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Abstract
In the Hamiltonian adaptive resolution simulation method (H–AdResS) it is possible to
simulate coexisting atomistic (AT) and ideal gas representations of a physical system that
belong to different subdomains within the simulation box. The Hamiltonian includes a field
that bridges both models by smoothly switching on (off) the intermolecular potential as
particles enter (leave) the AT region. In practice, external one-body forces are calculated and
applied to enforce a reference density throughout the simulation box, and the resulting external
potential adds up to the Hamiltonian. This procedure suggests an apparent dependence of the
final Hamiltonian on the system’s thermodynamic state that challenges the method’s statistical
mechanics consistency. In this paper, we explicitly include an external potential that depends
on the switching function. Hence, we build a grand canonical potential for this inhomogeneous
system to find the equivalence between H–AdResS and density functional theory (DFT). We
thus verify that the external potential inducing a constant density profile is equal to the
system’s excess chemical potential. Given DFT’s one-to-one correspondence between external
potential and equilibrium density, we find that a Hamiltonian description of the system is
compatible with the numerical implementation based on enforcing the reference density across
the simulation box. In the second part of the manuscript, we focus on assessing our approach’s
convergence and computing efficiency concerning various model parameters, including
sample size and solute concentrations. To this aim, we compute the excess chemical potential
of water, aqueous urea solutions and Lennard–Jones (LJ) mixtures. The results’ convergence
and accuracy are convincing in all cases, thus emphasising the method’s robustness and
capabilities.

Keywords: molecular dynamics, density functional theory, excess chemical potential, liquids
and liquid mixtures, Kirkwood–Buff theory, multiscale methods
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1. Introduction

In the adaptive resolution method [1–5] (AdResS) and its
Hamiltonian variant (H–AdResS) [6, 7] it is possible to sim-
ulate atomistic (AT) and ideal gas representations of a phys-
ical system coexisting within the simulation box [8, 9]. A
hybrid (HY) region connects both representations via a field
that switches on (off) intermolecular interactions as molecules
enter (leave) the AT region (figure 1). External one-body forces
are computed and applied to ensure a constant density profile,
and once integrated, the corresponding potential energy adds
up to the Hamiltonian. This external potential has been identi-
fied with the excess chemical potential between the regions
of the system [6, 7, 9]. Nevertheless, this technical proce-
dure raises the question of whether the modified Hamiltonian
becomes dependent upon the specific thermodynamic state. In
consequence, such a dependence would question the use of the
H–AdResS Hamiltonian in the context of classical statistical
mechanics.

In this paper, we use the statistical mechanics formalism
of H–AdResS, developed by Español and collaborators [10],
where the external potential directly enters the Hamiltonian
as a functional of the switching field. We use this Hamilto-
nian to build a grand canonical potential that, for such an
inhomogeneous system, is a functional of the external poten-
tial [11]. Since the subsystem of interest is in contact with
an ideal gas, sampling the grand canonical potential does not
involve any major difficulty, as we have recently demonstrated
[12]. As a matter of fact, the adaptive resolution framework
has been established as a method to perform simulations in
the grand canonical ensemble [12–18]. With this grand poten-
tial [19, 20], we find an equivalent classical density func-
tional theory (DFT) approach to H–AdResS. Once the equiva-
lence between DFT and H–AdResS is established, we show
that the external potential that enforces the reference, ideal
gas, density throughout the system is precisely the excess
chemical potential. Given DFT’s one-to-one correspondence
between the density and the external potential, we validate the
standard H–AdResS strategy based on enforcing a uniform
density profile to compute the Hamiltonian’s external poten-
tial and, therefore, the excess (over the ideal gas) chemical
potential [9]. The calculation of excess chemical potentials
within the H–AdResS formalism closely resembles the ther-
modynamic integration method [21]. For such a reason we
have called it spatially-resolved thermodynamic integration
(SPARTIAN) [9].

In the second part of the paper, we test the current numer-
ical implementation of the SPARTIAN method [9]. In partic-
ular, we compute the excess chemical potential of pure water,
aqueous urea solutions and LJ mixtures. Additionally to the
comparison with chemical potential values reported in the
literature, when available, we tested the convergence of the
results with model parameters such as size of the HY region,
system size and composition. Our results confirm the method’s
robustness and efficiency and establish it as an alternative
approach to compute free energy differences. We also assess
the method’s computing efficiency concerning fully AT simu-
lations. These results highlight the necessity to either fine-tune

the domain decomposition conditions in the ideal gas region or
to reduce its size to a minimum and use our recently developed
particle-insertion method [12] to include an infinite reservoir
effectively.

The paper is organised as follows: in section 2, we present
the H–AdResS method in terms of DFT. In section 3, we report
the calculations of the test systems’ excess chemical potential.
Finally, we discuss our results and conclude in section 4.

