-routing should be as fast as possible to minimize the losses of traffic consequent to the

failure.

To achieve fast-rerouting one can precompute alternative routing paths and switch to

one of them as soon as the currently selected route stops working as expected. However, a
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router incurs in an overhead for precomputing alternative routes, moreover, a failure that

afflicts the preferred route may compromise also the alternative routing paths, leading the

node to a “route starvation” condition [83].

Regardless of whether backup paths are available or not a router should detect failures

as fast as possible to timely initiate the recovery process and, similarly, should propagate

correcting routing information as quick as possible. The timers that govern the generation of

HELLOS and LSA should be very small, however, small timer values also mean an increase

of the control overhead and the risk of routing oscillations in case of temporary failures.

Once again the signalling/performance trade-off emerges. An optimized fine-tuning of the

generation frequency of control messages is therefore of the utmost importance to balance the

need of speeding-up the failure recover process, reducing timers, with the equally important

need of lowering the control overhead as much as possible by setting large timer values.

2.3.1 The Pop-Routing Tuning Technique

For many years, despite decades of research and experience with routing protocols, there

has not been any automatic nor optimal technique to address this optimization problem

concerning the generation frequency of control messages. In 2016 such a technique has

been proposed with the name of Pop-Routing [13,14] as already introduced in Section 1.2.

Pop-Routing formalizes the problem of minimizing the impact of network failures as the

problem of optimally tuning the generation frequency of control messages on a per-node

basis according to the centrality of the same nodes. The Pop-Routing strategy has been

originally limited to centralized (LS) networks since the centrality metric chosen to drive

the optimization problem was the Betweenness Centrality (BC), a centrality metric that is

computed with the centralized Brandes algorithm [15] and can thus be executed only in

centralized networks.

The first major contribution of this thesis is the adaptation of Pop-Routing for distributed

networks, which required the development of a new algorithm able to compute centrality in

a distributed fashion enabling Pop-Routing also for DV protocols. Before discussing the works

related to centrality metrics applied to networking (Section 2.5), the necessary background

on graph centrality indexes is introduced in Section 2.4.

2.4 Graph Centrality Indexes

Freeman introduced the Betweenness Centrality (BC) index for the analysis of social networks

providing the following definition:
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Def. 2.1: Betweenness Centrality (BC) The normalized betweenness centrality of a vertex v

is given by:

BC(v) =
2

N(N − 1)

∑

∀s,d∈V|s 6=v 6=d

σsd(v)
σsd

(2.1)

With:

• σsd as the number of minimum weight paths between vertex s and vertex d;

• σsd(v) as the number of those paths that pass through vertex v.

In other terms, the BC of a node v is the sum of the fractions of shortest paths —excluding

those with v as endpoint— that pass through v [84]. The BC captures the prominence of a

node in the control of flows over the network. It is thus relevant not only for the analysis of

social networks but can be a powerful analysis tool also for studying flows of information

in computer networks. The BC centrality of all nodes in a graph can be computed with the

well known Brandes algorithm [15], a centralized algorithm perfectly suited to be executed,

offline, to study graphs that represent snapshots of a network.

Conversely the Load Centrality (LC) index, an index similar to the BC, lends itself to be

computed distributedly and online, as it is suggested by Definition 2.2:

Def. 2.2: Load Centrality (LC) Assume that all nodes generate and transmit to all other

nodes some commodity. Let θs,d denotes the quantity of commodity sent by a source node s

to a destination node d. Assume the commodity is always routed along minimum weight

paths and, in case of multiple (minimum) next hops, this commodity is equally divided

among them. Let θs,d(v) be the amount of commodity generated by s and destined to d that

is routed through node v. The load centrality of v is then given by:

LC(v) =
∑

∀s,d∈V|s 6=v 6=d

θs,d(v) (2.2)

The LC metric better captures the intensity of the traffic (i.e., the load) insisting over

nodes. For instance, an arbitrary configuration of the θs,d parameter can model any matrix

of traffic or load distribution. Otherwise, setting θs,d = 1 for all s, d pairs, the LC can be

turned into a pure topological metric fully defined by the graph structure, irrespective of the

network traffic. Unless otherwise specified in the rest of the thesis the reader can assume

∀s, d : θs,d = 1, so that the LC will own a pure topological interpretation. Under this
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hypothesis and if the graph is undirected,10 the LC can be normalized as:

LC(v) =
2

N(N − 1)

∑

s,d∈V|s 6=v 6=d

θs,d(v) (2.3)

Figure 2.3 illustrates the conceptual differences between LC and BC by reporting two

copies of the same graph annotated, respectively, with LC and BC values as computed for a

single pair of endpoints (s, d) and assuming that all edges have the same weight.

s d
w

v1/2

1/2

1/4

1/4

1/2

s d
w

v2/3

1/3

1/3

1/3

1/3

Figure 2.3 – Difference between centrality computation in the case of load (left) and
betweenness (right) in the same network for the same (s, d) couple. Copyright © 2020,
IEEE.

In the left side of the figure it can be noticed how the commodity sent from s to d is

cut by two every time it crosses a branching point, in other terms, it is always split equally

between equivalent next-hops. According to this mechanism the nodes v and w result to

have the same LC index. The BC instead reflects the fact that, out of the the 3 minimum

paths that goes from s to d (i.e., all those of length 3), 2 go through v while only 1 crosses

w. This happens because v has two alternative next-hops to reach d while w has just one.

Therefore, being the BC a measure of the fraction of minimum weight paths that cross a

node, then BC(v) = 2/3 while BC(w) = 1/3, which makes v more central than w.

2.5 Centrality in Networks: Related Works

The Betweenness Centrality (BC) has been originally proposed by Freeman for the study of

social networks [85] but found numerous applications also in networking, for example, in the

enhancement of traffic monitoring [86,87], resource allocation [88], topology control [89]
and intrusion detection [90]. The Brandes algorithm [15] is the state-of-the-art, centralized

10 In a computer network a node establishes a link with its neighbor only if this neighbor is able to reply to
HELLO messages, hence only if the link is bidirectional (i.e. “undirected”). For this reason, except for particular
cases of wireless networks, undirected graphs are a common choice to model computer networks.
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algorithm to compute the BC indexes of all nodes in a network, with a computational

complexity of O(nm+n2 log n) for weighted graphs with n nodes and m edges. The algorithm

of Brandes can be adapted to compute also other centrality indexes based on minimum-

weight paths [84]. For example, Dolev et al. proposed a generalization of BC to deal with

different routing policies [86]. Also these variants of BC are computed with centralized

algorithms which are essentially adaptations of the fundamental algorithm of Brandes.

The problems of introducing centralized algorithms in computer networks

Two are the major problems that hamper the use of centralized algorithms in computer

networks:

• Lack of complete graph knowledge: Only in LS network all routers accumulate a complete

graph knowledge, which is a requirement for running centralized algorithms. Optimization

techniques based on centrality (e.g. Pop-Routing [13, 14]) may remain for this reason

limited to LS networks, without providing their benefits also to distributed networks.

Moreover, in large and complex networks such as the Internet, acquiring the complete

topological information is not always possible. The lack of a complete graph knowledge

hampers the adoption of centralized algorithms for the computation of centrality also in

these cases.

• Scalability issues: Centralized algorithms suffer from scalability issues. For example,

despite the introduction of several heuristics [91], it has been shown that computation of

BC on low-power hardware can be performed online and in real-time only on networks of

up to a hundred of nodes [92], while it becomes impracticable on a larger scale.

Addressing the Scalability Challenge

The time complexity of Dijkstra, i.e. O(n2 log(n)) in graphs of the form G(V,E) with |V| = n,

can be considered a general lower bound to the time complexity of centralized algorithms

for centrality. All of them always embed, in fact, an instance of Dijkstra to initially identify

all shortest-paths in the graph, a necessary knowledge to later enable the computation of

the centrality metrics. The scalability issues of centralized algorithms for centrality are

rooted in this complexity, so much that the computation of indexes such as the BC via the

Brandes algorithm quickly becomes time-consuming and power-hungry with the growth of

the network size [92]. The problem get worsened when the centrality must be recomputed

continuously and online, for example, when the centrality keeps changing over an evolving

networks subject to frequent topological changes. The most common approaches proposed

in the literature to address the scalability issues of centralized algorithms are two:
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1. Incremental Updates of Centrality: some algorithms are available that do not perform

the recomputation of centrality from scratch for every change of the topology [93–96].
With these algorithms it becomes possible to efficiently update the precomputed indexes

taking into account only the most recent modification of the network graph. Although

able to take the network dynamism into account and to update efficiently the centrality

indexes over evolving graphs, these algorithms cannot provide significant advantages in

front of major topological modifications that affect the large majority of the indexes. For

example, the removal of a link in a ring topology clearly affects the centrality indexes of

all nodes, so much that the process of updating the centrality indexes is equivalent to a

full recomputation from scratch. The advantages of incremental algorithms are limited

therefore to those networks that exhibit a modest rate of minor topological variations

over time.

2. Random sampling: When the size of the graph becomes too large making the centrality

computation not feasible, a natural approach to reduce the size of the problem is random

sampling [97–102]. Essentially, the computation of centrality is performed over a subset

of nodes and edges sampled from the full graph and the so computed indexes result to be

good approximations of the true centrality values. For instance, Jacob et al. [100] and

Brandes and Pich [98] proposed algorithms that only consider the shortest-paths induced

by a subset of vertices sampled uniformly at random to approximate the computation

of BC. In both works of Riondato et al. [103] and Baglioni et al. [104], the accuracy

and confidence of the approximations of BC can be adjusted tuning the size of samples.

Although more efficient, algorithms based on random sampling do not provide exact

results. Moreover, even a perfectly uniform sampling process induces biased sub-graphs

in which the centrality of nodes included in the sample tends to be overestimated.

Albeit efficient when dealing with evolving graphs or when approximating centrality

over large graphs, the general limit of centralized algorithms is the necessity of starting

from the complete graph knowledge. This requirement alone hampers the introduction

of centrality-based optimizations in all distributed networks, even when scalability and

complexity are not an issue. For example, the Pop-Routing optimization technique [13,14]
exploits the centralized Brandes algorithm to compute the BC, and could not be introduced

in distributed networks without a distributed algorithm able to compute centrality starting

from local information only (such as the one that will be presented in Chapter 3 as a major

contribution of this thesis). Distributed algorithms for the computation of centrality metrics

are explored in Section 2.5.1.
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2.5.1 Distributed Algorithms for Centrality

Distributed algorithms for the computation of centrality exist and do not require a complete

topological knowledge, also exhibiting acceptable scalability properties. However, strong

hypotheses on the graph structure or on the model of the distributed system are usually

introduced to enable the relaxation of the full graph knowledge requirement. A compromise

of the generality is therefore the cost to enable the distributed computation of centrality with

such approaches. For example, the distributed algorithms proposed in [105–107] are limited

to graphs in forms of DAGs or trees, this to comply with the hypotheses of working only with

loop-free topologies and, in the particular case of trees, to ensure that “every pair of nodes

has at most one shortest path” [105]. Also the works by Wang et al. [106,107] are based on

strong hypotheses on the structure of the graph, namely, they are restricted to “undirected

and unweighted tree graphs”.

Many distributed algorithms for the computation centrality metrics such as [108,109]
proposed to compute the BC are proven to execute correctly under the popular CONGEST
model [110]. Exemplary assumptions of the CONGEST model are the following:

• All links are bidirectional, so much that the network is modeled by an undirected graph;

• Nodes and links are reliable, i.e., failure-free: abrupt stops of nodes and drops/delays of

links are not considered;

• Communication is synchronous, with a global clock that triggers consecutive rounds of

message passing and processing;

• Node power is infinite, message processing can hence be considered instantaneous.

The CONGEST model, however useful for proving the theoretical correctness of distributed

algorithms, sets a series of ideal conditions that cannot be met in real-world deployment:

the practical feasibility of algorithms proven to work under the CONGEST model cannot be

granted.

Distributed algorithms for centrality are designed also to overcome the scalability issues

highlighted for centralized algorithms. When focusing on scalability rather than on accuracy,

numerous are the distributed algorithms that can estimate different centrality metrics [111–

114]. This kind of algorithms provide only approximation of the true indexes: accuracy must

be necessarily sacrificed to favor a greater scalability.

Towards an exact and distributed algorithm for Load Centrality (LC)

In this thesis, namely in Chapter 3, an exact and distributed algorithm for LC is proposed

to overcome the known limitations of current centralized and distributed algorithms for
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centrality. This exact and distributed algorithm for LC enables centrality-based optimization

techniques in distributed networks. In particular, this thesis reports the results of applying

a Pop-Routing methodology, driven by LC, to reduce the impact of failures in networks

managed by a DV routing protocol.

It may be also argued that the semantic of BC better captures the dynamics of flows in

computer networks compared to LC. Consider, however, that BC is actually very similar to

LC, so much that is often mistaken for it [84]. Moreover, the BC converges to LC under

the assumption of having a single shortest-path for connecting each couple of endpoints,

which is a valid assumption to model all those networks running a routing protocol that

does not support multipath. For modern distributed systems that instead support multipath

routing or that employ load balancing techniques —consider for insance the Stream Control

Transport Protocol [115] or Multipath TCP [116]— the LC is even a better metric than BC,

since it precisely capture the distribution of traffic over multiple paths. Furthermore, only

the LC can capture the true paths used in computer networks with policy-based routing, a

kind of knowledge that is in general not possible to acquire not even owning the full graph.

For instance in the Internet, managed by the BGP Path-Vector (PV) protocol, the routing

policies adopted by different ASes are kept secret to hide business strategies, and it is well

known that paths chosen for routing in the Internet are not those shortest-paths that would

be identified running an instance of Dijkstra on the full network graph. With the algorithm

for LC the centrality is instead computed according to the propagation of UPDATE messages

in the network. Therefore, although not explicitly aware of the secret routing policies, the

LC still succeeds in capturing the real routing paths and the flows of traffic of a network. For

this reason it can be claimed that the LC is even better than the BC to model the behavior of

BGP and other policy-based routing protocols.



Chapter 3

Distributed Algorithm for Load Centrality

and Application to DV Routing

• A distributed and exact algorithm for the computation of Load Centrality (LC) will be

introduced in Section 3.1. The algorithm will be described in the most abstract terms

to highlight its generality and scope beyond its use to steer the optimization of routing

protocols.

• An incrementally deployable version of the algorithm is also provided (Section 3.2).

This version specifically targets routers running a Distance-Vector (DV) routing protocol.

• A theoretical analysis of the algorithms is conducted in Section 3.3. First part of the

analysis is an investigation of the algorithm convergence properties (Section 3.3.1).

Then a scenario of partial deployments will be considered: this scenario describes

an incremental deployment of upgraded routers (upgraded so to run the centrality

algorithm) in a network of legacy routers. In Section 3.3.2 the algorithm accuracy in

ranking nodes by centrality will be formalized as a function of the penetration ratio of

upgraded nodes in the network.

• An application of the algorithm for the optimization of a DV protocol is described

in Section 3.4. The algorithm has been implemented in babeld, the open source

distribution of the real world DV protocol Babel (implementation notes are discussed in

Section 3.4.2). Then babeld timers have been tuned adopting a Pop-Routing approach

on the base of the nodes LC values computed experimentally. Section 3.4.3 reports

the experimental performance evaluation conducted to asses the effectiveness of Pop-

Routing in reducing the impact of failures in distributed networks.

29
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3.1 Distributed Algorithm for the Computation of the Load

Centrality

The distributed algorithm for the computation of LC will be firstly formalized in Section 3.1.1,

then an instance of the algorithm at work in a small network will be illustrated, in Sec-

tion 3.1.2, to exemplify the introduced notation.

3.1.1 Algorithm Formalization

Algorithm 1 describes the algorithm from the perspective of the node v that executes it, while

Table 3.1 is the related notation table, reporting the definitions for all symbols introduced in

Algorithm 1.

Algorithm 1: General distributed Protocol (executed by v)

1 Init:
2 load= 0;
3 loadOut[v] = contrib[v] = 0;
4 foreach d ∈ V − {v} do
5 foreach u ∈ neighbors do
6 loadInu[d] = 0;

7 PH[d] = [ ];

8 Repeat every δ seconds:
9 foreach d ∈ V − {v} do

10 loadOut[d] = 1+
∑

u∈PH[d] loadInu[d];
11 contrib[d] = loadOut[d]/ |NH[d]|;
12 load= load+ loadOut[d];

13 send 〈v, NH, contrib〉 to neighbors;

14 On receive 〈u, NHu, contribu〉 from u do
15 foreach d ∈ V − {v} do
16 if v ∈ NHu[d] then
17 PH[d].add(u);
18 loadInu[d] = contribu[d];
19 else
20 PH[d].delete(u);
21 loadInu[d] = 0;

Algorithm 1 is a natural formalization of the load diffusion process described by Defini-

tion 2.2, with every node generating a unitary amount of load for all destinations discovered

via the underlying routing protocol. Nodes periodically sends messages to their neighbors to
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propagate this load in the network. This message passing process, based on both splitting

and aggregation of load contributions, will let all nodes recursively accumulate their own

load, i.e., their LC index. After having briefly introduced the main working principle of the

algorithm it is possible to delve into the three main phases that characterize the algorithm,

namely:

1. Initialization (lines from 1 to 7);

2. Sending Phase (lines from 8 to 13);

3. Receiving Phase (lines from 14 to 21);

Initialization: Node v sets initially to zero all the variables needed to keep track the

evolution of the load diffusion process. The variable load, for example, is now set to zero

but later will converge to the LC index of v. Note also the two dictionaries, namely loadOut

and contrib, initially reporting a zero only for the same v: these dictionaries will support the

tracking of outgoing load contributions. In particular:

• loadOut stores for each destination d the overall load going out from v as destined to d.

The sum of all contributions stored in loadOut will give at the algorithm convergence

the final LC index of v.

• contrib stores the contributions that v sends to its neighbors.

The two dictionaries are almost equivalent11. In fact, in general contrib[d] is equal to

loadOut[d] for all destinations d for which v knows a single next-hop but not when

the outgoing load must be splitted among multiple next-hops In this case contrib[d] =
loadOut[d]/|NH[d]|, with NH[d] used to indicate the set of next-hops known by v to reach d.

NH is thus again a dictionary, reporting the set of next-hops for each destination d as updated

by the underlying routing protocol. PH is the opposite dictionary of the previous-hops sets,

initially empty (line 7). The last variable to be defined is loadIn, which is the opposite of

loadOut as it reports the incoming load contributions received by v. It is initialized to 0 for

all destinations (in lines 5-6), while waiting for contributions to come with the progress of

the load diffusion process. In loadIn each contribution is indexed by destination d but also

by the neighbor u that sent it (u appears in apex notation).

Sending phase: Each node executes the sending routine (lines 8-13) periodically every

δ seconds. For every known destination d (v excluded) the node v sums up all received

contributions from all its neighbors and adds to this summation the unitary amount of load

generated by the same v. The “1+” at line 10 represents this unitary load contribution, while

11 The dictionary contrib, albeit redundant, is introduced to ease later the analysis of the algorithm conver-
gence properties.
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the following summation is the collection of all incoming contributions (stored in loadIn)

from any neighbor u. The so computed load defines the overall load going out from v to

be forwarded to d, hence it is assigned to loadOut[d]. The specific contribution, possibly a

fraction of the total one in case of multiple next-hops, is computed at line 11 and assigned

to contrib[d]. Line 12 is fundamental since it updates the load variable within the loop that

iterates over all destinations. This is fundamentally the implementation of the summation

used to define the LC (recall Definition 2.2), so much that the variable load will converge

precisely to LC(v). At line 13 node v broadcast to all its neighbors:

• the just updated contrib dictionary;

• the dictionary of selected next-hops (NH), as always updated by the underlying routing

protocol;

• the identifier of v to tag this broadcast message.

The neighbors of v will use this information to update their incoming load and their

previous-hops sets.

Receiving phase: The first action performed by v upon reception of a message from

a neighbor u is the scan of the NHu dictionary (i.e., the NH dictionary of neighbor u) to

check if v has been been selected by u as next-hop for some destination d (line 15-16). If so,

then u is added to the PH[d] set as previous-hop (line 17). Moreover, v accepts incoming

contributions only from previous hops: this is why line 18, that updates the dictionary of

incoming load loadIn, is protected by the if statement of line 16. Lines 19-21 reflect possible

changes of the routing choices of a neighbor u that, for some reason, may stop choosing v as

favorite next-hop for some destination d. In this case u must be removed from the PH set

(line 20) and contributions received from u must be forgotten (line 21).

3.1.2 Conceptual Illustration of Algorithm 1

Figure 3.1 gives an example of Algorithm 1 at work in a small network.

Step 1 This initial step (Figure 3.1a) highlights the peripheral nodes that generate a unitary

load contribution for any reachable destination, sending it to their favorite next-hop.

For example, node A can reach [B, C , D, E] via the next-hop C: the message above

the arrow drawn from node A to C indicates that A is sending to C one unitary load

contribution (the bold 1) for all these reachable destinations.

Step 2 In this second step (Figure 3.1b) load contributions are not just generated but also

aggregated. The message sent from C to D highlights, in fact, a non unitary load

contributions equal to 3: this 3 results from the aggregation of the unitary contributions
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Table 3.1 – Variables used by each vertex v in Algorithm 1

Symbol Description

V The set of all vertices (aka nodes)
neighbors The neighbors set of v

NH
A dictionary indexed by destinations. For each destination d 6= v, the correspond-
ing NH[d] is the set of next-hops selected by the underlying routing protocol run
by v to forward traffic towards d

PH
The complementary dictionary of NH. Each PH[d] entry is the set of previous hops,
i.e., those neighbors of v that selected v as next hop to reach d

loadOut For each destination d 6= v, loadOut[d] is the overall load routed by v towards d

contrib
Similarly to loadOut, contrib stores the outgoing load contributions, but here are
splitted in case of multiple next-hops. In fact: contrib[d] = loadOut[d]/|NH[d]|

loadInu The opposite dictionary w.r.t. loadOut. An entry loadInu[d] stores the incoming
load received by neighbor u for destination d

load The variable that, at convergence, will indicate the load centrality of v

received by A and B with the one generated directly by the same C . Here the focus is

on the load contributions sent by C only to D and E, i.e., the only two destinations that

C reaches via D. These contributions are, in fact, the only ones among those routed by

C that contribute to the LC of the node of interest D.

Step 3 At the end of the process (Figure 3.1c) D should own a table of received contributions

like the one shown here. Summing up all received contributions (except those destined

to D itself), node D can compute its own LC index.

Here some illustrative parallelisms between Figure 3.1 and Algorithm 1:

• The unitary load contribution sent by nodes A and B in Figure 3.1a is the same “1+”

that can be read at line 10 of Algorithm 1;

• The load contribution equal to 3 visible in Figure 3.1b would correspond to

loadOut[D] = loadOut[E] = 3, assuming C to be the node that is running Algorithm 1;

• The summation at the end of the table reported in Figure 3.1c is the same summation

that updates the variable load at line 12 of Algorithm 1;

Highlights and Concluding Remarks: The protocol described so far is general enough

to be executed in networks of arbitrary topology with the only assumption that an underlying

routing protocol must exist to keep next-hops updated. This version of the algorithm is

proposed to support any application that may exploit the LC notion. Anyhow, the main focus

of this thesis is the porting of centrality-based optimizations from centralized to distributed

networks. Section 3.2 presents a variation of the general Algorithm 1 that targets DV routing

protocols.
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(c) Step 3: LC Computation

Figure 3.1 – Illustration of Algorithm 1 at work in a small network. The focus is on
node D (in red), for which the LC will be computed step-by-step following the diffusion
process of load contributions.

3.2 Incrementally Deployable Algorithm for DV routers

A novel incrementally deployable algorithm for LC is presented in this section. It is proposed

as an extension to the fundamental Bellman-Ford algorithm and, introducing an only minimal

extension to the regular distance-vector mechanism, it empowers the computation of LC

in distributed networks. Furthermore, the new algorithm is designed in compliance of the

general considerations about extension mechanism for networking protocols, reported by the

IETF in RFC 6709 [117]. This means that the algorithm can be implemented extending a

real-world protocol and can also be incrementally deployed in production networks.

The algorithm will be introduced describing its possible incremental deployment in a

network where two kinds of nodes will coexist, namely:
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• Legacy nodes, i.e., those nodes hypothetically running a legacy version of a generic DV

protocol;

• and Upgraded nodes, that instead are supposed to run an updated version that integrates

the LC algorithm.

Compliance with standard extension mechanism (RFC 6709): The use of type-length-

value (TLV)12 packets is one of the main recommendations about the extension of networking

protocols provided by the IETF [117]. The use of TLVs simplify the extension of protocols:

defining a new TLV is enough to add a new type of message. The message will be syntactically

correct for any node, therefore it will be backward-compatible with legacy nodes. Only

upgraded nodes, however, will be able to decode and send the new TLV, while legacy ones

will simply not recognize the message type. In this case legacy nodes complying with the

IETF recommendations for protocol extension will store and silently forward the information

they are not able to interpret. This strategy for handling packets of unknown type is called

Silent Propagation. The silent propagation scheme is implemented by many popular routing

protocols such as OLSR [118], Babel [16] and BGP [79] that, in the present case, together

represent all possible routing families (respectively, Link-State (LS), DV and Path-Vector

(PV)). In particular the BGP supports the Silent Propagation scheme with its famous Optional

Transitive Attributes [119].

Modeling Legacy and Upgraded Nodes: The silent propagation scheme has been in-

troduced because it has been chosen to model the behavior of legacy nodes while handling

centrality TLVs, i.e., the new TLVs that will support the distributed computation of LC in the

incrementally deployable algorithm. Algorithm 2 is the full algorithmic description of the

legacy nodes model. Essentially a legacy node performs a generic DV protocol based on

Bellman-Ford and silently forwards the new centrality TLVs generated by upgraded nodes.

The logic of upgraded nodes, comprehensive of the generation and interpretation of central-

ity TLVs, is instead described by Algorithm 3. The new notation used to model legacy and

upgraded nodes extends the notation already introduced presenting the generic Algorithm 1;

this new notation is summarized in Table 3.2.

3.2.1 Legacy Nodes

A legacy node is modeled as a generic DV router: it embeds the Bellman-Ford algorithm with

the only further key aspect of owning and controlling a buffer (BUF) to temporarily store those

12 The type-length-value (TLV) is a popular encoding scheme for data communication protocols characterized
by a 3-fields format to define every type of messagge. The 3 fields are: “Type”, “Length” and “Value”. The type
field reports a standardized numeric code that indicates the type of the message, for example, a specific code
may indicate that a message is of type UPDATE. The byte-length of the message value is reported to let the
receiver know the limits of the message to be parsed. The value field is the actual message.
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Algorithm 2: Logic of a Legacy node v

1 Init:
2 RT[v].m= 0; RT[v].NH = [ ]; BUF[v] = [ ];

3 Repeat every δ seconds:
4 Cleaning(now); // Clean expired subTLVs from BUF
5 foreach u, d ∈ neighbors× RT() do
6 if u ∈ RT[d].NH then
7 fwd = BUF[d]; // forward subTLV only on SPs
8 send 〈d, RT[d].m, fwd〉 to u;

9 On receive 〈d, m, fwd〉 from u do
// Bellman-Ford

10 if d /∈ RT() OR m+ C[u]< RT[d].m then
11 RT[d].NH = [u];
12 RT[d].m= m+ C[u];
13 else if m+ C[u] == RT[d].m then
14 RT[d].NH.append(u);

15 Cleaning(u, d); // Clear old subTLVs from u to d
16 foreach stv ∈ fwd do
17 stv.holdTime= now+ ε;
18 BUF[d].append(〈u, stv〉); // Buffer subTLVs

/* Dictionary C[·] contains the cost of the links to neighbors */

TLVs that must be silently forwarded. Upgraded nodes will attach the centrality information to

UPDATE messages, also encoded as TLVs. The centrality information is therefore considered

to be a subTLV, since it will always be a sub-element of a parent TLV (namely, a parent

UPDATE). Centrality subTLVs will be recorded in the buffer mapped to the destination d

that was announced in the parent UPDATE message, BUF is thus a dictionary indexed by

destinations. At initialization the buffer is empty (line 2).

Legacy Sending phase: Lines (3-8) define the periodic routine for sending route-

advertisements. UPDATE messages are sent by node v to each neighbor13 u to announce

available routes for each known destination d (line 8). Beyond the classic advertisement

of the destination d with the related distance RT[d].m (recall Section 2.1 for the notation

introduced to manipulate Routing Tables) legacy nodes also:

• retrieve from BUF the subTLVs contained in recently received UPDATES for d (line 7);

• append the subTLVs to be forwarded (i.e., fwd) to the end of UPDATE messages.

13 In modern protocols it is required to send different DVs to different neighbors, e.g., to implement the
split-horizon technique, widely used to mitigate the well-known count-to-infinity problem.
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This way legacy nodes implement the silent propagation scheme. Thanks to the control

performed at line 6 subTLVs are forwarded only to those neighbors that are also next-hops

for the announced destination. It must be noticed that, consequently, subTLVs are forwarded

only along shortest paths. Lastly at line 4 a cleaning routine is invoked to discard all the

expired subTLVs. SubTLVs are in fact tagged at reception and expire if not updated within a

desired time interval.

Legacy Receiving phase: This phase is defined by lines 9-18 of Algorithm 2. A

legacy node processes advertisements of the form 〈d, m, fwd〉: d and m form the (desti-

nation,distance) pair typical of any DV protocol, while fwd is the list of subTLVs that neighbor

u may have silently forwarded to v. Lines 10-14 describe a classic update of the RT according

to the Bellman-Ford criterion. Neighbors are selected as NH if they offer the shortest-path

to reach the advertised destination. Notice that multipath is supported, with more than a

single next-hop annotated in the routing table if more neighbors offer alternative equivalent

paths (line 14). Legacy nodes cannot parse unknown subTLVs by assumption. Unparsed

subTLVs will be therefore simply stored in BUF indexed by d, marked with the id of the

sending neighbor u, and tagged with a time validity limit (as shown in lines 16-18). Legacy

node discards previous information received by the same neighbor for the same destination

before storing a new subTLV (line 15).

