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Abstract

We present an explicit and efficient way for constructing finite elements with
assigned gradient, or curl, or divergence. Some simple notions of homology
theory and graph theory applied to the finite element mesh are basic tools for
devising the solution algorithms.
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1. Introduction

Determining the necessary and sufficient conditions for assuring that a vector
field defined in a bounded and sufficiently smooth three-dimensional domain Ω
is the gradient of a scalar potential or the curl of a vector potential is one of the
most classical problem of vector analysis.

The answer is well-known, and shows an interesting interplay of differential
calculus and topology (see, e.g., Cantarella et al. [3]):

• a vector field is the gradient of a scalar potential if and only if it is curl
free and its line integral is vanishing on all the closed curves that give a
basis of the first homology group of Ω;

• a vector field is the curl of a vector potential if and only if it is divergence
free and its flux is vanishing across (all but one) the connected components
of ∂Ω.

Less interesting is the problem of finding a vector field with assigned di-
vergence f : this problem is very simply solved by taking the gradient of the
solution ϕ of the elliptic problem ∆ϕ = f in Ω, ϕ vanishing on the boundary
∂Ω; no compatibility conditions on f are needed, no topological properties of Ω
come into play.

However, a less clarified situation takes shape when, given a suitable finite
element vector field, we want to furnish an explicit and efficient procedure for
constructing its finite element scalar potential and vector potential. Note also
that at this level the construction of a finite element vector field with an assigned
divergence comes back on the table: in fact, the gradient of a (standard) finite
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element approximate solution of ∆ϕ = f has a distributional divergence which
is not a function, and therefore this divergence cannot be equal to an assigned
finite element.

The aim of this paper is to furnish a simple and efficient way for construct-
ing finite elements with assigned gradient, or curl, or divergence. Clearly, in
numerical computations this is important any time one has to reduce a given
problem to an associated one with vanishing data.

It is worth noting that the computational cost of all the algorithms we pro-
pose depends linearly on the number of unknowns.

2. Notation and preliminary results

Let Ω be a bounded polyhedral domain of R3 with Lipschitz boundary and
let (∂Ω)0, . . . , (∂Ω)p be the connected components of ∂Ω. Consider a tetrahedral
triangulation Th = (V,E, F, T ) of Ω. Here V is the set of vertices, E the set of
edges, F the set of faces and T the set of tetrahedra in Th.

We consider the following spaces of finite elements (for a complete presenta-
tion, see Monk [7]). The space Lh of continuous piecewise-linear finite elements;
its dimension is nv, the number of vertices in Th. The space Nh of Nédélec
edge elements of degree 1; its dimension is ne, the number of edges in Th. The
space RTh of Raviart–Thomas finite elements of degree 1; its dimension is nf ,
the number of faces in Th. The space PCh of piecewise-constant elements; its
dimension is nt, the number of tetrahedra in Th.

It is well-known that Lh ⊂ H1(Ω), Nh ⊂ H(curl; Ω), RTh ⊂ H(div; Ω) and
PCh ⊂ L2(Ω), where

H1(Ω) = {φ ∈ L2(Ω) | gradφ ∈ (L2(Ω))3} ,
H(curl; Ω) = {v ∈ (L2(Ω))3 | curlv ∈ (L2(Ω))3} ,
H(div; Ω) = {v ∈ (L2(Ω))3 | divv ∈ L2(Ω)} .

Moreover gradLh ⊂ Nh, curlNh ⊂ RTh and divRTh ⊂ PCh.
Fix a total ordering v1, . . . , vnv of the elements of V . This induces an ori-

entation on the elements of E, F and T : if the end points of ej are va and vb
for some a, b ∈ {1, . . . , nv} with a < b, then the oriented edge ej is denoted by
[va, vb], and therefore the unit tangent vector of ej is given by τ = vb−va

|vb−va| . On

the other hand, if the face f has vertices va, vb and vc with a < b < c, the
oriented face f is denoted by [va, vb, vc] and its unit normal vector ν is obtained
by the right hand rule. Finally, if the tetrahedron t has vertices va, vb, vc and
vd with a < b < c < d, the oriented tetrahedron f is denoted by [va, vb, vc, vd]

Let us consider a basis of Lh, {Φh,1, . . . ,Φh,nv}, such that

Φh,i(vj) = δi,j

for 1 ≤ i, j ≤ nv, a basis of Nh, {wh,1, . . .wh,ne
}, such that∫

ej

wh,i · τ = δi,j
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for 1 ≤ i, j ≤ ne, a basis of RTh, {rh,1, . . . rh,nf
}, such that∫

fj

rh,i · ν = δi,j

for 1 ≤ i, j ≤ nf , and the basis of PCh, {gh,1, . . . gh,nt
}, given by the character-

istic functions of the tetrahedron ti.
In the following we introduce some notions of homology theory (see, e.g.,

Munkres [8]). We start from the mesh Th = (V,E, F, T ) on Ω, having assigned
the orientation to the edges and faces as explained before. The basic concept
is that of chain: a 2-chain is a formal linear combination of oriented faces, a
1-chain is a formal linear combination of oriented edges, and a 0-chain is a
formal linear combination of vertices, in all cases taking the coefficients in Z.
We denote by Ck(Th,Z) the set of all the k-chains in Th, k = 0, 1, 2.