2. H–AdResS as an inhomogeneous system:
connection to DFT

We write the adaptive resolution Hamiltonian [6, 7, 9] for a
molecular fluid composed of Na atoms, distributed among N
molecules, as

H[λ](r, p) = K + V intra +

N∑
α=1

{λαVα + Vext(λα)}, (1)

with (r, p) positions and momenta and K =
∑Na

i=1 p2
i /2mi

is the total kinetic energy of the system. Latin indices run
over atoms and greek indices over molecules. The term
V intra =

∑N
α=1

∑
i �= j∈αV intra(ri j) accounts for intra-molecular

interactions, with ri j the separation between atoms i and j
belonging to the same molecule α. The intermolecular inter-
actions are included in the term Vα = 1

2

∑
β �=α

∑
i �= jV(|rαi −

rβ j|) with rαi the position of the atom i in molecule α.
The switching field determines the molecules’ identity, with
λα ≡ λ(Rα) and Rα the position of the centre of mass of
the molecule α. When λ = 0 the Hamiltonian describes an
homogeneous ideal gas system provided Vext(0) = constant.
In particular, we set Vext(0) = 0. For 0 < λ � 1, the Hamilto-
nian describes an inhomogeneous system, namely, an interact-
ing system in the presence of an external field (figure 1). We
assume that the system (AT and ideal gas representations) is
embedded in a reservoir of infinite size at temperature T and
chemical potential μid, the chemical potential of the ideal gas
(IG). In practice, by using the Hamiltonian in equation (1), we
have recently demonstrated that the numerical implementation
of these conditions is straightforward [12]. Here, we calcu-
late the grand canonical partition function corresponding to the
adaptive resolution Hamiltonian (1)

Z[λ] = Tr{exp(−β(H[λ] − μ(λ)N))}, (2)

with β = 1/kBT and kB being the Boltzmann’s constant. We
use the classical trace notation [19, 20] to avoid writing explic-
itly the integral over all particle momenta and positions and the
sum over all possible system sizes

Tr =
∞∑

Na=0

1
h3NaNa!

∫
d3Nar

∫
d3Na p,

with h the Planck’s constant.
By using the partition function (2), we define the equilib-

rium distribution function as [19, 20]

f0[λ] =
1

Z[λ]
exp (− β(H[λ] − μ(λ)N), (3)

2
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Figure 1. Schematic representation of a typical adaptive resolution
slab. The central, fully AT, region is embedded into a reservoir of IG
particles. An interfacial, HY, region connects AT and IG subsystems
via a switching field λ that smoothly switches on (off)
intermolecular interactions as molecules leave (enter) the IG region.
An external field, not shown, counterbalances free energy barriers
such that molecules freely diffuse between regions.

which satisfies that Tr f0[λ] = 1. The thermal average of an
operator Ô is given by 〈Ô〉[λ] = Tr{ f0[λ]Ô}. In particular, the
external potential makes the system’s density inhomogeneous.
We use the previous definition of thermal average to write the
equilibrium density profile in the form

ρ[λ]
0 (r) = 〈ρ̂(r)〉[λ], (4)

with ρ̂(r) =
∑

αδ(Rα − r).
Using an arbitrary distribution function f[λ], that satisfies

the condition Tr f[λ] = 1, Mermin, in the context of the inho-
mogeneous electron gas, proposed a functional form for the
grand potential [22] that we write for our particular case as

Ω[λ][ f [λ]] = Tr{ f [λ](H[λ] − μ(λ)N + β−1 ln f [λ])}. (5)

By replacing the equilibrium distribution, we obtain

Ω[λ][ f0[λ]] = −β−1 ln Z[λ] = Ω0
[λ] (6)

the definition of grand potential in terms of the grand canonical
partition function.

Using the density operator ρ̂, we can rewrite the external
potential as

N∑
α

Vext(λα) =
∫

dr
N∑

α=1

δ(Rα − r)Vext(λ(r))

=

∫
dr ρ̂(r)Vext(λ(r)). (7)

The density distribution f[λ] is, in general, a functional of the
density ρ[λ](r). Therefore [11, 19, 20], by using the Hamil-
tonian (1) we write the grand potential as a functional of the
density

Ω[λ][ρ
[λ](r)] = Tr{ f [λ](H[λ] − μ(λ)N + β−1 ln f [λ])}

= Tr

{
f [λ]

(
K + V int +

N∑
α=1

λαVα

+ β−1 ln f [λ] +
N∑

α=1

Vext(λα) − μ(λ)N

)}

= F[λ][ρ
[λ](r)] +

∫
dr ρ[λ](r)

× (Vext(λ(r)) − μ(λ(r))), (8)

in which we make use of equation (7) where the total external
potential is written as a functional of the density. The func-
tional F[λ][ρ[λ]] is the intrinsic Helmholtz free energy corre-
sponding to the Hamiltonian (1), which is independent of the
external potential:

F[λ][ρ
[λ]] = Tr

{
f [λ]

(
K+ V int +

N∑
α=1

λαVα + β−1 ln f [λ]

)}
. (9)

The last two equations provide us with a direct connection
between H–AdResS and DFT. The expression (8) is a func-
tional Legendre transform relating the Helmholtz free energy
and the grand potential [11].

