
Title: SolarWinds and Challenges in Patching

Overall Abstract: The SolarWinds hack shows the limit of our security practices: damned if you patch,
damned if you don’t. Fabio Massacci and Trent Jaeger discuss whether we should change our current
attitude to patching by debating at the two ends of the spectrum.

The Right to Stay Unpatched and the Need to Design for Failures.
Fabio Massacci

Abstract: As a follow-up of the SolarWinds hack, regulators should grant users the right to stay
unpatched and move the responsibility for confining security spillovers to vendors. This will push our
community towards better solutions that we do have but are so less convenient (for software vendors).

THE SOLARWINDS HACK is an eye opener of the current practices of the software industry. Elsewhere
we discuss the issue of the security of the software supply chain, I would like to discuss here a point that
seems to be missing in the current discussion.

● Observation 1: update your software is the strongest commandment of the current security
religion.

● Observation 2: A legitimate update has brought a new vulnerability into a system.
● Question: Are updates really necessary?
We cannot even decide not to update. For example Microsoft Windows 10 only allows us to delay an

update but not to forgo it. Updates are often cumulative (this is a feature and SolarWinds is no exception
[3]) so that you cannot just skyjump to the hotfix you need and you must take the update lock, stock, and
barrel\ldots and vulnerabilities.

Updates are bundled in the interest of the software vendor, and by adding new functionalities new
vulnerabilities are also introduced. One could illustrate it on the forced updates by Microsoft or Google or
Apple or Facebook, or… but we stick to SolarWinds to keep discussion focussed. Table 1 shows us the
schedule of updates.

A PRIMER ON SOLARWINDS.

To sum the facts of the case [1,2], SolarWinds offers a set of network and infrastructure monitoring
services that has slowly grown over several acquisitions. The OpenPlatform is actually an aggregation of
50+ subcomponents (out of those products 18 are vulnerable and the rest are not). As SolarWinds
software supply chain has been compromised, an attacker has been able to smuggle malware within a
legitimate signed SolarWinds update [1]. Given the sys admin nature of the SolarWinds software, the
attackers have found themselves with high-level privileges. Lateral movements allowed to pollute the
victims’ authentication infrastructures often beyond other repair than razing it to the ground and starting
from scratch [2].

Table 1, reconstructed from the SolarWinds release notes [1,3], shows the schedule of updates for the
OpenPlatform.. We see from this table that only a few components have been really the subject of
conceptual updates out of 38 components covered by SolarWinds platform updates. Sometimes the same

components is patched and repatched again. For example in 2020.2.1 the NTA component is patched
three times.

TABLE 1 - SolarWinds Patching Schedule
This table shows the update schedule (yyy/mm/dd) for the patches of the SolarWinds platform, The

“Newly Patched” shows which product (out the 38 making up this “aggregation” of components) were
actually changed. The carried over patches are the components that were brought forward. A X in the last
two columns means the version is vulnerable to SUNBURST (SB column) or SUPERNOVA (SN
column). A (p) means a patch is available, for the other components the only solution is to upgrade to the
latest hotfix on top of the table. Only a few components have been really the subject of conceptual
updates out of 38 components covered by SolarWinds platform. Sometimes the same components is
patched and repatched again (e.g. in 2020.2.1 the NTA component is patched three times)

Ver. Pat
ch

Date
yyy/mm/d

d

Newly
Patched

Carried
Patches

SB SN

2020.2.
1

HF 2 2020/12/15 6/38 2/38

2019.4 HF 6 2020/12/14 9/38

2020.2.
1

HF 1 2020/10/29,
11/04-25

5/38 X

2020.2.
1

 X

2020.2 HF 1 2020/06/24-
30, 07/08

5/38 X X

2020.2 X X
2019.4 HF 5 2020/03/26 9/38 X X
2019.4 HF 4 2020/02/05-

07
3/38 8/38 X

2019.4 HF 3 2020/01/09 8/38 X
2019.4 HF 2 2019/12/18-

20
3/38 5/38 X

2019.4 HF 1 2019/11/25 5/38 X
2019.4 X
2019.2 HF 3 2019/09/23-

30
3/38 9/38 X(P)

2019.2 HF 2 2019/07/31,
08/02

4/38 5/38 X

2019.2 HF 1 2019/06/26,
07/11

6/38 X

2019.2 X

Focus on version 2019.4 and 2019.2. These versions are not vulnerable to SUNBURST. If
a customer did not need to use any of the (nine out of 38) products subject to Hotfix 5 it might not
have needed to do an update and thus stayed out of trouble (and some customers even complained
that they had lost useful features when they upgraded).

