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Abstract

While the numerical discretization of one-dimensional blood flow models for vessels with vis-
coelastic wall properties is widely established, there is still no clear approach on how to couple
one-dimensional segments that compose a network of viscoelastic vessels. In particular for Voigt-
type viscoelastic models, assumptions with regard to boundary conditions have to be made, which
normally result in neglecting the viscoelastic effect at the edge of vessels. Here we propose a cou-
pling strategy that takes advantage of a hyperbolic reformulation of the original model and the
inherent information of the resulting system. We show that applying proper coupling conditions is
fundamental for preserving the physical coherence and numerical accuracy of the solution in both
academic and physiologically relevant cases.
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1. Introduction

The viscoelastic behavior of arterial and venous walls is well-known [1, 2, 3]. It has an impact
on fundamental hemodynamic characteristics of the cardiovascular system [4] and plays a deter-
minant role in setting the functional level of the cardiovascular system under physiological and,
especially, under pathological conditions such as hypertension [5].

Among the many theoretical frameworks developed by applied mathematicians and biomedical
engineers to study the cardiovascular system, one-dimensional blood flow models constitute a rel-
evant tool which has been utilized since the late 70s to gain understanding on arterial functioning
[6, 7, 8, 9]. More recent contributions to the development of one-dimensional models for the arte-
rial and venous systems can be found in [10, 11, 12, 13, 14, 15, 16]. These models have been used
to study a number of pathologies, some examples can be found in [17, 18, 19, 20, 21, 22, 23, 24].
Moreover, the output of such models has been validated versus in vitro models [25] and in vivo
measurements [10, 14].

It is well known that blood flow in large to medium vessels is a convection-dominated process.
Therefore most practitioners neglect viscoelasticity of vessel walls in their one-dimensional mod-
els. The resulting model is then essentially a hyperbolic system of partial differential equations
and its numerical approximation is ruled by well-established strategies on this field. However,
when certain models of vessel wall viscoelasticity are used [12, 16, 25, 26, 27], a second order
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spatial derivative of the flow in the momentum balance equation arises, turning the problem into
a convection-diffusion-reaction problem. The way by which the diffusive term is treated varies
considerably from work to work. However, in all cases there is an assumption for the treatment
of the diffusive term in correspondence of terminal edges, that is at those points of networks usu-
ally called junctions. In previous works, viscoelasticity was neglected in the coupling conditions
applied in correspondence of junctions [12, 13, 25, 26, 28]. Such assumptions can be reasonable in
certain situations, but, as shown in this work, they can be extremely harmful with regard to the
physical consistency of the approximate solution.

Here we propose a coupling strategy based on the hyperbolic reformulation of a Voigt-type
model for one-dimensional blood flow in viscoelastic vessels [31]. The proposed approach makes
use of information that can be extracted from the eigenstructure of the resulting hyperbolic sys-
tem. Moreover, junctions/bifurcations of vessels are considered as Riemann problems for which
an exact/approximate solver can be devised. This kind of coupling strategy was proposed in [32]
for one-dimensional blood flow in elastic vessels and is extended here to the viscoelastic case.
Moreover, we propose an improved version of the data extrapolation step in which the interaction
between vessels sharing a vertex is taken into account for both the leading term and the spatial
derivatives of the Taylor series expansion. The numerical accuracy of the proposed methodology is
verified by empirical convergence tests, as well as by a suite of tests on simple vessel networks. In
addition, we apply the proposed methodology to an in vitro arterial network model [25, 33] and to
an anatomically detailed model of the vasculature of the upper limb [34]. Computational results
are compared to the solution delivered by applying a commonly used approach, the operator split-
ting technique, in order to assess the influence of neglecting the contribution of viscoelasticity at
vessels edges on the several proposed tests. The principal goal of the presented tests is to show
that the physical consistency of the model can be lost when the viscoelastic effect at junctions is
not properly addressed.

The rest of the paper is structured as follows. The one-dimensional blood flow model, as well
as its hyperbolic reformulation, is presented in Section 2. Next, the numerical methodology used
to solve the underlying model within one-dimensional domains and the coupling strategy are de-
scribed in Section 3. In Section 4 a series of tests is performed in order to assess the consistency
and accuracy of the proposed methodology in the context of academic and physiological tests.