3.2.2 Upgraded Nodes

An upgraded node can generate and parse subTLVs. SubTLVs are the minimal amount of

information required to run the incremental deployable protocol for the computation of

LC and essentially encode the load contributions already seen in the general Algorithm 1.

Algorithm 3 describes the logic of an upgraded node. Many fundamental mechanisms that

were present already in the general Algorithm 1 are preserved in the behavior of upgraded

nodes. For example, an upgraded node (Algorithm 3) can:

• generate and send load contributions (lines 5-12);

• store and aggregate received contributions (lines 14-17);

• sum up all received contributions to estimate its own LC index.

Upgraded Sending phase: This is the phase in which an upgraded node generates

and sends load contributions, encoded as subTLVs. For instance, compared to a standard

legacy node, at line 7 it is possible to notice the generation of the unitary load contribution,

assigned to the local variable loadOut. In the next lines (8-9) the contributions to be sent

towards the announced d are aggregated in loadOut. The reader should notice that the

semantics of the loadOut slightly changed from the one used in Algorithm 1. Before it was a
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Algorithm 3: Logic of an Upgraded node v

1 Init:
2 RT[v].m= 0; RT[v].NH = [ ]; RT[v].loadIn= { }
3 Repeat every δ seconds:
4 Cleaning(now) // Remove expired contributions
5 foreach u, d ∈ neighbors× RT() do
6 if u ∈ RT[d].NH then
7 loadOut= 1 // Generate/send contrib on SPs
8 foreach u ∈ RT[d].loadIn() do
9 loadOut += RT[d].loadIn[u] // Aggregate received contributions

10 contrib= loadOut/|RT[d].NH|
11 stv= (v, u, contrib) // subTLV with source v sent via u
12 send 〈d, RT[d].m, stv〉 to u

13 On receive 〈d, m, fwd〉 from u do
/* (Omitted) Bellman-Ford as in Algorithm 2 */

/* Process list of subTLVs attached to d */
14 foreach stv ∈ fwd do
15 source, rNH, contrib= stv
16 RT[d].loadIn[source, rNH] = contrib
17 RT[d].loadIn[source, rNH].holdTime= now+ ε

/* The load centrality of v is given summing up all contributions in RT().loadIn. */

Table 3.2 – Extended Notation for Legacy and Upgraded nodes

Field Notation Description

Buffer BUF
dictionary mapping destinations d to the list of subTLVs contained
in recent advertisements for d

SubTLV stv
tuple of information, appended to a parent TLV such as an UPDATE

message

Forwarded subTLVs fwd list of subTLVs

Source of load source id of the upgraded node generating a contribution

Remote NH rNH next-hop selected by a remote upgraded node to forward its subTLVs

dictionary collecting all load contributions sent out from v, now it is instead a local variable

that, iterating over all destinations d, at the end of the aggregation loop converges to what

was previously defined as loadOut[d]. Changing loadOut into a local variable makes the

algorithm more memory-efficient. Also contrib is now a local variable, as usual it represents

that outgoing load splitted among all possible NH, and is thus equal to loadOut/|RT [d].NH|
(line 10). A subTLV defining a load contribution is finally generated at line 11 in the form of a
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3-ple (v, u, contrib). Essentially node v tags with its own identifier the just generated contrib

and also specifies that u is a favorite next-hop for v. The so formed stv is then appended to

the UPDATE message sent at line 12.

Upgraded Receiving phase: In the upgraded receiving phase, described by lines 13-17

of Algorithm 3, the update of the Routing Table according to the Bellman-Ford criteria has

been omitted, as it is the same of Algorithm 2. Unlike a legacy node an upgraded one does

not ignore the subTLVs attached to received UPDATES but it parses them as shown on lines

14-17. In particular at line 15 a subTLV is unpacked into three pieces of information:

• source: the id of the remote node that generated this contribution;

• rNH: the NH towards which the remote node sent the contribution;

• contrib: the amount of forwarded load.

The reader should notice the variable-names chosen by an upgraded node when parsing a

received subTLV. Consider, for instance, that a received subTLV may not come from another

upgraded node, but it may arrive after a chain of silent forwardings by several legacy nodes.

The source tag in a subTLV may therefore identify a remote upgraded node, not necessarily

a neighbor of v. For the same reason rNH is just the next-hop that the remote source node

chose as his favorite next-hop. Received contributions are stored in the RT, indexed by

their source and rNH (line 16): indexing contributions also by rNH is needed to distinguish

contributions originally splitted by the same remote source. Without the rNH information it

would be impossible to sum up these kind of contributions in aggregation points reached

after flowing through different paths. Figures 3.2 and 3.3 illustrate two example scenarios

to highlight the important role of the source and rNH tags used by upgraded nodes to process

received contributions correctly.

The time validity of contributions stored in loadIn is limited (line 17). The time validity

of contributions is essential to properly forget those contributions that comes from paths

that, because of some remote routing decision, do not cross anymore node v. Expired

contributions are discarded invoking periodically a cleaning routine (line 4).

3.2.3 Conceptual Illustration of Algorithm 3

Figures 3.2 and 3.3 illustrates two main scenarios motivating the introduction of the source

and rNH tag in the contributions generated by upgraded nodes. In these figures upgraded

nodes are represented by gray circles and labeled with capital U, while legacy nodes are

colored in light blue and are labeled with a capital L. Messages (i.e., contributions) are

represented by triples of the form 〈source, rNH, contrib〉 exactly as on line 15 of Algorithm 3,

with arrows to indicate the direction of the message propagation.
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The main problem from an upgraded node is to understand if an incoming contribution

generated by the same source is a duplicate, and must be discarded, or if it is a fraction of a

contribution splitted by some remote source node to be merged with other similar fractional

contributions.

Figure 3.2 illustrates the case of a duplicate contribution correctly discarded by an

upgraded node.

• For instance, in Figure 3.2a the unitary contribution generated by the upgraded node

U1 is received from the legacy node L1 that, being unable to parse upgraded subTLVs,

blindly forwards the unparsed information on both his outgoing links, erroneously

duplicating the received contribution.

• Because of this error in Figure 3.2b the reader can notice how L2 and L3 keep blindly

forwarding the duplicate contributions so that UD receives both of them from L4. How-

ever, UD understands these are duplicates because they report the same (source, rNH)
tuple, so it is able to discard one of the two.

L3

L2

U1
L4L1 UD

Silent propagation issue:

No contribution splitting

<UD, L1, 1>

(a) Erroneous duplication of contributions.

<UD, L1, 1>

<UD, L1, 1>

Duplicate message!

One can be discarded

L3

L2

U1
L4L1 UD

(b) Correct detection of duplicates: UD notices that received contributions share the same (source, rNH) tuple
and correctly discard one of the two.

Figure 3.2 – A scenario where an upgraded node (UD) running Algorithm 3 is able to
distinguish and discard duplicate contributions erroneously forwarded by legacy nodes.
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Figure 3.2 illustrates instead the case of properly splitted contributions that must be

processed accordingly, without being mistakenly considered duplicates.

• In Figure 3.3a the upgraded node U2 identifies L5 and L6 as equivalent next-hops to

reach UD, therefore, it halves his contribution before sending it to L5 and L6.

• In Figure 3.3b UD receives two contributions reporting the same source, a warning

symptom of duplicates. However the two contributions have been tagged by the source

U2 with different rNH fields: notice, in fact, the red subscripts for the rNH fields present

in the messages that reach node UD. Essentially, thanks to rNH, an upgraded node can

correctly merge contributions splitted remotely in the network by some other upgraded

node.

UD

L6L5

U2

<UD, L5, 1/2> <UD, L6, 1/2>

Splitting made by 

source node

(a) Compared to Figure 3.2a, this time the contri-
bution splitting is performed appropriately by an
upgrade node (U2) before being received by legacy
nodes.

<UD, L6, 1/2><UD, L5, 1/2>

Merging thanks to 

“Remote Next-Hop”

UD

L6L5

U2

(b) Even if UD receives two contributions tagged
with the same source, thanks to the different rNH
fields UD becomes able to merge the contributions,
instead of erroneously discard one of the two.

Figure 3.3 – A scenario where an upgraded node (UD) running Algorithm 3 is able to
correctly merge contributions thanks to the rNH tag, which enables the correct distinction
between different contributions sharing the same source.

3.3 Theoretical Analysis

The convergence properties of Algorithm 1 are studied in Section 3.3.1:

• The proof of its convergence is elaborated in Section 3.3.1.1, together with corollaries

that fix the time bounds for the algorithm execution in failure-free system epochs;

• Theorems presented in Section 3.3.1.1 are validated, via simulation, in Section 3.3.1.2.

The algorithm accuracy is further studied in Section 3.3.2, in particular:
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• A sanity-check is performed in Section 3.3.2.1 to verify that the implementation of

Algorithm 1 computes correct values of LC, i.e., the same values computed by a well

known graph manipulation library;

• Section 3.3.2.2 studies the error in estimating the LC in partial deployments of upgraded

nodes that run Algorithm 3;

• Section 3.3.2.4 exploits rank correlation coefficients to determine if the approximated

LC indexes, computed in partial deployments, preserve the ranking of nodes defined

by their theoretical centrality.

3.3.1 Convergence Study

3.3.1.1 Proof of Convergence

The proof that for any node v running Algorithm 1 the load variable eventually converges to

LC(v) is provided here. The proof is based on the simple observation that paths selected

by routing protocol are acyclic and non-infinite. Therefore, for non-infinite sequences of

failures and assuming that routing choices are stable for a long enough period, then load

contributions will necessarily be sent and aggregated along the paths from any source to

any destinations, which is enough to let load eventually converge to LC(v). The following

definitions support the proof:

Def. 3.1: Path Let p(s, d) = [(s, u0), (u0, u1), . . . , (un, d)] be a (necessarily finite and acyclic)

sequence of edges representing a shortest path from s to d. If appropriate for the context,

p(s, d) can be simplified to be a sequence of nodes [s, u0, u1, . . . , un, d].

Def. 3.2: Routing Graph Let Gd = (V, Ed) be the “routing graph induced by d”, i.e, the

spanning tree rooted in d that includes all the shortest paths from any source s ending in d,

as computed by the underlying routing protocol.

Notice that Ed = {(i, j) : (i, j) ∈
⋃

∀s∈V\{d} p(s, d)}.

Def. 3.3: Collection of all Routing Graphs Let eG = {Gd = (V, Ed) : d ∈ V} be the collection

of all routing graphs induced by each node of the network.

Theorem 1:

If eG remains stable for a time long enough then, for each node v, the ‘load’ variable will

eventually converge to the correct LC(v).

Proof. For each destination d, the routing protocol generates a routing graph Gd that is a

DAG (directed acyclic graph) made of all the (potentially multiple) shortest paths from any s
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to d. Let S = {u1, u2, . . . , u|V| = d} be a sequence representing the reversed topological sort

of Gd obtained via a breadth-first search initiated in d. Notice that the last nodes appearing

in S are the closest to d, while the first ones are the furthest. It will be proven that each

node v in S correctly accumulates the load contributions destined to d by induction on the

sequence of nodes.

Base: By topological sort and given that Gd is a DAG, then u0 is diametrically opposed to

d, thus the set PH[d] of this node is empty. The load going out from node u0 will be set to 1

(loadOut[d] = 1) and, as expected, the load destined to d that crosses u0 is 0. The unitary

contribution sent by u0 will be later splitted among the next-hops (NH[d]) of u0.

Inductive hypothesis: Consider now a generic node uk in S, and assume that all previous

nodes in S, i.e., the nodes belonging to Prev = {u0, . . . , uk−1}, already computed correctly

their loadOut[d] variable. All nodes belonging to the PH[d] set of node uk are included

in Prev by topological sort. All the previous-hops —that are correct by hypothesis— will

eventually send their load contribution to uk, updating the corresponding entry in the loadIn

register of uk.

Conclusive step: Let’s rename the generic node uk as v. Nodes v correctly receives load

contributions from its previous-hops because all of them are correct by inductive hypothesis.

Provided that v is a generic node and that d has not been fixed, then it is possible to state

that any node v accumulates properly all the incoming contributions for any d, which is

necessary and sufficient to correctly update its load variable (recall the loop at lines 9-12 of

Algorithm 1). QED

In this proof for Theorem 1 it is assumed that shortest-paths are stable for a long enough

period of time, necessary to let the centrality computation converge according to the load

diffusion process. Results are not definitive until the the load diffusion process converges,

and becomes temporarily wrong in case of network dynamism. The correctness of algorithm

is recovered when the routing process stabilizes again because, at that point, the periodic

broadcast of load contributions will drive again towards the correct computation of the LC

indexes.

Upper bounds to the convergence time: It will be shown that, without network dy-

namism and without failures, the load diffusion process converges in a number of steps that

is in the worst case proportional to then network diameter. Let’s assume that:

• nodes are synchronized;

• the time to propagate a message is small but not null;

• the re-transmission interval δ dominates over the propagation delay.
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Therefore, each node v receives updates from its neighbors right after having broadcast

its DV. The time to propagate an information over a k-hops long path is thus ≈ k×δ seconds.

Assuming that the load diffusion process starts after the convergence of the routing protocol,

then the following corollary holds:

Corollary 1:

Given a stable collection of routing graphs eG with diameter D, the convergence time ∆t of

Algorithm 1 is in the worst case proportional to D− 1.

Proof. The load of a node v converges when v has received all contributions from all the

shortest-paths (towards any d) that cross the same v. Let’s consider a generic path p(s, d) =
[s, u1, u2, . . . , d] towards d that crosses v. If v is an endpoint of this path, i.e., v = s or v = d,

then loadOut[d] converges immediately to zero, since no contribution for d will ever cross

node v. Consider now S to be a topological sort of the graph induced by Gd , and let be v = uk.

For k = 1 then the loadOut[d] variable of v converges after receiving all contributions from

all paths of the form p(s, d) = [s, u1 = v, . . . , d], and this happens in one propagation step,

thus after δ seconds, thanks to the topological sort. In general, the loadOut[d] variable of a

node v that is the k-th element of a path p(s, d) converges in k steps. In the worst case v is

diametrically opposed to some destination d, i.e., v = uD−1. In this case the loadOut[d] of v

converges in δ(D− 1) seconds. Hence, after D− 1 steps all nodes correctly updated their

loadOut[d] variable for any d, which is sufficient to let load converge. QED

When all nodes finished to compute their own LC index, they can disseminate it in the

network to let all nodes learn the LC indexes of all others. This is useful, for example, if

nodes need to locally compute a global ranking of nodes, or to normalize their own LC

index w.r.t. to all other indexes. In general, after a first load diffusion process, a following

dissemination process of LC indexes can take further D steps to complete. In conclusion, the

time required to complete both the load diffusion process and the dissemination of the LC

indexes will be, in the worst case, proportional to 2×δD.

3.3.1.2 Theory validation via simulation

A Discrete Event Simulator (DES) for Algorithm 1 as executed on top of a generic DV router

has been developed to measure the convergence time of both the load diffusion and the LC

dissemination processes, so to validate the time upper-bounds discovered in Section 3.3.1.1.

This simulator takes as input a network-graph, then uses a virtual clock to trigger in each

node a send event periodically every δ time units. The measured convergence times will be

therefore reported as multiples of δ. A small random jitter has been added to all events to

avoid perfect synchronization of messages. Within a simulation it is possible to measure, for

each node:
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• The time needed to stabilize routing choices, i.e., to finalize the selection of next-hops

included in NH (TNH);

• The “self-convergence time” (Tsl), i.e., the time at which each node finishes to compute

its own value of centrality;

• The time Tl to learn the final LC index of all other nodes in the network.

A simulation ends when all nodes converge to steady state, i.e., when all nodes stabilized

their routing tables, finished to compute their own LC index, and also learned the one of all

other nodes. The slowest node to converge determines the full convergence of the simulation.

The upper-bounds on the convergence time discovered in Section 3.3.1.1 indicate a

linear growth proportional to the network diameter D: for this reason, the simulator has

been run over random graphs of growing diameter D ∈ {3,4,5,6,7}, generated according

to the well-known Barabási-Albert and Erdős models. For each value of D and for both

random-graph families, 40 different graphs with 1000 nodes each have been generated.

These graphs have been provided as input to the simulator.
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(b) Erdős networks.

Figure 3.4 – TNH and Tl vs. network diameter, with 99% confidence interval, for Barabási-
Albert and Erdős networks. Copyright © 2020, IEEE.

Figures 3.4a and 3.4b show a linear growth of the average convergence time (namely of

TNH and Tl) with the network diameter, with the same trend visible for both Barabási-Albert

and Erdős networks. This trend confirms the proportionality with the diameter stated in

Corollary 1.

The time necessary to stabilize the selection of next-hops should be approximately equal

to D [δ], as DVs must travel across the whole network to let each node discover also those



46 3.3 Theoretical Analysis

destinations that are diametrically opposed in the graph. However, in Figures 3.4a and 3.4b,

TNH is generally smaller than D. This result derives from the random jitter that has been

added in simulation, while Corollary 1 has been elaborated under the assumption of perfect

synchronization. It can thus happen that, approximately at the same time unit, a node i first

receives a DV from neighbor j and then immediately propagates it to a further neighbour k,

accomplishing two propagation steps in one time unit. This explains the fact that TNH is in

general smaller than the expected value D.
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Figure 3.5 – TNH , Tsl , and Tl for all the nodes, 40 simulations, Erdős graphs with diameter
7. Copyright © 2020, IEEE.

The theoretical analysis presented in Section 3.3.1.1 predicted the time to complete

the LC indexes dissemination after routing convergence to be upper-bounded by 2× D [δ].
Simulation results indicate that Tl is in practice significantly lower, and this faster convergence

is possible thanks to the parallelization of the the load-diffusion and LC-dissemination

processes. This parallelization is made clear by Figure 3.5, that reports the TNH , Tsl and Tl

values for all nodes of each of the 40 Erdős networks with diameter 7 used in simulation.

Networks with different parameters behave similarly and are not shown for brevity.

For instance, it is possible to notice that at time 6, when some nodes are the last to

finalize their routing choices, some other nodes have already reached the self convergence.

Similarly, at time 10 all nodes reached self convergence, but some others already reached full

convergence. This happens because UPDATE messages carries all the information necessary

for the three processes, namely for routing, to spread load contribution and to disseminate

LC indexes, thus the three processes end up to be executed in parallel, reducing the expected
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time to drive the network toward full convergence. At last, the reader can notice also the

group of nodes that reaches self-convergence at the very first time unit: these are the leaf

nodes produced by the Erdős generator whose centrality is zero and never changes since

they are endpoint for all the shortest-paths they belong to.

3.3.2 Accuracy Study

• Section 3.3.2.1 reports the results of a sanity-check experiment. First, Algorithm 1 has

been implemented on top of a real-world DV protocol, namely Babel, then a network

graph has been chosen. At this point the LC indexes computed in emulation by the

experimental implementation of the algorithm have been compared with the same

values computed offline by a popular graph-manipulation library (python-NetworkX14)

verifying this way that experimental results match with the expected theoretical ones.

In this experiment all nodes were participating to the distributed computation of

centrality, thus it can be considered as an experiment that mimes a full-deployment

scenario.

• Section 3.3.2.2 reports instead the theoretical analysis of the error that afflicts upgraded

nodes while estimating the LC indexes in partial deployment scenarios.

• Section 3.3.2.4 completes the accuracy study with an analysis of the ranking-

preservation properties in partial deployments. The “ranking-preservation” will be

studied in terms of the Spearman rank-correlation coefficient, used in the present

case to quantify the similarity between: i) centrality rankings elaborated over LC

indexes computed in simulated partial deployments with ii) the correct nodes’ ranking

computed in full-deployment.

3.3.2.1 Algorithm Correctness in Full Deployments

A sanity-check experiment has been conducted to validate the implementation of Algorithm 1

in Babel. Figure 3.6 reports the results by showing a comparison between empirical (black

crosses) and theoretical (red dots) LC values as computed, respectively, with the Babel-

implementation and with NetworkX for all nodes of a network. To collect the empirical LC

indexes the open-source Babel routing daemon, babeld,15 has been customized so to embed

the distributed algorithm for load centrality. Then, a full DV network running instances of the

customized babeld has been emulated thanks to the popular network emulator Mininet.16

The network graph made of all the shortest-paths selected by the virtual babeld nodes has

14 The NetworkX documentation: https://networkx.github.io/documentation/stable/index.html
15 The open-source code of babeld is available on Github: https://github.com/jech/babeld
16 More on Mininet, the Virtual Network Emulator, online: http://mininet.org

https://networkx.github.io/documentation/stable/index.html
https://github.com/jech/babeld
http://mininet.org
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Figure 3.6 – Comparison of LC indexes computed: i) on-line with Algorithm 1 imple-
mented on top of babeld and ii) off-line with NetworkX, for the same network-graph.
Copyright © 2020, IEEE.

been recomputed, off-line, navigating through the routing-tables dumped by all nodes at

experiment convergence. The so reconstructed network graph has been provided as input

to NetworkX: the LC indexes computed by NetworkX have served therefore as ground-truth

values. This sanity-check experiments has been repeated many times emulating different real-

world networks for which their topology was known and made available [8]; for example,

Figure 3.6 reports the results of the experiment run by emulating ninux,17 the Wireless

Community Network of Rome.

For most of the nodes, the empirical LC index match exactly with the expected one, while

for a small fraction of nodes a little difference between empirical and expected LC can be

observed. These minimal differences derive from the presence, in the network graph, of

multiple equivalent shortest-paths, that are taken into account by NetworkX but ignored

by babeld. This latter, in fact, selects a single next-hop for each destination. However, the

sum of all LC values is the same for both empirical and theoretical values: this means that

babeld and NetworkX always select shortest-paths of the same length (in number of hops),

and confirms the intuition that the observed differences are only due to the different splitting

of contributions performed with NetworkX.

3.3.2.2 Error Analysis in Partial Deployments

This section is devoted to the formulation and the analysis of the error that afflicts the

upgraded nodes (running Algorithm 3) while estimating the LC in an only partial deployment.

17 More on ninux, am Italian wireless community network: http://ninux.org/FrontPage

http://ninux.org/FrontPage
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• Let H ⊆ V be the set of upgraded nodes of a network-graph G(V,E) that, considering

a partial deployment, is necessarily a subset of the overall set of nodes in the network;

• Let W = V \H be instead the set of legacy nodes, complementary to H.

A node generates load contributions destined to all other nodes v ∈ V only if it belongs to

the H set, while a node w ∈W does not. An upgraded node h ∈H also i) aggregates and

splits load contributions as illustrated in Algorithm 3 and ii) estimates its own centrality

index and collects the estimates of all other upgraded nodes thanks to the dissemination

process. Legacy nodes only perform the silent propagation of centrality subTLVs as described

with Algorithm 2 just passing load contributions to their next-hops when sending UPDATE

messages. However, they do not generate nor collect any load contribution so that the

overall load circulating in the network will be less than the load the would be diffused in a

full-deployment scenario. For this reason upgraded nodes can only underestimate their LC

indexes. This underestimate computed by upgraded nodes is defined as:

Def. 3.4: Partial Load Centrality

LC ′(h ∈H) =
∑

h∈H

∑

d∈V

θh,d(h) (3.1)

Equation (3.1) differs from the original definition of Load Centrality (Equation (2.2)) by

the fact that the summation of contributions is not over all possible shortest-paths between

any source and destination s, d ∈ V, but just over those paths that go from upgraded nodes

(h ∈ H, i.e., the only that are sources of load) towards all other nodes. In the rest of this

section the error introduced by the Partial Load Centrality (Equation (3.1)) w.r.t. the correct

Load Centrality (Equation (2.2)) is formulated and studied analytically.

Error Function Definition

Let H = |H| be the number of upgraded nodes. Then, the definitions of Average Normalized

Load (or Partial) Centrality are given:

Def. 3.5: Average Normalized Load Centrality

4
LC =

1
N

∑

v∈V

LC(v) =
1
N

∑

v∈V

2 LC(v)
N(N − 1)

=
2
∑

v∈V LC(v)
N 2(N − 1)

(3.2)

Def. 3.6: Average Normalized Partial Centrality

4
LC ′ =

1
H

∑

h∈H

LC ′(h) =
1
H

∑

h∈H

2 LC ′(h)
H(N − 1)

=
2
∑

h∈H LC ′(h)
H2(N − 1)

(3.3)
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In Equations (3.2) and (3.3) averages are computed over the number of nodes that are sources

of load contributions, thus over N in Equation (3.2) and over H in Equation (3.3). Moreover,

the normalization coefficient that indicates the number of pairs of endpoints involved in the

load diffusion process changes accordingly. Provided these definitions, the error is formulated

as the (normalized) deviation of the partial centrality from the load centrality:

Def. 3.7: Average Normalized Relative Error

EH =

4
LC −

4
LC ′

4
LC

(3.4)

Error Characterization

The relative error EH, defined by Equation (3.4), will be analytically characterized rewriting

it so to highlight the amount of “missing load contributions": missing because not all nodes,

but only those belonging to the H subset, generate and accumulate load during the diffusion

process. This reformulation focused on the amount of lost contributions eases the the study

of the dynamic of EH converging to zero for H approaching N , i.e, while deploying always

more upgraded nodes.

To define the amount of lost contributions it is first necessary to compute the expected

overall load circulating in the ideal full deployment scenario, when all nodes are upgraded.

The overall network load requires, to be well defined, the auxiliary definition of path length

formalized as:

Def. 3.8: Path length The length of a path p(s, d) is equal to |[s, . . . , d]| − 1

• Multiple shortest paths for the same endpoints s and d have the same path length (by

assumption of being shortest);

• For s directly connected to d, i.e., when p(s, d) = [s, d], the path length is 0.

This definition of length is given as it is measures well the number of nodes crossed in a

path. This number is important in relation with the definition of LC (Definition 2.2), which

states that load contributions are accumulated only by “crossed-by nodes”, but not by the

endpoints of a path. The overall network load can be now computed via Theorem 2:

Theorem 2: Overall Network Load

∑

v∈V

LC(v) = N(N − 1) l (3.5)

where
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• N(N − 1) is the number of (s, d) ∈ V × V pairs in G(V,E) with s 6= d;

• and l is the average shortest-paths length in the network graph G(V,E).

Proof. Let’s initially focus on Figure 3.7a, that shows how a load contribution is propagated

over a single path from s to d. This figure demonstrates how the load contribution originated

by s increases by 1 the load centrality of all nodes crossed in the path p(s, d). This means

that, for each pair of endpoints (s, d), the load contribution originated by s will induce an

overall increment of the load centrality in the network that is equal to |[s, . . . , d]| − 1. By

definition of path length (Definition 3.8), this increment is equal to the length of the shortest

path p(s, d).
This holds also if a contribution is splitted over multiple shortest paths, as illustrated

by Figure 3.7b. This claim is supported by an immediate observation. Let k = |{uk : uk ∈
⋃

s,d p(s, d)∧|[s, . . . , uk]| = i > 0}| be the number of those nodes uk belonging to some of the

multiple shortest paths from s to d that are at distance i > 0 from s. The sum of the fractional

contributions owned by all the k nodes must add up to 1 because, by algorithm construction,

at all branching points at distances < i the contribution has been equally splitted. A trivial

induction over i proves that this holds for any value of i. Hence, as for Figure 3.7a, the

load increment in the network induced by a pair of endpoints is equal to the length of the

(multiple) shortest paths also in case of splitting.

s d

Hops

1

0.5

0.25

0.25

0.5

1

1 2 3 4

0.5

s
d

1 1 1 1a)

b)

(a) A load contribution crossing grey nodes while being propagated over a
unique p(s, d) path.
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(b) Nodes at the same distance from s are aligned in the same column: the
sum over the nodes belonging to the same column is always equal to 1.

Figure 3.7 – Examples of the centrality variations induced by a load contribution sent by
a source s towards a destination d. Copyright © 2020, IEEE.
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This observation is valid for all the N(N−1) possible pairs of endpoints (s, d). Introducing

the notion of average path length l, the sum of the lengths of all shortest paths (i.e., the

overall load in the network) can be succinctly rewritten as reported in Theorem 2. QED

Substituting the overall network load (Equation (3.5)) in Equation (3.2), the Average

Normalized Load Centrality can be rewritten as:

4
LC =

2
∑

v∈V LC(v)
N 2(N − 1)

=
2 N(N − 1) l
N 2(N − 1)

=
2l
N

(3.6)

Theorem 2 enables the computation of the overall network load in a full deployment. A

similar theorem is necessary to compute the overall load estimated in a partial deployment,

i.e., to compute
∑

h∈H LC ′(h). The approach to build this desired theorem will be similar to

the one adopted in the proof for Theorem 2, where two key notions introduced were:

1. The average path length l;

2. The number of different pairs of endpoints s, d ∈ V × V with s 6= d, equal to N(N − 1),
that indicates how many load contributions are generated by source nodes.

These two notions must be updated to contemplate a partial deployment scenario in which

only a subset of nodes, namely H, generate and accumulate load contributions and, further-

more, these contributions are propagated not over all shortest paths but only over those that

connect upgraded nodes to all others. For these reasons:

1. The average path length l used in Theorem 2 will be updated into l ′, that now indicates

the average length of those paths of the form p(h, d), i.e., those that connect upgraded

nodes h ∈H with any other node d ∈ V.

2. Given that legacy nodes, by legacy model, do not accumulate load, then the contribu-

tions that cross nodes w ∈W do not contribute to the overall estimated load and must

be discarded. Rather, only contributions crossing the h ∈H nodes should be summed

up.