From the perspective of resistance against SUNBURST not updating was more secure. From the
perspective of SUPERNOVA any update was irrelevant.

UPDATES, CUI BONO?
According to the Merriam-Webster dictionary, this Roman principle points the likely responsibility
of an act to those having something to gain.

● Question (revised): Are updates really necessary for the specific customer who is doing the
update, to be compliant with all possible security regulations and best practices?

I would argue that the answer would be mostly never. Few customers would benefit, most don’t, for the
simple reason they don’t actually use the (sub)components that are being updated.

Indeed, one of the major security features in the 2019.2 version of the platform was disabling admin
access without passwords. . . Before sending SolarWinds to the gallows, we should look at SolarWinds’
users blog. Out of the total 535 posts about “Vulnerability”, a comment on default passwords dates back
to 2014 as a failure of compliance. Yet, no follow-up on this, no user said “I also have this problem”. In
2015 when the company posted a plan for product release in 2020 of the Network Configuration Manager
the user interface was the top concern (nicely drawing
one’s network with icons for up and down nodes).
It is only in 2015-16 that SolarWinds customers started to pentest SolarWinds applications in the
framework of compliance tests as well (as opposed to services monitored by SolarWinds and asked for
fixes to SolarWinds specific products. They did not ask for latent improvements.

THE REAL REASON FOR UPDATES
The answer to a problem (security or otherwise) always is “Update to the next version”. Pick your
corporation of choice and find a different “solution”. I’m accepting entries from readers.
My own experience with other corporations both as an individual customer and a deputy rector in charge
of a Metropolitan Area Network, 70+ people and few MEuro of budget has always been that after “For
English, press 1” there was a “For Support, update to the Next Version and only then press 2”. Curiously,
updating typically requires “To pay the New License, press 1” for features you didn’t even know existed
and will never use.
The most fascinating invoice from a multinational corporation we got was for “License Maintenance
Fee” (Warning to the English purist, the order of words is correct, the Maintenance License Fee was
another invoice).
As customers we may expect updates to bugs and possibly new functionality. In contrast with hardware,
software makes that possible. If our old car was a software, it could be automatically retrofitted with
proximity sensors and our ugly seat cover replaced. Yet, we will also have to accept that brake and
accelerator pedals be swapped on a moment’s notice, and a skies container added on the roof. In other
words all users are facing “generic updates” in which they are given only one choice: “accept all

changes”. This is not necessary and software vendors can perfectly check that a component in the bundle
has never been invoked and there is no need to change it or install it.

NOT UPDATING CAN MAKE (SCIENTIFIC) SENSE

While this idea of not updating seems unscientific, in several empirical studies [4,5] I have performed
with my colleagues on open source software vulnerabilities (from the major browsers [4] to the FOSS
ecosystem [5]) we found out that this is a sensible idea. Indeed the key observation from [5] is

● Observation 3: vulnerabilities are discovered in the latest version of the software and if your
version is old enough the vulnerable code is simply not there. No code, no exploit.

Code changes dramatically and this can also be beneficial for security. For example, in Apache Tomcat a
calendar year might yield hundreds, if not thousands of API and code changes (See Figures 2, 10, and 11
in [5]). In 2014, when a vulnerability was discovered in the (then latest) version of Apache Tomcat 6
(CVE-2014-0033) and fixed at revision 1558822 on 16/01/2014, the revisions prior and including
1149130 from 21/07/2011 are not vulnerable to CVE-2014-0033, as the vulnerable feature is not present
in these revisions. Old age can by itself be a cure.

Obviously, if vulnerable code is there, you might be vulnerable to old vulnerabilities but it is not
necessarily true that a vulnerability is also exploitable. From the perspective of compliance, it is far
simpler to say Version X is vulnerable and ``all previous versions’’. A vendor or a security auditor covers
one’s back at no cost.

DESIGN FOR FAILURES AS THE SOLUTION
Even if you have a vulnerable component, I argue that it should still be possible to run it without a
catastrophe. In the same way we can still run a car on a sunny day with a broken windshield wiper
without all four tires exploding.