To understand equation (8), we underline that the system is
inhomogeneous, and the grand potential is a functional of the
external potential [11, 20]. That is

δΩ[λ]

δ(μ(λ(r)) − Vext(λ(r)))
= −ρ[λ](r), (10)

which is consistent with the thermodynamic identity
∂Ω/∂μ = −N.

Written as a functional of the density, Ω[λ][ρ[λ](r)] repre-
sents the cost in free energy necessary to find the system at
precisely the density ρ[λ](r) [11]. In particular, we find the den-
sity field, ρ[λ]

0 (r), that minimises this cost by evaluating the
functional derivative of the grand potential with respect to the
density. Hence, the grand potential satisfies

δΩ[λ][ρ[λ]]
δρ[λ]

∣∣∣∣
ρ[λ]=ρ[λ]

0

= 0, (11)

thus implying

δF[λ][ρ[λ]]
δρ[λ]

∣∣∣∣
ρ[λ]=ρ[λ]

0

= −Vext(λ(r)) + μ(λ(r)). (12)

The exact form of the intrinsic free energy functional F[λ][ρ[λ]]
is, in general, unknown. However, we can re-write it as

F[λ][ρ
[λ]] = Fexc

[λ] [ρ[λ]] + F[0][ρ
[0]], (13)

with Fexc
[λ] [ρ[λ]] the excess free energy, calculated with respect

to the free energy of the reference system (ideal gas), F[0][ρ[0]].
To ensure thermodynamic consistency in the adaptive resolu-
tion description, we require the free energy being independent
of λ [10]. Nevertheless, we anticipate here that this condition
could be changed to induce non-equilibrium conditions in the
system [12]. In equilibrium, Fexc

[λ] [ρ[λ]] = 0, thus,

F[0][ρ[0](r)] = Fid[ρ(r)] = β−1
∫

drρ(r){ln(λ3
Tρ(r)) − 1},

(14)
with Fid the Helmholtz free energy of the IG (our reference
state at λ = 0), ρ[0](r) = ρ(r) and λT = (�2β/2πm)1/2 the

3
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thermal, de Broglie, wavelength. We rewrite equation (12) as

δFid[ρ(r)]
δρ(r)

= −Vext(λ(r)) + μexc(λ(r)) + μid, (15)

with μexc(λ(r)) = μ(λ(r)) − μid, a continuous function of
λ, μid = β−1 ln(λ3

dBρ0) and ρ0 the reference (IG) density. By
replacing μid into the previous equation, we find

ρ(r) = ρ0 exp(−β{Vext(λ(r)) − μexc(λ(r))}), (16)

where it is apparent that this density field does not explicitly
depend on the switching field. Indeed, this expression shows
that the external potential determines the density. In particular,
the condition

Vext(λ(r)) = μexc(λ(r)) (17)

guarantees a constant density ρ0. In other words, the exter-
nal potential that enforces the reference density for the whole
system is equal to the excess chemical potential.

This result provides an interesting parallel with DFT. In
the latter, we apply an external potential and then use a
self-consistent approach to find the corresponding system’s
equilibrium density. By considering the one-to-one correspon-
dence between external potential and equilibrium density as
provided by DFT, the approach generally used in H–AdResS
naturally follows. We enforce a uniform density throughout the
simulation box and then calculate the resulting external poten-
tial Vext(λ(r)). This is particularly useful to compute chemi-
cal potentials of molecular fluids and liquid mixtures, since
Vext(1) = μexc with μexc the excess chemical potential of the
AT system over the ideal gas.

To use the Hamiltonian (1) to perform molecular dynamics
simulations, we need to compute the forces. The force, cal-
culated as minus the gradient of the Hamiltonian, acting on a
molecule α is given by:

Fα = Fint
α +

∑
β �=α

{
λα + λβ

2
Fα|β

}

−∇αλα

[
Vα +V

′ext(λ)
∣∣∣
λ=λα

]
, (18)

with Fint
α and Fα|β the forces due to the intra- and intermolec-

ular potentials, respectively, and V ′ext = dVext/dλ. The force
proportional to the gradient of the switching field weakly vio-
lates Newton’s third law and momentum conservation, and
introduces spurious density and pressure inhomogenenities
into the system. Since we do not know a priori the exter-
nal potential, we cannot directly compute its derivative with
respect to λ. However, we can obtain a first approximation
to V ′ext(λ) by taking a closer look at the invariance of the
Helmholtz free energy with respect to the switching field [10]

δF[λ](ρ(r))
δλ(r)

=
δΩ[λ](ρ(r))

δλ(r)
− δ

δλ(r)