Taking into account these two considerations, the Overall Estimated Load is defined as:

Theorem 3: Overall Estimated Load

∑

h∈H

LC ′(h) = H(N − 1)l ′ −
∑

w∈W

LC ′(w) (3.7)

The Average Normalized Partial Centrality (Equation (3.3)) can now be rewritten thanks to

Equation (3.7):
4

LC ′ = 2
H(N − 1)l ′ −

∑

w∈W LC ′(h)
H2(N − 1)

(3.8)
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The conclusive reformulation of the relative error is achieved applying both Theorems 2

and 3 to Equation (3.4):

EH =

4
LC −

4
LC ′

4
LC

=

�

2l
N
− 2

H(N − 1)l ′ −
∑

w∈W LC ′(h)
H2(N − 1)

�

÷
2l
N

= 1−

�

�2
H(N − 1)l ′ −

∑

w∈W LC ′(h)
H2(N − 1)

�

×
N

�2l

= 1−
N

l

�

�����H(N − 1) l ′

H�2����(N − 1)
−
∑

w∈W LC ′(h)
H2(N − 1)

�

= 1−
N

l









l ′

H
︸︷︷︸

E1

−
∑

w∈W LC ′(w)
H2(N − 1)

︸ ︷︷ ︸

E2









(3.9)

• E2 is the term that weights the amount of contributions not accumulated by legacy

nodes since they do not recognize centrality subTLVs. This term grows (decreases)

with the number of legacy (upgraded) nodes: when E2 grows the error EH gets larger.

• E1 decreases deploying more upgraded nodes, but E1 has an opposite sign compared

to E2 and, therefore, when E1 grows the error decreases.

3.3.2.3 Error function analysis

The interpretation of the error EH is based on the analysis of the corner cases for the error

term E2. Setting E2 to zero models a network where legacy nodes do not generate load

contributions and, furthermore, they are chosen among the graph nodes that have zero

centrality. Setting E2 = 0 makes the error function becomes:

EH = 1−
N
H

l ′

l
(3.10)

Equation (3.10) is relevant since it models the approximation error of betweenness centrality

estimation techinques based on shortest-paths sampling starting from a set of selected

pivots [98]. This is a popular approach, widely adopted to mitigate the scalability issues

faced by centralized algorithms when the number of nodes grows up to billions of nodes [103].
The sample average paths length l ′ quickly converges to l if pivot-nodes are chosen at random,

in this case the error is dominated by N/H. However, Equation (3.10) does not actually

model any potential partial deployment of upgraded nodes protocol. In fact, in the other

works all the nodes belonging to some sampled path contribute to the estimation of centrality.

In the present context of a partial deployment scenario, instead, the potentially sampled
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legacy nodes would not generate nor estimate their centrality. This is why the contributions

of w ∈W nodes are subtracted in Equation (3.7).

How big can be E2 in any proper (W 6= ;) partial deployment scenario? Two are the

possible further corner cases:

1. W includes all and only the nodes with zero centrality;

2. W includes all and only the nodes with with non-zero centrality.

In the first case
∑

w∈W LC ′(w) = 0⇒ E2 = 0. This is the case that leads to the already

discussed Equation (3.10). In this benign case, the fact that legacy nodes are not measuring

their load centrality does not increase the error. In the second case, all centrality contributions

propagated in the network cross only w ∈W nodes, that together would account for the

overall load circulating in the network, which is equal to H(N − 1)l ′. If so, then E1 = E2⇒
EH = 1; when this happen, for any sampling of shortest-paths the relative average error will

remain equal to 1. Consider, for example, a star graph: if H does not include the center of

the star then the relative error will always be 1 irrespective of the size of H.

Except for the first corner case, in a proper partial deployment (W 6= ;) some contributions

will be necessarily lost, so in general E2 > 0. The second corner case analysed the maximum

value that E2 can reach: it turned out that E2 can grows up to be equal to E1 thus E2 ≤ E1.

The combination of these two observations provides the bounds for EH:

1−
N
H

l ′

l
< EH ≤ 1 (3.11)

Theorem 4:

EH decreases upgrading more nodes.

Proof. EH decreases when the E1 − E2 difference grows: showing that this difference is

always positive and that its trend is always increasing while upgrading more nodes will prove

Theorem 4. To show that E1 − E2 > 0 it is sufficient the last observation that concluded the

analysis of the corner cases for E2:

E2 ≤ E1 = E1 ≥ E2⇒ E1 − E2 ≥ 0 (3.12)

Remember that E2 is maximum when W contains all and only the nodes crossed by con-

tributions, that in this malign case get all lost, but these lost contributions are recovered

moving w ∈ W nodes to the H set. This upgrading procedure necessarily reduces the E2

term, amplifying the E1 − E2 difference, that therefore exhibits an increasing trend. QED

To have E1 ≥ E2 is fundamental, as it means that upgrading more nodes is beneficial

and reduces the average estimation error. However, the convergence to zero of the relative
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normalized error is slow. In fact, even in the wishful case where E2 ' 0 and the average sample

path legth approximates well the true average (l ′ ≈ l ⇒ l ′/l ≈ 1), then EH ' 1− N
H , and for H

covering the 80% of all nodes the error is approximately equal to EH ≈ 1− 100/80 = −0.25.

Therefore, despite the high penetration ratio of upgraded nodes, the underestimate is still

affected by a 25% error.

Concluding remarks

The error analysis concluded that upgrading more nodes is beneficial to reduce the estimation

error but, unfortunately, the convergence to the correct computation of LC indexes is slow

and requires a very high penetration ratio of upgraded nodes in the network. Anyhow, for

most applications of centrality, the centrality is exploited just as an indicator of the relative

importance of nodes respect to the others. The estimation error is therefore less relevant

compared to centrality rankings, which are instead crucial and convey the truly desired

information. The focus of Section 3.3.2.4 is thus shifted from the estimation error to the

ranking preservation properties of the incremental algorithm. Through the analysis of rank

correlation coefficients it will be shown that, even for very small fractions of upgraded nodes,

the nodes ranking produced by the incremental algorithm are highly correlated with those

produced by an ideal computation of LC in a full deployment.

3.3.2.4 Preservation of the Ranking in Partial Deployments

Rank Correlation Coefficient

The Spearman’s rank correlation coefficient rs [120] measures the correlation between two

rankings. Formally, the Spearman coefficient of two variables X , Y is defined as the Pearson

correlation coefficient of their rankings, where a ranking is an order relationship for the

observations of a variable. The Spearman rs ranges in [−1,1]:

• rs = 1 if there is a monotonic and increasing association between observations of X

and those of Y;

• rs = −1 if, instead, an inverse decreasing association exists.

The Spearman coefficient tends to zero if there is no clear monotonic relationship between

X and Y. Table 3.3 reports the imaginary marks and ranks of several students in different

disciplines, also providing a few examples of the possible rs values.

Measuring the Rank Correlation

The legacy and upgraded nodes models (Algorithms 2 and 3) have been implemented in

a Python DES. This simulator enabled the computation of rankings based on the Partial
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Math Rank Science Rank Literature Rank Arts Rank

Alice 10 1 9 1 3 4 4 4
Bob 9 2 8 2 5 3 6 3
Charlie 5 3 6 3 8 2 8 2
Dave 4 4 4 4 10 1 9 1

rs(Math, Science) = 1; rs(Math, Ar ts) = −1.

Table 3.3 – The table reports the marks of 4 imaginary students in 4 different disciplines.
The best students in Math result to still be the best also in Science, while they have worse
marks compared to students that are good in Literature and Arts. These observed trends
are well captured by the Spearman’s rank correlation coefficient rs.

Load Centrality Equation (3.1). These rankings, computed for different penetration ratio of

upgraded nodes in different kind of networks, have been compared with the exact centrality

ranking computed with the general Algorithm 1. The different network-graphs have been

generated using 4 well known generators: the Waxman [121] and the Caveman [122]
random-graphs have been added to the already cited Barabási-Albert and Erdős models

(references in Section 3.3.1.2). The evolution of rs while increasing the penetration ratio of

upgraded nodes (from 10% to 100%) has been studied with results reported in Figure 3.8.
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Figure 3.8 – Spearman’s rs for Barabási-Albert, Erdős, Waxman, and Caveman graphs
for 1000 nodes and diameter 5 with 95% confidence intervals. Copyright © 2020, IEEE.

These results are the averaged outcomes of 50 repeated random experiments: 5 random

repetitions for 10 similar random graphs each with 1000 nodes and diameter 5. Each

experiment provided a measure of rs according to this methodology:
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• The exact centrality ranking of the nodes has been computed modeling a full deploy-

ment, thus setting H = V;

• For the given penetration ratio x , a random H subset covering that x% of V has

been chosen, performing then a simulation. Every experiment provides therefore an

estimation of the LC and an estimated ranking for the elements of H as well;

• Finally, the Spearman coefficient has been computed between the exact and the esti-

mated rankings (limited to the nodes in H).

Figure 3.8 reports only the results for graphs with 1000 nodes and diameter 5, but similar

trends have been observed also for different diameter values and for smaller graphs with 400

nodes. It can be noticed that the correlation rs exceeds 0.9 when the penetration ratio grows

above 30%, and this results remains valid across all the studied random graph families. The

correlation rs is always above 0.75 even at the minimum coverage, i.e., when H covers only

the 10% of the nodes. For greater coverages (above 50%), the estimated ranking is almost

perfectly correlated with the exact ranking, with rs always very close to 1.

Concluding remarks: On top of the results shown in Figure 3.8 it can be concluded

that the incrementally deployable algorithm provides accurate centrality rankings even at

low penetration ratio. This result makes the algorithm a good candidate tool to steer the

centrality-based optimization of network protocols, and works also in partial deployment

scenarios.

3.4 Application of the LC algorithm to DV protocols

The applications of centrality metrics in networking are numerous, as reported in the Back-

ground Section 2.5. Among these applications, this thesis focuses on the centrality-based

optimization of DV routing protocols. This section documents the porting of the already

mentioned Pop-Routing optimization technique [13,14] from LS to DV protocols, a porting

that is enabled by the distributed algorithm for the computation of Load Centrality (LC)

presented in Sections 3.1 and 3.2.

3.4.1 Porting Pop-Routing to DV protocols

Pop-Routing [13,14] is an optimization technique that minimizes the losses of traffic conse-

quent to a potential failure in the network, thanks to to the centrality-based tuning of the

timers that regulate the generation of control messages. In both LS and DV protocols, HELLO

messages are periodically broadcast by routers to implement the neighbor discovery process

or to detect the failure of already known neighbors. The timer that governs the sending of



58 3.4 Application of the LC algorithm to DV protocols

HELLOS is called TH , while the average overhead per link (if links are all configured with

a default value TH = tH), was defined to be OH in the original Pop-Routing papers [13,14].
The performance metric L that measures the losses in a network due to the failure of a node

i with betweenness centrality bi was defined as:

L(i) = VH tH(i)N(N − 1)bi (3.13)

with VH as the protocol parameter that specifies after how many consecutive lost packets

a link must be considered broken. The fundamental Pop-Routing equation, the one the

dictates the tuning of TH of each node (while keeping OH constant) and that enables the

minimization of losses (Equation (3.13)), was proven to be:

tH(i) =

p

di
p

bi

tH

∑N
j=1

Æ

b jd j
∑N

j=1 d j

∝
p

di
p

bi

(3.14)

where di is the degree of node i, and tH is the default TH value that determines the constant

value of overhead OH to be kept. Equation (3.14) essentially says that a node can self-tune

its tH(i) if it knows the di and bi of all other nodes. When nodes collectively perform this

tuning, they achieve the optimal distribution of timer values that minimizes the average

network disruption in case of failure, withtout increasing the control overhead OH .

Originally, the Pop-Routing tuning equation was successfully applied to LS protocols,

that make available to all nodes the network topological information necessary to solve

Equation (3.14). This same equation cannot be applied “as-is” to DV protocols, where nodes

do not own the required topological information. However, substituting in Equation (3.14)

the Betweenness Centrality (BC) with the LC, and consequently adopting the distributed

algorithm for LC in place of the centralized Brandes algorithm, then it is possible to explore

and evaluate the effectiveness of Pop-Routing also with DV protocols.

3.4.2 Implementation of the Algortihm for LC in a real DV protocol

Before describing the methodology chosen to evaluate the performance of Pop-Routing with

DV protocols and the related results, it is worthwhile to clarify some necessary modifications

introduced in babeld w.r.t Algorithm 1.

Dissemination of nodes degree

To distribute in the networks all the topological information required to compute Equa-

tion (3.14), DV routers should disseminate not only their LC value but also their degree.

To drop this requirement the tuning equation Equation (3.14) can be simplified into Equa-
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tion (3.15):

tH(i) =

p

di
p

bi

K (3.15)

by replacing the term
∑N

j=1

Æ

b jd j/
∑N

j=1 d j with some constant K. The network losses

are minimized even when the tuning of nodes is performed according to Equation (3.15),

however, in this case the control overhead OH will not match precisely with the true degree

distribution in the network. This disadvantage is compensated by the simplicity brought by

Equation (3.15), in fact, now nodes can perform the self-tuning knowing only their own LC

and degree. The results shown later in Section 3.4.3.4 for partial deployment scenarios are

obtained adopting the simplified tuning Equation (3.15). In these cases K has been chosen

to reproduce the same level of overhead OH that there were assigning a default tH = 1s to all

TH of all nodes.

Nodes vs. IP prefix

A graph-theoretic approach has been used so far to describe routing protocols, so that

UPDATES have been modeled to announce node-ids as origin/destination of traffic. However,

UPDATES of real protocols do not announce router-ids, but rather IP prefixes. Furthermore,

a single router may represent more than a destination, as it actually represents all the IP

prefixes that it exports in the network.

Babel dictates all UPDATES for any prefix to include a “router-id” tag that indicates which

router exported this prefix in the network, and routers propagate this tag when re-announcing

a learnt IP prefix. It has been therefore possible to merge the centrality contributions destined

to a given node (but virtually to different IP destinations) exploiting the mapping between

graph nodes (identified by their router-ids) and the IP prefixes they exported.

Protocol-specific heuristics

Pop-Routing over the customized implementation of Babel has been tested on different

networks with topologies that, as physical graphs, contain multiple shortest-paths to connect

some pairs of endpoints. In principle, a protocol supporting multipath could identify these

multiple, available, shortest paths, and split load contributions over them. However, the

chosen version of babeld always performs a tie-break and thus selects a single shortest path

only. Moreover, babeld implements an heuristic to suppress route flapping. This mechanism

prevents, for some time, the selection of a newly available path even if it is the minimum.

For these reasons, the experimental LC values computed with babeld experiments can

slightly diverge from theoretical ones, as already shown and justified in Section 3.3.2.1.

Anyhow, these LC indexes are the expression of the real choices that truly influence the
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routing and forwarding of packets, thus they are appropriate for the purpose of tuning TH

timers.

3.4.3 Performance evaluation

3.4.3.1 Methodology

The goal of the experimental performance evaluation has been to quantify the resilience

gain provided by Pop-Routing. To this end, the losses consequent to a random failure has

been measured in the same network configured, initially, with default timer values, and then

with values optimized via Pop-Routing. Comparing the network losses in the two scenarios it

has been possible to determine whether Pop-Routing is effective in enhancing the recovery

process of DV routing protocols.

Experiments have been performed in virtual networks running babeld, emulated with

Mininet. In each experiment, at time t f the failure of a selected node k is triggered. Then

the routing tables of all nodes are dumped at high frequency, every 0.5 s, until routers finish

the recovery process, i.e., until their routing tables do not stabilize again. A routing table

dump is a timestamped dictionary RT j
i : for each destination d, RT j

i [d] reports the next-hop

selected at time j by node i to reach d. This kind of experiment has been repeated triggering

the failure of Nf ≤ N different selected nodes. The N − Nf excluded nodes are all those

that, in case of their failure, would make impossible the re-routing of traffic around them,

hampering the computation of the number of “lost-then-recovered” routes. The excluded

nodes are therefore all leaf nodes (they have zero-centrality) and also cut-points, i.e., those

nodes that once removed would partition the network in disconnected components. At the

end of an experiment, the dumped routing tables are grouped by timestamps and recursively

navigated in the effort to rebuild all the shortest-paths selected by Babel for any (s, d) pair

of endpoints.

At a given instance of time t j > t f , some paths may be incomplete or still go trough the

failed node k. The number of such non-working (“broken”) paths, over which the traffic

would got lost, is called L j. An comparison of L j over time computed, on one hand with

plain babel (red curve) and on the other hand with centrality-optimized timers (black curve),

is shown in Figure 3.9. In this figure the evolution of L j is plotted after triggering the failure

of a node around time t = 5 s. Babel optimized with centrality better reacts to the triggered

failure: the reaction time is slightly shorter and, above all, more routes are recovered in less

time w.r.t to a plain configuration of the same Babel. This is a successful example where,

introducing Pop-Routing based on the distributed computation of LC, a resilience gain is

achieved at almost no cost, as the complexity of the LC algorithm is minimal and the control

overhead is kept constant.
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Figure 3.9 – Comparison of the network loss in ninux topology after the failure of one
of the most central nodes. Copyright © 2020, IEEE.

Loss Reduction metric definition: The total losses over the whole duration of an exper-

iment are defined as Lbabel(k) =
∑

j L j when the experiment is performed with the default

babeld; Lcent(k) indicates the same metric but computed using the optimized timers. The

relative loss averaged over all possible failures is defined as:

L = 1−

∑N f

k=1 Lcent(k)
∑N f

k=1 Lbabel(k)
(3.16)

and indicates if the tuning of timers via Pop-Routing is advantageous or not. If L > 0 it

means that the experiments with the optimized timers of babeld, averaged over Nf failures,

lead to less losses w.r.t to experiments with a default timer configuration.

3.4.3.2 Dataset: real world network topologies

To acquire more exhaustive and realistic results, the methodology described in Section 3.4.3.1

has been applied on several different networks with real-world topologies [8]. Two of them,

namely Ninux and FFGraz,18 are two large-scale wireless mesh networks, and were included

also in the original study of Pop-Routing [13]. Two more real topologies, those of the

Community Networks (CNs) of Auerbach and Adorf, have been extracted from the topology

repository of the German CN association “FreiFunk”.19 The FreiFunk CNs are disparate,

they change in size —from few nodes up to hundreds— and composition. Some of them

18Hompages of the Ninux and FFGraz networks: https://www.ninux.org; https://graz.funkfeuer.at
19Homepage of the FreiFunk initiative https://freifunk.net/en

https://www.ninux.org
https://graz.funkfeuer.at
https://freifunk.net/en
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are purely wireless mesh networks while others, such as the studied Auerbach and Adorf,

are heterogeneous networks that mix together wireless and wired links within their own

routing domain. Four more wired networks, Interoute, Ion, GtsCe and TataNld, have been

included in the experimental evaluation extracting them from Topology Zoo [123], a well

known repository of real world networks topologies.

Table 3.4 reports a summary of the key characteristics for all the 8 considered networks,

including their experimental loss reduction (Equation (3.16)).

3.4.3.3 Experimental Results in Full Deployments
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Figure 3.10 – Comparison of the loss induced by the failure of the 15 more central nodes
in ninux (a) Graz (b) and Ion (c) when standard Babel is used (Lbabel) or the tuned
version is used (Lcent) Copyright © 2020, IEEE.

Table 3.4 and Figure 3.10 summarize the experimental evaluation of the reduction of

losses achieved by applying Pop-Routing in the 8 considered real networks. In particular, the

histograms shown in Figure 3.10 compare the amount of losses of plain babel (Lbabel(k)) with

the losses obtained after tuning the control timers (Lcent(k)). This comparison is performed

for the 15 most central nodes of 3 selected networks, namely Ninux (Figure 3.10a), Graz

(Figure 3.10b), and Ion (Figure 3.10c), chosen because representative off all the different

types of networks. Similar results can be observed also in the other evaluated networks:

these results are summarized in Table 3.4 but not illustrated with more histograms for the

sake of brevity.

It can be observed that Lcent is in general smaller than Lbabel , even if in few cases tuning

the TH timers does not reduce the amount of losses. It can also be observed that better

results are achieved in wireless and heterogeneous networks compared to wired ones. This
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happens because of their topology tending to be mesh-alike, while wired ones have a more

uniform structure that does not exhibit the same degree of paths redundancy. The success of

Pop-Routing, in fact, strongly depends on the array of values of bi and di and, ultimately,

increase with a larger availability of alternative paths to route around failures. Consider, for

instance, the extreme case of a ring network, or an n-regular network-graph over a torus in

general: in such networks no tuning of timers is possible, because all nodes have the same

centrality and degree, thus the application of Equation (3.14) would assign the same default

timer value to all nodes.

Table 3.4 – Loss reductions in real networks

Network |V | |E | N f Loss Reduction Type

Interoute 110 148 63 8.37% Wired
Ion 125 146 58 3.10% Wired
GtsCe 149 193 98 6.05% Wired
TataNld 145 186 68 7.34% Wired
Ninux 126 147 17 10.65% Wireless
FFGraz 141 200 19 13.11% Wireless
Auerbach 123 223 70 11.29% Heterogeneous
Adorf 123 225 65 13.27% Heterogeneous

However, looking at Table 3.4, the reader can be assured that Pop-Routing results to be

always effective in reducing the losses when averaging over all possible Nf failures. The

global reduction of losses, i.e., the resilience gain, ranges for the 8 evaluated networks

between 3% and 13%. Even if sometimes the gain is modest, still in all cases the performance

gain is positive. These results confirm the validity of the Pop-Routing strategy also for DV

protocols and encourages its wider adoption.

3.4.3.4 Analytical Results in Partial Deployments

The results shown in Section 3.4.3.3 are obtained in emulation experiments that model

full deployments. This section investigates over the possible performance gain that can be

achieved in partial deployments, i.e., when only a subset of upgraded nodes supports the

computation of centrality and the self-tuning of control timers.

A methodology similar to the one described in Section 3.4.3.1 has been used for experi-

ments that model partial deployments with a growing penetration ratio of upgraded nodes

ρ ∈ [0.1,0.2, . . . , 0.9]. Given the large number of required experiments for this investiga-

tion, the Mininet emulator has not been used anymore in favor of the lighter Python DES

introduced in Section 3.3.2.4.

Given a network with N nodes and ρ ∈ [0.1, 0.2, . . . , 0.9], a uniformly sampled subset of

dρNe nodes run the Upgraded Algorithm 3, while all other nodes run instead the Legacy
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Algorithm 2. At network convergence, the estimated values of centrality were collected from

the upgraded nodes. The timers of the upgraded nodes have been tuned according to the

collected values of partial centrality, while the remaining legacy nodes have been configured

with the default tH timer value. Without running emulations with the so customized timers

for babeld, the losses produced by the failure of a node have been computed thanks to

Equation (3.13). The semantic of the Lbabel and Lcent terms that appear in the relative

loss reduction metric L (Equation (3.16)) is therefore slightly changed. Now, in fact, the

differences between Lbabel and Lcent are the expression of the tuning strategy as applied only

the subset of upgraded nodes. The loss metric is therefore more precisely defined by the

new L′ as follows:

L′ = 1−

∑N f

k=1







Lcent(k) if k is upgraded

Lbabel(k) if k is legacy
∑N f

k=1 Lbabel(k)
(3.17)

The semantic difference between L′ and L hampers the direct comparison between the

analytical results shown in Figure 3.11 with the experimental ones reported Table 3.4.

Anyhow, the fast computation of L′ thanks to the Python DES enabled the repetition, in

reasonable time, of all simulations for 40 times, for ten values of ρ and for all the networks

reported in Table 3.4.
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Figure 3.11 – Comparison of the loss reduction metric on various networks with only
a fraction ρ of nodes supporting the improved protocol. For clarity, we report the 95%
confidence interval for Adorf only, which has the largest ones in average. The intervals
are barely visible. Copyright © 2020, IEEE.

Some of the curves shown in Figure 3.11 do not increase monotonically. Two are the

justifications for this phenomenon. First, the random choice of upgraded nodes hampers
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the preservation of the overhead OH to a fixed constant level. Hence, a first choice of

nodes that generate more control messages may show much better performances compared

to a following and larger subset that produces a level of overhead non above OH . This

phenomenon is expected to vanish for ρ approaching 1. Second, the centrality distribution

over nodes varies over the different networks, so that the random sampling of upgraded

nodes produces centrality estimation that converge to the exact ones with different speeds,

which depend on the specific graph-properties of each network. For example, for small ρ

values, the randomly selected upgraded nodes in Ninux and FFGraz seem to generate an

overestimation of centrality, this in turn produces shorter timer values and, ultimately, a

higher gain because of a considerably increased control traffic.

Figure 3.11 shows also that a positive loss reduction is robustly achieved in all networks

starting from ρ values larger than 0.2. This confirms that, despite the slow convergence of

the partial centrality to the correct values of LC, the good ranking preservation property is

sufficient to provide a consistent performance gain, even if an only minimal fraction of nodes

has been upgraded. It can thus be claimed that the tuning strategy performed by upgraded

nodes is truly incrementally deployable, since it is possible to observe better performances

even in early deployments, way before completing the upgrade of the whole network.





Chapter 4

Blockchain in Distributed Networks

The blockchain attracted the interest of the research community as it implements a distributed

and tamper-proof mechanism for storing data, making true one of the decades dream of

computer science: the Shared Ledger (SL). In theory, a SL is a simple data-base cooperatively

maintained by different users spread across a distributed system, however, coordinating all

these users may become a daunting challenge.

The main purpose of a SL is to register transactions, where the word transaction is used

in its most abstract meaning and indicates the generic transfer of resources between two or

more parties. Usually a SL is thought as a log of economical transactions in any currency,

either fiat or crypto, but in general it can record any transfer operation, from the release of a

block of IP addresses from the IANA20 to an Autonomous System (AS), up to the automatic

exchange of data in an IoT network.

In general, it is hard to keep a consistent record of transactions when the distributed

system scales up to count millions of users. Moreover, considering economical transactions as

leading example, one can imagine that keeping a consistent SL may be further complicated

by malicious users that cheat or attack the ledger in the effort of deleting those transactions

where they spent considerable amounts of money. A consensus mechanism becomes necessary

to coordinate all the users distributed over the whole network, but also to enforce consistency

rules and to discourage tampering attacks.

This chapter presents the fundamental aspects of the blockchain and of consensus proto-

cols to explain how the same blockchain solves the aforementioned problems, and can thus

be considered as a Distributed Ledger Technology (DLT).

20 The Internet Assigned Numbers Authority (IANA) is the organization that oversees the global allocation
of IP addressed, autonomous system numbers, the management of root zones in the Domain Name System
(DNS), and regulates also the allocation of further Internet Protocol-related symbols and numbers.
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4.1 The Blockchain: a Distributed Ledger Technology

Life Cycle of a Transaction

Let’s start by considering the role of the blockchain in the general life cycle of a transaction, as

illustrated by Figure 4.1. Alice may decide, for instance, to issue a transaction in favour of Bob

to purchase a service from him. Alice and Bob may be two persons exchanging cryptomeney,

but may also represent two electronic devices exchaning any other kind of resources. For

the sake of referecing to a familiar context, economic transactions in cryptocurrencies will

be used as leading example most of the time. The transaction details, essentially Alice and

Bob addresses plus the transaction amount, must be submitted to the distributed system.

Some nodes of the system, in fact, play the role of validators and inspect the ledger to

understand whether Alice really owns the amount of cryptomoney she wants to spend. Since

the validators are spread across the whole network they need a consensus protocol to decide

about the validity of the transaction. If the transaction is considered valid, then it is grouped

together with others recently approved ones, forming this way a new block of transactions;

this block becomes part of the ledger when it is enqueued after the previous blocks, that are

chained one after the other building a block-chain. At the end of this process a notification is

sent to Alice and Bob, informing them about the successful completion of their transaction.

(1) A Transaction (TRX)

is submitted

(2) The TRX is broadcast

in a P2P network

(3) Nodes run a 

Consensus 

protocol to validate

the TRX

(4) If valid, the TRX is 

grouped with other 

TRXs to form a new 

block of the Ledger

(5) The new block is appended to the 

blockchain, linked to the last block(6) TRX completed!

Figure 4.1 – Processing of a transaction before its inclusion in the blockchain. Copyright
© 2021, IEEE.
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Components of a Blockchain system

The blockchain turns out to be a distributed data-base for storing transactions. As a whole

distributed system a blockchain includes:

• A chain data structure, the mere data-structure to record transactions, organized to

capture their chronological order;

• A Peer-to-Peer (P2P) Network, i.e., the network of validator nodes. These nodes receive

the transactions submitted by the system users and are responsible for their approval

or refusal. Their duty is thus to maintain the ledger updated and consistent.

• A Consensus Protocol, namely, the rules and policies that dictate when and how new

transactions can be appended to the blockchain. The consensus protocol is accepted

and implemented by all validators and is essential for the consistency of the ledger.

The chronological order of transactions, captured by the blockchain, enables the decen-

tralized validation of new ones. In fact, the distributed validators determine the validity of

new transactions only by verifying their consistency w.r.t. the blockchain.

Users of a Blockchain

There exist two kinds of user (node) in a blockchain system:

1. Simple users: these users only interact with the blockchain based ledger, e.g., by

submitting transactions or by controlling its state to verify the recording of some

payment, but do not take part in the process of updating the ledger. Simple users are

also known as simple clients/nodes and, in some circumstances, are also called wallets.

Many are, in fact, the online available applications that implement a minimal interface

just for sending cryptomoney (paying someone) and for checking the personal balance,

recalling the same actions everyone implicitly perform using his real wallet. Still, these

simple operations do not directly update the state of the ledger.

2. Full users: Full users (nodes) are those that run the consensus protocol to accept or

reject new transactions and, accordingly, update the ledger. For this purpose full nodes

own a personal, local copy of the ledger, a copy usually not owned by simple nodes

that need to query full ones to learn from them the state of the ledger.

Permissionless VS Permissioned

The different ways of user participation and interaction with the ledger determine different

categories of blockchains. These differences are the base for the well known dichotomy

between Permissionless and Permissioned blockchains, still, also hybrid implementations exist.
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1. Permissionless or Public blockchains: In a permissionless (public) blockchain there

are no restrictions for both simple and full users. The consensus protocol is open

to anybody so that even unregistered users, completely anonymous in the system,

can become full nodes and start appending new transactions provided only that they

comply with the selected consensus protocol. Simple users are not subject to any

restriction as well and do not need to be authorized by some full node to start sending

and receiving transactions (payments). The consensus protocol must therefore ensure

security despite the absence of any form of control on users, that are not accountable

as they are anonymous. It turns out that such protocols always impose stringent

conditions to be met upon proposing a new transaction; conditions so severe that, if

met, somehow prove the honest commitment of the proposer. For example in both

Bitcoin and Etherum —the most iconic permissionless blockchains— to propose a new

block of transactions the validators must provide the so called Proof of Work (PoW),

which is the solution to a very hard cryptographical puzzle. Asking a PoW discourages

malicious users and contribute in safeguarding the ledger, however, it also hampers

the system performance. The number of Transactions per Second (TPS) processed by

Bitcoin and Ethereum is, in fact, below 20 TPS on average: a very limited throughput

if compared to the tens of thousands processed by Visa [124]. Moreover, in the Visa

platform transactions are recorded sequentially, not in blocks. For this reason the

transaction latency, i.e., the interval of time between submission and recording of a

transaction, is minimal, just a few seconds, while in permissionless blockchains the

same latency averages tens of minutes, sometimes growing up to few hours.