Software should be designed with failures in mind so that if a component is exploited, the
exploit should stay confined. A hacker can hack SolarWinds Network Maps? Nice, it should only be able
to redraw poor maps and show funnier icons. It should not be able to get control of your authentication
infrastructure. A hacker created a document that gets control of Microsoft Word (CVE-2019-1201)? Cool,
so what? One should not be able to do anything besides misformatting your documents…

The right solution of a security vulnerability in a word processing document should not be to update to
the next version of the entire productivity suite including the email client, it is a software environment
where Word can fail without dragging the World with it.

As a security community we do have alternatives: for example, automatic network segmentation [6],
monitoring and restarting an application fresh [7], running services with capabilities to limit escalation
[8], automated generation of diverse applications instances [9], or execution confinement [10] etc. so that
even if a single software application is exploited, an attacker cannot get much besides exploiting the
single part of the kit. Yet software updates are so more convenient and cheaper for software vendors

THE RIGHT TO STAY UNPATCHED

Regulators should make software vendors liable for spillover of security that go beyond the vulnerable
application component. As soon as this liability stick will be available then we will see how the solutions
above that are discarded as not practical will see a boost in engineering to address the practical issues.
Update to the next version as the only solution only serves a poor software industry. Unbundling
functionality and security should make it clear what is the purpose of an update and will give users a
choice. Give users a legal “Right to Stay Unpatched” and the software industry will find a (better)
solution.

Software Updates: Can't live without them, but how do we live with them?
Trent Jaeger

Fabio's premise is that generic software updates are almost never beneficial for individual customers

and hence are not necessary in many (nearly all?) cases. Thus, the exposure to the SolarWinds Orion
Code Compromise and many other future compromises would be avoided if customers did not apply
software updates.

However, in the current software ecosystem, vendors expect to produce software updates and

customers expect to apply those updates at some point in the not-too-distant future, albeit not necessarily
immediately. Why is this the case? I find two valid reasons for software updates that provide benefit
both to vendors and their customers to maintain this equilibrium. However, the process of software
updating is still fraught with peril. Ultimately, just as product development is evolving to apply
techniques to reduce the number of flaws in the software products (e.g., by fuzz testing), software
maintenance will also need to evolve to enforce discipline on updating to restrict its attack surface.

Software updates provide an opportunity to remove latent flaws: Both vendors and customers

benefit from updates that remove flaws from software products. To customers, such updates are largely
invisible, as they do not aim to impact the expected functionality, but all customers could benefit from
such updates by avoiding exploitation of these latent vulnerabilities. Vendors benefit from updates that
reduce the likelihood that their products will be compromised, when their updates actually achieve that
goal, but vendors also generally aim to keep such flaw repair invisible beyond the broad statements of
keeping your system more secure. From my discussions with vendors, my understanding is that vendors
proactively combine flaw repair with functionality enhancements in updates to make it more difficult for
adversaries to identify flaws worthy of investigation.

Software updates provide desirable new features: An advantage that software products have over

hardware products, such as cars, is that new features can be introduced incrementally via updates.
Customers have come to expect new features via updates and vendors certainly promote updates for the
features that they provide. As one recent example, the Mac OS X Big Sur update [11] highlights several
"All New Features" as the main reason to apply the update. Using software updates to obtain new
functionality is certainly an improvement for customers over having to buy a new release. I would have
loved to get heated seats or proximity sensors as an update to my old car rather than having to buy a new

one. Now that software updates are the norm, it will be impractical to expect users to stick with old
feature sets when new features are easily obtained.

The problem in the SolarWinds case and for software updating in general is that software product

development and its maintenance present a significant attack surface that vendors fail to track
systematically, leaving opportunities for adversaries.

While software updates may introduce new features that are buggy and/or malicious, as Fabio

indicates, it is unclear that this problem is changed by the mode of delivery of software, whether in major
releases versus updates. Rather, these problems are inherent to our current approach in managing
software development, where software may be released (either in releases or updates) with flaws. In the
SolarWinds case, a particular update introduced the malware, but it could have been introduced in a major
release instead. The recent Cyberpunk 2077 release infamously includes buggy code, but was not an
update.

Fabio raises an interesting point that customers may not need many of the features in an update.
However, this problem is also not specific to updates. Back when SQL Slammer hit, a number of my
colleagues at IBM Research were surprised to find that their computers were compromised, but they
seemed more surprised that their PC was running an SQL Server that they never used, installed with the
OS distribution of the time. Thus, we have come to find that unnecessary functionality should be turned
off. However, rather than forgoing all features to avoid some, perhaps other solutions are warranted.
Perhaps features can remain inoperable until explicitly needed by customers. However, such an approach
to enable features would need to avoid usability problems, such as frequent notification of the kind users
faced when granting permissions to mobile apps in the recent past.