×
∫

dr ρ(r) (Vext(λ(r)) − μ(λ(r))) = 0, (19)

where we use the inverse of equation (8) for the density field
ρ(r). Following the condition given by equation (17), the

functional derivative of the integral vanishes. Using
equation (6), we find

δΩ[λ](ρ(r))
δλ(r)

= Tr

{
f [λ]

δH[λ]

δλ(r)

}

− Tr

{
N

exp(−βH[λ])
Z[λ]

δz[λ]
δλ(r)

}
= 0, (20)

with z[λ] = exp(βμ(λ)) the system’s fugacity. In general, the
two terms on the rhs of the previous equation cancel each other
out to guarantee a uniform density profile. There is also the
possibility that every term remains invariant with respect to
changes in λ(r). In particular, if the fugacity of the system
does not depend on λ, then the pressure, and not the density, is
constant throughout the simulation box [10]. This assumption
implies that

Tr

{
f [λ]

δH[λ]

δλ(r)

}
= Tr

{
f [λ]

N∑
α=1

(Vα+V ′ext(λ(r)))δ(Rα−r)

}

=

〈
N∑

α=1

Vαδ(Rα − r)

〉[λ]

+ V ′ext(λ(r))ρ[λ](r) = 0, (21)

which allows us to evaluate V ′ext in terms of thermal averages
over quantities that we know. From a practical viewpoint, we
use the local equilibrium approximation discussed in reference
[10]. When λ is sufficiently smooth, the thermal average is
approximated to an average computed at a constant value of the
switching field at a given position r. That is, 〈· · ·〉[λ] ≈ 〈· · ·〉λ
[10]. By integrating over space we obtain,

〈V〉λ + V ′ext(λ)N = 0, (22)

with V =
∑

α Vα. Finally, we obtain [6]

V ′ext(λ)|λ=λα = −〈V〉λ=λα/N ≈ −〈V〉Rα . (23)

By inserting this drift term in the force (18) we see that, on
average, the term proportional to the gradient of λ vanishes.
Therefore, we obtain a description of the system that on aver-
age satisfies Newton’s third law and linear momentum conser-
vation. This is an important issue because significant artefacts
are introduced in the simulation if these conditions are not ful-
filed [23]. Furthermore, by using this force, we are implicitly
ensuring a constant pressure throughout the simulation box [6,
10].

We now return to adaptive resolution setups at constant den-
sity. To enforce this condition, we compute and apply, itera-
tively, an external force, dubbed thermodynamic force [14, 24],
given by

Fth
n+1 = Fth

n +
c∇ρ(x)n

ρ0
, (24)

with c a parameter with units of energy. ∇ρ(x)n is the gradient
of the density profile computed at the nth step of the iteration.
The computation of this force converges when ∇ρ = 0, that is,
when the density becomes ρ0 everywhere.

4
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Hence, we have that the total external force acting on
a molecule α, instantaneously present in the HY region,
becomes

−∇RαVext(λ)|λ=λα = 〈V〉Rα∇λ(Rα) + Fth
α . (25)

The integral over space of this force will give us the exter-
nal potential that, in virtue of equation (17), equates the
excess chemical potential, provided the density is constant
and equal to ρ0 throughout the simulation box. Due to the
similitude between this approach and Kirkwood’s thermody-
namic integration (KTI) [21], in the following sections, we
refer to this method to compute free energy differences as the
spatially-resolved thermodynamic integration (SPARTIAN)
method [9]. The comparison with KTI also implies that to com-
pute μexc it is sufficient to enforce the target density at the
AT and IG regions, which corresponds to the selection of a
different thermodynamic path to compute the integral.

We conclude this section highlighting that the generalisa-
tion of this procedure to the study of mixtures is straightfor-
ward [7, 19]. In the following section, we will provide a few
examples where excess chemical potentials of complex liquids
and liquid mixtures are computed and compared with results
available in the literature.

3. Simulation results

In this section, we present the calculation of the excess chem-
ical potential for SPC/E [25–27] water, LJ mixtures and aque-
ous urea solutions [28–30]. The aim is to investigate con-
vergence and performance of the calculation using various
simulation setups.

3.1. Preliminaries

We use the LAMMPS [31] implementation of SPARTIAN
described in references [9, 24]. Namely, we discretise the HY
region in bins of size δλ and δr. To compute the forces, we use
the iterative procedure described in reference [24]. We sample
each term on the rhs of equation (25) separately, using inde-
pendent time-intervals. At the end of every interval, the code
generates two files containing 〈V(λ)〉 and Fth(r). As antici-
pated in the previous section, the analysis of a liquid mixture
only requires to compute the corresponding forces acting on
every individual component. Thus, in the case of a spherical
AT region, with radius rAT and thickness of the HY region
dHY, the excess chemical potential for the i-component is
calculated as

μexc
i =

∫ 1

0
dλ 〈Vi(λ)〉+

∫ rAT+dHY

rAT

dr Fth
i (r) · n̂, (26)

with n̂ a unit vector pointing away from the AT region. The
switching function is defined as