2. Permissioned or Private blockchains: Permissioned blockchains improve on performance

and allow a fine-grained control on users. This is the kind of blockchain preferred

by big enterprises to implement their internal ledger, to be shared among different

departments, but also by banks to share the control of an interbank ledger over few

and well known business partners. The access to these ledgers is naturally restricted

only to registered (accountable) users, the only that own the permissions to update

the blockchain. Full nodes are usually operated by business companies which require

simple users to be registered and identified for security purposes but also to enforce

the mandatory Know-Your-Customers (KYC) regulations. The security of permissioned

blockchains depends therefore on classic access-lists and authentication mechanisms

but not on the “hardiness” of cryptographic techniques such as the PoW. The resulting

trust model, different from the one of permissionless blockchains, allows the blockchain

managers to select more efficient, faster, traditional consensus mechanisms in place of

the hard consensus mechanisms adopted in permissionless blockchains. The selection

of such lighter consensus protocols is a necessity for permissioned blockchains because
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they are critical for business operations and cannot tolerate the low transaction rates

and high inefficiencies typical of permissionless ledgers.

3. Hybrid blockchains: If permissionless blockchains are administratively decentralized

while permissioned ones, conversely, are highly centralized, some blockchains have

implemented hybrid forms decentralization imposing access restrictions only to some

users, but not to all of them. For example, in Multichain [125] full nodes are per-

missioned while simple users are not. Further forms of hybridization do exist. For

example, Algorand [126] defines three types of nodes,21 namely, Participation, Archival

and Relay node. Participation and Archival nodes are permissionless and work both as

clients and as full nodes, with the difference that Archival nodes keep in memory a

longer copy of the blockchain. Relay nodes are where other nodes connect to join the

Algorand network and are responsible for the propagation of transactions, blocks and

all relevant information for the Algorand protocol. Relay nodes are permissioned and

must be registered at the Algorand foundation. Essentially, in Algorand the consensus

layer is permissionless while the network one is permissioned.

For the first time, with permissionless blockchains users are free from trusted authorities

such as banks or a Public Key Infrastructure (PKI) but can still perform the distributed valida-

tion of transactions, with the added novelty that the validation process happens transaprently

in public, without uncovering the identity of users. The trust required to maintain a public,

permissionless ledger open to anonymous users is given by the consensus protocol only. A

permissionless blockchain can thus be considered as a trust builder in a trustless network

and also the enabler of a disintermediated marketplace, since it avoids the involvement of

brokers. It is also an open, privacy-preserving technology as it allows anonymous users, that

in principle do not trust each other, to inspect the history of transactions and thus perform

securely new transactions.

4.1.1 History of Transactions and Double Spending

Validators need the history of transactions to determine who owns cryptomoney and how

many, an indispensable knowledge to validate new transactions. However, building this

history in a distributed system is not easy. Consider for instance Figure 4.2, where two

transactions that spend the same coin are received in diverse order by distinct validators,

making hard to sort them chronologically. Notice that this problem is general for any

distributed system because of the inescapable propagation delays of messages in a network.

21 More on the Algorand developers portal: https://developer.algorand.org/docs/run-a-node/
setup/types

https://developer.algorand.org/docs/run-a-node/setup/types
https://developer.algorand.org/docs/run-a-node/setup/types
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5BTC from A to B 5BTC from A to C
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RX2

RX order 1

RX order 2

Time

Figure 4.2 – Example of how propagation delays may lead to two different orders of
reception at distinct validators. Validators need to run a consensus protocol to find an
agreement on the order of transactions. In this example if A owns only 5BTC then one of
the two transactions must be rejected because it would represent a double spending.

A malicious user can exploit these delays to spend two times the same money, performing

the so called Double Spending attack. Validators need to find an agreement on the order of

transactions to fend off this attack: they must decide which transaction should be considered

the first and which the second, to respectively accept one of the two and reject the other.

The double spending problem raises a Distributed Consensus Problem on the order of

transactions. The blockchain, as originally proposed for Bitcoin by a mysterious author under

the pseudonym of Satoshi Nakamoto [127], is a straightforward solution to this problem: a

timestamp should be assigned to each block of transactions, so that the chain of these blocks

establishes a (partial but sufficient) chronological order of transactions.

The history of transactions, however, may not be enough for a correct validation, because

a malicious user can alter the content of a block to repudiate an unwanted transaction,

falsifying this way the validation procedure. To fend off falsification attacks a blockchain

must be:

• Tamper-proof : i.e., made so that is easy to verify that the registered transactions have

not been manipulated after their recording, and it should be likewise easy to determine

if these have been actually altered in a second instance of time.

• Immutable: a blockchain-based ledger should adequately word off tampering attacks.

The tamper-proof property of blockchains is achieved by a clever embedding of Cryptographic

Hash Functions (CHFs) into the blockchain data structure, as explained in Section 4.1.2.
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4.1.2 The Blockchain Data Structure

Cryptographic Hash Functions are crucial to make the blocks of the blockchain tamper-proof.

The way CHFs are embedded in the blockchain is explained starting from the illustration of

the blockchain structure (Figure 4.3).
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Figure 4.3 – The structure of a blockchain.

In Bitcoin, for example, a block is considered valid only if its Block Hash, i.e, the fixed-

length digest22 generated by applying a hash function to the content of the block, exhibits

a predefined number of leading zeros. In particular, this digest must be a number lower

than a given target, a target that can be changed to adjust the difficulty [128] of finding a

valid Block Hash. Finding a valid Block Hash can be indeed extremely difficult considering

the random nature of CHFs and the nodes strategy for generating new blocks, which is the

following.

At first, a validator groups together a bunch of recent transactions and assign them a

timestamp. This timestamp indicates a later point in time compared to the one of the previous

block and, to further enforce the time-dependency between blocks, every new block must

reference the Block Hash of the previous one. The references to previous blocks constitute

the chaining of blocks. Having the reference to the previous block and a proper timestamp, a

validator guesses a random value (the nonce) to be included in the new block, and finally

applies the hash function to all these information. The so computed Block Hash is not valid

if it is smaller than the target. If so, the node starts a brute-force search and keeps retrying

with as many different random nonces as possible, until it finds a valid one.

Notice that, if someone tries to tamper a block (let’s say block i) altering its content, it

will invalidate its Block Hash. Not only, also block i+1 gets invalidated, because its reference

to the previous block is changed. Essentially, because of blocks chaining, the tampering

of a block invalidates all the following ones. This makes the blockchain a tamper-proof

technology.

22 A message digest is a fixed size numeric representation of the contents of a message, as computed by a
hash function.
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4.1.3 Proof of Work (PoW)

The difficulty of finding a valid nonce can be tuned changing the target value. This difficulty

can be expressed as the probability of choosing a random number, smaller than the target,

out of the whole range of the hash function. This same probability can be approximated to

the one of finding a Block Hash with a given number of leading zeros, a number called Z .

Now consider that double-SHA256 is the hash-function dictated by the Bitcoin protocol and

produces digests of 256 bits, hence its range has a cardinality equal to 2256. The valid digests

are only those with Z zeros as prefix, so their cardinality is 2256−Z . By classic probability

definition, the probability P(n) for a random nonce to be valid is therefore:

P(n) =
2256−Z

2256
=

1
2Z

. (4.1)

To make an example, with the current Bitcoin difficulty that sets Z = 77, then P(n) ≈
6.62× 10−24.

Increasing the difficulty means making nonces always more rare, so that finding them

may become an extraordinarily hard computational task which demands a great consumption

of energy. If so, a node that finds a valid nonce can show it to the rest of the validators in

the P2P network as a Proof of Work (PoW), i.e., as the witness of having worked intensively

to complete the search. In PoW-based blockchains nodes need to be encouraged in spending

a great amount of computational power to provide a valid PoW, which is a requirement to

propose a block. The Bitcoin protocol, for example, reserves a reward to the first node able

to propose a new block of transactions that includes a valid nonce. This reward consists

in the right of generating new Bitcoins and owning them. The fact that validators are

constantly at work, searching for rare valid nonces that will enrich them, makes them earn

the metaphorical name of “miners”. Miners are asked to provide a PoW for two fundamental

reasons:

1. To control the block generation frequency (Section 4.1.4);

2. To secure the blockchain from tampering attacks (Section 4.2).

4.1.4 Block Generation Frequency

The block generation frequency is an important parameter relevant, in the first place, for the

consistency of the blockchain, but with important implications also on its security and on the

profits of miners. The blockchain consistency is endangered by forks, i.e., by the different but

almost contemporaneous block proposals from different miners, as illustrated in Figure 4.4.

A fork is problematic because it means that the blockchain does not define anymore a

consistent order of transactions, so much that two conflicting transactions may be recorded
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T’n+1
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Figure 4.4 – The almost contemporaneous proposal of two distinct blocks by different
miners causes a temporary divergence of the blockchain, like the one illustrated here.
These temporary divergences are called forks.

in the two blockchain branches, re-opening the doors to a double spending attack. A fork

occurs when a first block is published in the P2P network by some validator and, during the

propagation time of this block announcement, a second block is generated and announced

by a second miner. In general, the propagation time for any P2P overlay over an IP network

is in the orders of seconds to maximum tens of seconds [129].

To avoid forks as much as possible one can slow down the generation frequency of blocks,

distributing over a larger interval of time the probability that two miners independently

generate a valid block. In Bitcoin, for example, the mining difficulty is tuned in order to

target an average block production rate of 1 block every 10 minute. This interval of time

that separates the generation of two consecutive blocks is called Block Generation Interval

(BGI) or also, more simply, Block Time. Bitcoin and other PoW-based blockchains target an

average Block Time in the order of several minutes, as shown in Figure 4.5.

The PoW difficulty must be tuned to keep the generation frequency close to the desired

target because, over time, the ability of miners in finding nonce tends to increase. For

example, consider that the rise of the Bitcoin value justified considerable investments in

mining-equipment, so much that today the network of Bitcoin miners as a whole is able to

compute an astronomical number in the order of 1020 hashes per second. Figure 4.6 shows

the evolution of the mining difficulty that followed closely the one of the Bitcoin network

computing power, for the reason of artificially keeping a constant block production rate.

The Longest Chain rule

Forks can still occur, despite the slowing down of the block production rate, but fortunately

they are transient and quickly vanish with high probability thanks to the “longest-chain
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Figure 4.5 – Historical records of the daily average Block Time for many PoW-based
blockchains observed over 2 months, namely, October and November 2020. Statistics
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rule” [130,131]. This rule is inherent to the blockchain technology and states that the only

valid blockchain branch is the longest one.

Thanks to the rule a fork is cleared as soon as a block is added to one of the forking

branches, making it the longest one. Consider that the contemporaneous proposal of two

blocks is made improbable by the hardness of the PoW, so that the probability of having

https://bitinfocharts.com
blockchain.com
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consecutive independent block proposals is even more unlikely, and this probability decays

exponentially fast to zero. The rule also implies that orphan blocks that do not end up to

be part of the longest chain are not valid: these blocks are aslo called stale blocks. The

transactions included in stale blocks, reward as well, will not be considered valid. Miners

do not want to lose their rewards working on branches that will not be part of the longest

chain, therefore, they abandon a branch as soon as they notice the addition of a block to

a longer branch. The rule thus encourages the majority of miners to always work on the

longest chain, that therefore stabilizes fast and reliably, as it is grown by the majority of the

network computing power.

4.2 Security and Limits of the PoW

The PoW is not only an effective mechanism to control the block generation frequency, as

shown in Section 4.1.4, but it is also essential to make blockchains immutable, being strategic

for securing the SL from falsification attacks.

The double spending attack illustrated by Figure 4.2 in Section 4.1.1 exploits the intrinsic

propagation delays of distributed systems to make validators approve two conflicting trans-

actions that spend the same resources. This first kind of double spending attack is almost

completely fended off by the high difficulty of the PoW, that slows down the block generation

frequency making unlikely the simultaneous submission of conflicting transactions. However,

an extremely powerful attacker can leverage on the longest chain rule to perform a different

kind of double spending. It can submit a double spending transaction in a new and longer

branch built independently by the same attacker. This longer branch will be accepted by

the miners, earning the attacker the chance to replace an unwanted transaction with a

double-spending one as illustrated in Figure 4.7.

The reminder of this section reviews in chronological order the main studies that in-

fluenced the research community in the analysis of the blockchain security. These studies

start from the very first approximate mathematical model provided by the same Nakamoto

to calculate the success probability of double-spending attacks, a model later advanced by

Rosenfeld [132], Sapirshtein et al. [133] and by Gervais et al. [134]. The review analyses

also the “selfish-mining” strategy, a malicious strategy first described by Eyal and Sirer [135]
with the potential of decreasing the amount of computing power sufficient to run a successful

double-spending attack, thus a relevant strategy for the study of the blockchain security.

The selfish mining strategy is reported in this thesis because it is crucial to understand the

security of blockchains, however, recent economic [136] and computer-science [137–139]
studies concluded that such a strategy is not economical for real world, rational investors in

blockchain mining technologies, thus the theoretically devastating selfish mining strategy
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Figure 4.7 – Alice sent a considerable amount of Bitcoin to Bob and now wants to revoke
her transaction. This transaction was included in the block T1 of the blue chain, appended
to T0. If Alice is fast enough to generate a longer chain that forks from T0, then she can
replace the A→ B transaction with an A→ A one, or simply do not include anymore the
A→ B in any block, thus gaining herself the chance of spending the same money twice.

turns out to be practically irrelevant. Reviewing this studies including economic considera-

tions is necessary to highlight the exceptional security which is the ground for claiming the

immutability of PoW-based blockchains.

4.2.1 Nakamoto Model of Double-Spending

Nakamoto imagined the chain-replacement attack illustrated by Figure 4.7 already in the

original paper that revealed Bitcoin in 2008 [127]. He considers the scenario of an attacker

trying to independently build a replacement chain faster than the honest chain, and models

the race between the honest and the attacker chains for becoming the longest one as a

Binomial Random Walk. In such modeled stochastic process, the honest chain advances by 1

step every time the honest group of miners is able to find a block, the attacker chain grows

similarly when the attacker mines a block. Being p and q = 1− p the computing power ratios

respectively controlled by the honest network and by the attacker, the growth of the honest

or of the attacker chain have, respectively, probability p or q to happen.

Now remind the role of confirmations in Bitcoin [140]: a merchant is supposed to wait

some time before shipping or delivering the just sold product or service, more precisely, he

waits a given number of blocks to be appended after the block that included the paying

transaction. Consider also that the merchant generates a new payment address and sends

it to the attacker just in time for setting up the transaction, preventing the attacker from

precomputing a long replacement chain ahead of time. Essentially, both the honest miners

and the attacker start building their alternative chain only once that the transaction to be
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attacked is set up and broadcast, an event the marks the start of the race between the two

competitors. During the confirmation timeframe both the honest and the attacker chains

grow by some blocks; let z be the difference between the lengths of the two chains at the end

of the confirmation waiting time. Nakamoto models the probability for an attacker to catch

up with the honest chain once that he is left z blocks behind recalling a classic Gambler’s Ruin

Problem. Doing so, he models the attacker as a gambler with infinite credit that, starting

at deficit z, can game the honest chain an infinite number of times while trying to reach

breakeven. Calling qz the probability for an attacker to ever catch up from a disadvantage of

z blocks, qz can be computed as function of p, q and z according to a classic solution for the

Gambler’s Ruin problem [141] as follows:

qz =







1 if p ≤ q

(q/p)z if p > q
(4.2)

Interpretation for Equation (4.2)

When p ≤ q the attacker owns the majority of the computing power, meaning that the

attacker block generation rate is faster than the honest one therefore, in the long run, the

attacker chain will grow longer than the honest one regardless of any gambler’s deficit (i.e.,

honest advantage) z. This part of the interpretation for Equation (4.2) is the mathematical

foundation for the so called 51% attacks [142]. Notice, however, that “in the long run”

translates to “with infinite time available” or, more formally, the Binomial Random Walk

defined by the Gambler’s Ruin Problem can me mapped to a Markov Decision Process (MDP)

with infinite space where z can grow to infinite. Notice that not imposing a bound on z

means that the attacker can bear the cost of attacking for infinite time, which models an

attacker with infinite credit or, in equivalent terms, it models attacks that cost nothing. This

modeling assumption is therefore an oversimplification to ease the mathematical solution of

the Gambler’s Ruin problem but, in real blockchain system, the cost of an attack is not zero

and depends at least on the cost of acquiring sufficient hashrate, that should be the majority

of the overall hashrate in the network, and on the duration of the attack. The non-zero but

actually extremely high cost of a majority attack to the Bitcoin network will be estimated, for

instance, in Section 4.2.2.1. Summing up, the attacker must have infinite time available and

infinite capital for Equation (4.2) to hold. As the attacker is modeled with such supernatural

powers, the qz probabilities for running a successful attack should be interpreted as an upper

bounds on the true attack probabilities.
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When instead p > q, the probability for an attacker to “luckily” catch up with the honest

(faster) chain decays exponentially with the advantage z of the honest miners. Notice also

that the lower is q the faster is this decay.

In conclusion, Nakamoto provided a first quantitative model to approximately study the

security of PoW-based blockchains. The main limitations of his model are the infinite time

horizons and the infinite attacker credit, virtually modeling a powerful attacker (q > p) that

attack a blockchain even if the deficit of his alternative chain wrt the honest one approaches

infinite (l imz→∞). In such ideal model the probability of completing a double-spending

successfully converges to 1, but in reality a threshold on z should be defined, stating for

instance that an attacker waives to attack if his disadvantage z is greater than a given number

of blocks. For example, Gervais et al [134] advances the Nakamoto model studying a similar

MDP but with finite space, imposing a cutoff value on z equal to 30.

4.2.2 Role of Confirmation

The simplified discussion by Nakamoto about the attacker probabilities of success have been

more rigorously studied by Rosenfeld [132], who stresses more on the role of confirmations

for securing the blockchain and also formalized more accurately the growth of the z-blocks

gap between the honest and the attacker chain during the confirmation time.

The Rosenfeld model is based on these assumptions:

• The total computing power in the network is H and is constant for the whole duration

of the attack.

• As for Nakamoto, the attacker owns qH of the total hashrate, while the honest network

controls the remaining pH, with p+ q = 1.

• The mining difficulty is constant such that the average Block Generation Interval BGI is

constant and equal to T0.

• The honest and the attacker chain share the same blocks up to a branching block where

a fork begins. The honest miners appends after this block n further blocks, while the

attacker appends further m blocks. The gap between the two alternative chains is thus

z = n−m.

The Rosenfeld model can be represented by a continuous-time Markov Chain (MC) as the

one depicted in Figure 4.8, where the honest chain advantage z represents the chain states.

Rosenfeld is interested in whether z will ever become -1, and not when this will happen [132],
thus waives to treat the continuous-time MC illustrated in Figure 4.8 and, dropping the

notion of time, falls back to the discrete-time case with probability p for reaching the state
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z=0 1 2 3z=-1

p/T0 p/T0 p/T0 p/T0

q/T0 q/T0 q/T0 q/T0q/T0

Figure 4.8 – The continuous-time Markov Chain described by Rosenfeld in [132]. The
state of the chain is given by z = n−m, i.e., the difference between the length of the
honest and the attacker chains, initially considered non-negative otherwise the attacker
would start with an already longer chain, hence he would have already succeeded in his
attack. The MC state increases by 1 when the honest miners finds a block and conversely
decreases by 1 if the attacker finds one. According to the Rosenfeld model these two
events happen with a rate of, respectively, p/T0 and q/T0. The state where z = −1 is a
final one where the attacker wins the race and can reveal his longer chain. At this point
the attack is concluded, this is why there is no transition back to the z = 0 state even if
the attacker and the honest chains at this stage would be the same, hence with z turning
back to 0.

z + 1 and q for coming back to z − 1, posing a problem which is almost identical to the

Nakamoto model based on the Gambler’s Ruin Problem.

Compared to Nakamoto, Rosenfeld calls az (instead of qz as in Equation (4.2)) the

probability for an attacker left z blocks behind to catch up and succeed in his attack. When

z < 0, az = 1 as the attacker already owns a longer chain, so the case of interest is when

z ≥ 0. Under this hypothesis, az can be described by the following recurrence relation [132]:

az = paz+1 + qaz−1 (4.3)

which means that, once the advantage reached a level of z, then with probability p the honest

miners find a block and push the attacker to a state where its success probability will be az+1,

otherwise, with probability q the attacker finds a block reducing its probability of success

to az−1. Equation (4.3) is a Second Order Homogeneous Linear Difference Equation, with

a0 = 1 and p+ q = 1 as bounding conditions, whose solution is [143]:

az = min(q/p, 1)max(z+1,0)







1 if z < 0 or q > p

(q/p)z+1 if z ≥ 0 or q ≤ p
(4.4)

The interpretation of Equation (4.4) will be omitted as it is almost identical to the one already

provided commenting Equation (4.2).

Rosenfeld extends the initial model outlined by Equation (4.4) to highlight the crucial

role of confirmations in enhancing the blockchain security. In fact, Equation (4.4) informs us

that once q and p are given (in the case of interest when q ≤ p), then the attacker probability
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of success az depends only on the initial value of z used to start the gambling game between

the attacker and the honest miners, and in turn the entry-value of z depends on how m

grows while the honest chain grows up to n. Under the assumption that q ≤ p, waiting more

time by increasing n should in expectation increase the honest advantage z = n−m before

engaging the gambling game, supporting the intuition that waiting for more confirmations

is an effective strategy to enhance security. To confirm this intuition, Rosenfeld provides

a model for m as a negative binomial variable, with the usual p and q as probabilities of

success or failure, and computes the probability of having m failures (blocks found by the

attacker) until n successes (blocks found by the honest miners) happen. He also assumes

that the attacker starts with 1 pre-mined block, so that the probability of having m malicious

blocks at the time when the attacked transaction has been confirmed by n subsequent blocks

is the following [132]:

P(m) =
�

m+ n− 1
m

�

pnqm (4.5)

Rosenfeld combines Equation (4.5) with Equation (4.4) to obtain the probability r(n) of

a successful attack as a function of the number of required confirmations n [132]:

r(n) =
∞
∑

m=0

P(m)an−m−1

=
n−1
∑

m=0

�

m+ n− 1
m

�

pnqm(min(q/p, 1))n−m +
∞
∑

m=n

�

m+ n− 1
m

�

pnqm

=







1−
∑n

m=0

�m+n−1
m

�

(pnqm − pmqn) if q < p

1 if q ≥ p

(4.6)

Figure 4.9 illustrates Equation (4.6) showing how the attacker probability of success

approaches 1 while growing q up to 50% for different values of n. Figure 4.9 let us observe

that the famous “6-confirmations” rule of Bitcoin implies the acceptance of a ≈ 0.1% risk of

being successfully attacked by a malicious user that controls the 10% of the total network

hashrate.

Main Observations

1. 51% attack: The attack probability of success is always 1 owning the hashrate majority.

2. Probability exponential decay waiting more confirmations: The attack probability

is non-zero also for q < 50%, still, it decays exponentially fast to zero growing the

number of confirmations n, and the smaller is the attacker fraction of hashrate q, the

faster is the decay to zero.

As noted already interpreting Equation (4.2), this probability study is asymptotic, as

the malicious user is supposed to have infinite time (and credit) available for performing
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Figure 4.9 – Probability for an attacker to install a longer replacement chain as function
of the attacker hashrate ratio q. This probability has been computed according to
Equation (4.6) for different values of n.

the attack. Moreover, Rosenfeld dropped the notion of the Block Generation Interval BGI

(set to T0 in Figure 4.8) that plays actually a fundamental role to determine the expected

duration of an attack. Sapirshtein et al. further notice that while a single attack may have a

non-zero probability of success even when q� p, regrettably, by the law of large numbers:

“an attacker which continuously executes double spending attempts will eventually succeed. We

should therefore be more interested in the cost of an attack than in its success-probability” [133].
Section 4.2.2.1 sketches a simple framework to:

1. Roughly estimate the cost of on attack per unit of time;

2. Roughly compute the duration of an attack;

providing the elements for a basic approximation of the cost of a complete, successful attack.

4.2.2.1 Estimate of the cost of a 51% attack

Cost of Attack per Time Unit: At the time of writing, a popular hashing power renting

facility23 provides 1 Peta Hash (PH) per Day computing power at the cost of 0.0075 Bitcoin.

Converting the Bitcoin price in US dollars24 and computing the renting cost over minutes

instead of days, translates to a cost of ≈ 0.3 $/PH/min. The total Bitcoin network hashrate25

N ETHR is approximately equal to N ETHR = 166× 103PH/s. The attacker hashrate AT THR

for performing a 51% attack against the aforementioned value of N ETHR must be equal

23 Updated renting prices can be found on https://www.nicehash.com/pricing
24 At the time of writing 1BTC is exchanged for 57916$
25 Statistics taken from https://www.blockchain.com/charts/hash-rate

https://www.nicehash.com/pricing
https://www.blockchain.com/charts/hash-rate
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to AT THR = 51/49× N ETHR ≈ 173× 103PH/s, which converted to minutes for matching

the renting cost per minute computed above gives AT THR ≈ 104× 105PH/min26. Renting

AT THR hashrate for a minute costs therefore 104× 105 × 0.3≈ 3.12× 106$, i.e., more than

3 millions US dollars.

Attack Duration: The honest network block generation speed is conventionally vh =
1/BGI, so the attacker speed is va = 51/49 vh. Given an attacker disadvantage z, we can

compute how much time the attacker will need to catch up the honest network using simple

equations from the physics of the rectilinear and uniform motion. We impose the attacker

reached the same “position” (chain length) of the honest chain, but this latter starts running

with a t0 = z × BGI advantage. Solving for time t we get the duration of a 51% attack as a

function of BGI and z:

xAttacker closes z-gap = vh(t + zBGI) = va t
1

BGI
(t + zBGI) =

51
49

1
BGI

t

t (1− 51/49) = −zBGI

t =
zBGI

(51/49− 1)

(4.7)

Figure 4.10 shows how the time t for performing a successful attack increases while

growing the BGI, and displays a different curve for each tested different value of the z-gap.

Looking at Figure 4.10 where BGI = 10 minutes as for Bitcoin, a 51% attacks takes 245,

1470 and 2450 minutes for closing a gap of, respectively, 1, 6 or 10 blocks. Multiplying this

duration for the previously computed cost for renting AR hashrate gives us, taking z = 1

as example, a cost equal to 2450× 3.12× 106 = 7.644× 109$, i.e., a cost greater than 7

billions dollars. Depending on the value of Bitcoin, which is well known to be very volatile,

mounting a 51% attack may become profitable. Figure 4.10 alone, not paired with a chart

of the Bitcoin-to-dollars exchange price over time, cannot therefore inform us about the

economic profitability of a 51% attack. Nonetheless, Figure 4.10 enables this noteworthy

observation:

Observation 4.1. Fixing a total network hashrate, the cost of an attack grows linearly with

the Block Generation Interval (BGI).

In light of Section 4.2.2.1 a security expert comparing two blockchains Blk1 and Blk2 that

differ only for their block generation interval BGI, e.g., BGI(Blk1)< BGI(Blk2), will conclude

26 The 51/49 fraction is reported in this simple calculations for the sake of providing an example that
immediately and visually leads to think to a majority attack while, obviously, any infinitesimal amount of
hashrate greater than N ETHR is theoretically enough. Consider also that an attacker wishing to conclude his
attack in shorter time may decide to rent even more computational power but, again, for the sake of simplicity
the analysis of the cost of the attack is sketched only for AT THR = 51/49N ETHR.
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Figure 4.10 – The time necessary to complete a 51% attack is computed as a function of
the BGI. Each curve represents a different attack where the honest network starts with a
z number of blocks of advantage. This is why the curve for z = 10 (the greater chosen
value for z), compels the attacker for longer time compared to the case where z = 1.

that Blk2 (the slowest one in the present case) is more secure. The capital required to

successfully mount an attack against Blk2 will be in fact higher than the one required to

attack Blk1, so Blk2 is more secure as it is more protected than Blk1 from attacks run by

actors with smaller capitals.

Notice, however, that Section 4.2.2.1 cannot lead to the naive conclusion that any

blockchain with a high BGI is more secure than others with smaller BGI periods. In fact:

Observation 4.2. Fixing a BGI and a relative mining difficulty level, the cost of an attack grows

with the network total hashrate.

According to Section 4.2.2.1 this thesis aims to confirm the intuition that mounting a

51% against an extremely powerful blockchain such as Bitcoin, backed up by an incredible

amount of mining power (this amount is estimated in Section 4.2.5), is harder than attacking

a novel blockchain supported by few and relatively weak miners. It is obvious, in fact, that

amassing the 51% of the computing resources when the total hashrate is in the order of

HR = 166× 103PH/s requires greater investments than acquiring the same 51% of computing

resources when the total hashrate is much smaller, e.g., when it is in the order of tens of

TeraHash per second like with Ethereum or tens of MegaHash per second as with Monero.27

For this reason, 51% attacks have been never reported for Bitcoin, which is backed up by an

extremely powerful mining networks, while they occur more likely on smaller blockchains.

27 The website 2miners.com reports the statistics about the total hashrate of many mining networks,
including the one of Ethereum and Monero.
https://2miners.com/it/eth-mining-pool https://2miners.com/it/xmr-mining-pool

https://2miners.com/it/eth-mining-pool
https://2miners.com/it/xmr-mining-pool
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For example, Bitcoin-Gold is known to have suffered 51% attacks twice:28 the first time in

May 2018 lead to an estimated 18 millions USD overspent and the removal of the same

Bitcoin Gold from the online Exchange Bittrex. The second time in January 2020 with two

almost consecutive chain replacements that resulted in over 70k USD worth of BitcoinGold

being double spent. It is believed that mounting this last attack had a cost similar to the

amount of recouped block rewards, leading to break-even, with the attacker that gained a

real profit thanks to the successful double-spending transactions included in the replacement

chains. The reader should be aware that Bitcoin-Gold does not use SHA256 as Bitcoin, but

relies on a different algorithm known as Equihash which is designed to be memory-hard.