Unfortunately, current technologies to validate code provenance, such as code signing or measured

boot, were insufficient to detect the SolarWinds hack because the supply chain of the software was
compromised. A question is how technologies being investigated now may be brought to bear to aid
vendors in protecting their supply chain and customers in restricting new features.

For example, to help customers avoid compromise from updated features, existing features may be

protected from new or modified features using isolation techniques, such as privilege separation [12].
Automated support for privilege separating programs is advancing. For example, we have developed
techniques recently that automate marshaling of dynamically-sized data structures (e.g., arrays) [13] and
enable developers to balance performance and security [14].

However, if the updated features require access to sensitive data, privilege separation cannot protect

that data if the updated features are malicious. In this case, vendors must vet their software and any
updates comprehensively, even from insiders. One approach is to automate patching mechanisms to meet
security properties. For example, we have recent work to validate that patches comply with memory
safety [15], although a more extensive set of properties will be required.

In addition to failings in the supply chain, intrusion detection systems (IDS) also failed to detect the

SolarWinds attack. According to a summary of the SUNBURST Backdoor by FireEye [16], the backdoor

communicated with third-party servers via HTTP. Since HTTP requests to arbitrary servers are common,
the firewall and IDS did not flag this behavior. However, such behavior was likely unexpected in the
context of any updated feature of the SolarWinds product. This shows that there is still a significant gap
between application anomalies and what can be recognized by IDS. We have recently proposed an
approach that makes IDS sensitive to threats at the program, host, and network layers in conjunction [17]
to improve the context-awareness of detection methods.

However, each of these directions are still just points in a multi-dimensional space of defense-in-

depth that will be required to prevent future attacks. Software vendors are slowly adopting these kinds of
defenses, but the rate of improvement of defenses continues to lag behind the threats. How vendors can
adopt defenses into their development processes more quickly and effectively remains as a major
challenge.

Conclusions by Fabio Massacci and Trent Jager
Ignoring updates is a gamble, much as applying updates is a gamble. In either case, this gamble is a
symptom of our still insufficient approaches to software development and maintenance on one side, and
intrusion detection and confinement on the other. We all still have more work to do to gain the benefits
of software and its updates without the risk. The SolarWinds hack is a wake-up call that a silver bullet
does not exist and innovative mixes of technical, organizational, and regulatory solutions might be the
way forward. We look forward to readers’ opinions.

ACKNOWLEDGMENTS
Dr. Massacci’s work was supported in part by the European Commission by
grants num. 830929 (H2020-CyberSec4Europe - https://cybersec4europe.eu) and num. 952647 (H2020-
AssureMOSS - https://assuremoss.eu)

REFERENCES
1. CISA. Alert (AA20-352A) Advanced Persistent Threat Compromise of Government Agencies, Critical Infras-
tructure, and Private Sector Organizations. Available at https://us-cert.cisa.gov/ncas/alerts/aa20-352a

2. CISA Emergency Directive 21-01. Available at https:// cyber.dhs.gov/ed/21-01/

3. SolarWinds. Orion Platform Release Notes. https://support.solarwinds.com/SuccessCenter/s/article/ Orion-
Hotfix-Release-Notes

4. Nguyen, V.H., Dashevskyi, S. and Massacci, F., 2016. An automatic method for assessing the versions affected
by a vulnerability. Empirical Software Engineering, 21(6), pp. 2268-2297.

5. Dashevskyi, S., Brucker, A.D. and Massacci, F., 2018. A screening test for disclosed vulnerabilities in FOSS
components. IEEE Transactions on Software Engineer- ing, 45(10), pp. 945-966.

mailto:fabio.massacci@unitn.it
https://cybersec4europe.eu/
https://assuremoss.eu/
https://us-cert.cisa.gov/ncas/alerts/aa20-352a
https://cyber.dhs.gov/ed/21-01/
https://support.solarwinds.com/SuccessCenter/s/article/Orion-Hotfix-Release-Notes
https://support.solarwinds.com/SuccessCenter/s/article/Orion-Hotfix-Release-Notes

6. Wagner, N., Sahin, C.S., Winterrose, M., Riordan, J., Pena, J., Hanson, D. and Streilein, W.W., 2016, Decem-
ber. Towards automated cyber decision support: A case study on network segmentation for security. In 2016 IEEE
Symposium Series on Computational Intelligence (SSCI) (pp. 1-10). IEEE.