Now we can define the boundary operator ∂k : Ck(Th,Z)→ Ck−1(Th,Z) for
k = 1, 2. For the oriented face f = [va0 , va1 , va2 ] we have

∂2f := [va1 , va2 ]− [va0 , va2 ] + [va0 , va1 ] .

Analogously for the oriented edge e = [va, vb] we have

∂1e := vb − va.

We extend the definition of the boundary operator to chains by linearity.
A 1-chain c of Th is a 1-cycle if ∂1c = 0, and is a 1-boundary if there exists

a 2-chain C such that ∂2C = c. Notice that all 1- boundaries are 1-cycles but,
in general, not all 1-cycles are 1-boundaries.

Let us denote by Z1(Th,Z) the set of 1-cycles, Z1(Th,Z) := ker(∂1), and
B1(Th,Z) the set of 1-boundaries, B1(Th,Z) := im(∂2). Two 1-cycles c and c′

are called homologous in Th if c − c′ is a 1-boundary in Th. If c is homologous
to the trivial 1-cycle (namely, it is a 1-boundary), then we say that c bounds in
Th.

The first homology group of Th consists of all homology classes of 1-cycles
of Th, that is, it is the quotient group

H1(Th,Z) = Z1(Th,Z)/B1(Th,Z) .

Let {σn}gn=1 be a set of 1-cycles in Th such that the equivalence classes {[σn]}gn=1

are a basis of the homology group H1(Ω,Z).

As told before, aim of this paper is to devise effective algorithms for the
solution of the following problems:

• Grad problem. Given Fh ∈ Nh such that curlFh = 0 and
∮
σn

Fh · ds = 0
for any 1-cycle σn, n = 1, . . . , g, find Ψh ∈ Lh such that grad Ψh = Fh.

• Curl problem. Given Jh ∈ RTh such that divJh = 0 and
∫

(∂Ω)r
Jh ·n = 0

for (all but one) the connected components (∂Ω)r of ∂Ω, r = 1, . . . , p, find
Zh ∈ Nh such that curlZh = Jh.

3



• Div problem. Given fh ∈ PCh find vh ∈ RTh such that divvh = fh.

Notice that none of these problems has a unique solution. The solution of the
grad problem is unique up to a constant, the solution of the curl problem is
unique up to a gradient or a harmonic field belonging to H(m; Ω), where

H(m; Ω) = {w ∈ (L2(Ω))3 | curlw = 0,div w = 0,w · n = 0 on ∂Ω} ,

while the solution of the div problem is unique up to a curl or a harmonic field
belonging to H(e; Ω), where

H(e; Ω) = {w ∈ (L2(Ω))3 | curlw = 0,div w = 0,w × n = 0 on ∂Ω} .

From the computational point of view, it is clear that more efficient algo-
rithms can be proposed if one is able to find suitable formulations of these
problems for which uniqueness holds.

3. Grad problem

As we already noted, the solution is not unique but to obtain uniqueness it
is enough to fix the value of the solution in a vertex of V , for instance in v1. So
we consider the following problem: given Fh ∈ Nh such that curlFh = 0 and∮
σn

Fh · ds = 0 for any 1-cycle σn, n = 1, . . . , g, find Ψh ∈ Lh such that

grad Ψh = Fh in Ω
Ψh(v1) = 0 .

(1)

The set of vertices and edges (V,E) of the mesh Th = (V,E, F, T ) form a
graph. A spanning tree is a maximal subgraph of (V,E) (maximal because it
visits all vertices) without loops (this means that it is a tree). Let Sh = (V,L)
be a spanning tree of the graph (V,E).

For each vi ∈ V , vi 6= v1 let us denote by Cvi the unique 1-chain in Sh such
that ∂1Cvi = vi − v1. We set

κi =

∫
Cvi

Fh · τ .

It is not difficult to see that Ψh :=
∑nv

i=1 κiΦh,i is a solution of (1).
In fact, first of all we have Ψh(v1) = 0. Then, given an oriented edge e =

[va, vb] ∈ E, we consider the 1-cycle De = Cva + e−Cvb . Since curlFh = 0 and∮
σn

Fh · ds = 0 for any 1-cycles σn, n = 1, . . . , g, from Helmholtz decomposition

(see, e.g., Cantarella et al. [3])) it follows that Fh is a gradient, hence its line
integral on each 1-cycle vanishes. Therefore we have

0 =

∮
De

Fh · ds = Ψh(va) +

∫
e

Fh · τ −Ψh(vb) =

∫
e

Fh · τ −
∫
e

grad Ψh · τ

for all e ∈ E, hence grad Ψh = Fh.
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In particular, on the spanning tree we have

Ψh(vb)−Ψh(va) =

∫
e

Fh · τ ∀ e = [va, vb] ∈ L . (2)

Since Ψh(v1) = 0, an easy elimination algorithm for the computation of Ψh can
be implemented going down from the root v1 along the spanning tree.