2. Mathematical model

In this section we present a well-known one-dimensional blood flow model featuring viscoelas-
tic behavior of the vessel wall, as well as its hyperbolic reformulation. We then provide a brief
description of the eigenstructure of the resulting PDE system, since the proposed coupling strat-
egy between one-dimensional domains will be based on the inherent properties of the hyperbolized
model.

2.1. 1D viscoelastic model
One-dimensional blood flow is modeled as

∂t A+∂xq = 0 ,

∂tq+∂x

(
q2

A

)
+ A
ρ
∂x p =− f

ρ
,

(1)

where x is the axial coordinate along the longitudinal axis of the vessel; t is time; A(x, t) is the
cross-sectional area of the vessel; q(x, t) is the flow rate; p(x, t) is the average fluid pressure over
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a cross-section; f (x, t)= γπµ q
A is the friction force per unit length of the tube, with γ depending on

the velocity profile; µ is the fluid viscosity and ρ is the fluid density.
To close the system of equations we adopt a tube law relating p to A and other parameters,

namely

p(x, t)= pr(x, t)+ζ(x, t) . (2)

Here, pr(x, t)= p0+δpext(x, t) accounts for a homeostatic equilibrium pressure p0, for which quan-
tities with subscript “0” are defined, and fluctuations due to external tissues δpext(x, t). In turn,
ζ(x, t) accounts for the constitutive law of the vessel tissue, namely

ζ(x, t)= πR0h0

Ad

[
Eeε+Ecεr ln(eχ+1)+ Km

2
√

AA0

∂A
∂t

]
, (3)

where R0 = R0(x) is the vessel radius at reference state, obviously related to the reference cross-
section area A0 = A0(x) and h0 = h0(x) is the vessel wall thickness at reference state. Ee = Ee(x)
is the effective Young modulus of the elastin, Ec = Ec(x) is the effective Young modulus of the
collagen and Km is the effective viscoelastic parameter. In expression (3) χ= χ(A; x) is

χ= ε−ε0

εr
, (4)

where ε0 = ε0(A0) is the deformation state for which 50% of collagen fibers have been activated,
εr = εr(A0) is the standard deviation of the fiber activation state distribution and ε = ε(A; A0) is
the current deformation state, given by

ε=
√

A
A0

−1 . (5)

Note that setting Ad = 3/4 A0 and Ec = 0 one obtains a widely used constitutive law, which
shows a linear dependence of the elastic component of pressure with respect to the vessel radius.
See for example [11, 25, 35, 36] . On the other hand, taking Ad = A and Ec 6= 0, results in a tube
law that considers the incompressibility of the vessel wall and thus the reduction of wall thickness
as the vessel wall is stretched. As well, it provides a rational approach towards modeling the
vessel wall by considering its structural components (elastin, collagen and smooth muscle cells).
See for example [12, 13, 34].

2.2. Hyperbolic reformulation
By using the mass conservation equation in (1), one can replace the time derivative of A in

(3) by the spatial derivative of the flow q. Replacing (2) in the momentum equation in (1) results
in a set of PDEs containing second order derivatives. The way this term is treated at vessels
edges, especially at junctions, is not clearly established in the literature, as previously discussed
in Section 1.

Note that coupling conditions in the case Km = 0, i.e. for purely elastic vessels, can be easily
determined by the hyperbolic nature of the system, and the task of assigning coupling conditions
at a point shared by several one-dimensional domains can be seen as a Riemann problem, as
proposed in [32, 37]. Motivated by these works, here we adopt hyperbolic reformulation of (1)-(5)
proposed in [31]. In order to obtain a first order PDE system we introduce the auxiliary variable
θ, a relaxation time T > 0 and an evolution equation

∂tθ = 1
T

(∂xq−θ) , (6)
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such that
θ→ ∂xq , T → 0 . (7)

As reported in [31], in order to ensure that the formulation error is smaller than the discretization
error the following relation must hold