Even if SHA256 and Equihash are not directly comparable, Bitcoin-Gold can be assumed to be

a much “smaller” network than the one of Bitcoin, with the cost of the memory necessary to

mount a 51% attack that is much inferior to the same cost for renting the necessary hashrate

for attacking Bitcoin, so Bitcoin-Gold is more vulnerable.

4.2.3 Selfish Mining

So far it has been implicitly assumed that the ratio of blocks produced by a given miner is

in expectation equal to the ratio of computing resources owned by this same miner. The

revenue of miners depends on the blocks they are able to produce so, keeping the just stated

assumption, the reward assignment mechanism of Bitcoin appears to be fair, as miners share

revenues in proportion to their mining power. Furthermore, Section 4.2.2.1 suggests that

51% attack are unlikely to happen at least in well-established blockchains. According to

these arguments Bitcoin is believed to be truly incentive-compatible, meaning that profits for

miners are positive when playing honestly and negative when deviating from the protocol.

However, Eyal and Sirer [135] revealed a malicious strategy called “selfish-mining” where

a colluding minority of miners can obtain more than what fair incentive would reward

them. In other terms, selfish miners owning the q% of the network computing power can

generate more than q% of the blockchain (confirmed/final) blocks adopting the malicious

strategy. If Eyal and Sirer theory were confirmed, then selfish-mining would represent a

dominant strategy for rational (yet honest) miners: these latter would rapidly join the initial

malicious minority forming an always growing pool of selfish miners. This process would

lead to the collapse of the blockchain decentralization because the majority of the computing

power would end in the hands of selfish-miners. Furthermore, a group of selfish miner may

become able to mount a 51% attack even if owning only a minority of the overall computing

resources, so for them a 51% attack might be profitable.

28 Online articles report news and cost analysis about the 51% attack suffered by Bitcoin-Gold
https://cointelegraph.com/news/bitcoin-gold-blockchain-hit-by-51-attack-leading-to-
70k-double-spend

https://cointelegraph.com/news/bitcoin-gold-blockchain-hit-by-51-attack-leading-to-70k-double-spend
https://cointelegraph.com/news/bitcoin-gold-blockchain-hit-by-51-attack-leading-to-70k-double-spend
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The selfish mining strategy is crucial to understand the security of blockchains even if

recent economic [136] and computer-science [137–139] studies have shown that it is actually

not economical, explaining why this strategy has not been observed in the real-world Bitcoin

network. This section is devoted, in the first place, to the description of the selfish-mining

strategy, and in the second place to its downplay explaining why despite its devastating

potential it actually poses no threat to the Bitcoin protocol [136].

4.2.3.1 Selfish Mining Algorithm

The selfish mining strategy has been initially envisioned by Eyal and Sirer [135],29 then its

theoretical description has been advanced and further studied also by Sapirshtein et al. [133]
and by Gervais et al. [134]. Albeit some variations have been introduced, the core strategy

of selfish mining remained the same: a selfish miner secretly withholds freshly generated

blocks, delaying their announcement in the network, to selfishly accumulate a time advantage

in the mining process. This strategy is sometimes also called “secret” or “stealth” mining, as

long as a selfish miner keeps secret his private chain of withheld blocks, revealing it only

when the length of the public chain approaches the length of his secret chain. The core of

the selfish mining strategy will be illustrated now with the help of Figure 4.11.

1. Create a secret branch: A selfish miner plays honestly, like all other honest miners,

and mines on top of the latest block he is aware of, except when he generates a new

block as shown in the left side of Figure 4.11. At this point he switches to the selfish-

mining strategy, i.e., he starts withholding his blocks of advantage and also tries to

secretly further extend his private chain.

2. Exploiting advantage: In the meantime the honest miners will keep mining on the

public chain, which will sooner or later become longer as honest miners own the

majority of the computing power. Essentially the selfish miner is trying to disperse the

honest miners power for as long as possible, creating a time advantage that he uses to

strengthen his leading position as shown in the middle section of Figure 4.11.

3. Publish in time, successful attack: The selfish miner keeps extending his private

chain and waits the public chain to be one block behind before finally revealing his

secret longer branch. According to the longest chain rule, honest miners will accept

his branch as part of the main chain and all their blocks generated while under attack

are pruned, becoming stale blocks. In this case the selfish miner has been able to

collect all possible block rewards at the expense of the honest miners, achieving a block

29 The original paper from Eyal and Sirer [135] has been later revisioned and re-edited by the same authors,
finally being republished in 2018 [144].
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Rest of the Network

Selfish miner

Selfish Time Advantage

A selfish miner 

decides to withhold 

a fresh block X

X

Honest miners wasted their power, 

selfish is relatively more efficient

thus have higher relative revenue

Selfish Advantage 

growing even more…

Withholding has not been advantageous, 

the selfish miner lost a block revenue

TIME

Figure 4.11 – Time sequence of the actions taken by a miner that adopts the selfish-
mining strategy. In this figure time flows from the left to the right and possible events
are represented by thick arrows. A miner becomes selfish when he is the first in mining a
new block (dashed red block). A lucky selfish miner is able to append further blocks to
his secret chain, keeping for long time an advantage over the honest chain. The case
reached via event-1 (EV 1) is the general case where the selfish miner adds more than one
block, EV 2 is the particular case where it adds just one block before the honest miners
add a block to the public chain as well. In both cases the selfish miner, withholding
the block, is trying to exploit a time advantage letting the honest miner unaware of the
longest chain in the network, thus forcing them to work on potentially stale branches.
The selfish miner is lucky and succeeds if is able to publish a private chain before being
caught by the honest miners, as shown after EV 3 (and also after EV n generalizing for
longer chains). However, it can also be the case that the honest miners immediately
close the gap and even overtake the selfish miner: in such a case (EV 4), the selfish miner
strategy of withholding blocks turns out to be unprofitable.

production rate (thus revenue) that unfairly exceeds its ratio of computing power. This

is the case illustrated in the top-right section of Figure 4.11.

4. Loosing the race, unsuccessful attack: However, the selfish miner can be unsuccess-

ful as well. The attack can fail if a honest miner publishes a block right after the

first withheld block, so that the selfish miner has no longest chain to publish and,

instead, his secret chain enters a race with the public one. The selfish miner can get

lucky and win the race, if so he immediately publishes his longest chain to collect all

block rewards. However the honest miners can also win and the selfish miner, that

owns a minority of the computing power, should give up and abandon his secret block.

In this case the strategy of keeping a block secret delaying its publication backfires

the selfish miner, who loses the block reward he could have gained by honestly and
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timely announcing his new block. This case is illustrated in the bottom-right corner of

Figure 4.11.

Main Observations on the Selfish Mining Strategy

1. The Eyal and Sirer model of selfish mining assumes the presence of just one pool of

selfish miners, but the contemporary presence of more selfish pools competing with

each others could compromise the expected relative revenue gains for all of them.

2. In case of race between the selfish and the honest chain, ignoring all network parameters

except computing power ratios and assuming that the selfish mining pool is a minority,

than the initial withholding of a fresh block is a risk with a higher probability of

incurring in a loss than in a positive reward, as the selfish miner is slower and, in

expectation, his chain is more likely to be overcome by the honest one.

3. In case of race between the selfish and the honest chain, the ability of the selfish miner

to communicate over the network is crucial. If the selfish miner is able to spread his

block to the majority of the miner faster than the block produced by the competing

honest miner, then he gains higher chances to have his block accepted, because the

majority of miners would contribute to the acceptance of his block.

The first two reported observations are the base for the economical critique to the selfish

mining strategy [136], further developed in Section 4.2.3.2. The last one instead highlights

the crucial role of the network infrastructure supporting any blockchain, discussed in more

details in Section 4.2.4. In fact, an attacker able to increase his communication ability

exploiting vulnerabilities of the blocks gossip protocol or of the protocol stack building

the Internet can increase his probability of success even without acquiring expensive extra

hashrate [145–148].

4.2.3.2 Selfish Mining Limitations

While network vulnerabilities remain a point of concern generally valid for all public

blockchains, the threat posed by selfish (sometimes also called “secret”) mining has been

with time better understood and considered minimal thanks to recent economic [136] and

computer-science [137–139] studies that proved the strategy to be unprofitable and also

poorly modeled, as it ignores the possibility of having multiple selfish miners interfering

with each other.

The interference among multiple selfish miners, in fact, can be intuitively expected to

lead only to losses for those selfish miners that own only a little fraction of computing power.

For example, one such small selfish miner may keep trying withholding blocks every time he
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believes to have been the first in discovering one, learning only later that another and more

powerful secret miner was playing the same game and, armed with greater power, has been

able to generate a much longer chain that overcome all those of the many smaller selfish

miners. These lasts will thus abandon the selfish strategy, leading to perpetual loss of revenues

for them, joining back the honest group of miners. Azimy and Ghorbani [139] started from

this intuitive argument and formalize selfish mining under a competitive scenario, confirming

analytically and in simulation that with the presence of a more powerful selfish miner, selfish

mining actually decreases the revenue of the weaker selfish miners and also helps the stronger

selfish miner, concluding that first, the weaker selfish miner will suffer from a loss in almost

every scenario [...] Second, the stronger selfish miner is not going to gain more revenue in

every situation so that the wiser choice for the weaker selfish miners is to join the honest miners

to be able to neutralize the effect of selfish mining for the strongest selfish miner. Essentially,

the competitiveness push all miners to immediately publish their blocks, so to immediately

collect the reward, waiving to selfishly withhold blocks as another more powerful selfish

miner can interfere with this strategy. The economist Paul Sztorc commented this phenomena

derived by modeling competition among selfish miners with these words: “you end up right

back where you were before” [149]. Indeed, selfish-miners rapidly understand that timely

publishing their blocks —thus turning back to play honestly— is a more profitable strategy

for them.

Even if a single powerful selfish miner succeeds in outpacing all competitors, achieving a

personal advantage, Liu et al. [138] notice that a mining attack is easy to be detected [...]
from the variety of the stale block rate of miners. Another symptom of selfish mining is the

frequent appearance of two different forking blocks, one from an honest miner and the other

published by the selfish miner after having withheld it for some time, published in reaction

to the other. Heilman notes that, among the two blocks, the one from selfish miner should

have an older timestamp, thus proposes a rule called “Freshness Preferred” [150] which

recommends honest miners to break ties among forking blocks opting for the one with the

freshest timestamp. This rule might be an effective countermeasure to selfish mining.

The unprofitability under competition and the availability of effective detection mecha-

nisms and countermeasures are actually not the most relevant arguments for the downplay of

the selfish mining threat. Wright and Savanah stress that, even in the original model of Eyal

and Sirer, for a single selfish miner “the strategy leads to lower [absolute] profits compared

to profits attained with honest mining, and therefore, there is no incentive for rational miners

to adopt it” [136]. In conclusion, economists believe the selfish mining strategy to be an

irrational strategy that damages the profits of miners adopting it, this way they explain why

it has not been observed so far in the Bitcoin network.
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4.2.4 Role of the Network

When Sirer et al. theorized the selfish mining strategy they studied the evolution of a selfish

miner (SM) relative revenue as a function of the selfish miner hash power (α) but also as

a function of another parameter, called γ, originally defined as “[the] proportion of honest

miners [that] mine on a SM’s block during a fork in the network” [151]. The γ parameter can

be interpreted as an indicator of the miner ability to control the communications over the

network, which is strategic for increasing the success of selfish mining. For example, looking

back to Figure 4.11, one can realize that the expected relative revenue of a SM depends on

the probability of entering in a race with the honest chain and, in turn, on the probability

of winning this race. This last probability changes according to γ: in fact, if during a fork

the SM is able to spread his block quickly, being the first to reach the, e.g., 90% of the other

nodes in the network (i.e. γ= 0.9), than the mining power of this great majority of nodes

will contribute to the confirmation of the SM’s block, thus to its success. Eyal and Sirer

studied the effect of γ over the miner relative revenues to understand for which critical value

of γ selfish mining becomes more profitable than honest mining (see Figure 4.12). As a

matter of fact they observe that in the most adversarial case with γ= 1, which models a SM

with a complete control over the network, the SM wins every race, always achieving a larger

profit compared to honest mining even if its computational power ratio is minimal. In the

ideal and opposite case where γ= 0, modeling a SM that is always slower than the rest of

the network in propagating his block, the SM strategy becomes more profitable than honest

mining only when the SM accumulates a great ratio of the overall computing power.

Sapirshtein et al. notice that modeling the attacker’s communication capabilities only

through the γ parameter, albeit being a succinct way to capture the effect of propagation

delays on the production of stale blocks it does not capture the impact of the size of such delays.

Advancing the Eyal and Sirer model by explicitly model the network latency, Sapirshtein et

al. are able to conclude that a blockchain “will be more vulnerable to selfish mining if delays

become more prominent, e.g., in the case of larger blocks” [133].

Even if the Eyal and Sirer model turned out to be improper for capturing the true rational

behavior of miners, also ignoring the existing competition among them and poorly modelling

the impact of network delays, it had the merit of showing (in first approximation) the decisive

role of the network on the blockchain security. Apostolaki et al. have been the first to analyse,

for instance, the important relation between the Border Gateway Protocol (BGP) of the

Internet and Bitcoin, revealing how a malicious miner colluding with a network operator

can prevent an honest miner from receiving honest blocks and, instead, it will receives

(and thus mine on) only blocks generated by the selfish miner. This kind of attack is called

Eclipse Attack [152] since a node under attack is “eclipsed” and alienated from the honest

network, with its communication horizon that gets restricted to a portion of the network
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Figure 4.12 – The figure compare the revenues between Selfish and Honest mining
for different values of the “network ability” γ parameter, suggesting that selfish-mining
becomes profitable as soon as the malicious miner becomes able to control the communi-
cations towards a large number of honest miners. This figure was included in the original
paper by Eyal et al. [144]. Copyright © 2018, ACM.

fully controlled by the attacker. An attacker able to run an Eclipse Attack is virtually able to

capture the mining power of its victims, increasing his relative computing power up to the

point it might become able to profitably run 51% attacks.

The network vulnerabilities are an important point of concern as they can affect any

public blockchain distributed over the Internet. A general solution to mitigate these security

risks is to run blockchains over permissioned networking infrastructures, thus restricting the

possibility of playing the blocks gossip protocol only to trusted nodes over authenticated and

encrypted end-to-end connections among them. This kind of solution, however, damages

the decentralization degree of blockchains.

4.2.4.1 Propagation Time and Stale Rate

Gervais et al. construct a model of PoW-based blockchains which comprehensively take into

account consensus and network parameters such as Block Size, Block Generation Interval

and Mining difficulty to calculate the resulting Block Propagation Time, Throughput and

Stale Rate. This last is proposed as main index to determine the security of a blockchain.

Gervais et al. plug their model of Stale Rate into a security model that comprehensively

consider the existence of selfish miners (Section 4.2.3) or eclipse attacks (Section 4.2.4). To

the best of this thesis author knowledge, the models of PoW-based blockchains and of their

security described and studied by Gervais et al. (their framework is illustrated in Figure 4.13),

are the most sophisticated and the only that captures so many of the relevant parameters
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Figure 4.13 – Components of the quantitative framework provided by Gervais et al. to
study the security of PoW-based blockchains. The figure is taken from [134]. Copyright
© 2016, ACM.

for the evaluation of a complex, distributed and financial system like a blockchain. For the

need of synthesis, this thesis waives to provide a complete and detailed description of the

whole framework. The interested reader is directed to the original paper [134] while this

thesis will only report one simplified but key observation about the Stale Rate, which is the

following:

Observation 4.3.
#Stale Blocks

#Stale + Final Blocks
∝

1
BP

Observation 4.3 highlights how the Stale Rate, trivially defined as the ratio between the

number of stale blocks and the total number of generated blocks, is inversely proportional

to the average Block Propagation Time BP. In fact, a larger BP determines a larger time

interval where multiple miners are not aware of freshly generated blocks: this asynchronicity

favors the generation of multiple blocks that —all but one— will become stale. A high BP

contributes therefore to the growth of the network stale rate, thus to the generation of forks

that breaks down the honest computing power on multiple branches, ultimately making the

network more vulnerable to attacks.

4.2.5 Power consumption of the PoW

Section 4.2.2.1 highlighted how one can increase the security of a blockchain extending

the Block Generation Interval (BGI). An extension of the BGI can be immediately achieved

increasing the mining difficulty, in other terms, making harder the cryptographical puzzle

necessary to produce a valid block. The effort of setting up an exceptionally secure blockchain

resulted, in Bitcoin, in a PoW that has become extraordinarily power-hungry [153,154].
It is possible to estimate the power consumption of the whole network of Bitcoin miners

combining their average computing power, measured in terahash per second [TH/s], with
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the efficiency of miners, measured in J/TH. The values for these two parameters are reported

in Table 4.1.

A lower bound on the power consumption of the whole Bitcoin network can be estimated

supposing that all mining pools deploy only the most efficient mining technology. In this

case, the Bitcoin network power consumption is equal to:

1.1× 108 TH
s
· 29.5

J
TH
= 3.245× 109J/s= 3.245GW (4.8)

This consumption of power is approximately 5600 times greater than the one of an electric

car, or 330 times greater than the one of an high-speed train, so large to be comparable with

the power consumed by a whole country such as Luxembourg. Figure 4.14 reports the data

used to offer this comparison and shows the same data in form of a bar chart.

Table 4.1 – Statistics used to estimate the power consumption of the Bitcoin network.

Parameter Value Notes

Mean
Computing Power

≈ 1.1× 108 TH/s
Computed over the Daily Total Hash Rates between Oct.
1, 2019 and Oct. 1, 2020. blockchain.com/charts/hash-rate

Miners efficiency 29.5 J/TH
At the time of writing, the most efficient rig is the Antminer
S19 Pro.
shop.bitmain.com/release/AntminerS19Pro/specification

Power Cons. [GW] Source

Electric Car “Tesla S” 5.80× 10−4 ev-database.org

High Speed Train
"FrecciaRossa1000" (ITA)

9.80× 10−3 ferrovie.it

Luxembourg
elec. peak demand 2014

1.01× 100 EU Commission

Bitcoin 3.25× 100 Equation (4.8)

Italy
elec. peak demand 2019

5.88× 101 Terna S.p.a.
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Bitco
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Figure 4.14 – Power consumption of the Bitcoin network compared with the one of cars, trains
and even entire countries. The statistic reported for Luxembourg and Italy indicate the electricity
peak demand recorded, respectively, in 2014 and 2019.

https://blockchain.com/charts/hash-rate
https://shop.bitmain.com/release/AntminerS19Pro/specification
https://ev-database.org/car/1207/Tesla-Model-S-Performance
http://www.ferrovie.it/portale/articoli/782/pdf
https://ec.europa.eu/energy/sites/ener/files/documents/2014_countryreports_luxembourg.pdf
https://www.terna.it/it/sistema-elettrico/statistiche/pubblicazioni-statistiche
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4.3 Distributed Consensus

In Sections 4.1 and 4.2, the distributed consensus problem on the order of transactions has

been solved introducing the PoW. The PoW advantages are many: it is extraordinarily secure,

fully distributed, and user-agnostic. In fact, users only have to provide some computing

power to participate in the protocol, but are not asked to reveal their identity, so much that a

PoW-based SL is open to everybody, even to anonymous users. Ultimately, it is thanks to the

PoW that blockchains can free users from the need of trusted authorities such as banks, at

the same time protecting the users privacy. The popularity of the blockchain, above all with

cryptocurrencies, is most probably grounded in these two key aspects. However, the well

known limits of the PoW in terms of transaction latency, throughput and power consumption

are not tolerable by most networking applications.

It can be observed that all the key properties of a SL, such as consistency, security,

tolerance to failures and scalability, mainly derive from the adopted consensus protocol. It is

interesting to understand if it is possible to design a consensus protocol that circumvents the

limits of the PoW but, nonetheless, enables the implementation of an open, decentralized,

secure, blockchain-based SL that also meets the stringent performance requirements of

distributed networks.

To answer this question, the rest of this section explores the rich literature on consensus

protocols, a literature that dates back to the 70’s but flourished again with the rise of

interest around the blockchain. In particular, Section 4.3.1 revises fundamental theorems of

distributed systems, elaborated decades ago, that are still valid theoretical bounds for the

design of consensus protocols in general. A modern transposition of these limiting theorems

culminates in the blockchain trilemma, discussed in Section 4.3.2, which highlights the

trade-offs inherent to the blockchain technology. Consensus protocols are briefly reviewed

in Section 4.4, looking for an alternative to the PoW.

4.3.1 Limiting Theorems for Consensus

Distributed systems are usually modeled as asynchronous systems, i.e., multi-agent systems

where nodes perform some coordinated task communicating via message-passing. These

systems are asynchronous because nodes do not share a perfect clock, the propagation

time of messages is not fixed, and different kind of failures may occur, contributing to the

a-synchronicity of the system. Two kinds of failures can occur in a distributed system, Crash

and Byzantine failures. A crash-failure models the simple abrupt crash of a node, that

completely stops sending and processing messages, until it recovers. Byzantine failures

model any other possible failure, including those due to the attacks of malicious users able,

for example, to send corrupted messages, intercept those of others to delay or destroy them,
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or also to change their content. The most general formulation of the distributed consensus

problem becomes, in so modeled systems, the problem of making all agents of the system

reliably agree on the result of a computational process, and this agreement must be reached

in bounded-time via message-passing, despite all possible failures.

Fischer, Lynch, and Paterson elaborated, in 1985, the first fundamental theorem of

distributed systems, known in the literature as the FLP impossibility proof [155]. They

concluded that it is impossible to build a consensus protocol that grants to always solve the

consensus problem for any fully-asynchronous system. Their proof is based on the intuition

that a failure may occur precisely all the times the group of agents is close to reach an

agreement, thus preventing the termination of consensus eternally.

The CAP theorem [156] is a second, fundamental pillar of the theory of distributed

systems. The CAP acronym stays for Consistency, Availability and Partition-Tolerance, and the

theorem states that only two out these three properties can be preserved in a distributed

system at the same time. Consider, for instance, the case in which a network of miners gets

partitioned in two groups, and a transaction must be approved. The first group cannot contact

the second one to verify the validity of the transaction and is left with two options. It can

either wait the second group to come back, or it can approve and write the transaction in the

ledger. In the first case, the miners sacrifice availability in favor of consistency, temporarily

blocking the system. In the opposite case, they accept the risk of writing a transaction that

could conflict with another one accepted by the second group. The two cases in which

the system is either consistent or available (but always partition-tolerant) have been just

discussed, the case left is the one of an always available and consistent system. Trivially, a

partition would leads us back to the previous scenarios, this means that an available and

consistent system cannot tolerate partitions, proving the theorem.

Both the FLP proof and the CAP theorem contemplate ill-behaving systems, affected by

continuous failures or broken in two partitions, so they might be considered only mildly

relevant given that computer networks are built to be well-functioning for most of their

lifetime. However, they create the base for the definition of the compelling tradeoff between

latency and consistency, as formulated by Abadi in the PACELC theorem [157], which builds

on CAP (after resorting the acronym into PAC), and further extends it by adding: “Else

Latency or Consistency”. Abadi observes that: “Ignoring the consistency / latency tradeoff of

replicated systems is a major oversight, as it is present at all times during system operation”. It

is indeed the key tradeoff that determines the security and the performance of a distributed

system. In Bitcoin, for example, this tradeoff is controlled by tuning the mining difficulty,

and Section 4.1.4 has shown how the 10 minutes average latency per block is fundamental

to protect the blockchain from double spending, but also leads to a degradation of the system

performance (Section 4.2).
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Consistency problems with Distributed Transactions

It can be observed that the problem of consistency is raised only by non-commutative (con-

flicting) transactions [158], while most of the pairs of transactions are actually commutative,

i.e., they can be written in the ledger in any order, and even in different partitions, provided

that they spend different resources. A valid solution to enhance the performance of a ledger,

without sacrificing its consistency, becomes therefore the execution in parallel of all com-

mutative transactions, blocking the system only for agreeing on the order of the conflicting

ones. This idea empowers high-performance permissionless blockchains such as, for example,

Chainspace and Omniledger [159,160], that define partitions of the system (called shards)

that can process subsets of local transactions.

This same idea can be interpreted as the application of the Optimistic Concurrency Control

(OCC) principle, originally proposed by Kung and Robinson for programming concurrent

systems [161], that suggests to perform all transactions in parallel. Assuming that most of

transactions do not interfere with each other, then only few conflicts will be recorded, and

relatively rare rollback procedures will be enough to restore the ledger consistency. With

OCC the transaction throughput improves significantly for low ratios of interference, but is

unstable and collapses to zero for higher level of interference, as the systems will spend most

of the time in rolling back transactions, instead of making progress. An analogous result,

more familiar for the readers expert in wireless networking, is the performance evaluation

of the CSMA/CA MAC protocol for wireless LANs [162].

One may want to implement an always consistent and available distributed system by

designing atomic transactions [163], i.e., series of read and write operations that either

completely occur or none at all. Atomic transactions should grants the consistency of the

system by induction: they start from a consistent state, then lead either to another consistent

state or leave the system unchanged. However, also atomic transactions are impossible

in a general asynchronous system [164, 165], and need synchronization or locks to be

implemented [166]. Nevertheless, the properties of modern distributed systems, above all

those concerning their degree of decentralization and level of trust, can be accommodated

rethinking the properties of atomic transactions, as preliminary explored in [167,168].

4.3.2 Blockchain Trilemma

The “blockchain trilemma” formulates the conjecture that a blockchain system cannot exhibit,

at the same time, maximum decentralization, security and scalability (performance). The

trilemma is usually illustrated by a triangle, like the one in Figure 4.15, where one cannot

draw a single point that is close to all the triangle corners, meaning that a trade-off among

the three properties must be chosen [169].
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SCALABILITY

DECENTRALIZATION SECURITY

Figure 4.15 – The Blockchain Trilemma pictorially suggests that a trade off among
security, decentralization and scalability must be chosen. Copyright © 2021, IEEE.

The trilemma can be considered as the reformulation of the PACELC theorem for the

blockchain domain: it warns developers that any attempt of improving on scalability, for

making a blockchain less power-hungry or more performing, implies a sacrifice in terms of

security or decentralization. Consider, for instance, to improve the transaction throughput

by reducing the mining difficulty, or by choosing a consensus protocol less expensive than

the PoW. Although effective for increasing the block generation rate, less computing power

will become enough to attack the blockchain successfully. This reasoning shows that it exists

a trade-off between scalability and security. Permissioned blockchains can be seen, instead,

as an example of trading decentralization for scalability. In permissioned systems, in fact, the

access to the blockchain is restricted only to users that must be registered with a competent

central authority. After being authenticated users share a higher level of mutual trust and

can thus adopt a lighter consensus protocols, to improve on performance. This cannot be

done in permissionless blockchains, that are fully decentralized and remain trustworthy only

as long as they employ some cryptographically hard consensus protocol.

The crucial conclusion conveyed by the trilemma is that a trade off must always be chosen,

and consensus protocols should be selected to meet the specific requirements of the target

application. For example, the PoW results to be effective in supporting cryptocurrencies,

where an high level of distributed trust is preferred over performance, for the sake of freeing

users from centralized authorities. But the same PoW comes with high levels of power-

consumption and poor transaction rates, not tolerable by most networking applications, so

that developers need to find alternative consensus mechanisms. Section 4.4 briefly reviews

consensus protocols to ease the selection of the most appropriate one, depending on the

application requirements.
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4.4 Brief Review of Consensus Protocols

There are two main categories of consensus protocols: voting and lottery based protocols,

reviewed respectively in Section 4.4.1 and Section 4.4.2. A third category, presented in

Section 4.4.3, welcomes those protocols that cannot be classified according to the general di-

chotomy. Table 4.3, reported while concluding this section, compares the surveyed consensus

mechanisms in terms of scalability, security and decentralization.

4.4.1 Voting Protocols

The Byzantine Generals problem [170] is the renowned allegory, invented by Leslie Lamport,

to describe the challenge of achieving consensus in a distributed system despite any potential

failure, including malicious attacks. In this challenge, a group of generals need to take a

coordinated action, either attack or retreat, and cast their votes to form a majority in favor of

one action. It is hard for generals to take a decision because some generals may be traitors,

as much as the messengers that communicate the votes among generals. Betrayals model

this way all the possible crash/communication failures of a distributed system.

Leader-based and PBFT variants

The Byzantine Generals problem is in fact equivalent to the one of recording a transaction

in a distributed system. This latter is usually solved by introducing a leader node, the

“commander” of the system, that initially broadcast the transaction in the network. Each

node validates the received transaction by simulating it locally. If the simulation completes

successfully it means that the transaction is consistent w.r.t the local copy of the ledger, hence

it is valid. The node sends then back an acknowledgment to the leader, suggesting to commit,

or otherwise to abort. Acknowledgments can be interpreted as the votes of the Byzantine

generals. Once that a majority of votes has been collected for either commit or abort, then

the leader broadcast back its final decision to all nodes, these last must update their local

copy of the ledger accordingly.

The PBFT protocol [171] is the most famous protocol that implements such a leader-based

scheme to solve the consensus problem. The original illustration of the leader-based scheme

empowering the PBFT protocol is shown in Figure 4.16. The PBFT protocol tolerates up to

f failures in a system with 3 f + 1 nodes, this by requiring a quorum threshold of 2 f + 1

nodes, which grants to have a majority of non-faulty/malicious nodes. The protocol requires

3 rounds of message passing for an overall number of messages equal to 3 f + 1, a bound

that Shostak proved to be minimal [172] and Pease proved later to be also necessary and

sufficient [173]. There are many other leader-based protocols and PBFT-variants, different
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Figure 4.16 – Illustration of the normal case operation of the PBFT protocol in a dis-
tributed system, as originally drawn by M. Castro and B. Liskov in [171]. Copyright ©
1999, ACM.

for the number of voting phases, quorum thresholds or for the mechanism to change the

leader in case of failure. Another well known example of such leader-based protocol is

PAXOS [174], followed by many other more recent proposals [175–180].