Precisely, it reads as follows. Let us denote by R the set of the vertices
where the value of Ψh is already known and by P the set of e ∈ L with exactly
one vertex, v′(e), not in R. Initially R = {v1} and P = E(v1) ∩ L, where
E(v) := {e ∈ E : v ∈ e}, namely, the set of edges in L incident to the root.

Algorithm 1.

1. R = {v1}, P = E(v1) ∩ L
2. while R 6= V

(a) pick e ∈ P
(b) compute Ψh(v′(e)) from (2)
(c) update R: R = R ∪ {v′(e)}
(d) update P : P = [P ∪ (E(v′(e)) ∩ L)] \ {e}.

Clearly, this algorithm stops only when R = V .

4. Curl problem

Since the solution is not unique, we start adding some topological equations,
that filter out harmonic fields belonging to H(m; Ω). Therefore, we consider the
problem: given Jh ∈ RTh such that divJh = 0 and

∫
(∂Ω)r

Jh ·n = 0 for (all but

one) the connected components (∂Ω)r of ∂Ω, r = 1, . . . , p, find Zh ∈ Nh such
that

curlZh = Jh in Ω∮
σn

Zh · ds = κn ∀n = 1, . . . , g ,
(3)

where κ1, . . . , κg are real numbers.
The solution of this problem is not yet unique, as it is unique up to a gradient.

More precisely, if Zh ∈ Nh satisfies curlZh = 0 and
∮
σn

Zh · ds = 0 for all

n = 1, . . . , g, we know that Zh = gradφh with φh ∈ Lh (see Section 3, or
Monk [7, Lemma 5.28]).

Therefore, a way for obtaining a unique solution is to consider the problem

curlZh = Jh in Ω∮
σn

Zh · ds = κn ∀n = 1, . . . , g∫
Ω
Zh · grad ηh = 0 ∀ ηh ∈ Lh .

(4)

Note that we have added nv − 1 equations, as that is the dimension of gradLh.
However, the orthogonality condition is not the best suited for an effective

implementation. Therefore, we prefer to resort to another way of filtering out
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the gradients, and we use a (well-known) method that dates back to Kirchhoff
and to circuit theory (see also Alonso Rodŕıguez et al. [1]).

This way of selecting a unique solution reads as follows. Let Sh = (V,L) be
a spanning tree of the graph (V,E); remember that the number of edges in the
spanning tree is exactly nv − 1. We claim that there exists a unique solution of
the problem

curlZh = Jh in Ω∮
σn

Zh · ds = κn ∀n = 1, . . . , g∫
e
Zh · τ = 0 ∀ e ∈ L .

(5)

The uniqueness of the solution is easily proved. In fact, let us suppose that
in (5) we have Jh = 0 and κn = 0 for each n = 1, . . . , g. Then the first two
conditions say that Zh = gradφh with φh ∈ Lh. Moreover, if

∫
e

gradφh · τ = 0
for all e ∈ L then φh(v) = φh(v1) for all v ∈ V , hence φh is constant and
gradφh = 0.

Concerning the existence we will construct explicitly the solution. Since we
are looking for a solution Zh in Nh, we need to compute its degrees of freedom∫
e
Zh · τ , for all e ∈ E. Initially we will distinguish two cases: either Jh = 0

(loop fields), or Jh 6= 0 with divJh = 0 in Ω (and, moreover, imposing the
condition Jh ·n = 0 on ∂Ω, that is somehow more restrictive than the necessary
one,

∫
(∂Ω)r

Jh ·n = 0 for r = 1, . . . , p). After these steps, it will be easy to solve

the general problem.

4.1. Loop fields

By loop fields we mean irrotational vector fields T0 that cannot be expressed
in Ω as the gradient of any single-valued scalar potential (therefore, there exists
a loop in Ω such that the line integral of T0 on it is different from 0).

Let us now assume that we know a set of 1-cycles {σn}gn=1 ∪ {σ̂n}
g
n=1 of

∂Ω such that: {[σn]}gn=1 ∪ {[σ̂n]}gn=1 are a basis of the homology group of ∂Ω;
{[σn]}gn=1 (respectively, {[σ̂n]}gn=1) is a basis of the homology group H1(Ω,Z)
(respectively, of the homology group H1(R3 \ Ω,Z)). (For the construction of
these 1-cycles, see Hiptmair and Ostrowski [6].)

We denote by [σj ]
+ the homology class of σj in Ω and by [σ̂j ]

− the homol-
ogy class of σ̂j in R3 \ Ω. Here below we also introduce the 1-cycle R−σ̂j , a
representative of [σ̂j ]

− whose support is completely contained in R3 \ Ω. R−σ̂j
can be obtained by slightly “retracting” σ̂j inside R3 \ Ω.

The Biot–Savart law gives the magnetic field generated by a unitary density
current concentrated along the cycle R−σ̂j by means of the formula:

Ĥj(x) =
1

4π

∮
R−σ̂j

y − x

|y − x|3
× ds(y) , x 6∈ R−σ̂j .