λ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 r � rAT

cos14

(
π(r − rAT)

2dHY

)
rAT < r � rAT + dHY

0 r > rAT + dHY,
(27)

Figure 2. Simulation snapshot showing the SPARTIAN
configuration for a pure water calculation. A spherical AT region or
radius 30 Å is embedded into a simulation box of linear size of
150 Å. The HY region is a spherical shell of maximum thickness 25
Å, and the IG occupies the remaining free space.

with the exponent 14 selected for numerical convenience [9].
To compute the thermodynamic force (24), we use c = 1.0,

0.01 kcal mol−1 and 2ε to modulate the contribution from ∇ρ
in the case of SPC/E water, aqueous urea solutions and LJ mix-
tures, respectively. To get a smooth force field, we convolute
the density profile with Gaussian functions of width equal to
three times the length of a HY region bin. During the simula-
tion, it is possible that two molecules approach each other in
the HY region while travelling towards the AT region. Once
there, if they get too close to each other, the strong repulsion
might create numerical instabilities. To avoid this problem, we
introduce a capping radius for all the interactions. The corre-
sponding values are 0.1 σ for LJ mixtures and 0.5 Å for Van der
Waals and electrostatic potentials in water and aqueous urea
solutions [9].

We use the damped-shifted force potential model (DSF)
[32–35] to describe electrostatic interactions. To compare with
the results of free energy differences obtained by using Ewald
summation, we need to subtract a constant term [9]. In the
case of rigid molecules using the SHAKE algorithm [36], this
term corresponds to electrostatic intramolecular interactions
between i, j atomic pairs, given by qiq j/ri j with qi the charge
of the ith atom.

3.2. Size of the HY region

We start with the calculation of μexc
WATER for pure water. We

present the simulation setup used in figure 2. We consider a
system of 111375 SPC/E [25–27] water molecules in a cubic
simulation box, with linear size equal to 150.0 Å. A spherical
AT region with radius 30 Å is embedded into a HY region of
thickness varying between 10, 15, 20 and 25 Å. The starting
point of the calculation corresponds to a fully AT simulation
equilibrated for 25 ns at T = 298.0 K and P = 1.0 bar using

5
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Figure 3. (Top) Excess chemical potential for water obtained for
different HY region thicknesses. The linear size of the simulation
box is 150 Å. (Bottom) Excess chemical potential for water obtained
for different HY region thicknesses. The linear size of the simulation
box is 200 Å. In addition to reporting our previous result [9], we
compare with the experimental value [37], and with computational
results obtained by using TI [38] and the BAR methods [39].

the Nosé–Hoover thermostat and barostat with damping con-
stant equal to 100 fs for both cases. After this step, the sys-
tems were equilibrated by 25 ns in the NVT ensemble using
Langevin thermostat with damping parameter equal to 100 fs
and an integration time step of 1.0 fs.

By starting from the final fully-atomistic configuration, we
start the SPARTIAN runs. We simultaneously average both
contributions to the force (18) for 20 ps, then at the end of
this period, we calculate and apply the forces. This cycle cor-
responds to a single iteration. After every iteration we use
equation (26) to obtain the value of μexc

WATER. Results of this
procedure, for different sizes of the HY region, are presented
in figure 3(top). For reference, we also include the experi-
mental value [37], as well as computational results obtained
by using thermodynamic integration (TI) [38] and the Bennett
acceptance-ratio (BAR) methods [39].

It is apparent from the figure that the final result is some-
what insensitive to the size of the HY region. With small val-
ues of δHy, namely 10 and 15 Å, there are larger fluctuations
in the result related to poor statistics. Once the sample size

Table 1. Excess chemical potential for watera

μext (kJ mol−1)

δHY (Å) L = 150 Å L = 200 Å

10.0 −28.79 ± 0.18 −28.93 ± 0.13
15.0 −28.91 ± 0.24 −29.31 ± 0.14
20.0 −29.08 ± 0.17 −29.17 ± 0.11
25.0 −29.27 ± 0.21 −29.41 ± 0.16
30.0 −29.36 ± 0.14
35.0 −29.40 ± 0.16
40.0 −29.38 ± 0.17

astandard deviation measured over the last twenty iterations.

increases, δHy = 20 and 25 Å, the result convincingly con-
verges after 100 iterations (2 ns) to the value obtained by using
the state-of-the-art computational methods considered here.

This picture remains essentially consistent upon increasing
the size of the system. Figure 3(bottom) shows similar results
for a simulation box of linear size equal to 200 Å. In this case,
additionally to the values considered before, we can also inves-
tigate the convergence of the result for values of δHY = 30, 35
and 40 Å. Similarly to the previous case, the result smoothly
converges to the expected μexc

WATER value for the SPC/E model.
The results of this sub-section, averaged over the last twenty

iterations, are summarised in table 1.
To conclude this section, we comment on how to choose the

size of the HY region. To avoid artefacts arising from finite-
size effects, the volume of the AT region should contain the
volume defined by the correlation length of the system. Our
results indicate that this size constraint also applies to the HY
region. Hence, it is advisable to choose the linear size of the
HY region larger than the correlation length of the system.