4 := T
(∆x)p

1−2− 1
2

2p− 1
2 −1

=O(1) , (8)

where p is the order of accuracy of the numerical scheme.
Now, ζ is

ζ(x, t)= πR0h0

Ad

[
Eeε+Ecεr ln(eχ+1)− Km

2
√

AA0
θ

]
(9)

and we can write (1) together with (2)-(5) as

∂tQ+A(Q)∂xQ=S(Q) , (10)

where the augmented state vector is

Q= [
A, q,θ, A0,h0,Ee,Ec, pr

]T . (11)

Note that we have introduced mechanical and geometrical parameters of the tube law as compo-
nents of the augmented state vector Q. This implies that we consider the trivial evolution equa-
tions ∂tα = 0, with α = A0,h0,Ee,Ec and ∂t pr = F(x, t), with F(x, t) prescribed. By doing so one
incorporates the variation of vessel mechanical and geometrical properties into the eigenstructure
of the system. Such approach allows the development of numerical schemes that correctly deal
with discontinuous variations in these parameters. This approach was propose by [38] for a sim-
ilar tube law and is applied here to system (1) with tube law given by (9). The coefficient matrix
A(Q) of (10) is

A(Q)=



0 1 0 0 0 0 0 0
c2 −u2 2u A

ρ
ζθ

A
ρ
ζA0

A
ρ
ζh0

A
ρ
ζEe

A
ρ
ζEc

A
ρ

0 − 1
T 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (12)

with c =
√

A
ρ
ζA , u = q

A and ζα = ∂αζ, with α= A,θ, A0,h0,Ee,Ec.
The source vector S(Q) is

S(Q)= [0, f ,− θ

T
,0,0,0,0,F]T . (13)

Standard eigenstructure analysis shows that system (10) with coefficient matrix (12) is hyper-
bolic if

ζA − ζθ

T
> 0 , (14)

with eigenvalues

λ1 = u− cT , λ2 =λ3 =λ4 =λ5 =λ6 =λ7 = 0 , λ8 = u+ cT , (15)
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where

cT =
√

c2 − Aζθ
ρT

, (16)

and linearly independent eigenvectors

R1 = γ1



1
u− cT
− 1

T
0
0
0
0
0


, R2 = γ2



0
0
0
1
0
0
0

−ζA0


, R3 = γ3



0
0
0
0
1
0
0

−ζh0


, R4 = γ4



0
0
0
0
0
1
0

−ζEe


,

R5 = γ5



0
0
0
0
0
0
1

−ζEc


, R6 = γ6



1
0
0
0
0
0
0

ρ(u2−c2)
A


, R7 = γ7



0
0
1
0
0
0
0

−ζθ


, R8 = γ8



1
u+ cT
− 1

T
0
0
0
0
0


,

(17)

where γi, for i = 1, . . . ,8, are arbitrary scaling factors.
In what follows we will study the nature of characteristic fields of system (10), which are

essential for defining wave relations, needed for the construction of numerical fluxes or Riemann
problem solvers in general. A characteristic field associated to λk is said to be genuinely non-linear
if

∇Qλk ·Rk 6= 0 , (18)

for all Q. For k = 1, the scalar product of the gradient of eigenvalue λ1 with respect to Q and R1
is

−∂cT

∂A
− cT

A
+ 1

T
∂cT

∂θ
6= 0 , (19)

for which a closed-form proof for the entire state and parameter spaces could not be obtained. How-
ever, this property was empirically observed for parameters and state variables in physiological
ranges. Analogous consideration are valid for the characteristic field associated to λ8. Finally, it
is straightforward to show that characteristic fields associated to λ2 to λ7 are linearly degenerate
since λk = 0 for k = 2,3, . . . ,7.