Since the cycle R−σ̂j is external to Ω, one has curl Ĥj = 0 in Ω. Moreover,
on each cycle γ ⊂ Ω that is linking the current passing in R−σ̂j one finds∮
γ
Ĥj · ds 6= 0, hence Ĥj is a loop field. (There are cycles γ with the required
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property: for instance, at least one of the generators σn of the first homology
group of Ω.)

Clearly, the Nédélec interpolant ΠNhĤj is a finite element loop field. For
each e ∈ E, its degrees of freedom are given by

q̂e =
1

4π

∫
e

(∮
R−σ̂j

y − x

|y − x|3
× ds(y)

)
· τ (x)

Consider now the spanning tree Sh = (V,L) and define the scalar function
φh ∈ Lh in the all vertices of Th as φh(v1) = 0 and

φh(vj) =

∫
Cvj

ΠNhĤj · τ

for all j = 2, . . . , nv.
Let us set T0,j = ΠNhĤj − gradφh ∈ Nh. Clearly it is a loop field and its

degree of freedom on the oriented edge e = [va, vb] is given by∫
e
T0,j · τ =

∫
e

ΠNhĤj · τ − [φh(vb)− φh(va)]

=
∫
e

ΠNhĤj · τ −
∫
Cvb

ΠNhĤj · τ +
∫
Cva

ΠNhĤj · τ

=
∮
De

ΠNhĤj · ds =
∮
De

Ĥj · ds .

More explicitly, the degrees of freedom of T0,j are given by∫
e

T0,j · τ =
1

4π

∮
De

(∮
R−σ̂j

y − x

|y − x|3
× ds(y)

)
· ds(x) (6)

for all e ∈ E. In particular, if e ∈ L it follows that De is trivial and therefore∫
e
T0,j · τ = 0.

Remark 1. This explicit formula for the determination of the loop fields has
been also obtained in Alonso Rodŕıguez et al. [1], following a different procedure
based on the use of linking numbers. Let us recall that the linking number is
an integer that, given two closed and disjoint curves in the three-dimensional
space, represents the number of times that each curve winds around the other
(see, e.g., Rolfsen [9, pp. 132–136]).

The linking number is defined as a double line integral: given γ and γ′, two
1-cycles in R3 with disjoint supports, the linking number of γ and γ′ is

κ̀(γ, γ′) := 1
4π

∫
γ

∫
γ′

x−y
|x−y|3 · ds(x)× ds(y)

= 1
4π

∮
γ

(∮
γ′

y−x
|y−x|3 × ds(y)

)
· ds(x) .

From this definition it is easy to check that the discrete loop field T0,j is the
unique solution of the following problem:

curlT0,j = 0 in Ω∮
σn

T0,j · ds = κ̀(σn, R
−σ̂j) ∀n = 1, . . . , g∫

e
T0,j · τ = 0 ∀ e ∈ L .

(7)
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Moreover from (6) we have∫
e

T0,j · τ = κ̀(De, R
−σ̂j)

for all e ∈ E.

4.2. Source field

Given J, the vector fields He satisfying curlHe = J in Ω are often called
source fields in the electromagnetic literature. It is well know that a source
field can be obtained by means of the Biot–Savart formula. In the following
we assume that Jh ∈ RTh, divJh = 0 in Ω, and also the additional condition
Jh · n = 0 on ∂Ω. Defining

HBS(x) =
1

4π

∫
Ω

Jh(y)× x− y

|x− y|3
dy ,

one has curlHBS = Jh in Ω (here the condition Jh · n = 0 on ∂Ω has played a
role).

Theorem 1. Assuming that Jh ∈ RTh, divJh = 0 in Ω and Jh · n = 0 on ∂Ω,
the solution He,h ∈ Nh of

curlHe,h = Jh in Ω∮
σn

He,h · ds =
∮
σn

HBS · ds ∀n = 1, . . . , g∫
e
He,h · τ = 0 ∀ e ∈ L

(8)

satisfies∫
e

He,h · τ =

∮
De

HBS · ds =
1

4π

∮
De

(∫
Ω

Jh(y)× x− y

|x− y|3
dy

)
· ds(x)

for all e ∈ E.

Proof. Let us consider the Nédélec interpolant ΠNhHBS . Notice that
ΠNhHBS is well defined because HBS belongs to H1(Ω) and curlHBS = Jh ∈
Lp(Ω) for p > 2 (see, e.g., Amrouche et al. [2]). In fact HBS is defined in

R3 and HBS = curlABS with −∆ABS = J̃h being J̃h the extension of Jh
by 0 outside Ω. We have ABS ∈ (H2(Ω))3, hence HBS ∈ (H1(Ω))3. Clearly
curl ΠNhHBS = ΠRTh(curlHBS) = Jh and

∮
e

ΠNhHBS · ds =
∮
e
HBS · ds for all

e ∈ E, in particular,
∮
σn

ΠNhHBS · ds =
∮
σn

HBS · ds for all n = 1, . . . , g. How-

ever, for e ∈ L we have
∫
e

ΠNhHBS · τ 6= 0. Therefore, to obtain the solution of
(8) we need to correct the interpolant by a gradient. The procedure is similar
to the one used for the loop fields.