3.3. HPC performance

By using the water system considered in the previous sub-
section, we perform a strong scaling analysis. Namely, we
select a different number of processors and evaluate the per-
formance of the calculation, measured in units of ns per day.
Results are presented in figure 4(top) where it is apparent
that fully-atomistic simulations, for both sizes included in
this study (blue symbols), exhibit a better scaling than their
SPARTIAN counterparts (black and green symbols). This
behaviour is due to lack of optimisation in domain decompo-
sition and load balancing in the SPARTIAN implementation.
Processors assigned to the IG region run more idle than the
ones assigned to the AT and HY regions thus hindering parallel
processing and communication.

Upon increasing the size of the system, in both fully-
atomistic and SPARTIAN calculations there is a substan-
tial and proportionally similar decrease in computing effi-
ciency. Furthermore, in the case of SPARTIAN calculations, as
presented in figure 4(bottom), there is a slight decrease in
efficiency upon increasing the size of the HY region while
keeping the size of the AT region constant. Indeed, figure 5
illustrates the performance of the SPARTIAN calculation as
a function of the HY region thickness, for systems with fixed
linear sizes (150 and 200 Å), AT region size, and number of

6
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Figure 4. (Top) Performance of the SPARTIAN and NVT as a
function of the number of processors. (Bottom) Performance of the
SPARTIAN and NVT as a function of the number of processors for
HY region thickness equal to 10.0 Å and 25.0 Å

processors (800). Both tendencies confirm that the rather mod-
est SPARTIAN performance is mainly due to the parallelisa-
tion and communication issues mentioned above. The default
domain decomposition in LAMMPS consists of dividing the
simulation box into three-dimensional equal-size subvolumes,
where every subdomain gets assigned to one processor. In the
SPARTIAN case, we combine different pair styles that result
in an imbalance in computational load depending on whether
particles are in the AT, HY or ideal gas regions. Hence, overall
poor performance results from an increase in computational
cost due to a uniform assignment of particles per processor.

To overcome this limitation, we use the shift scheme as
implemented in LAMMPS4. Here, we assign a weight factor
that tends to balance the computational load of each processor.
A weight factor (>1) associated with a given particle deter-
mines how much more computational resources are devoted to
this particle than the other particles present in the simulation.
To illustrate this point, we consider SPC/E water in a simula-
tion box of size 150 Å, running on (i) 200, (ii) 800 and (iii)

4 https://lammps.sandia.gov/doc/balance.html.

Figure 5. Performance of the SPARTIAN calculation as a function
of the HY region thickness. Calculations were performed by using
800 processors.

1200 processors. By using a weight factor of ten between the
particles in the AT and HY regions and the particles in the IG
region, we obtain an increase in performance of (i) 60%, (ii)
47% and (iii) 24%, respectively.

These results are encouraging, however, a more important
advancement, from both fundamental and technical perspec-
tives, is related to the implementation of particle-insertion
methods that allows us to significantly reduce the size of the
IG region while effectively including an infinite size reservoir
[12].

3.4. Binary mixtures: extremely diluted conditions

The accuracy of the calculation of the excess chemical poten-
tial in the SPARTIAN method improves upon increasing the
number of molecules present in the HY region, as it is appar-
ent from equation (18). Thus, we expect that the SPARTIAN
calculation requires a major increase in HY region size to
converge μexc for low-density liquids and highly-diluted mix-
tures. To investigate these conditions, we simulate A-B LJ mix-
tures with xA = 0.1 the mole fraction of A-molecules. In this
case, we use a tetragonal simulation box, Lx × Ly × Lz with
its major axis, Lx , aligned along the x-direction (figure 6). The
switching field λ(x) is applied only along Lx and, in all cases
considered, we keep constant the length of the AT, HY and IG
regions. We also keep constant Lz. To increase the size of the
system, and therefore the statistics for the SPARTIAN calcu-
lation, we start from Ly = Lz and keep increasing Ly. To sum
up, we have a simulation box with Lx = 36σ, Lz = 5σ and
variable Ly.

We simulate systems with 3.6, 10.8, 36, 54, 100, 250, 300,
500, 1000 and 1500 (×103) particles. The results are expressed
in LJ reduced units. The force field parameters were chosen
as σAA = σAB = σBB = 1.0σ, and εAA = εBB = εAB = 1.0ε,
and the interactions were truncated to a cutoff radius equal
to 2.5σ. The systems were equilibrated in the NPT ensemble
with T ∗ = 2.0kBε

−1 and P∗ = 5.0σ3ε−1, by 1.0 ×105τ , using

7
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Figure 6. Lateral view of the tetragonal simulation setup used to
investigate diluted LJ mixtures. The long axis of the box, where the
adaptive resolution takes place, is aligned along the x-direction. The
y-direction, with normal vector entering the page, is used to linearly
increase the size of the system, thus increasing the number of
particles (statistics) in the HY region.