Limits of Leader-based protocols

Leader-based protocols are usually said to be blocking, meaning that they stop or abort

the decision process in case of a-synchronicity. In fact, in case of communication delays

or failures (due to unreliable channels, faulty or even malicious nodes), a leader can only

block-and-wait for a decisive vote, or time-out and abort the protocol. Blocking is necessary

to ensure safety, but also implies wastes of energies in busy-waiting and increases latency in

general. One may prefer to abort instead of blocking, to favor liveness, but a true progress

is possible only when the network recovers from its a-synchronicity and with a non-faulty

leader.

In fact, blocking is a forced option when the leader fails or it is not possible to timely

communicate with him. There is no way to circumvent this limit because a unique leader

must be part of the design, otherwise a unique order of transactions cannot be defined,

as conjectured by Gray and Lamport [181]. According to their conjecture, the distributed

consensus problem becomes equivalent to the problem of unique leader election. Actually, it

has been proven that the election problem is even harder than consensus in general, since

“The weakest failure detector needed to solve Election is stronger than the weakest failure detector

needed to solve Consensus” [182].

The need of a leader implies, unfortunately, severe consequences [183,184]. For example,

the leader is a single point of failure, that can be attacked via Distributed Denial of Service
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(DDoS) to block consensus. Moreover, the decision of the single leader is not validated by

any peer, so that its decisions may diverge from the majority of received votes. Having a

leader is thus usually considered a concern for the protocol fairness.

Pure Voting

To avoid introducing a single point of failure (the leader), each node may send its vote to

all others, building a pure voting system. This way each node can perform the counting

operations autonomously, understanding whether a majority has been reached or not, and

finally committing or aborting accordingly. Given that each of the N nodes needs to send

a message to all other N − 1 nodes, in every voting phase the nodes exchange N(N − 1)
messages. The communication complexity of a voting phase is therefore O(N 2), a high

quadratic complexity that prevents the deployment of pure voting systems at large scales.

Federated Voting and Sharding

On one hand, the efficient leader-based protocols suffer from single-point of failures and

blockades while, on the other hand, pure voting systems are impractical. Federated Voting

and Sharding are hybrid approaches that mitigate these issues. With Federated Voting

the consensus is first solved in subnetworks, the federated regions of the main network,

then the local results are merged for the whole federation. The Stellar protocol [185] is a

well-known example for this class of protocols. In a Stellar network each node first chooses

a subset of trusted nodes, made of known neighbors with long established trustworthy

relationships, forming a “slice”. Then the inter-slice consensus is solved with any desired

quorum threshold. The overall consensus is later achieved for the global network applying

a principle of recursive message passing and quorum overlapping, empowered by gossip

protocols [186]. Similarly to federated voting, sharding [187]means that the original system

is decomposed into shards, which are processed separately, and later recombined together

for building a global consensus. Protocols based on sharding are, for example, Chainspace

and Omniledger [159,160]

The advantage of these hybrid approaches is that nodes reach consensus without directly

knowing all other nodes of the network. This results in considerable scaling improvements.

However, most gossip protocols rely on some synchronicity assumption to practically offer a

performance gain, otherwise they grants only eventual-convergence properties. Summing up,

with these hybrid approaches the scalability of leader-based protocols is partially traded for

approaching the robustness of pure-voting systems, but the original issues of the two major

paradigms are only mitigated.
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Virtual Voting

In virtual voting protocols, nodes do not explicitly cast their votes, they nevertheless acquire

the necessary information to solve the consensus problem on the order of transactions. One

such protocol is, for example, the hashgraph consensus algorithm [188]. This protocol

exploits a gossiping mechanism to spread transactions epidemically, also attaching metadata

to describe which transactions resulted critical for triggering new transactions. These

metadata are enough to rebuild the causal relationships among transactions, allowing all

nodes to sort them, even without explicitly casting their votes. A virtual voting approach

improves on the performance of a pure voting system exploiting gossip protocols, that allow

nodes to not directly communicate with all other nodes. Moreover, it is well known that

a causal consistency order [189] is less strict than a sequential order [190]. This opens

a further space for improvements on latency, in fact, for more transactions it will not be

necessary to block the ledger to enforce of an only causal-order, while more strict blockades

would be necessary to enforce a sequential consistency.

4.4.2 Lottery Protocols

In protocols based on voting, the nodes agree on what to add to the blockchain by either

casting their votes, forming a majority in favor of a block, or by electing a leader that decides

the next block for the chain. In a lottery-based protocol, instead, the consensus mechanism

is a random process —a lottery— that similarly chooses the node that can add a new block

to the chain. The election is transformed therefore in a lottery, with the winner that replaces

the leader. For example, in Section 4.1.3 the PoW turned out to be the “winning ticket” (i.e.,

the proof), that a node should exhibit to claim the role of leader. A new lottery draw must

take place for each new block, this to reduce the probability that a malicious node takes

control over the blockchain. Lotteries do not need to follow uniform distributions, rather,

each mechanism is characterized by the probability distribution chosen to bias some property

of the winner, hence, each lottery protocol reflects a particular trust model. Lottery protocols

are less efficient and performing than voting-based ones, but better support permissionless

blockchains as they are open to anybody, welcoming anonymous validators that do not need

to be registered. The rest of this section explores the lottery-based protocols in relation with

their specific “proof”.

Proof of Work (PoW)

The block nonce is the winning ticket for PoW-based protocols, and only the first miner

that finds a valid nonce can forge a new block. Any user with some computing power can

participate to a PoW-based consensus protocol, which is thus open to anybody. Although
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effective for implementing a distributed, secure and open consensus mechanism, the PoW

comes with severe drawbacks. The greatest concern is the high demand of power, but also

the slow transaction speed together with the lack fairness. In fact, a miner is free to include in

a block the transactions he prefers, deliberately ignoring some others. This will be especially

true for Bitcoin when the controlled supply of new coin will terminate [191], with nodes

that will process transactions ordered by fees for the miners, so that transactions without fee

will be most probably never added to the chain.

Proof of Stake (PoS)

Systems based on PoS leverage on the economical rationality of their users to reach consensus

and to honestly grow the blockchain while processing transactions. With PoS there is only a

random process that selects the block proposers, and this process is biased towards those

nodes that own more cryptocoins, making more likely the election of the richest stakeholders.

The richest stakeholders have a vested interest in keeping the network well functioning,

so that the overall system can be perceived trustworthy and valuable. Ultimately, it is in

the rational interest of users to play honestly at the PoS-protocol in order to safeguard

and enhance the value of the same system where they own a great stake. The PoS is also

considered an energy-aware alternative to the PoW, as long as block miners do not need to

waste power for forging new blocks.

Delegated Proof of Stake (DPoS)

The DPoS is a more scalable variant of the pure PoS that outperforms all other proof-based

consensus mechanisms [192]. To improve on scalability the consensus problem is solved by

a restricted number of delegates, elected in the network again by a random process biased

by stake. What distinguishes a DPoS from a PoS is therefore only the election of a little

committee responsible for the honest validation transactions. The fact that delegates are

known (accountable) and elected according to a rational criteria ensure their honest behavior,

which can be further enforced by asking them to escrow some coins that will be confiscated if

they are caught misbehaving. The DPoS scheme is implemented by many popular platforms

such as EOS, Tron, Steem, Bitshares, and Algorand.

Other Proofs

Essentially, all lottery-based protocols are driven by their users commitment, which is either

proved demanding a sacrifice (e.g. of computing power), or enforced by biasing the users

with a greater interest at stake. Other known analogous proofs are reported for the sake of

comprehensiveness in Table 4.2.
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Table 4.2 – List of known proofs empowering lottery-based protocols.

Proof of Elapsed Time (PoET)
The random time spent in a waiting queue is the sacrificed re-
source [193,194].

Proof of Importance (PoI) &
Proof of Networking (PoN)

A different mix of metrics, including network topological infor-
mation, allows the computation of the node commitment in the
network. The POI concept was introduced by the NEM P2P cryp-
tocurrency, while the PoN has been originally proposed in [12].

Proof of Burn (PoB)
A node metaphorically “burns” coins sending them to a dead ad-
dress. This way it gains the privilege of leading the consensus.

Proof of Capacity (PoC)
The well-known PoW turns into a PoC if memory is the main re-
source necessary to generate a valid proof, like in [195].

Proof of Deposit (PoD)

PoS-protocols suffer from the “long range” and the “nothing at stake”
attacks [196]. This last attack is performed by nodes that do not
own any coin, so they can keep trying to create forks, slowing down
the consensus, without risking their stake. To counteract this attack,
in Casper [197] nodes have to deposit some coins, an action called
bonding, in order to the become validators and generate blocks.

4.4.3 Other Approaches

Round-Robin

If the network is fully synchronized, nodes can implement a fair succession procedure via

Round-Robin, alternating each others as leaders. A Round-Robin scheduling is fair and can

leads to high transaction rates, however, any node can maliciously deviate from the protocol

and a central clock/scheduler is required.

Node-to-node Consensus

Bitcoin enacts an open, censor-ship resistant system where transactions are validated in

public. However, especially to support flexible businesses, one may be willing to implement

transactions via private, bilateral agreements. Two mutually trusting counterparties can thus

validate their transactions between themselves, “node-to-node”, without involving anybody

and reducing the interactions with a public ledger as much as possible. Fast-payment channels

are an example of node-to-node consensus. These are channels that two neighbors may

open to perform their frequent and private transactions without incurring in the multiple

fees that would derive from transacting over a public ledger. Node-to-node transactions

are sometimes said to be off-chain [198, 199], since they are not recorded on any main

blockchain. Two neighbors that opened a fast-payment channel may want to close it when

the channel balance, which accounts for hundreds or even thousands off-chain transactions,
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reaches a disproportionate amount in favor of one party. To clear this balance the debtor

issues a closing transaction on a separated blockchain, compensating the creditor. Off-chain

transactions can significantly reduce the load of a blockchain, enhancing considerably the

network transaction rate.

Table 4.3 – Comparison of Consensus Techniques

Transaction
Rate

Network
Scalability

Consensus
Participants

Attacks Centralization

Leader-based
PBFT variants

High High ∼O(N) Registered
nodes

Collusion of
1/3+ 1 nodes

Central
coordinator

Pure Voting Low Low ∼O(N2) Registered
nodes

Collusion of
50%+ 1 nodes

Fully
distributed

Sharding Medium Medium Known
neighbors

Collusion of a
strategic minority

Federations

Virtual Voting Medium Medium Known
neighbors

Cheating neighbors Fully
distributed

PoW Low Low Anonymous Attacker with huge
computing power

Fully
distributed

PoS Medium Medium Anonymous Collusion of richest
stakeholders

Fully
distributed

DPoS High High Elected
Delegates

Collusion of
delegates

Requires
delegates

Round-Robin High High Registered
nodes

Block by any
malicious user

Requires
global synch

node-to-node High High Known
neighbors

Cheating neighbors Fully
distributed

Table 4.3 concludes this section summarizing the main properties of the surveyed con-

sensus protocols.

4.5 Algorand: “The Trilemma Solver”

Algorand [126, 200] is the innovative blockchain-based permissionless ledger supporting

the ALGO cryptocurrency. Experimental deployments of Algorand achieved a 125× Bitcoin’s

transactions throughput, with blocks confirmation times under a minute and without re-

quiring any huge consumption of power as with Bitcoin. These results gained Algorand its

reputation for being the “Trilemma Solver” [201]. This sections is devoted to the discussion

about the possible collocation of Algorand within the landscape of the DLTs drawn in light

of the trilemma.
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4.5.1 Main Peculiarities of Algorand

Pure Proof of Stake & Secret, Random Validators

Algorand defines itself as a Pure Proof of Stake30 system for stressing that, albeit relying

on Stake rather than on Work, it manages to preserve a high degree of decentralization

thanks to the randomized election of the delegates responsible for the approval of blocks of

transactions. This fact distinguishes Algorand from a generic Delegated PoS protocol: both

speed up the consensus delegating it to a relatively small number of committee members

but in a generic DPoS protocol these members, once chosen, are made publicly known and

remain in charge for multiple voting sessions, becoming this way clear targets of bribery from

attackers, while the randomized, secret and continuous replacement of committee members

designed by Algorand avoids this risk. According to the described mechanism Algorand is

said to implement the secret self-selection of both block proposers and validators, adding

player-replaceability to prevent an adversary from targeting publicly known validators with

DDoS or bribery attacks.

Sortition & Algorand Protocol Phases

The continuous election and replacement of blocks generators and consensus participants is

performed distributedly thanks to a cryptographic primitive called “sortition”. This primitive

exploits Verifiable Random Functions (VRFs) [202] and ensures that a small fraction of users

are selected at random, weighed by their account balance, and provides each selected user with a

priority, which can be compared between users, and a proof of the chosen user’s priority [200].
Sortition is extensively exploited in the two main phases of the Algorand protocol:

1. Block Proposal

2. Block Voting

In the Block Proposal phase few nodes are selected at random, via sortition, for proposing

a new block of transactions. The few blocks generated in this first phase are provided as input

to the second Voting phase, where random committee members will try to reach a consensus

on one given block adopting BA?, i.e., a voting-based Byzantine Agreement protocol.

The BA? protocol

The Block Voting phase is driven by a voting-based consensus protocol where nodes try, in

multiple consecutive steps, to form a consistent majority for a particular block and either
30 The Algorand official blog reports a post from S. Gorbunov entitled: “Pure Proof-of-Stake

Blockchains” https://www.algorand.com/resources/blog/secure-blockchain-decentralization-
via-committees

https://www.algorand.com/resources/blog/secure-blockchain-decentralization-via-committees
https://www.algorand.com/resources/blog/secure-blockchain-decentralization-via-committees
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succeeds, committing a block after a finite number of steps (thus in bounded time) or timeout

and abort the BA? protocol committing the “empty block”. Sortition is used in each step

of BA? to elect new users asked to vote on blocks. The Algorand protocol fixes several

parameters to regulate, e.g., the expected number of valid block proposers or the committee

size τ, i.e., number of users that should participate to BA? in the various protocol steps. A

large τmitigates the risk of a malicious user being able to collect a relatively small number of

votes sufficient to reach the 2/3 quorum imposed by BA?, but slows down the voting phase.

The committee size is thus a relevant parameter from a security/performance trade-off

perspective. The Algorand Technical Report [203] indicates that to limit to 5× 10−9 the

probability of a safety violation in BA?, τ should be set to 2000 (quite large committee size)

and the 80% of nodes in the network must be assumed to be honest. It also shows that the

committee size required to keep this same probability of safety-violation grows very fast

when reducing the ratio of honest users in the network.

Network Assumptions

The distributed verification of eligibility for both block proposers and committee members is

made consistent mandating nodes to initialize the seed for sortition with some commonly

known random information, i.e., some of the least significant bits extracted from the hash of

the last approved block. The protocol round/step-number must be also included for seeding

the sortition primitive. The need of this common knowledge, together with the protocol

tight time constraints before firing a timeout while collecting votes in BA?, means that nodes

must be highly synchronized. In fact, To achieve liveness, Algorand makes a “strong synchrony”

assumption that most honest users (e.g., 95%) can send messages that will be received by most

other honest users (e.g.,95%) within a known time bound [200], which means that Algorand

makes progress only under this assumption while it will safely block (throughput = 0 TPS)

when the network experiences “asynchronicity”, e.g., because of longer propagation delays

or attacks to the networking infrastructure. Furthermore, 2/3 of the users online must be

honest in order to form voting committee that do not violate the Algorand safety conditions,

No Incentives

Algorand does not define incentives for block generators or validators: the lack of incentives

separates well Algorand from the other popular cryptocurrencies whose security is usually

studied under game theory, with block rewards used to drive nodes towards the adoption of

a honest behavior.
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4.5.2 Main Observations and Comments

1. Latency and Honesty assumptions Algorand includes a voting based BA protocol

that, relying on the Algorand sophisticated gossip mechanism and on the Algorand

relay network31 minimizes communication latency and allow Algorand to finalize

blocks in very short time, achieving this way a throughput in the order of 1,000 TPS,

planned to grow soon to 46,000 TPS introducing block pipelining [204]. Essentially,

Algorand strongly relies on the assumption that the network latency will be low to

speed up as much as possible block generation and voting phases. However, this

assumption on network latency turns out to be a double-edged sword for Algorand. In

fact, a minimal noise or malfunction in the network can introduce delays sufficient for

triggering continuous timeout in the BA? protocol, forcing the system to commit only

empty blocks, thus preventing Algorand to make a true progress reducing to 0 TPS the

throughput. Conti et al. [201] show that an attacker can indeed easily obstruct and

stop the Algorand network exploiting this fragility. They simulate an Algorand network

with only 1%-3% of malicious nodes that flood the network with bogus yet valid blocks,

this flooding strategy turns out to be effective for delaying the processing capabilities

of honest validator nodes, growing the execution time of the BA? protocol enough

to cause timeouts. The work from Conti et al. has therefore shown that it is simple

and cheap to setup a DDoS attack to Algorand based on flooding. This observations

raises the awareness on the fact that Algorand is not only a PoS system, but also a

voting-based one, thus inherits the main limitations of such protocols, above all the

possibility of being blocked via DDoS, as discussed in Section 4.4.1.

Furthermore, the Algorand protocol requires the 80% (4/5) of the committee members

to be honest for granting a high probability of safety, introducing therefore a stronger

trust assumption compared to the 2/3 requirement valid in general for BA protocols.

In conclusion, Algorand introduces an innovative architectures that blends together

advanced cryptography with sophisticated and very performing networking protocols.

The design assumptions on the network latency and on the ratio of honest users in the

network, albeit defensible, are strong and represents limits for the reliability and the

security of Algorand.

2. No complete Decentralization In January 2021 a user of the Algorand community

criticized the Algorand foundation for being the single maintainer of the relatively short

list of relay nodes, the only involved in the spreading of protocol messages, basically

making Algorand a permissioned, centralized blockchain [205]. The official reply states

31More on the Algorand network architecture that comprises Relay Nodes here: https://algorand.
foundation/algorand-protocol/network

https://algorand.foundation/algorand-protocol/network
https://algorand.foundation/algorand-protocol/network
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that Algorand is planning for the future to mix relays vetted by the foundation with

permissionless ones to enhance the decentralization degree of Algorand, still, as of

today the Algorand network cannot be considered fully decentralized.

3. Lack of Incentives The lack of an incentive mechanism may lead to the so called “lazy

validator problem”, meaning that a validator not rewarded for his honest participation

in the protocol tends to simply shutdown its node. This problem is a source of concern

for Algorand as the protocol relies on the assumption that 2/3 of the nodes online

are honest, an assumption that may be not fulfilled if honest nodes goes offline not

contrasting malicious nodes, that are instead motivated by rewards coming from

successful attacks such as double-spending. The robustness of Algorand without an

incentive system is indeed still debated [206–208].

4. Potential Errors in Security Assumptions According to Yongge Wang [209], some of

the security assumptions made by Algorand designers are wrong. In particular, the

author of [209] claims that:

• An attacker controlling even less than 1/3 of the ALGO tokens can easily originate

a fork;

• Despite the continuous replacement of committee members an attacker can

contact online nodes to corrupt them before they get randomly elected;

• The innovative BA? protocol can be actually replaced by any plain voting protocol

based on majority providing the same features of BA?.

The presence of a centralized networking infrastructure, such as the Relay network, and

the well known security limitations of quorum based voting protocols, prevent Algorand from

eluding the limits of the trilemma. Nevertheless, its unique and innovative design choices

allow the depart from PoW, making Algorand energy efficient, enable a considerable growth

of the Transactions Throughput when the network is tightly synchronized and grant security

(by blocking) when the network experiences partitions or delays potentially originated by

attackers. While communications happens on a centralized infrastructure, nodes participating

to the consensus protocol are permissionless, thus Algorand is able to preserve a good degree

of decentralization.

Ultimately, within the inescapable limits of distributed systems discussed in Sections 4.3.1

and 4.3.2, the trade-off chosen by Algorand seems to ensures the minimum possible disruption

of Decentralization and Security to achieve the Scalability required to run modern, globally

distributed applications.



110 4.6 Blockchain in Networking: Related Works

4.6 Blockchain in Networking: Related Works

The blockchain-based applications documented in the literature are many and disparate. The

large spectrum of blockchain-based applications, originally limited only to cryptocurrencies,

seems now to be so broad to include: Supply Chain Management [19–22], E-Voting [23–30],
Smart-Grid [31–38], Healthcare [39–42], Banking [43,44], Smart Cities [45–47] and even

Vehicular [48–61] and Drone [62–66] Networks. For a systematic review of blockchain-based

applications the reader can refer to [210], but also to other recent review papers [67–75].
This very wide application range witnesses the “blockchain rush” of industries and academics

that looked at the blockchain as to an almost limitless, universal technology, to be applied to

any commercial sector and in any discipline. The doubts about this impulsive adoption of

the blockchain led different authors to reflect on the true, novel advantages brought by the

blockchains, with M. E. Peck and Wüst et al. that critycally raise the question: “Do you need

a blockchain?” [211,212].

To answer the question, Herlihy [213,214] and De Angelis et al. [215] suggest to study

the blockchain from a distributed system perspective. This is the necessary perspective to

appreciate the true, original features of the blockchain, but also to uncover the major concerns

of this technology and of its derivatives, such as Smart Contracts. For example, the poor

support of concurrent operations [216] opens the doors to a vast number of dangerous attacks,

as those surveyed by Atzei et al. [217], to be added to the other well known security risks

succinctly analysed in Section 4.2, and studied in detail also in [73,74,134,135,218,219].

While the lack of support for concurrent operations remains an important limitation of

the blockchain technology, which hampers its performance and security, the other security

risks can be considered only mildly relevant because, as explained in Section 4.2, the

most concerning double spending attack is actually foiled adequately by the PoW. The

same PoW, however, implies great consumption of power [153, 154] and contributes in

slowing down the transaction rates while increasing latency [220,221], so much that it is

considered as the main problem for integrating the blockchain into the domain of distributed

computer networks [222]. Not only, Gencer et al. [223] and Gervais et al. [224] criticize

the PoW for not being a genuine distributed consensus mechanism, since they observe a

tendency for the computing power to consolidate in the hands of few central players. Despite

these disadvantages, the PoW seems to be indispensable to create trust in a blockchain,

so much that financial investors focus almost exclusively on PoW-based blockchains, that

together account for more than 90% of the total market capitalization of existing digital

cryptocurrencies [225,226].

As the PoW is burdensome, many have been the proposals to replace it targeting specific

applications. For a survey of consensus mechanisms the reader can refer to the brief one
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reported in Section 4.4 and to other available surveys such as [69]. An alternative of particular

interest for distributed networks is, for example, the Proof of Networking (PoN) [12], which

is essentially a formulation of the ideal properties that a consensus mechanism should blend

together to boost blockchain-based applications for distributed networks. Nonetheless, the

shift from ideal properties to concrete implementations remains complicated by scalability

issues, as noted in the experimental work of Selimi et al. [227], that introduced a transaction

platform (based on HyperLedger) in a real world wireless mesh network highlighting several

potential bottlenecks that could limit the rate of economic transactions.

Both [12,227] envision one valid use-case of the blockchain for distributed networks,

i.e., the blockchain as a distributed marketplace of networking resources, that would open

the way to the Distributed Internet Service Providers (DISPs). Example of this vision becoming

reality are two projects, namely, AMMBR and Althea,32 that candidate themselves as wireless,

blockchain-empowered DISPs, thus contributing to the implementation of a more reliable

and cost-effective networking paradigm driven by cooperation. The success of projects of

this kind is expected to offer a solution to the sustainability problems that afflict Community

Networks (CNs), as conjectured in [228–230] and forecasted in [231,232].

The application range of the blockchain in the domain of distributed networks goes beyond

the wireless DISPs. For example, Castro et al. [233] propose the use of [sic] “a decentralized

public ledger and cryptography to provide ASes with automatic means to form, establish, and

verify end-to-end connectivity agreements”, this to solve the interdomain contractual and

routing issues among different ASes. Jin et al. [234] propose the adoption of a blockchain

within Named Data Networks as a measure to reliably update the hisotry of a content and to

speed up the the synchronization of consumers that, while disconnected, missed a row of

updates. A blockchain-based ledger can serve also as a mean to share blacklists among ASes

that cooperate to counteract DDoS attacks, as proposed in [235]. Emercoin33 is another

platform that offers a portfolio of networking services, re-implemented in a distributed

fashion thanks to the blockchain technology. The services include the emer-based versions

of the Domain Name System (DNS), Secure SHell (SSH) and Secure Sockets Layer (SSL)

protocols.

An attempt of generalizing the kind of Internet applications that one can implement on

top of a blockchain has been advanced by Hari and Lakshman while formulating “the Internet

Blockchain” [236]. To formulate this generalization, the authors of [236] first elucidate the

32The two projects (AMMBR and Althea) aim at incentive competition among the participants of a distributed
networks setting up a blockchain-based marketplace. Leveraging on microtransactions, participants can
trade networking resources playing both roles of users and service providers. While Althea relies on the
Cosmos blockchain (https://cosmos.network), AMMBR is based instead on Plasma (https://plasma.io/
plasma.pdf, a sidechain rooted in Ethereum). More details on the two projects are available online at
https://ammbr.com and https://althea.net.

33Homepage of the Emercoin project: https://emercoin.com

https://cosmos.network
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf
https://ammbr.com
https://althea.net
https://emercoin.com


112 4.6 Blockchain in Networking: Related Works

peculiar features of a blockchain, then identify the problems that can be alleviated relying on

these features, and finally list several use-cases belonging to the Internet domain that suffer

these problems. In particular, they start by observing that a distributed, tamper-resistant

shared ledger is an ideal framework for recording those digital transactions used today for the

assignment of networking resources such as IP addresses, ASes numbers and domain-names.

Then they focus on the main security breaches hidden under these assignments, that have

in common the requirement of a central source of trust. This is considered a vulnerability

because, in principle, it can be compromised by institutional actors or advanced cybersecurity

attacks. All the secure assignments of IP addresses or ASes numbers happens today, in fact,

through the so called Resource Public Key Infrastructure (RPKI), a critical infrastructure

to prevent various attacks, including route hijacking.34 The same RPKI is used also to sign

BGPSec [237] Updates, preventing spoofing attacks. However, all these security mechanisms

suffer under a single point of failure, i.e., the RPKI’s root of trust.

The transaction framework elaborated in [236] is convincing because it can tolerate

the typical slow transaction rates of a blockchain. Consider that, for example, the average

number of ASes numbers allocated per month35 by a Regional Internet Registry (RIR) is

less than 200/month, which corresponds approximately to only 7.72× 10−5 TPS, a toler-

able transaction rate also for a public blockchain. Still, the original question of Peck and

Wüst [211,212] remain unanswered for applications that require higher transaction rates

and lower power consumption, requirements of the utmost importance, e.g., for the IoT

domain [238, 239]. An exhaustive list of considerations and criteria for the selection of

the proper blockchain technology, according to different mix of performance requirements

and trust models is instead provided by [76], which is a comprehensive vademecum for

companies, academics and blockchain-practitioners in general.

However, not even the convincing Internet Blockchain nor the exhaustive vademecum

completely solved the performance and power consumption issues of the blockchain. Rather,

these works are limited to point out the valid use cases for the blockchain, valid for two

fundamental reasons:

• First, these are the cases of applications that can tolerate the blockchain inefficiencies,

where a sacrifice in terms of performance is accepted for gaining the freedom from

central points of authority;

34By route hijacking it is meant the illegitimate appropriation of subnets by tampering the records in the
routing tables of BGP routers. More on: https://en.wikipedia.org/wiki/BGP_hijacking

35The Allocation statistics of RIPE, the RIR that serves Europe, western Asian countries, are available online:
https://www.iana.org/numbers/allocations/ripencc/asn

https://en.wikipedia.org/wiki/BGP_hijacking
https://www.iana.org/numbers/allocations/ripencc/asn
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• Second, none of these applications really integrates the blockchain in the network,

pushing it down to the protocol stack, rather, the blockchain plays the role of an

external system that replaces traditional (centralized) sources of trust.

The analysis of the literature concerning the blockchain, as applied to distributed networks,

suggest to reformulate the original question posed by Peck and Wüst ( [211,212]): Can the

blockchain be integrated into the network-stack? When should someone rely on a blockchain,

rather than fall back to traditional, well-established ledger technologies? Can the blockchain

empower a truly efficient, scalable and secure shared ledger for the IoT?

Chapter 5 is devoted to answering these questions.





Chapter 5

Clarifying the Role of the Blockchain for

Distributed Networks

The analysis of the literature concerning applications based on the blockchain, presented

in Section 4.6, has raised doubts on the today adoption of the term “blockchain”. The

fact that this term appears in projects that exhibit extremely different levels of security,

decentralization and performance creates ambiguity around the concept of blockchain,

which appears to be blurred.

At this stage of the thesis one of the two is true: either the blockchain is an almost

universal and virtually limitless technology, truly beneficial for the whole range of applications

documented in Section 4.6 or, rather, many different technologies for some reason all

named “blockchain” are actually at work under the hood. A preliminary clarification and

disambiguation of the very term blockchain becomes therefore necessary before moving to

the discussion of the role of the blockchain in distributed networks, main goal of this chapter.

A contribution offered in this thesis is thus the advancement of a restrictive definition

of blockchain [77, 78]. This definition is elaborated to outline a set of peculiar features

that can be exclusively attributed to the blockchain, distinguishing it from the rest of the

Distributed Ledger Technologys (DLTs). The arguments supporting the proposed definition

are grounded in the background covered in Chapter 4, which elaborates on the limited

selection of academic works referenced in this thesis. The author acknowledges the lack of

systematic comprehensiveness but motivates this sacrifice with the necessity of providing

an unambiguous definition able to demarcate the limits of the blockchain. The definition

introduces this way a novel point of reference proposed, intentionally, for discriminating

those technologies that today fall all together under the common name of “blockchain”.