Generalized Riemann invariants associated to the k-th characteristic field are functions Γk(Q)
that satisfy the PDE

∇QΓk(Q) ·Rk ≡ 0 . (20)

For the definition of generalized Riemann invariants for genuinely non-linear fields we follow
the approach described in [39]. An integral curve of the vector field Rk, associated to the eigen-
value λk, is defined as a smooth curve Q̃(ξ) in state space parametrized by a scalar parameter ξ, if
at each point Q̃(ξ), the tangent vector to the curve is a parametrization of Rk [39], i.e.

dQ̃(ξ)
dξ

=α(ξ)Rk , (21)

where α(ξ) is a scaling factor.
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If one sets α≡ 1 and considers the characteristic field associated to λ1, then (21) is

dÃ(ξ)
dξ

= 1 , (22)

dq̃(ξ)
dξ

= q
A

− cT , (23)

dθ̃(ξ)
dξ

=− 1
T

, (24)

dÃ0(ξ)
dξ

= dh̃0(ξ)
dξ

= dẼe(ξ)
dξ

= dẼc(ξ)
dξ

= dp̃r(ξ)
dξ

= 0 . (25)

From the solution of (25) for A0, h0,Ee, Ec and pr the invariance of those variables across non-
linear waves follows. Next we set

Ã(ξ)= ξ (26)

in order to satisfy (22). By doing so we have chosen to parametrize the curve by area A. It follows
immediately that

θ̃(ξ)=− ξ

T
+ constant . (27)

If we now fix a point in state space Q̂ = [Â, Âû, θ̂, Â0, ĥ0, Êe, Êc, p̂r]T , then one can write the
particular solution to (24), namely

θ̃(ξ)= θ̂+ Â
T

− ξ

T
. (28)

Considering (26) and (28), the solution to (23) can be written as

q̃(ξ)= ξũ(ξ)= ξû−ξ
∫ Ã(ξ)

Â

c̃T (ξ)
ξ

dξ , (29)

with
c̃T (ξ)= cT (ξ, θ̃(ξ)) . (30)

After some manipulations we have

ũ(ξ)= û+
∫ Â

Ã(ξ)

c̃T (ξ)
ξ

dξ . (31)

Summarizing, we can state that generalized Riemann invariants for characteristic field asso-
ciated to λ1 are

Γ1
1 = u+

∫ A

Â

c̃T (ξ)
ξ

dξ , Γ2
1 = θ+

A
T

,

Γ3
1 = A0 , Γ4

1 = h0 , Γ5
1 = Ee ,

Γ6
1 = Ec , Γ7

1 = pr ,

(32)

with
c̃T (A)= cT (A, θ̃(A)) (33)

and

θ̃(A)= θ̂+ Â− A
T

, (34)
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where Â and θ̂ are reference values. Since Riemann invariants Γ j
1 with j = 1, . . . ,7 are constant

along ξ we have
dΓ j

1(ξ)
dξ

=∇Q̃Γ
j
1(ξ) · dQ̃(ξ)

dξ
= 0 , (35)

which is equivalent to (20).
A similar procedure shows that Riemann invariants for characteristic fields associated to λ8

are

Γ1
8 = u−

∫ A

Â

c̃T (ξ)
ξ

dξ , Γ2
8 = θ+

A
T

,

Γ3
8 = A0 , Γ4

8 = h0 , Γ5
8 = Ee ,

Γ6
8 = Ec , Γ7

8 = pr .

(36)

With regard to linearly degenerate fields, Riemann invariants for characteristic fields associ-
ated to λ2 to λ7 are

ΓLD
1 = p+ 1

2
ρu2 = constant (37)

and
ΓLD

2 = q = constant . (38)

In fact, it can be easily verified that relations (37) and (38) satisfy the system of six PDEs

∇QΓ
LD
j ·Rk ≡ 0 , (39)

with j = 1,2 and k = 2,3, . . . ,7. The fact of having two generalized Riemann invariants instead of
seven is related to the similar structure of eigenvectors associated to λk with k = 2,3,4,5,7.

3. Numerical methods

Here we illustrate the numerical methodology used to solve the one-dimensional blood flow
model (10), as well as the treatment of junctions. Moreover, we pay special attention to the treat-
ment of junctions in order to preserve the formal order of accuracy of the numerical scheme.