Figure 7. Error (deviation from target value) in the density as a
function of total number of particles. NA = 0.1N tot. Black and green
dashed lines correspond to 2% and 1% limits, respectively.

Nosé–Hoover thermostat and barostat with damping coeffi-
cient equal to 10 τ and 100 τ , respectively and time step equal
to 0.005 τ . Then, the systems were simulated in the NVT
ensamble with T ∗ = 2.0kBε

−1, by 1.0 ×105τ , using Langevin
thermostat with damping parameter equal to 100 τ and time
step equal to 0.001 τ . In all cases, the SPARTIAN calculation
were run with the AT region width and the HY region thick-
ness equal to 10 σ and 10 σ, respectively, as shown in figure 6.
The drift and thermodynamic forces were calculated every
10 τ .

One diagnostic tool to evaluate the quality of the
SPARTIAN calculation is the density profile. Figure 7 shows
the error, written as a relative difference from the target density,
as a function of the number of particles in the LJ mixture. As
expected, due the high concentration of B-particles (0.9 N tot),
the deviation from the target value for this species is less than
2 %. This is the case for all the systems considered, except for
the smallest system size (3600 particles). For the systems with
larger number of particles, the error quickly decreases below
1%. However, for A-particles, the deviation from the target
density only reaches the mark of 2% for systems composed
of more than one million particles. It does not reach the 1%
limit even for the system with 1.5 million particles.

Figure 8. (top) Excess chemical potential convergence for
B-particles. NB = 0.9N tot. (bottom) Excess chemical potential
convergence for A-particles. NA = 0.1N tot.

Figure 8 shows the influence of the density in the cal-
culation of the excess chemical potential using SPARTIAN.
Figure 8(top) displays the excess chemical potential of B-
particles, μexc

B , as a function of the total number of particles
in the system. It is apparent that μexc

B moderately fluctuates in
the systems with small number of particles and that this fluc-
tuation significantly decreases for larger systems. However,
due to the low concentration of A-particles, and high devia-
tion in their density profile with respect to the target density,
the excess chemical potential, μexc

A , fluctuates more distinctly
for systems with total number of particles <250 000, as shown
in figure 8(bottom). These results are summarised in table 2
where excess chemical potential values, averaged over the last
twenty SPARTIAN iterations, are presented as a function of
the system size. Table 3 and figure 9 show the relative error
σ%(μexc

i ) in the excess chemical potential for particles of type
A and B, calculated over the last twentySPARTIAN iterations.
The value of the relative error for B-particles, σ%(μexc

B ), is less
than 1.0% for all systems considered (except for the smallest
number of particles-3600). However, for A-particles, the value
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Table 2. Excess chemical potential (and standard deviation) for the
LJ mixture as a function of system size. The data was obtained using
the last twenty SPARTIAN iterations.

N tot

μexc(ε)

A B

3600 5.186 ± 0.671 5.100 ± 0.092
54 000 4.567 ± 0.148 4.757 ± 0.021
100 000 4.661 ± 0.147 4.746 ± 0.024
250 000 4.718 ± 0.034 4.731 ± 0.010
300 000 4.718 ± 0.098 4.715 ± 0.015
500 000 4.653 ± 0.075 4.727 ± 0.008
1000 000 4.782 ± 0.033 4.769 ± 0.004
1500 000 4.777 ± 0.045 4.780 ± 0.005

Table 3. Relative error in the excess chemical potential for LJ
mixturea

N tot

σ%(μexc
i )

A B

3600 12.9476 1.8074
54 000 3.2379 0.4346
100 000 3.1607 0.5141
250 000 0.7209 0.2039
300 000 2.0773 0.3241
500 000 1.6033 0.1610
1000 000 0.6850 0.0790
1500 000 0.9340 0.1020

aRelative standard deviation for the last twenty iterations.

Figure 9. Relative error in the excess chemical potential, calculated
over the last twenty iterations, as a function of total number of
particles. NA = 0.1N tot and NB = 0.9N tot.

of σ%(μexc
A ) only falls above 1.0% for systems with size equal

or larger than one million particles, reaching the limit of 2.0%
for systems with Ntot > 300 000 particles.

3.5. Binary mixtures: SPARTIAN and KB analysis

The final example corresponds to the calculation of the
excess chemical potential for a more realistic binary

Figure 10. Lateral view of a slice of the tetragonal simulation setup
used to investigate aqueous urea solutions. The long axis of the box,
where we apply the adaptive resolution, is aligned along the
x-direction. The linear size in the y-direction is 62.0 Å (the slice’s
thickness is 5.0 Å).