The rest of the chapter is organized as follows:
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• Section 5.1 compares the most famous platforms, considered to be emblematic

blockchains, with the competing technologies for the implementation of a Shared

Ledger (SL). This comparison is offered to let emerge those constitutional features

that, together, are proposed to uniquely define the term “blockchain”.

• The precising definition of the term “blockchain”, of crucial importance for the later

critical analysis of the blockchain integration in distributed networks, is formulated in

Section 5.2.

• Recommendations on the use of the blockchain are elaborated in Section 5.3. The

recommendations include a list of pitfalls that warn against those use-cases for the

blockchain that, in light of the definition, turn out to be flawed.

• Section 5.4 is the pars construens of the critical analysis: this section will outline a

possible role in the IoT for what has been restrictively defined to be a blockchain.

5.1 Blockchain VS. Traditional Technologies

Platforms considered to be emblematic blockchains will be compared with the competing

technologies for the implementation of a SL. This comparison is crafted so to identify

and highlight the characteristics of a blockchain, to be later condensed in a definition of

blockchain.

Figure 5.1 substantiates this high level comparison and aids the discussion about the

technological advantages and disadvantages of, respectively, centrally managed Data Bases

(DBs), distributedly managed DBs and the still undefined “classic blockchains”. The declared

intention is to capture under the name of “classic blockchains” all those platforms that pre-

served the revolutionary aspects proposed for the first time by the blockchain par excellence,

i.e., Bitcoin.

5.1.0.1 Centrally Managed DBs

A centrally managed DB is a DB maintained by a single administrator, such as a trusted

employee or, more in general, a single company in charge of keeping the DB well maintained

and updated. The data contained in the DB can be shared among various clients upon request

from the same clients. The DB maintainer can, at his own discretion, authorize or deny the

access to the DB. According to the described paradigm, a centrally managed DB represents a

possible centralized implementation of a SL.

The greatest advantage of a centrally managed SL is its high level of efficiency in terms

of transaction rate, communication effort and power consumption. In fact, to implement a
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Figure 5.1 – Multidimensional comparison of the blockchain with traditional Shared
Ledger technologies: i.e., centralized and decentralized managed DBs. Copyright © 2021,
IEEE.

centrally managed DB, an administrator can exploit the well-established and decades refined

technology of commercial DBs, this way achieving very high transaction rates at a low power

consumption. Moreover, the DB administrator works autonomously, so it also avoids the

communication efforts implied by a consensus protocol that would become necessary to

coordinate the read/write operations of more DB maintainers.

Despite the many advantages described so far, centrally manged DBs also exhibit several

shortcomings. For example, the SL users must completely trust the administrator, as it has

full and exclusive control over the data. The administrator can, in principle, tamper or

censor data, and even resell users data. Given that in a centralized system nobody controls

nor validates the admin operations, a centrally managed DB is not considered transparent,

and not even immutable, as the admin is free to delete data or, maybe worse, not record

legitimate data.

5.1.0.2 Distributedly Managed DBs

A distributedly manged DB is a DB cooperatively maintained by a group of administrators.

Each administrator may be responsible for a subset of the recorded data or for a full copy of
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the DB. In the first case the reader can refer to classic distributed DBs [240–242],36 while in

the latter case to replicated DBs [246–249]. Before the rise of blockchains, distributed DBs

represented the only available option to implement —distributedly— a SL.

Distributed DBs differ from centralized DB implementations for the introduction of a

certain degree of redundancy, necessary to avoid single point of failures. This means that

nodes must adopt a consensus protocol to coordinate write operations, enforcing this way a

consistency model [190,250]. This distributed architecture enhances the system tolerance

to failures, this latter varies according to the level of redundancy dictated by the internal

consensus protocol. Moreover, a distributed architecture is more secure than a centralized

one, because to tamper data one need to corrupt more nodes. The collaborative approach of

administrators for updating data makes distributed DBs also more transparent and, ultimately,

nodes do not need anymore to place unconditional confidence in a single administrator.

The advantages of distributed DBs comes at the cost of an increased communication

effort due to the running of a consensus protocol. The fact that transactions, to be approved

or rejected, need to go trough this consensus protocol, deteriorates the overall transaction

rate. Although the internal redundancy does not expose distributed systems to single point

of failures, a distributed system is always threatened by collusive attacks led by a majority of

malicious nodes.

SLs implemented on top of a distributed DB do not require to use a blockchain data-

structure to record the users transactions. Any other data-structure, such as a basic linked-list

or a DAG as a mean to build a dependency-graph, is acceptable as long as the DB is maintained

consistent, complying at the same time with the rules of the internal consensus protocol.

5.1.0.3 Classic Blockchains

Bitcoin and Ethereum are the most emblematic, iconic blockchains. Both are based on

the Proof of Work (PoW), precisely as many other popular PoW-based blockchains37 that,

together, account for more than 90% of the total market capitalization of existing digital cryp-

tocurrencies [225,226]. Some authors refer to these permissionless, PoW-based blockchains

as to classic blockchains [76].

In these platforms the blockchain represents a particular case of decentralized DB, char-

acterized by the maximum degree of transparency and immutability. By definition a classic

blockchain platform leverages on a “block-chain”, i.e., a special linked list that concatenates

blocks of transactions via cryptographic links, as described in Section 4.1.2. Because of the

constitutional immutability of classic blockchains, in these systems it is not possible to delete

36Well known examples of distributed DBs are Google Spanner, MongoDB and Cassandra [243–245]
37Examples of other famous PoW-based cryptocurrencies are Bitcoin-Cash, Litecoin, Namecoin, Dogecoin,

Primecoin, Auroracoin, Monero, Etherum-Classic and Zcash [251–258]. For a more complete list of cryptocur-
rencies the reader can refer to [259].
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or modify transactions, which can be only appended. This feature makes classic blockchains

suitable for the implementation of anti-censorship, tamper-proof registries. These registries

record the complete history of transactions (remind that, in fact, transactions cannot be

deleted) and are left open to the public. For these reasons, any distributed agent can check

the validity of any transaction at anytime.

To participate to the PoW-based consensus, users just need to join the validator networks

with their mining equipment, without the need of being registered providing their identity, so

a classic blockchain is open to anonymous users. A consensus mechanism able to safeguard

the ledger even from powerful anonymous users, that cannot be trusted at all, becomes an

imperative necessity. However, as observed in Section 4.2, this mechanism is both a blessing

and a curse: it ensures high level of security but, unfortunately, also implies high latency,

low transaction rate, and massive power consumption.

The very celebrated advantage of classic blockchains is that they free users from the need

of trusted authorities, thus enabling a broker-less marketplace for anonymous users, which

is also a guarantee of the users privacy.

5.2 A Connotative Blockchain Definition

The analysis of the competing technologies for the implementation of a SL (Section 5.1)

suggests what are the peculiar, characteristic features of a blockchain, that distinguish the

same blockchain from all other DLTs. These features seems to be:

Highlight 5.2.1 Fundamental Features of a Blockchain

1. FULL DECENTRALIZATION

2. TRANSPARENCY

3. OPEN TECHNOLOGY

4. PRIVACY

5. IMMUTABILITY

6. EXTREME SECURITY

Highlight 5.2.1 is just one of the many lists of blockchain features proposed in the

literature [212, 260, 261] and online.38 The overloading of the term blockchain, which is

motivating this thesis disambiguation purpose, most probably stems from this abundance of

possible characterizations. The key problem of such characterizations is their high level of

abstraction: different ledgers empowered by extremely diverse technologies can in fact claim

38On the world wide web the number of different blockchain characterizations are uncountable. A few
resources are linked here for a quick reference: https://tinyurl.com/deloitteBCfeatures https:
//101blockchains.com/introduction-to-blockchain-features https://data-flair.training/
blogs/features-of-blockchain

https://tinyurl.com/deloitteBCfeatures
https://101blockchains.com/introduction-to-blockchain-features
https://101blockchains.com/introduction-to-blockchain-features
https://data-flair.training/blogs/features-of-blockchain
https://data-flair.training/blogs/features-of-blockchain
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to grant all the properties listed in Highlight 5.2.1, advancing their “blockchain nomination”,

without actually supporting these features with technical elements. If it is simple to claim all

the desired properties it is instead hard to determine if one particular ledger really provides

the features listed, e.g., in Highlight 5.2.1. To contrast the proposal of further axiomatic

characterizations that can be continuously crafted and adjusted to reflect the properties of

any possible ledger, this thesis proposes the following connotative definition of the term

“blockchain” embedding intentionally technical key-words:

Definition 5.2.1 Fundamental Characteristics of a Blockchain

1. OPENNESS TO ANONYMOUS USERS

2. COMPLETE & PUBLIC HISTORY OF TRANSACTIONS

3. HARD DISTRIBUTED CONSENSUS PROTOCOL

The OPENNESS TO ANONYMOUS USERS is the first, essential, constitutional element of

a blockchain, supporting the FULL DECENTRALIZATION, the OPENNESS and the PRIVACY of

blockchains. Without anonymity, in fact, a blockchain could not protect the users privacy

more than what is done by a bank or by any other centralized implementation of a SL.

The openness of the blockchain is also fundamental for making this technology distributed,

fair and democratic. If users had to be registered and authenticated, a centralized trusted

registrar —potentially discriminatory— would immediately become necessary, compromising

all the aforementioned aspects.

The openness to anonymous users is thus a major revolution inherent to the blockchain,

but introduces also a new problem when dealing with transactions, especially with disputa-

tions. In the most common case, in fact, a person that wants to dispute a transaction (e.g,

a victim of a fraud), invokes the arbitrage of a court or of the used payment system (e.g.,

PayPal) and hopes that a fair inquiry reaches the conclusion that the money have been stolen,

and that must be returned back to the legit owner. However, in a blockchain this is not

possible, as no authority can prosecute an anonymous, untraceable user. The anonymity of

users raises therefore the problem of the disputation of transactions, and users must accept

the fact that transactions are, de facto, indisputable.

How can it be that someone agree and accept an indisputable transaction initiated by

an anonymous, unknown, untrustworthy user? The blockchain offers a solution to this

problem by keeping the COMPLETE & PUBLIC HISTORY OF TRANSACTIONS. In a trustless

network, in fact, a user that do not trust anybody else can accept a transaction only if it is

empowered to perform an independent and complete check of validity of any transaction,

at any time. If the user could rely on a trusted third-party, such as a bank, this user could
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confide on the bank’s trustworthiness for accepting a transaction, even if the bank keeps its

ledger (naturally) secret and private. But the anonymous users of a blockchain resort to a

blockchain precisely for avoiding trusted intermediaries and central points of control. They

therefore absolutely need a distributed, public ledger, with the full history of transactions, to

enable the broker-free validation of transactions in a trustless network. It is clear that the

completeness of the history of transactions is a mandatory requirement because, without

it, a distributed agent could not verify if a new transaction is already included in the same

history, thus would not be able to reject attempts of double spending. Once more technical

keywords —COMPLETE & PUBLIC HISTORY OF TRANSACTIONS— are prompted as necessary

to achieve high-level features such as DECENTRALIZATION, OPENNESS & TRANSPARENCY.

Despite the availability of a public and complete ledger, the validity check of a transaction

can be still falsified by an attacker that manipulated the history of this transaction, tampering

the blockchain for gaining a personal advantage. The history of transaction, namely, the

blockchain, must be safeguarded therefore by a HARD DISTRIBUTED CONSENSUS PROTOCOL,

i.e., a protocol which makes prohibitive the cost of attacks, otherwise nobody would trust the

system. This is why a mechanism like the PoW, which introduce on purpose cryptographical

hardness for raising the cost of attacks to a prohibitive threshold, is a key element that

makes a blockchain a distinguished technology for its claimed IMMUTABILITY. Definition 5.2.1

binds therefore the EXTREME SECURITY of blockchain to the HARDNESS of its DISTRIBUTED

CONSENSUS PROTOCOL, with this second keyword highlighted to support once more the

DECENTRALIZATION of blockchains. This kind of immutability is so fundamental for the

concept of blockchain that [sic] for cryptocurrency activists and blockchain proponents even

simply questioning the immutable nature of blockchain is tantamount to heresy [262].

Highlight 5.2.2 Arguments supporting Definition 5.2.1

Users Privacy achieved by Anonymity⇒ non-disputable Transactions;

If the History of Transactions is _ then New Transactions are _:

• Private ∨ Partial⇒ unverifiable

• Public ∧ Complete⇒ verifiable

A Hard Consensus defuses the falsification of the History, making it immutable

To recap: a blockchain is designed specifically to make openly available to any anonymous

user the complete chronology of all transactions, this to enable the distributed validation of

transactions avoiding trusted intermediaries. Moreover, a HARD DISTRIBUTED CONSENSUS

PROTOCOL is essential to protect this history of transactions, i.e., the blockchain, from
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tampering attacks. The mathematical hardiness of such protocols makes the blockchain

trustworthy despite the untrustworthiness of users. The arguments used to justify the

Blockchain-Definition 5.2.1 are concisely summarized in Highlight 5.2.2.

5.2.1 Comparison with other definitions

An initial, basic definition of blockchain could be restricted to the only hash-chain with blocks

of information linked by hash-pointers, a data-structure known in computer science since

the ’70s [263,264]. The advent of revolutionary platforms such as Bitcoin and Ethereum,

however, enlarged the meaning of the term blockchain. As a matter of fact, Iansiti and

Lakhani propose a wider definition, commonly accepted in the literature, which is the

following: “[The] blockchain is an open, distributed ledger that can record transactions between

two parties efficiently and in a verifiable and permanent way” [261]. This definition focuses

on the blockchain operational purpose as distributed ledger, distinguished from other DLTs

for of its Openness, Verifiability and Immutability (permanent records) properties.

The blockchain definition advanced by this thesis (Definition 5.2.1) highlights the same

characteristics, but it does so embedding in the definition the constitutional elements that

connote a blockchain as an open, verifiable and immutable ledger technology. Definition 5.2.1,

in fact, characterizes the blockchain as a technology open to any anonymous user, verifiable

thanks to the complete and public recording of all transactions, and as much immutable as

possible by reason of a hard distributed consensus protocol. This new definition, compared

to previous ones, is not axiomatic: rather, acknowledges the blockchain as an open, verifiable

and immutable technology deriving these properties from the three, inseparable elements

that together constitute the essence of a blockchain.

The new definition is more restrictive, as it reserves the epithet “blockchain” only to

those platforms that fully reflect the blockchain specificity described by Definition 5.2.1.

The various platforms usually mentioned as blockchain without actually complying with

Definition 5.2.1 are criticized in Section 5.2.2.

The proposed characterization of the blockchain also serves the thesis clarification purpose,

being the base for claiming that the blockchain is not a universal technology, but it rather has

peculiar characteristics which are advantageous for the implementation of an only limited

number of applications. The many other applications proposed in the recent literature and

that exhibit features in contrast with Definition 5.2.1 are criticized in Section 5.3.

5.2.2 Permissioned Blockchains or Permissioned Ledgers?

Who agrees with the blockchain definition advanced by this thesis should, consequently,

stop considering to be blockchains all those platforms that do not exhibit the three essential
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characteristics summarized in Definition 5.2.1. A question arises: given that permissioned

ledgers, by definition, are not open to anyone, and that usually rely on consensus protocols

that are not mathematically hard like the PoW, shall they be considered as blockchains?

Not an Open, Decentralized, Verifiable Technology

In fully permissioned ledgers the access is restricted only to permissioned users. This implies

the existence of a central registrar, acknowledged by the system players, that is the only

body responsible for the identification of users and for granting read/write authorizations.

Also in hybrid blockchains where there might coexist many permissionless users with few

permissioned ones, still one central registrar must exist to register these lasts. One such

central registrar may be discriminatory, granting authorizations according to private, opaque,

internal rules inspired by business policies: the simple presence of permissions is a clear

symptom of the need to —arbitrarily— exclude some category of users, otherwise these same

permissions would have no reason to exist. A system that aims to be truly decentralized,

thus not subject to the arbitrariness of some central registrar, and also aims to be truly open,

cannot therefore rely on permissions and access-lists to implement its security model. Notice

also that permissions cannot be defined if users are indistinguishable anonymous, this is

why ANONYMITY is part of the proposed Definition 5.2.1 as a guarantee of the blockchain

decentralization, in the present case intended as freedom from central registrars.

Moreover, most of the permissioned platforms are built by enterprises to implement their

ledger to be shared only among the internal departments. The transactions recorded in such

ledgers are business-critical information and must be kept confidential, which means that a

typical permissioned ledger is not verifiable by an external agent.

Less Immutable means less Secure

Granting the access to the blockchain only to registered and accountable users represents

certainly a safer trust model if compared to opening the ledger to any anonymous user.

Strengthen by stronger trust assumptions permissioned ledgers usually abandon the very

secure but power-hungry PoW replacing it with more traditional, efficient and more per-

forming consensus protocols. However, dismissing the PoW makes permissioned ledgers

vulnerable to traditional attacks led by the “simple” — i.e., “inexpensive”, not discouraged

by any costly sacrifice— collusion of a majority of users. Permissioned ledgers are therefore

less immutable and less secure than iconic blockchains such as Bitcoin or Ethereum, that

instead are not affected by this vulnerability.
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An Historical Perspective: Permissioned Platforms are Traditional Ledgers

So far permissioned ledgers turned out to be very distant, in terms of openness, verifiabil-

ity, and immutability, from public, permissionless blockchains. Ultimately, permissioned

platforms seem to be not much different from traditional ledgers that existed also before

Bitcoin [265], as they are empowered by traditional consensus protocols and their trust

model still depends on a central authority. Therefore, from an historical perspective, while

permissionless blockchains such as Bitcoin constituted a revolutionary advancement of

the state-of-the-art, freeing users for the first time from the need of a trusted authority to

perform distributed transactions, permissioned platforms represents only a technological

sophistication of the older and well-known DLTs.

For these reasons, this thesis suggests to consider permissioned platforms as belonging to

the broader class of traditional DB-based ledgers, but not blockchain representatives. The

landscape of the Shared Ledger technologies, as envisioned by this thesis, is illustrated by

Figure 5.2, where the blockchain is positioned according to the fundamental Blockchain-

Definition 5.2.1.
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Figure 5.2 – Position of the Blockchain in the landscape of the Shared Ledger technologies.
Copyright © 2021, IEEE.
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5.2.3 Proof of Work or Proof of Stake?

The debate on what is the fairest, most decentralized yet performing consensus protocol for

the blockchain is intense [266–268], with two major competing candidates: Proof of Work

(PoW) and Proof of Stake (PoS).

Limits of the PoW

The limits of the PoW has been specifically investigated in Section 4.2, they can be summarized

as it follows:

• Enormous power consumption (Section 4.2.5 and [153,154]);

• PoW-based blockchains usually exhibit modest transaction rate and high latency [220,

221], at most if compared to traditional Byzantine-Fault-Tolerant alternative proto-

cols [222];

• Tendency for the computing power to consolidate under the control of few large mining

pools [223,224]. This fact is witnessed also by Figure 5.3, that shows an estimate of

the hashrate distribution among well known Bitcoin mining pools, highlighting how

the 12 largest mining pools control almost the 80% of the computing power, while

the top-5 pools alone control approximately the 61% of it. Nevertheless, it is worth

to notice that pools are consortiums that aggregate together multiple users, so they

internally implement a certain degree of decentralization.

• Lastly, some authors raised the concern that the PoW does not discourage adequately

the formation of centralized cartels. For example, it has been proved that for few

powerful users it may be economically advantageous to collude, behaving as “selfish

miners”, damaging the decentralization level of the network [135,269].

Revisiting the limits of the PoW beyond its well-known scalability issues, it seems that it

partially fails also as a tool to decentralize the control of a SL. In light of these drawbacks,

in both power-efficiency and effective decentralization terms, Saleh [270] and Bentov et

al. [271] encourage the shift from the PoW to the PoS to solve, at least, the problem of

wasting energy, giving up with the elaboration of a truly fair and decentralized consensus

fabric.

Limits of the PoS

PoS-based systems have been also investigated and criticized, with the following issues

recurrently emerging as major sources of concern:
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Figure 5.3 – Estimate of the hashrate distribution among well-known mining pools at
the date of writing this thesis (October 21, 2020). Statistics are taken from https:
//www.blockchain.com/charts/pools.

• Protocols driven by stake are criticized for their unfairness and poor decentralization,

due to their design that deliberately priorities the voting power of the richest stake-

holders to the detriment of the larger community of generic shareholders. This known

phenomena that contributes to the inequity of PoS systems is usually condensed in the

motto “the richer get richer” [272].

• Moreover, while rigorous proofs of convergence and tolerance to byzantine failures

exist for traditional voting protocols, and similar security analysis exist also for PoW-

based blockchains [134], the studies on the economics of stake-based systems suggest

that their equilibrium is not always granted [273,274]. Some authors raise therefore

the concern that, like with real markets, stake-based protocols will give rise to unstable

systems subject to market failures and bubbles [275].

• The security offered by the PoS is considered inferior to those provided by the PoW. In

fact, the immutability of a PoS based system is considered questionable, as a PoS-based

blockchain is reversibile by means of long-range or stake-bleeding attacks [276,277],
which are attacks not discouraged by external factors such as the cost of energy or of

the mining equipment.

Advantages and Disadvantage of PoW and PoS

In light of this discussion is the transition from PoW to PoS planned by many popular

blockchain systems (in primis Ethereum) to stop wasting computing power still justified?

https://www.blockchain.com/charts/pools
https://www.blockchain.com/charts/pools


5.2 A Connotative Blockchain Definition 127

This thesis claims that both PoW and PoS essentially empower a census suffrage system.

With both systems, in fact, the richest users acquire a greater voting power. In the case of

PoW, only richer users that can afford the sophisticated mining equipment can participate

in the protocol, while with PoS, the bias on voting power to favor the richest stakeholders

is directly embedded in the protocol. The two systems can be therefore considered almost

equivalent in terms of fairness, equity and decentralization, with the remarkable advantage

offered by the PoS to save a huge amount of energy.

There is, however, a key difference of interest from the point of view of an economist.

While the acquisition of computing power is subject to natural, external factors such as the

price of the mining equipment and the cost of energy, the value fluctuations of a PoS-system

only depends on market dynamics and on speculative mechanisms. So while with PoW it is a

mathematical fact that the cost of an attack increases exponentially with the number of blocks

to be changed, and this cost is bounded to a physically enormous amount of energy, the

same cost for an attacker of a PoS system is unpredictable, as the cost of the “value-at-stake”

for an attacker is not bounded to any external factor.

Arguing that a PoW-based system is therefore more stable and predictable than a PoS-

based one, this thesis concludes that a platform that candidates itself to be the most secure

one, also from a purely technical point of view, should be PoW-based.

5.3 Critique to the Abuses of the Blockchain: List of

Common Pitfalls

A reader that accepts the blockchain defined as the open, verifiable, and immutable shared

ledger technology par excellence, immutable by reason of a hard consensus protocol, should

also acknowledges it as extremely inefficient [153, 278]. For this reason, the use of the

blockchain technology is rarely recommended. One should opt for a different ledger tech-

nology whenever possible, and especially for large scale and power constrained distributed

networks like the IoT.

The blockchain cornerstones clearly expressed in Definition 5.2.1 have been outlined

for the precise purpose of helping engineers and practitioners in understanding when a

blockchain is needed, and when is not. Application requirements that conflict with those

cornerstones are an indication that another DLT should be preferred in place of a blockchain.

For example, all applications that require the registration of users, or data confidentiality,

or that can be considered sufficiently secure by reason of stronger trust assumptions, do

not need a blockchain. The above logic considerations are illustrated in Figure 5.4, which

extends the tradition started by Peck and Wüst [211,212] to provide a guided path to clearly

recognize when a blockchain is not the right choice for an application. The one provided in
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this thesis distinguishes itself from previous ones39 for its limited but precise scope, i.e., to

highlight the cases when the blockchain is not needed.

YES
A centralized DB controlled by a 
trusted authority would be a more 
efficient solution than running a 

consensus algorithm

end-to-end cryptography 
is enough to protect data, while in a 

blockchain data is necessarily exposed 
for validation and transparency

NO

NO

A distributed DB or a distributed 
cache are enough, these are more 
scalable solutions and preserve the 

Right To Be Forgotten

NO

You may need a 
blockchain

Do you trust 
someone?

Do you need to keep 
data confidential?

Do you need an only 
partial/rewritable history? YES

YES

Figure 5.4 – Application requirements and ledger technology: Aid to decision. Copyright
© 2021, IEEE.

The provided guided path also highlights, implicitly, the common abuses of the blockchain,

namely, those recurrent uses of the blockchain for implementing applications whose require-

ments conflict with the essential blockchain characteristics. The rest of this section is a

list of such recurrent pitfalls, to be interpreted as corollaries that derives logically from

Definition 5.2.1: these pitfalls are the essence of the critical analysis about the use of the

blockchain in general, advanced by this thesis as the ground for a later clarification focused

on the role of the blockchain for distributed networks.

The List of Common Pitfalls

Pitfall 5.3.1: Using the blockchain in presence of strong assumptions on trust.

Morgen E. Peck first identified this pitfall by analyzing the application of the blockchain

to voting [211], although there are several works that propose blockchain-based voting

platforms [23–30].
A blockchain, as originally intended to implement anonymous distributed transactions,

contrasts the needs of voting. In fact, while it is true that the voter’s identity should be

kept secret, users cannot be anonymous because their identity must be uniquely determined

to ensure uniform eligibility, namely, nobody should be able to cast multiple votes (Sybil

attack), “hence an identity provider is required one way or another” [280]. Notice that this

39a collection of similar decision diagrams is available online [279]
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identity provider must be necessarily a centralized accredited institution unless, ad absurdum,

someone accept voters providing IDs issued by unrecognised distributed agencies (i.e., fake

documents!). This reasoning shows that deciding the eligibility of voters, to check if they

have already voted or not, is one key problem of voting whose solution necessarily imposes

the existence of an authority. Any solution to this problem cannot be decentralized not

even advocating a blockchain. In the same work [280], Heiberg et al. notice also that a

blockchain, which is an open, public ledger according to Definition 5.2.1, could not ensure

the voters secrecy. This conflict between the blockchain technology and confidentiality is

analysed later in Pitfall 5.3.4.

In general, the existence of a trusted third party or the assumption of mutual trust in

a distributed network are considered strong assumptions. If a trusted third party exists,

this party can play the role of the central coordinator and, by hypothesis, users can rely on

it to keep a consistent DB, without going through the overhead generated by a consensus

algorithm. From the perspective of the blockchain trilemma, introducing a central trusted

authority is equivalent to trade decentralization for scalability. The sacrifices that come with

the blockchain are, under this assumption, not necessary. Similarly, assuming mutual trust

among nodes there is no need to trade performance for security. �

Pitfall 5.3.2: Proposing a fast blockchain.

A large number of “fast blockchains”, able to circumvent the limits of the PoW thanks to

alternative consensus protocols, trust models or even data-structure, have been proposed to

support various business applications. Some popular platforms advertised as secure and fast

include the HyperLedger Fabric, HyperLedger Sawtooth, IOTA, Ripple, Amazon Managed

Blockchain and Azure Blockchain followed by many others. All these systems are sometimes

also called, collectively, Blockchain-as-a-Service (BaaS) Platforms [281].

This thesis raises the concern that, by blockchain trilemma, the enhanced perfor-

mance [282] of fast ledgers can be achieved only reducing, partially, either the decen-

tralization or the security of what this thesis defined to be a classic blockchain.

Three exemplary fast platforms, namely, HyperLedger Fabric, HyperLedger Sawtooth and

IOTA, will be now studied to highlight the great differences with classic blockchains such as

Bitcoin and Ethereum. These differences are highlighted to justify, once more, the restrictive

definition of blockchain (Definition 5.2.1) proposed by this thesis. Not calling “blockchain”

the fast ledgers is a technical choice but not a negative or positive judgment: this thesis

does not discourage the adoption of fast ledgers, rather, their use is promoted whenever a

blockchain is not needed (see Figure 5.4 again), especially in distributed networks.

The official documentation of HyperLedger Fabric [283] describes its core design. It also

highlights that the essential characteristics of public permissionless blockchains, i.e., being

“public networks, open to anyone, where participants interact anonymously” are problematic
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for enterprises, especially because “the identity of the participants is a hard requirement”

for enterprises to comply with legal obligations such as Know-Your-Customer (KYC) and

Anti-Money Laundering (AML) financial regulations. This leads to the identification of a list

of requirements for enterprises:

• Participants must be identified/identifiable.

• Networks need to be permissioned.

• High transaction throughput performance.

• Low latency of transaction confirmation.

• Privacy and confidentiality of transactions and data pertaining to business transactions.

As the HyperLedger Fabric “has been designed for enterprise use from the outset” these require-

ments are all mandatory. The following short analysis of HyperLedger Fabric (Fabric, for

short) explains how it supports the listed features.

A membership service associates entities in the network with cryptographic identities.

Fabric enables Privacy and Confidentiality through its Channels architecture, where Channels

are defined as “private subnet of communication between two or more specific network members,

for the purpose of conducting private and confidential transactions” [284] and through private

data [285]. The Fabric documentation also reports this noteworthy consideration:

“By relying on the identities of the participants, a permissioned blockchain can

use more traditional crash fault tolerant (CFT) or byzantine fault tolerant (BFT)

consensus protocols that do not require costly mining.” [286]

The consensus protocols supported by Fabric are indeed traditional consensus protocols of

this kind. In particular, the leader-based voting consensus protocol Raft [175] is the only

non-deprecated protocol for deployments of Fabric. With these features Fabric can reach

20 kTPS [282], outperforming classic blockchains by 4 orders of magnitude.