Given the spanning tree L with root v1, we define the scalar function ψh ∈ Lh
in all vertices of Th as ψh(v1) = 0 and

ψh(vj) =

∫
Cvj

ΠNhHBS · τ
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for all j = 2, . . . , nv. Then for any e = [va, vb] ∈ E one finds∫
e
(ΠNhHBS − gradψh) · τ =

∫
e

ΠNhHBS · τ − [ψh(vb)− ψh(va)]

=
∫
e

ΠNhHBS · τ −
[∫
Cvb

ΠNhHBS · τ −
∫
Cva

ΠNhHBS · τ
]

=
∮
De

ΠNhHBS · ds =
∮
De

HBS · ds .

In particular, if e ∈ L it follows that De is trivial and thus∫
e

(ΠNhHBS − gradψh) · τ = 0 ,

hence He,h = ΠNhHBS − gradψh. 2

4.3. Explicit formula for the solution of the general problem

Let us come back to the general problem: given Jh ∈ RTh with divJh = 0
in Ω and Jh · n = 0 on ∂Ω, and κn ∈ R, n = 1, . . . , g, find Zh ∈ Nh such that

curlZh = Jh in Ω∮
σn

Zh · ds = κn ∀n = 1, . . . , g∫
e
Zh · τ = 0 ∀ e ∈ L .

(9)

Let us introduce the matrix M with entries mn,j = κ̀(σn, R
−σ̂j) and the

vector β with components βn = κn −
∮
σn

HBS · ds. The g × g matrix M is

non-singular (see Munkres [8, Sect. 71] and Seifert and Threlfall [10, point 47,
p. 337]). Then consider the solution % of the linear system M% = β, and denote
by %j its components. A straightforward check shows that the solution to (9) is
given by

Zh = He,h +

g∑
j=1

%jT0,j . (10)

In fact, using (8) and (7) we see curlZh = Jh in Ω and
∫
e
Zh · τ = 0 for all

e ∈ L. Moreover∮
σn

Zh · ds =
∮
σn

He,h · ds +
∑g
j=1 %j

∮
σn

T0,j · ds

=
∮
σn

HBS · ds +
∑g
j=1 %j κ̀(σn, R

−σ̂j)

=
∮
σn

HBS · ds + (M%)n =
∮
σn

HBS · ds + βn = κn .

A direct application of the previous results gives∫
e
Zh · τ =

∫
e
He,h · τ +

∑g
j=1 %j

∫
e
T0,j · τ

= 1
4π

∮
De

(∫
Ω
Jh(y)× x−y

|x−y|3 dy
)
· ds(x)

+ 1
4π

∑g
j=1 %j

∮
De

(∮
R−σ̂j

x−y
|x−y|3 × ds(y)

)
· ds(x) .

(11)
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4.4. Elimination algorithm

Relations (5)1 are in fact a linear system with nf (number of faces in Th)
equations and ne (number of edges in Th) unknowns. For each face f ∈ F we
have ∫

f

Jh · ν =

∫
f

curlZh · ν =

∮
∂2f

Zh · ds . (12)

so the equation corresponding to the face f has exactly three non-zero entries,
corresponding to the three edges of ∂2f . In addition we have the equations∮

σn

Zh · ds = κn (13)

for n = 1, . . . , g.
The complete system has also the equations (5)3, that are simply saying

that, for each edge in the spanning tree L, the associated degree of freedom is
set to be equal to 0. Then, the other unknowns can be easily eliminated by the
following algorithm, proposed, in a simplified form, by Webb and Forghani [11]:

Algorithm 2.

1. D = L, N = F

2. while D 6= E
(a) nD := card(D)
(b) for every f ∈ N

i. if every edge of ∂2f belongs to D, then N = N \ {f}
ii. if exactly one edge e of ∂2f does not belong to D

A. compute
∫
e
Zh · τ from (12)

B. D = D ∪ {e}
(c) for n = 1, . . . , g

i. if exactly one edge e of σn does not belong to D
A. compute

∫
e
Zh · τ from (13)

B. D = D ∪ {e}
(d) if card(D) = nD then STOP.

If the spanning tree Sh is constructed in a suitable way, for instance a
breadth-first spanning tree, the algorithm does start; in fact, in these cases,
setting D = L, there exist faces in F with exactly one side not belonging to D.
However the algorithm can terminate with D 6= E. A careful analysis of the ter-
mination properties of this algorithm can be found in D lotko and Specogna [4].
They are strongly dependent on the choice of the spanning tree.