7. Herder, J.N., Bos, H., Gras, B., Homburg, P. and Tanen- baum, A.S., 2007, June. Failure resilience for device
drivers. In 37th Annual IEEE/IFIP International Confer- ence on Dependable Systems and Networks (DSN’07) (pp.
41-50). IEEE.

8. Watson, R.N., Anderson, J., Laurie, B. and Kennaway, K., 2010, August. Capsicum: Practical Capabilities for
UNIX. In USENIX Security Symposium (Vol. 46, p. 2).

9. Homescu, A., Jackson, T., Crane, S., Brunthaler, S., Larsen, P. and Franz, M., 2015. Large-scale automated
software diversity—program evolution redux. IEEE Transactions on Dependable and Secure Comput- ing, 14(2),
pp.158-171.

10. Xu, X., Ghaffarinia, M., Wang, W., Hamlen, K.W. and Lin, Z., 2019. CONFIRM: Evaluating Compatibility and
Relevance of Control-flow Integrity Protections for Mod- ern Software. In 28th USENIX Security Symposium
(USENIX Security) (pp. 1805-1821).

11. Apple, Inc., 2020. macOS Big Sur. https://www.apple.com/macos/big-sur/.

12. Niels Provos, Markus Friedl, Peter Honeyman, 2003. Preventing Privilege Escalation. In USENIX Security
Symposium.

13. Shen Liu, Gang Tan, Trent Jaeger, 2017. PtrSplit: Supporting General Pointers in Automatic Program
Partitioning. In ACM CCS, pp. 2359-2371.

14. Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capobianco, Stephen McCamant, Trent Jaeger, Gang
Tan, 2019. Program-mandering: Quantitative Privilege Separation. In ACM CCS, pp. 1023-1040.

15. Zhen Huang, David Lie, Gang Tan, Trent Jaeger, 2019. Using Safety Properties to Generate Vulnerability
Patches. In IEEE Symposium on Security and Privacy, pp. 539-554.

16. FireEye, Inc., 2020. FireEye Blogs: Highly Evasive Attacker Leverages SolarWinds Supply Chain to
Compromise Multiple Global Victims With SUNBURST Backdoor.

https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-
compromises-with-sunburst-backdoor.html.

17. Frank Capobianco, Rahul George, Kaiming Huang, Trent Jaeger, Srikanth V. Krishnamurthy, Zhiyun Qian,
Mathias Payer, Paul Yu, 2019. Employing attack graphs for intrusion detection. In New Security Paradigms
Workshop, pp. 16-30.

Bios:

Fabio Massacci (MSc'93, PhD'98) is professor at the University of Trento and the Vrije Universiteit Amsterdam. He has
published over 200 peer review articles and is the recipient of the Ten Years Most Influential Paper Award in 2015 by the IEEE
Requirement Engineering Conference for his work on security and trust in socio-technical systems. His current research interests
are in experimental methods for security and privacy. He is the leader for education and professional skills of the

https://www.apple.com/macos/big-sur/

CyberSec4Europe pilot for the forthcoming EU CyberSecurity Competence Center and Network and the coordinator of the
AssureMOSS project on the security of open source software. He is Department Editor for the ‘Building Security In’ column of
the IEEE Security & Privacy Magazine. He is member of the ACM, AEA, IEEE, and the Society for Risk Analysis. Contact him
at fabio.massacci@ieee.org.

Trent Jaeger is a Professor in the Computer Science and Engineering Department at The Pennsylvania State University. Trent's
primary research interests are systems and software security. He has published over 150 research papers and the book,
"Operating Systems Security," which has been taught in universities worldwide. Trent has made significant contributions to the
Linux community, including mandatory access control, integrity measurement, process tracing, and namespace services. Trent is
currently the Consortium Lead for Army Research Lab's Cybersecurity Collaborative Research Alliance (ARL CSEC-CRA).
Trent also serves the computer security research community as an Executive Committee member of ACM SIGSAC as Past Chair
(Chair from 2013-2017), as General Chair and Steering Committee Chair of NDSS, as an Editorial Board Member for the
Communications of the ACM, as an Associate Editor-in-Chief of the IEEE Security & Privacy Magazine, and as an Academic
Advisory Board member of the UK's Cyber Body of Knowledge (CyBoK) project.