Observing Fabric it can be noticed how the use of more efficient and traditional consensus

mechanisms results in greater performance compared to classic blockchains. Moreover, the

security is implemented via traditional access control (permissions) rather than relying on

strong consensus mechanisms. The resulting ledger is accessible only to permissioned parties

and is vulnerable to collusive attacks lead by a majority of users not defused by any deterrent

cost such as the CPU energy of a PoW mechanism. As such, Fabric represents a decentralized

platform customized for the enterprise which is more similar to traditional ledgers than to

classic blockchain systems such as Bitcoin [287,288]. For this reason, this thesis proposes to

include Fabric in the broader class of the traditional Shared Ledgers.
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HyperLedger Sawtooth [289] is an extension of HyperLedger that explicitly requires the

Intel SGX framework. Sawtooth promotes the Proof of Elapsed Time (PoET) as a “solution to

the Byzantine Generals Problem that utilizes a trusted execution environment to improve on the

efficiency of present solutions such as Proof-of-Work . . .” and “assumes the use of Intel SGX as

the trusted execution environment” [194]. The idea behind PoET is the following. A random

waiting time is distributed to all nodes competing to become the next block miner. When the

waiting time expires, the node proves that it waited by providing the PoET generated by its

Intel chip. The first node that exhibits a valid PoET is elected as block-miner. This protocol is

much more energy efficient since the Intel chip consumes much less than a Bitcoin miner to

generate a PoET. However, in this protocol users must trust the server distributing random

waiting times and must also trust the proprietary Intel SGX technology, (which has been

already attacked successfully multiple times because of its internal architectural flaws [290]).
Moreover, if Sawtooth mining would become popular and highly profitable, nothing prevents

the start of a mining race with many people buying thousands or more SGX chips to increase

the chances of being elected as block-miner, skyrocketing the network power consumption

as much as with Bitcoin.

One more system of interest for its special focus to the IoT domain is IOTA [291–293],
which claims to be an “Open, Feeless Data and Value Transfer Protocol [that] has fundamentally

reengineered distributed ledger technology”.40 IOTA, however, does not share with classic

blockchains not even the use of a “chain of blocks” for storing transactions and instead adopts

a directed acyclic graph (DAG) called, in the IOTA jargon, the “Tangle”. The main white

paper by S. Popov published to describe IOTA reports in its introduction: “In this paper we

discuss an innovative approach that does not incorporate blockchain technology. This approach

is currently being implemented as a cryptocurrency called iota, which was designed specifically

for the IoT industry” [291]. Albeit the clearly announced departure from the blockchain

technology, IOTA is included in this short analysis because it candidates itself as competing

distributed ledger technology tailored for the IoT, thus is of great interest for this thesis.

As already introduced, IOTA stores transactions in a DAG that is updated by those users

that issue new transactions in the system. Users are asked to obey a single rule, i.e., each

new transaction must validate (approve) two previous transactions. Considering the typical

limited CPU or bandwidth resources of an IoT network, IOTA needs to prevent the excessive

generation of transactions that could congest the network or, even worst for tiny devices,

could saturate their capacity up to break them. As a countermeasure IOTA mandates new

transactions to carry a proof of work as anti-spam and rate controller mechanism, shifting

the PoW from block mining to the generation of transactions. IOTA claims to be Feeless

and Free [293] since it avoids the mining race for generating new blocks of transactions.

40 A claim well visible on the IOTA website: https://www.iota.org

https://www.iota.org
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IOTA devices do not receive incentives for creating new transactions. Any kind of device

can join the permissionless network of IOTA, so tiny embedded devices connected via kbit/s
connections can coexist with powerful computers that access the network trough a Gbit/s
connection. The IOTA network heterogeneity leads to a great variance in terms of processing

capacity (TPS) and network latency experienced by users. Even if IOTA is meant for IoT

devices, these last actually risk to never catch up with the evolution of the DAG and to remain

essentially excluded from the IOTA network. To avoid this situation the IOTA foundation

maintain a central coordinator that, periodically, issue an empty transaction confirming a

subset of the most recent ones, implementing this way a synchronization mechanism and

also solving potential divergences among the network participants.

IOTA has been extensively criticized for its architecture and design choices, with the

following as recurring and most remarkable critics:

1. The coordinator is a central point of failure and, even more concerning, an absolute

authority that can arbitrarily confirm or reject transactions. A large number of attacks41

have been successfully launched against IOTA exploiting the vulnerability of the coor-

dinator. For example, on the 12th of February 2020 the IOTA foundation had to stop

the coordinator, essentially shutting down the entire network, to restore a number of

accounts that were compromised by hackers42.

2. Also Curl-P, the cryptographic function extensively used by IOTA for signing transactions,

has been discovered to be flawed [294], making IOTA wallets vulnerable to thefts.

3. The ledger resulting from the IOTA’s DAG is expected to either never stabilize into a

consistent state or to exclude IoT devices from the ledger because of the high load

and varying transaction capacity. This intuition comes from the missing definition of a

minimum required capacity43 to join the network. By Max-Flow Min-Cut theorem [295],
in fact, the slowest node will impose its capacity as maximum transaction processing

capacity of the network and, considering a modest IoT device, this capacity will be much

inferior to the network load. Ultimately, albeit meant for IoT devices, any reasonable

load of transactions in the IOTA network can become a barrier for IoT devices and

the network must artificially slow down its Transaction rate if IOTA wants to really

welcome IoT devices.

41 A short list of attacks against IOTA is documented online: https://en.wikipedia.org/wiki/IOTA_
(technology)#Attacks

42 More on the IOTA shutting down consequent to an hacker attack online: https://www.zdnet.com/
article/iota-cryptocurrency-shuts-down-entire-network-after-wallet-hack

43 This limit exists in Bitcoin in form of maximum Block Size and target generation interval, which leads to
the famous capacity limit of ≈ 7 Transaction per second.

https://en.wikipedia.org/wiki/IOTA_(technology)#Attacks
https://en.wikipedia.org/wiki/IOTA_(technology)#Attacks
https://www.zdnet.com/article/iota-cryptocurrency-shuts-down-entire-network-after-wallet-hack
https://www.zdnet.com/article/iota-cryptocurrency-shuts-down-entire-network-after-wallet-hack
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4. Despite its claim of being feeless, IOTA actually requires the inclusion of a PoW in newly

generated transactions: this claim is therefore wrong because it ignores energetic costs.

5. A further source of concern is the lack of an incentive mechanism, which makes unclear

what kind of stakeholders will bare the costs of keeping the IOTA DAG updated and

consistent.

In general, all fast or low-energy proofs facilitate attacks, so that mining-difficulty must

be artificially kept high (as described for Bitcoin in Section 4.1.4) to ensure high level of

security. The trilemma warns to beware of fast consensus protocols. They should only be run

under strong trust assumptions, namely, in centralized, private platforms with restrictions

on user access, thus in non transparent organizations. Under different trust assumption they

are instead prone to be easily attacked.

Summing up, applications implemented on top of BaaS platforms cannot be as secure

and transparent as if implemented on top of what this thesis defines to be a blockchain. �

Pitfall 5.3.3: Validating sensory data through a blockchain.

This is a common pitfall besetting, for example, all those who choose the blockchain for

supply chain management, a quintessential type of IoT application relying on sensor readings

and other “things” from the physical world [19–22]. One is lured into using the blockchain

for it makes handovers among intermediate dealers manifest, from the producer to the final

customer. However, it cannot ensure that the traded goods have been transported correctly.

As observed by Wüst et al., the problem with the supply chain lies in the trust of sensors

or, in other terms, in the way trusted information is acquired from the real world [212].
For example, a malicious truck company that wants to cut costs of transport of refrigerated

food, can claim its trustworthiness showing compliance with the laws by installing “trusted”

thermometers with GPS. The company can in fact cheat by installing the thermometer in a

little empty fridge traveling on the truck together with the rest of the (not refrigerated) load.

In general, the “perception layer” of the IoT is the most vulnerable to attacks [296, 297],
so that IoT devices (potentially deployed outdoor without supervision) must implement

in-hardware mechanisms to be secured. Still no blockchain will ever be able to prevent all

possible physical sabotages of sensors.

In general sensors cannot be trusted not just because they can be compromised, but

also because of the inescapable uncertainty of measurements, independently on the source—

whether benign or malicious—of the uncertainty. Consider, for example, a smart contract

used to buy train tickets that embeds in its business logic the automatic refund for travelers

in the case of train delays above 30 minutes. It is not hard to imagine that the rail company

may cheat by reporting (false) delays that are lower than 30 minutes to avoid paying

refunds. All applications that rely on measurements, taken by any kind of sensors or IoT
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device, at some stage must trust either the centralized company controlling that sensor

or a consortium that collected the measurement. When this happens one can refer to

oracles [298] that must be introduced to obviate the trust problem on sensor by providing

trusted information services [299]. However, these oracles are either centralized trusted

authorities (see Pitfall 5.3.1), or systems that require distributed consensus, which reintroduce

all the issues and trade-offs discussed in Section 4.3.2. With oracles the blockchain looses its

meaning as a tool to implement distributed trust. �

Pitfall 5.3.4: Proposing a blockchain-based approach for confidentiality.

Confidentiality, namely, providing data secrecy, is critical for many applications. There is no

reason for publishing and recording confidential data on a blockchain, as confidentiality is

in clear contrast with one of the key characteristics of the blockchain: transparency. Who

accepts Definition 5.2.1 should agree that the blockchain is a transparent technology, as the

transparency of a ledger is naturally given by the sum of its openness and completeness.

Works that advocate the use of the blockchain for keeping user data confidential in-

clude [40,300–305] ; since confidentiality contrasts with the public nature of blockchains, a

careful justification of design choices is necessary. �

Pitfall 5.3.5: Storing sensitive information on the blockchain.

Registering user credentials and account information on a blockchain is an irreversible

operation, as data cannot be deleted. Services implemented on top of a blockchain will not

be able to delete user data; not even upon legitimate request. This could be an issue for a

user that wants to abandon a service and also for authorities that need to enforce the “Right

to be Forgotten,” which is a legal provision in several countries [262,306–308]. �

Pitfall 5.3.6: Verifying the authenticity of digital documents or real goods with a blockchain.

Many proposals concern the use of the blockchain as a decentralized platform to store

digitally signed documents, i.e., certificates [309–313]. One might be drawn to believe

that, as it is part of a blockchain, that certificate is authentic. However, the authenticity

of a certificate is guaranteed by its digital signature, which depends on a trusted authority

external to the blockchain and not subject to the trust obtained via a consensus protocol.

For example, let us consider the following certificate digitally signed by an institution I

and recorded in a blockchain: “Alice passed exam E after attending the course provided by

Institution I on date D.” The fact that this certificate belongs to a blockchain does not in any

way prove that Alice really attended a course and passed an exam, and legitimate doubts can

also arise about the timestamped date D. Trusting the authenticity of this document only

relies on unconditionally trusting the issuer, namely, institution I . Overall, the blockchain can

be an evidence of a chronological series of valid steps of a process but, for non transactional

data like common certificates, patents and proofs of authorship, the blockchain alone cannot

provide any form of authenticity or validity.
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This holds also for identity documents, as argued in Pitfall 5.3.1, and for real goods too.

Somehow, in fact, many have been inspired by the immutability property of the blockchain

technology to guarantee the authenticity of real goods [19–21, 314–317]. The common

underlying idea is to associate any good with a digital identifier (e.g., a QR code) tracked by

a blockchain so that a final customer receiving the good can use the attached identifier as a

proof of authenticity. Unluckily, there is no mechanical tool to make objects of the real world

unforgeable: for as much as the identifier on the blockchain is immutable (unforgeable),

this is not true for the associated good, which can be physically replaced with another of

lower quality. Once again, the digital signature is the technology for verifying the authenticity

of transactions or digital documents but the blockchain alone, instead, cannot prove the

authenticity of any product or certificate. �

Pitfall 5.3.7: Forgetting the cost of mining.

One can think to the blockchain as a means to enable transactions without additional

fees. This is true, from the user perspective, as long as an incentive mechanism encourage

validators in processing transactions, but becomes false as soon as this incentive mechanism

terminates. Any newly proposed application of the blockchain should describe a sound

incentive mechanism for miners without forgetting the cost of transactions: neglecting this

cost leads projects to failure, as no actors of the system will bear the cost of mining. �

Pitfall 5.3.8: Implementing a memoryless process on top of a blockchain.

In a typical blockchain system the full chain of transactions must be recorded for validating

new transactions. For those applications designed on top of Markovian assumptions, i.e.,

where only the knowledge of the current state of the system is necessary to make progress,

using a blockchain will keep recording (possibly too many) unnecessary data. For example,

there is no need for a smart home IoT application to memorize the full history of the

temperature of a room to decide which heat source to activate or disable at the current time.

Even accounting and billing does not require the entire history, but only a previous reading

and recent invoicing. �

Pitfall 5.3.9: Claiming to jointly provide security, decentralization and high performance.

This last pitfall is provided to conclude stressing, once more, on the relevance of the

blockchain trilemma. Given the current state of science and technology, the proposals

claiming joint provision of maximum security, decentralization and performance violate the

limits of distributed systems, and cannot work as promised. �

5.4 Blockchain in Support of the IoT

The critical analysis on the uses of the blockchain has been broken down in two sections: the

first devoted to the definition of the very term “blockchain” (Section 5.2), while the second
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one criticized the common misuses when applying a so defined technology (Section 5.3).

This clarification effort, subjected to the trade-offs imposed by the blockchain trilemma

(Figure 4.15), did not hint so far a viable strategy for the integration of the blockchain

within large scale and low power distributed networks like, e.g., the Internet of Things (IoT).

Focusing now on the IoT this thesis argues, however, that the blockchain can serve as an

external service that processes and manages specific subsets of distributed transactions, this

way representing an alternative or complementary paradigm to centralized cloud services.

The “bubblechart” of Figure 5.5 is introduced to support the claim that it is not advisable

to integrate the blockchain in large scale and low power networks, while an external role

of the blockchain for the IoT can be envisioned. Figure 5.5 draws a multidimensional

overview of the consensus mechanisms surveyed in Section 4.4 according to the following

four dimensions:

• The strength of the trust assumptions, which is inversely proportional to the degree of

security (x-axis).

• The openness of consensus, an indicator of the degree of democracy, from one (tyranny)

to all (power to the people) (y-axis).
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Figure 5.5 – Bubblechart of relevant building blocks for Shared Ledgers. The diagram
compares solutions as a function of trustworthiness of users (x-axis) and openness of the
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of energy consumption and transaction rate of each consensus protocol, respectively.
Copyright © 2021, IEEE.
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• Energy consumption (color of each bubble: red when high or blue if low).

• The transaction rate (size of each bubble: the larger the faster). The transaction rate

can be considered also an indicator of transaction latency because, fixing the number

of transactions registered with a single operation (block-size), a lower latency implies a

higher transaction rate.

The figure enriches the trilemma by breaking down the “scalability vertex” (Figure 4.15)

into two distinct dimensions, i.e., energy consumption and transaction rate. Furthermore,

the decentralization and security properties are renamed to more accurately capture the

fundamental trade offs arising in the landscape of the Shared Ledger technologies. The

ideal “blockchain-for-IoT-bubble” would be a blue and large one, thus low power and very

performing, in the top-left corner of the chart, which is the most decentralized and most

secure sector.

Blockchain systems are naturally located in the top-left corner, characterized by being

democratically open and secure despite weak trust assumptions, but also extremely slow

and resource hungry. The opposite corner is where IoT applications reside, with their

scalability requirements, tight resource constraints, and high global transaction rates. This

corner also highlights that the ultimate participants are “things” rather than humans, thus

affording a higher degree of trust, at least towards some other parts of the system. As such,

Figure 5.5 pictorially conveys a crucial observation: classic blockchains are in contrast with

IoT requirements, which keeps the two realms well separated.

Despite the lack of space for blockchain systems in the bottom-right corner, the bub-

blechart helps in identifying the node-to-node consensus (recall the Section 4.4.3 of the brief

review on consensus protocols reported by this thesis) as a means to build trust among

operators/systems without established relations. The key word, here, is node-to-node, which

restricts the distributed consensus problem to few nodes, usually a couple, although exten-

sions to small numbers is efficiently conceivable. To settle a transaction it is sufficient for the

transacting parties to agree on a transaction protocol, and this agreement can be reached

privately by the two or few more parties in any fashion. What makes node-to-node consensus

appealing for IoT is its efficient support of local consensus, which is natural for many IoT

applications such as those with groups of sensors or a platoon of vehicles.

The number of different node-to-node consensus protocols is limited only by imagination.

Specific transitive properties, i.e., how and to what extent if node A trusts node B and

node B trusts node C, then node A can trust node C, can be defined to be applied to large

clusters of trusted entities, ultimately leading to a network of diverse but interoperating

“channels”: in some sense, to the IoT itself. The term “channel” is inherited from the world of

cryptocurrencies (Networks of Payment Channels [318–322]) and from that of communication

networks, where a network is a set of channels interconnecting nodes. Since IoT transactions
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are not necessarily monetary, the generic term Transaction Channels will be used in the rest

of the thesis.

5.4.1 Networks of Transaction Channels

Transaction Channels are all those techniques used to group off-chain transactions between

the same small group of users, for the reasons of speeding them up and avoid paying

multiple transaction fees. A Transaction Channel is therefore a node-to-node consensus

protocol where the two transacting parties establish a fast “payment” method, and agree to

postpone the clearing of the transactions’ balance. Recording the status of the channel on the

blockchain can be periodic or event-based. What is stored in the blockchain is a meaningful

representation of the history of transactions on the channel. For example, this could be the

stochastic representation of a long-term distributed measure. It could also be the amount of

energy exchanged in a smart grid, or between electrical vehicles and the grid supposing that

the battery of the vehicles can be used by the grid for short-term accumulation. Many other

could be the further possible example, not mentioned here for brevity.

The most notable implementation of Transaction Channels is the Lightning Network [198],
which scales up the technique to a full network of such channels. This allow payments to

be routed between remote end-points thanks to a dedicated routing protocol for payments,

with the aim of providing a globally scalable mechanism for fast transactions. The Lightning

Network is “Bitcoin oriented,” but the concept of a network of payment channels may become

the transaction paradigm to enable a global market at the IoT scale.

It also opens the way to thrilling research challenges, such as bringing network science and

expertise into the domain of transporting and routing payments within Payment Networks,

as initially explored in [323]. Major open problems include addressing the depletion of

channel capacity, especially for the most loaded nodes in the center of the network, developing

enhanced centrality-aware routing strategies [17,18], and rebalancing techniques [324–326].

5.4.2 Role of the Blockchain in the IoT

Figure 5.6 illustrates the vision proposed by this thesis, i.e., the IoT empowered by Networks

of Transaction Channels. These latter are deployed at the IoT layer, where classic blockchains

play as supporting external ledgers similarly to the use of the Bitcoin blockchain in the

Lightning Network.

This vision is justified by the fact that most IoT applications will have local relevance. For

example, domotic devices will intercommunicate mostly only over a house local network.

Similarly, agricultural sensors for precision farming will mostly communicate with each

other and convey the local information to a gateway controlled by the farmer. Industrial
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Classic Blockchains Decentralized Ledgers Centralized Ledgers

Ledger Layer

Figure 5.6 – Different IoT clusters, made of devices managed either by private (home-
/enterprises) or public (institutional) entities, perform most transactions locally, in the
IoT layer. The different IoT clusters access intermediary platforms for interoperability
purposes. Blockchain-based platforms can provide specific services at this level, in line
with their characteristic capabilities of granting security and immutability even in the
absence of trust. Copyright © 2021, IEEE.

IoT often requires high levels of privacy and confidentiality, clearly in contrast with the

open, immutable nature of a blockchain; vehicular networks and intelligent transportation

systems may require transactions with latency smaller than a few milliseconds, and rates in

the order of kTPS per vehicle, again in full contrast with the characteristics of blockchains.

IoT transactions can be therefore assumed to be local and lightweight in nature, calling for

likewise local and lightweight solutions implemented by the platform that should process

them.

From time to time, separate IoT domains, platforms and applications may need to

carry out and record transactions with a global, final, and immutable scope. At this level

blockchains can play a relevant role, freeing IoT systems from the need to subscribe to

a global, centralized, expensive, trust-based service whose security and reliability have

well-known limitations. Using blockchains externally would therefore bring added value to

the IoT domain, responding to its requirements of extending beyond local, context-limited

applications when needed.





Chapter 6

Conclusion

This thesis proposed two contributions for the development of distributed networks. The

first is a novel algorithm for the computation of the Load Centrality (LC) index that enables

a strategy for tuning the frequency of control messages in Distance-Vector (DV) routing

protocols. The second is the critical discussion about the integration of the blockchain in

distributed networks. Concluding remarks and further reflections on the many, intriguing

research questions left open are drawn in Sections 6.1 and 6.2 that focus, respectively, on

the two main topics investigated in this thesis.

6.1 Centrality based Optimization of Routing Protocols

This thesis introduces a novel, distributed algorithm for the exact computation of the LC

index in a generic graph [17]. The LC coincide with the Betweenness Centrality (BC) in

networks that do not support multipath, which is the case for most communication networks.

It can therefore replace the BC to enable the large plethora of BC-based applications already

known for centralized networks also in distributed ones. It is worth to notice that, in the

case of multipath, the LC captures the network dynamics better than the BC, so its use may

be further encouraged.

This thesis also proves analytically and verifies with computer simulations that the

algorithm converges in a number of time steps that is proportional to the diameter of the

network. Chapter 3 explains how the algorithm is designed as a minimal extension of the

Bellman-Ford one, thus it can be easily integrated into existing DV routing protocols. This

claim is supported by reporting the details of a concrete implementation of the algorithm

in Babel, a well known DV protocol. This thesis provides also an example of the algorithm

potential applications in real world networks. For instance, by emulating several real

networks, it is shown that the losses consequent to a node-failure can be tangibly reduced if

the timers of Babel are optimized according to a Pop-Routing approach based on LC.
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A second, more sophisticated version of the distributed algorithm has been developed to

make the same algorithm incrementally deployable, i.e., applicable also in networks where

only a subset of routers has been upgraded to run the new algorithm for LC [18]. Section 3.3.2

reports the mathematical study that characterizes the approximation error performed in a

partial deployment scenario when not all nodes contribute to the computation of centrality.

Unfortunately this study reveals that the error slowly converges to zero while growing

the ratio of upgraded nodes deployed in the network. However, it turns out that the two

nodes rankings produced by the estimated and by the theoretical centrality values are highly

correlated even when only few upgraded nodes are deployed and estimate their centrality.

In other words the incrementally deployable algorithm accurately ranks nodes by their

theoretical centrality even if the ratio of upgraded nodes is small. This result encourages the

application of the Pop-Routing strategy also in early deployment stages.

6.1.1 Future Work

While the Pop-Routing approach has been applied successfully, so far, to the optimal tuning

of the timers that regulate the generation of control messages, the application of a similar

technique to other timers has not been explored yet. The same strategy could be explored

for tuning other timers influencing the performance of networking protocols, for example,

on packets aggregation and expiry timers.

Expiry timers are used to implement different functions of routing protocols. They are

used, e.g., to implement the garbage-collection of routing table entries that have not been

refreshed on time or to control the automatic retransmission of sent messages that have not

been acknowledged by the receiver. Packets aggregation timers, instead, play a fundamental

role especially when communications are bursty or the communication channel is shared. A

performance evaluation of the Pop-Routing approach applied to such timers, above all to

those that implement the automatic-retransmission functionality of wireless MAC protocols,

becomes therefore an intriguing research direction for future works.

Moving to networks at the scale of Internet there are two more timers whose regulation

is debated since decades: these two are the MRAI and the RFD timers defined by the Border

Gateway Protocol (BGP). MRAI stays for Minimum Route Advertisment Interval and it is the

amount of time that a BGP speaker must wait before transmitting a new UPDATE for the

same prefix, even if a new route became available in this interval of time. Different ASes

administrators do not cooperate for tuning it, so that some administrators configure their

routers with the default —quite high— value of 30 seconds, while many others choose

different lower values. Still, configurations are always static, far from being optimal nor even

dynamic. The RFD acronyms instead stays for Route Flap Dumping and is a controversial
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method used to prevent the oscillations of routes by suppressing, for some time, repeated

BGP UPDATES.

The research community still did not find an agreement on how to calibrate these timers

so to achieve an optimal trade-off between route convergence speed and control overhead.

The difficulty of finding this trade-off is witnessed by the historical fact that through the last

20 or more years the recommendations provided by the IETF on the use of both MRAI and

RFD changed multiple times, sometimes even proposing to completely suppress their use.

Considering that BGP is a distributed Path-Vector (PV) protocol based on Bellman-Ford,

sharing a working principle similar to the one of DV routing protocols, then the LC based

optimization presented in this thesis for Babel seems possible for BGP as well. The exploration

of the Pop-Routing approach at the Internet scale on top of BGP appears to be, therefore, an

exciting direction for further research.

Many more applications beyond the tuning of different timers can benefit from the

distributed computation of the LC for all nodes of a graph, or just from partial nodes ranking.

Whenever the nodes position in the network is strategic researchers and engineers can

consider the use of the distributed LC algorithm to implement an optimal strategy for the

allocation of resources. The algorithm may enable, for example, an optimal strategy for

the placement of cached contents in Content Delivery Networks but this is just one of the

potential, further, unexplored applications.

This thesis makes available a distributed algorithm for centrality that, wishfully, will be

exploited for the development of many new applications for distributed networks.

6.2 Blockchain for Securing Distributed Networks

This thesis argues that the blockchain is not the appropriate technology for securing large

scale, power constrained networks, which is especially true for the world of the Internet of

Things (IoT). For the purpose of clarifying the possible role of the blockchain in securing

distributed networks this thesis started from the analysis of the blockchain from a distributed

system perspective, stressing on the importance of distributed consensus protocols.

The thesis raises the concern that consensus protocols driven by stake rely completely on

the rationality assumption of their users and, compared to traditional voting based protocols,

lack of mathematical stability properties. Moreover, it highlights that the voting power

has a tendency to consolidate in the hands of few great stakeholders under Proof of Stake

(PoS) and also under Proof of Work (PoW). This thesis therefore suggests to consider both

proof mechanisms as census suffrage systems that exhibit an almost equivalent degree of

decentralization. Section 5.2.3 points out that the cost of a PoW is stabilized by the real

world cost of energy and mining equipment, while the cost of a PoS only depends on the
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virtual and fluctuating “value-at-stake”. This thesis concludes that the PoW, being more

stable than the PoS, offers a higher degree of security and its cryptographical hardness is the

key technical element supporting the immutability property of blockchains.

The thesis stresses on the innovative and peculiar aspects of permissionless blockchains,

the only free from any trusted authority, while downplays permissioned ledgers to traditional

managed data bases. The main conclusion is that the term “blockchain” should be reserved to

those platforms characterized by: i) Openness to anonymous users; ii) Public and complete

history of transactions, and iii) Safeguarded by a hard consensus protocol.

This definition has far-reaching consequences. Above all, the constitutional hard con-

sensus protocol necessarily brings high power consumption and degrades the rate and the

latency of transactions. For this reason, the blockchain is not advised to support popular

applications such as E-voting and Supply Chain Management. Furthermore, not to violate the

Right to Be Forgotten, the blockchain can hardly support Identity Management applications

nor work as archive of certificates and other sensitive information.

Lastly, this thesis recommends a wiser use of the blockchain in distributed networks

promoting the paradigm of Transaction Channels. This paradigm enables a high-rate of

inexepensive, off-chain, local transactions, while leaves to users the possibility to interact

through more rare and expensive cross-platform transactions, these latter recorded in a global,

blockchain-based, shared ledger. This paradigm better suits the typical IoT requirements

and free users from the need of a centralized, trusted ledger service (banks), still supporting

transactions across diverse applications, technologies and administrative domains.

6.2.1 Future work

Although this thesis downplayed the role of the blockchain in distributed networks it also

outlined open problems and intriguing research directions about the same blockchain in

networking.

A first direction has been introduced while presenting Transaction Channels as the ideal

tool to support local transactions in small portions of a network, where one such portion

could be an IoT cluster, an ad hoc or a community network. However, the technology that

supports networks of Transaction Channels is in its infancy and only in recent times projects

such as the Lightning Network [198] provided, for the first time, a concrete implementation

of a payment network linked to a main blockchain. There is still space for further research

towards the advancement of the technology underpinning these projects, with an important

contribution from the networking research community that would be key to address the well

known problems affecting the routing of payments.

A few research pioneers already started transferring the networking expertise to payment

networks, designing new routing protocols for payments that embed the well established
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routing mechanisms used since decades in computer networks [318–321]. These mechanisms

should be reintroduced for, e.g., routing payments around those channels that are depleting

their credit or for jointly reduce the end-to-end payment latency while maximizing the

fairness of the path selection process. The problem of a fair selection of paths is important

to balance the network traffic without insisting on the most central nodes that, otherwise,

would be overloaded and would rapidly deplete their credit.

For all these purposes there is the need of disseminating the channel balances, to be

used for steering the routing process. A further open research direction is therefore the

development of new distributed protocols able to limit the propagation scope of the channels

balance information, safeguarding the privacy of users as much as possible. Preliminar

works [323–326] addressing the aforementioned challenges are opening the way to further

research efforts.

Another research challenge is to increase the security of blockchains by, e.g:

1. speeding up the gossip protocols used to propagate new blocks among validators

2. understanding and fixing the vulnerabilities of the networking infrastructure that

expose blockchains to eclipse attacks.

These two ideas arise looking back to Section 4.2.4 that pointed out how an attacker can

easily enhances his probability of success exploiting propagation delays and influencing

the communications of his victims. For example, adopting the stale rate as main indicator

of the blockchain security as suggested by Gervais et al. [134], this thesis pointed out the

existing proportionality between the stale rate and the Block Propagation Time (BP). This

observed proportionality (see Observation 4.3) suggests that an enhancement of the gossip

protocols responsible for the propagation of blocks may be decisive to strengthen the security

of blockchains. Optimization of gossip protocols based on centrality are already known in

the literature, e.g., for minimizing the delays while distributing chunks of videos in real time

streaming applications [327]. One novel research direction could be the investigation of

similar centrality based strategies for minimizing BP, thus to enhance the blockchain security.

Section 4.2.4 also directed the attention to the γ parameter, a parameter commonly

interpreted as the ability of a selfish miner (SM) to take control of the network and influence

communications. The higher is γ the higher is the exposure of a blockchain to attacks. The

γ parameter can be well approximated by network centrality indexes, since their purpose

is exactly to capture the nodes influence on the network communications. In the future

the here introduced algorithm for the computation of centrality could be used to asses the

security level of the communication networks used by blockchains, reporting warnings when

extremely high centrality values are detected.

These last two lines of research are inspired by the blending of the two main contributions

of this thesis.
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