If the algorithm fails, the explicit formula for the computation of
∫
e
Zh · τ

for any e ∈ E derived in the previous section can be used in the following way:
if the elimination procedure stops without having determined all the degrees of
freedom, pick one edge e ∈ E \D, compute

∫
e
Zh · τ using the explicit formula

(11) and restart the algorithm.
The numerical experiments in Alonso Rodŕıguez et al. [1] suggest that, using

a breadth-first spanning tree, the number of times this formula has to be used
is very small.
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5. Div problem

Also in this case the solution is not unique, thus we start adding some topo-
logical equations that filter out harmonic fields belonging to H(e; Ω). Therefore,
we consider the problem: given fh ∈ PCh, find vh ∈ RTh such that

divvh = fh in Ω∫
(∂Ω)r

vh · ν = cr ∀ r = 1, . . . , p ,
(14)

where c1, . . . , cp are real numbers.
The solution of this problem is not yet unique: in fact, it is unique up to a

curl. To devise suitable additional conditions we need some preliminaries.
First of all, if vh ∈ RTh is such that divvh = 0,

∫
(∂Ω)r

vh · ν = 0 for all

r = 1, . . . , p, then Helmholtz decomposition (see, e.g., Cantarella et al. [3]) says
that vh = curlq, with divq = 0 in Ω and q·n = 0 on ∂Ω. Hence q ∈ Hs(Ω) with
s > 1/2 (see Amrouche et al. [2]), and the Nédélec interpolant is well-defined
(see Monk [7, Lemma 5.38]). Thus we have curl ΠNhq = ΠRTh curlq = vh,
namely, vh = curlqh with qh ∈ Nh.

A way for obtaining a unique solution is therefore to consider the problem:
find vh ∈ RTh such that

divvh = fh in Ω∫
(∂Ω)r

vh · ν = cr ∀ r = 1, . . . , p∫
Ω
vh · curlwh = 0 ∀wh ∈ Nh .

(15)

It is well-known that the dimension of the space curlNh is equal to the num-
ber of the edges minus the dimension of the kernel in Nh of the curl operator.
The kernel of the curl is given by gradients of finite elements in Lh and finite
elements loop fields, hence its dimension is nv−1 + g; in conclusion, the dimen-
sion of curlNh is ne−nv + 1− g. Since by the Euler–Poincaré formula we have
nv − ne + nf − nt = 1 − g + p, it follows that the dimension of curlNh can be
rewritten as nf − nt − p.

A first result is therefore that system (15) is a square linear system of nf
equations and unknowns. For arriving to an algorithm which can be imple-
mented in a better way, we can think to add nf −nt−p equations different from
(15)3.

To do that, let us consider the following dual graph: the dual vertices are
W = T ∪ Σ, where the elements of T are the tetrahedra of the mesh and the
elements of Σ are the p+ 1 connected components of ∂Ω; the set of dual edges
is F , the set of the faces of the mesh.

An internal face connects two tetrahedra, while a boundary face connects a
tetrahedron and a connected component of ∂Ω. So the dual graph is given by
Gh = (W,F ). Since Ω is connected, Gh is a connected graph.

The number of dual vertices is equal to nt + p + 1, hence a spanning tree
Mh = (W,M) of Gh has nt + p dual edges (and consequently its cotree has

11



nf − nt − p dual edges). Therefore the linear system

divvh = fh in Ω∫
(∂Ω)r

vh · ν = cr ∀ r = 1, . . . , p∫
f
vh · ν = 0 ∀ f 6∈M

(16)

is again a square linear system of nf equations and unknowns.
Now we show that it has a unique solution. The procedure is constructive,

similar in some sense to the elimination procedure used for the grad problem
but now going up, along the dual spanning tree, starting from the leaves. (Let
us recall that the leaves of a spanning treeMh = (W,M) are the vertices of W
that have only one edge of M incident to them.)

Remembering that we have imposed
∫
f
vh · ν = 0 if f 6∈ M , we can reduce

the problem to the faces f ∈M , hence to the spanning tree Mh = (W,M).
Given w ∈ W (a tetrahedron or a connected component of ∂Ω), let us set

F (w) := {f ∈ F : f ⊂ w}; the elements of this set are faces of the primal
mesh, therefore dual edges in the dual mesh. The leaves of the spanning tree
Mh = (W,M) are the vertices w ∈ W such that F (w) ∩M reduces to exactly
one dual edge (namely, to a face).

If w is a leave of Mh and f(w) ∈ F is the unique dual edge (face) in M
incident to w, we can easily compute the degree of freedom corresponding to
f(w), as we know that

∫
f
vh · ν = 0 for all f 6∈M . In fact we have

∫
f(w)

vh · ν =


∫
∂w

vh · ν =
∫
w
fh if w ∈ T∫

(∂Ω)r
vh · ν = cr if w = (∂Ω)r , r = 1, . . . , p∫

(∂Ω)0
vh · ν =

∫
Ω
fh −

∑p
r=1 cr if w = (∂Ω)0 ,

having used the divergence theorem in the first and third lines.
Hence it is clear that if vh ∈ RTh is such that divvh = 0,

∫
(∂Ω)r

vh · ν = 0

for all r = 1, . . . , p, and
∫
f
vh · ν = 0 for all f 6∈M then

∫
f
vh · ν = 0 for all the

faces f(w) associated to the leaves w ∈Mh.
We can iterate this argument: if we remove from the spanning tree a leave

and its corresponding incident edge, the remaining graph is still a tree. The
edges of this new tree are the faces where the degree of freedom is still unknown.
Repeating the previous procedure, we can easily compute the degrees of freedom
corresponding to the faces incident to the leaves of this new tree, finding that
they are vanishing. After a finite number of steps the remaining tree reduces
to just on vertex, and we have obtained

∫
f
vh · ν = 0 for all f ∈ F . Therefore,

since (16) is a square linear system, this proves that it has a unique solution.
We can also furnish an explicit way for computing the values of the degrees

of freedom. In fact, at a step of the previous procedure let us call N the set
of the vertices w and G the set of edges f of the reduced dual graph. Then G
is the set of faces where the degree of freedom

∫
f
vh · ν is still unknown. If w

is a leave of (N,G), there exists exactly one face f(w) ∈ F (w) belonging to G.