Figure 11. Chemical potential of urea in aqueous solution as a
function of urea mole fraction.

mixture. In this case, we consider aqueous urea solutions
[28–30]. We expect that, when increasing the system’s com-
plexity, SPARTIAN becomes a robust alternative to existing
computational methods.

An initial configuration having 14500 SPC/E [25–27] water
molecules and 2147 urea molecules [28] representing an aque-
ous urea solution at 0.1292 mole fraction (6M) is generated and
optimised by adjusting the y-direction of the simulation cell.
The size of the resulting simulation box is 160 × 62 × 60 Å3.
To equilibrate the system, we performed fully AT simulations
in the NPT ensemble for 20 ns at 298.0 K at 1.0 bar pres-
sure using Nosé–Hoover thermostat and barostat with damp-
ing coefficients 100 fs and 1000 fs, respectively. This step
is followed by 10 ns simulation in the NVT ensemble using
Langevin thermostat with a damping coefficient of 100 fs. The
SPARTIAN setup is presented in figure 10. Every iteration
takes 20 ps to be completed.

We also performed fully-atomistic simulations at different
urea mole fractions: 0.0389 (2M), 0.0809 (4M), 0.1292 (6M)
and 0.1844 (8M) and carried out a KB analysis [40, 41] to com-
pute the shifted urea chemical potential as a function of solute
concentration. We use the SPARTIAN calculation at 6M as a
reference value for the KB analysis. Results are presented in
figure 11 where a comparison with absolute values reported
in the literature [42] is also included. Our results indicate that
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the combination of the KB-based method to obtain the trend
with concentration, together with a more refined method like
SPARTIAN to compute the reference value of the chemical
potential, constitutes a useful tool for the calculation of free
energy differences in complex molecular fluids and mixtures.

4. Concluding remarks

In the H–AdResS method [6, 7], the simulation of coexisting
AT and ideal gas representations of a physical system is made
possible by introducing a switching field that modulates the
intermolecular potential. By including in the Hamiltonian an
external potential, functional of the switching field, we build a
grand potential for an inhomogeneous system. With this grand
potential at hand, we find a parallel with DFT. Thus, we show
that the external potential that balances the density across the
simulation box is the excess chemical potential of the AT sys-
tem [9]. Due to DFT’s one-to-one correspondence between
the density and the external potential, the use of one-body
forces to impose a constant density profile, whose integral
automatically gives the system’s excess chemical potential, is
compatible with a Hamiltonian description of the system.
The resemblance with thermodynamic integration is appar-
ent. Therefore, we dubbed the method SPARTIAN (spatially-
resolved thermodynamic integration) [9].

We then use the SPARTIAN method to compute μexc for
water, aqueous urea solutions and LJ mixtures. Our results well
compare with values reported in the literature, when available.
We verify that upon increasing the size of the HY region, which
improves the statistics while keeping constant the AT region’s
size, μexc consistently converges with a modest decrease in
computing efficiency. Our results also show an excess com-
putational overhead when compared to fully AT simulations.
This overhead is mainly due to domain decomposition and
communication issues that result from an inefficient assign-
ment of processors in the IG region. A preliminary experiment
shows that SPARTIAN efficiently improves with a moderate
fine-tuning effort aiming at optimising domain decomposition
features. Nevertheless, the computation of chemical potentials
is efficient and accurate. For water and aqueous urea solu-
tions, we get a well-converged result after a few SPARTIAN
iterations that correspond to simulate the system for just a cou-
ple of ns. Furthermore, size constraints are not an issue in
SPARTIAN thanks to the particle-insertion method that we
have recently developed, implemented and validated [12]. We
also consider highly-diluted conditions in which we expect
the SPARTIAN method to underperform compared to state-
of-the-art computational methods. Still, our results display a
convincing convergence of the excess chemical potential for
all species involved in the system under such conditions. How-
ever, this requires a substantial increase in the system size.
Hence, depending on the system’s complexity, the choice of
a computational method becomes a trade-off between effi-
ciency, user-friendliness and accuracy. In particular, standard
thermodynamic integration or particle-insertion-based meth-
ods applied to molecular mixtures require a careful design of
an alchemical path. In the SPARTIAN case, once we obtain the
initial configuration (following standard molecular dynamics)

and decide the parameters, the simulation automatically finds
μexc. Indeed, depending on the problem at hand, a combination
of methods might result advantageous. In case of investigating
a solution’s phase diagram, where it is necessary to compute
μexc as a function of the solute’s concentration, we propose
to combine a KB theory approach with only one SPARTIAN
calculation at a given (preferably high) concentration.

Finally, the thermodynamically consistent coupling of AT
and ideal representations opens various interesting research
avenues [43]. A straightforward application concerns the
calculation of free energy differences [44]. Moreover, non-
equilibrium conditions [45] can be readily imposed on the
ideal gas reservoir and investigated on the AT region [12].
Finally, this and similar ideas originated from the adaptive
resolution method could also be incorporated into QM/MM
approaches [46, 47].
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