12



Then ∫
f(w)

vh · ν = Aw −
∑

f∈F (w)∩(F\G)

∫
f

vh · ν (17)

where

Aw =


∫
w
fh if w ∈ T

cr if w = (∂Ω)r , r = 1, . . . , p∫
Ω
fh −

∑p
r=1 cr if w = (∂Ω)0 .

This can be rephrased as an elimination algorithm for the computation of
vh.

Algorithm 3.

1. G = M , N = W

2. while G 6= ∅
(a) pick a leave w of the tree (N,G)
(b) compute

∫
f(w)

vh · ν from (17)

(c) update G: G = G \ {f(w)}
(d) update N : N = N \ {w}

Notice that at any step of the algorithm (N,G) is a tree, so while G 6= ∅ a
leave w of the tree (N,G) always exists.

Remark 2. It is worth noting that the set of vector functions {W0,s}ps=1, so-
lutions to problem (16) with fh = 0 and cr = δr,s, r = 1, . . . , p, is a basis of the
second de Rham cohomology group of Ω.

6. Stability

This section is devoted to investigate how we can construct stable finite
element potentials, namely, potentials whose natural norms can be estimated in
terms of the norms of the data, uniformly with respect to the mesh size h.

Before starting, let us remark that, very often, the construction of finite
element potentials is a preliminary step in the procedure aiming at solving a
partial differential equation. In this respect, the solution uh will be written as
uh = Uh + Wh, Wh being the finite element potential and Uh the solution of
an auxiliary problem in which Wh contributes at the right hand side. In this
situation, what is interesting is the stability of the solution uh, and not that of
Wh and Uh; in many cases, an unstable Wh produces an unstable Uh but a stable
uh (see, e.g., the solution of the magnetostatic problem in Alonso Rodŕıguez et
al. [1], that satisfies

‖Hh‖(L2(Ω))3 ≤ C∗‖ curlHh‖(L2(Ω))3 = C∗‖Jh‖(L2(Ω))3

for C∗ > 0 independent of h).
Let us come now to the construction of stable potentials. As before, we

consider the three cases: gradient, curl, divergence.
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6.1. Grad problem

Having constructed the solution Ψh of problem (1), take the solution c0,h ∈ R
of ∫

Ω

c0,h =

∫
Ω

Ψh ,

namely, c0,h = 1
meas(Ω)

∫
Ω

Ψh (it is the (L2(Ω))3-projection of Ψh over the space

of constants).

Then define Ψ̂h = Ψh − c0,h. Since Ψ̂h satisfies
∫

Ω
Ψ̂h = 0, from Poincaré

inequality we find

‖Ψ̂h‖L2(Ω) ≤ KG‖ grad Ψ̂h‖(L2(Ω))3 = CG‖Fh‖(L2(Ω))3

for a constant KG > 0 independent of h.

6.2. Curl problem

Given the solution Zh of problem (5) with κn = 0 for all n = 1, . . . , g, let
ϕh ∈ Lh, dh ∈ R be the solution of the Neumann problem (in the saddle-point
formulation)∫

Ω
gradϕh · grad ηh + dhηh(v1) =

∫
Ω
Zh · grad ηh ∀ ηh ∈ Lh

ϕh(v1) = 0 .
(18)

Note at once that a solution to (18) satisfies dh = 0. In fact, by choosing the
piecewise-linear function ηh equal to the constant dh, it follows that

∫
Ω
d2
h = 0,

hence dh = 0. Therefore, a solution ϕh to (18) satisfies
∫

Ω
gradϕh · grad ηh =∫

Ω
Zh · grad ηh for all ηh ∈ Lh, hence gradϕh is the (L2(Ω))3-projection of Zh

over gradLh.
The unique solvability (18) is also easily verified: for Zh = 0, taking ηh = ϕh

gives at once gradϕh = 0, therefore ϕh = const. Then the condition ϕh(v1) = 0
gives ϕh = 0.

Define now Ẑh = Zh − gradϕh. As we will see here below, this is a stable
vector potential. Note that it satisfies Ẑh⊥ gradLh and

∮
σn

Ẑh · ds = 0 for each
n = 1, . . . , g.

Proposition 1. Let us assume that the family of triangulations Th is regular.
Then the vector potential Ẑh satisfies

‖Ẑh‖(L2(Ω))3 ≤ KC‖ curl Ẑh‖(L2(Ω))3 = KC‖Jh‖(L2(Ω))3 ,

for a constant KC > 0 independent of h.

Proof. Clearly, it is enough to find a vector function W(h) such that

‖W(h)‖(L2(Ω))3 ≤ C1‖ curl Ẑh‖(L2(Ω))3

‖Ẑh −W(h)‖(L2(Ω))3 ≤ C1‖ curl Ẑh‖(L2(Ω))3 ,

for a constant C1 > 0 independent of h.
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By adapting the proof of Theor. 4.7 in Hiptmair [5], we see that this vector
function is the solution to

curlW(h) = curl Ẑh in Ω
divW(h) = 0 in Ω
W(h) · n = 0 on ∂Ω∮
σn

W(h) · ds = 0 ∀ n = 1, . . . , g .

It satisfies ‖W(h)‖(Hs(Ω))3 ≤ C2‖ curl Ẑh‖(L2(Ω))3 , for a suitable s > 1
2 . More-

over, one easily sees that Qh = Ẑh − ΠNhW(h) satisfies curlQh = 0 in Ω and∮
σn

Qh · ds = 0 for all n = 1, . . . , g, hence it belongs to gradLh, as proved

in Section 3 (see also Monk [7, Lemma 5.28]). This permits to conclude that

Ẑh −W(h) is orthogonal to Ẑh −ΠNhW(h) and therefore

‖Ẑh −W(h)‖2(L2(Ω))3 =
∫

Ω
(Ẑh −W(h)) · (Ẑh −W(h))

=
∫

Ω
(Ẑh −W(h)) · (ΠNhW(h) −W(h))

≤ ‖Ẑh −W(h)‖(L2(Ω))3‖ΠNhW(h) −W(h)‖(L2(Ω))3 ;

thus the interpolation error estimate concludes the proof. 2

6.3. Div problem

Given the solution vh of problem (16) with cr = 0 for all r = 1, . . . , p, let
qh ∈ Nh, ψh ∈ Lh, mh ∈ R, βj ∈ R, j = 1, . . . , g, be the solution of∫

Ω
curlqh · curlph +

∫
Ω

gradψh · ph
+
∑g
j=1 βj

∮
σj

ph · ds =
∫

Ω
vh · curlph ∀ ph ∈ Nh∫

Ω
qh · grad ηh +mh ηh(v1) = 0 ∀ ηh ∈ Lh

ψh(v1) = 0∮
σn

qh · ds = 0 ∀ n = 1, . . . , g .

(19)

Taking the piecewise-linear function ηh equal to the constant mh, it is easily
checked that a solution to (19) satisfies mh = 0; moreover, choosing ph =
gradψh gives gradψh = 0 in Ω, thus ψh = 0. Finally, the choice ph = T0,n, the
discrete loop field associated to σn, furnishes βn = 0 for each n = 1, . . . , g. In
conclusion, curlqh is the (L2(Ω))3-projection of vh over curlNh, qh⊥ gradLh
and

∮
σn

qh · ds = 0 for all n = 1, . . . , g.

The unique solvability (19) is also easily verified: when vh = 0, it follows
curlqh = 0, and therefore, as proved in Section 3 (see also Monk [7, Lemma
5.28]), qh ∈ gradLh and finally, by the orthogonality property, qh = 0.

Define now v̂h = vh − curlqh. As we will see here below, this is a stable
potential. Note that it satisfies v̂h⊥ curlNh and

∫
(∂Ω)r

v̂h · ν = 0 for all r =
1, . . . , p.
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Proposition 2. Let us assume that the family of triangulations Th is regular.
Then the potential v̂h satisfies

‖v̂h‖(L2(Ω))3 ≤ KD‖ div v̂h‖L2(Ω) = KD‖fh‖L2(Ω) ,

for a constant KD > 0 independent of h.

Proof. Clearly, it is enough to find a vector function V(h) such that

‖V(h)‖(L2(Ω))3 ≤ C3‖ div v̂h‖L2(Ω)

‖v̂h −V(h)‖(L2(Ω))3 ≤ C3‖ div v̂h‖L2(Ω) ,

for a constant C3 > 0 independent of h.
Adapting also in this case the proof of Theor. 4.7 in Hiptmair [5], we see

that this vector function is the solution to

curlV(h) = 0 in Ω
divV(h) = div v̂h in Ω
V(h) × n = 0 on ∂Ω∫

(∂Ω)r
V(h) · ν = 0 ∀ r = 1, . . . , p .

It satisfies ‖V(h)‖(Hs(Ω))3 ≤ C4‖ div v̂h‖L2(Ω), for a suitable s > 1
2 . Moreover,

let us denote by ΠRTh the Raviart–Thomas interpolation operator; then one
easily sees that Rh = v̂h−ΠRThV(h) satisfies divRh = 0 in Ω and

∫
(∂Ω)r

Rh·ν =

0 for all r = 1, . . . , p, hence it belongs to curlNh (see, e.g., Alonso Rodŕıguez et
al. [1]). This permits to conclude that v̂h−V(h) is orthogonal to v̂h−ΠRThV(h)

and therefore

‖v̂h −V(h)‖2(L2(Ω))3 =
∫

Ω
(v̂h −V(h)) · (v̂h −V(h))

=
∫

Ω
(v̂h −V(h)) · (ΠRThV(h) −V(h))

≤ ‖v̂h −V(h)‖(L2(Ω))3‖ΠRThV(h) −V(h)‖(L2(Ω))3 ;

thus the interpolation error estimate concludes the proof. 2
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