It is important to note that the hyperbolization proposed in 2.2 has two important implications
from the numerical point of view. First, the relaxation time T appears in (16), resulting in larger
values of the celerity if compared to the elastic case. Second, the third component of source term
(13) might be stiff for small values of T. Because of these two implications, the numerical scheme
to be used must be efficient and must be able to treat stiff source terms appropriately. Here we use
a finite-volume type path-conservative numerical scheme of high order of accuracy in space and
time that has already showed to possess these abilities for hyperbolized one-dimensional blood
flow models [31]. We present a brief summary of the above mentioned methods and references to
more specific works addressing in detail these issues will be given in due course.

3.1. Finite-volume type numerical scheme
Here we present a brief summary of the numerical methodology used to solve system (10).

Full details for the first-order scheme, as well as its high-order extension can be found in [40] and
references therein.
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3.1.1. Path-conservative finite-volume-type numerical scheme
Discretization of (10) by a path-conservative finite-volume type scheme yields

Qn+1
i =Qn

i −
1
∆xi

∫ tn+1

tn

∫ xi+ 1
2

xi− 1
2

A(Q)∂xQdxdt− ∆tn

∆xi

(
D−

i+ 1
2
+D+

i− 1
2

)
+∆tnSi , (40)

for i = 1, . . . , N, where N is the number of computational cells, ∆xi = xi+ 1
2
−xi− 1

2
is the mesh spacing

and ∆tn = tn+1 − tn is the time step. As for any finite-volume type scheme, we note that

Qn
i = 1

∆xi

∫ xi+ 1
2

xi− 1
2

Q(x, tn)dx , (41)

Si = 1
∆tn∆xi

∫ tn+1

tn

∫ xi+ 1
2

xi− 1
2

S(Q(x, t))dxdt (42)

and

D∓
i± 1

2
= 1
∆tn

∫ tn+1

tn
D∓

i± 1
2

(
Q−

i± 1
2
(t),Q+

i± 1
2
(t),Ψ

)
dt . (43)

Here Q±
i± 1

2
(t) are accurate approximations of the sought solution for the time interval t = [tn, tn+1]

at both sides of the cell interface xi± 1
2

and D∓
i± 1

2

(
Q−

i± 1
2
(t),Q+

i± 1
2
(t),Ψ

)
is a monotone first order

fluctuation [41] defined as

D∓
i± 1

2
= 1

2

∫ 1

0

[
A(Ψ(Q−

i± 1
2
,Q+

i± 1
2
, s))∓|A(Ψ(Q−

i± 1
2
,Q+

i± 1
2
, s))|

]
∂Ψ

∂s
ds , (44)

where the path Ψ =Ψ(Q−,Q+, s), with 0 ≤ s ≤ 1, is a Lipschitz continuous function that connects
the left state Q− to the right state Q+ in phase-space, satisfying

Ψ
(
Q−,Q+,0

)=Q−, Ψ
(
Q−,Q+,1

)=Q+ . (45)

Details on the computation of first order fluctuations can be found in [40] and references therein.
High-order accuracy in space and time is achieved by computing accurate space-time evolu-

tion of the state vector within the control volume [xi− 1
2
, xi+ 1

2
]× [tn, tn+1] and time integrals along

cell interfaces. This is achieved by adopting the Dumbser-Enaux-Toro (DET) solver, which was
proposed in [42] and extended to non-conservative systems in [43, 44].

3.1.2. Spatial reconstruction
As many high-order finite volume solvers, the DET solver requires a spatial reconstruction

procedure based on cell averages, which are the quantities actually evolved by the numerical
scheme. As previously reported [32, 40], here we use the Weighted Essentially Non-Oscillatory
(WENO) methodology proposed in [45] by which spatial polynomials over the entire computational
cell are obtained. First we introduce reference coordinates 0≤ ξ≤ 1 given by x = xi− 1

2
+ξ∆xi. For a

scheme of order p, at each time level tn, we reconstruct element-wise polynomials of the type

wh =wh(ξ, tn)=
M+1∑
l=1

ψl(ξ)ŵl(tn) :=ψl(ξ)ŵl(tn) , (46)

where M = p−1 is the polynomial degree of the spatial reconstruction, ψl(ξ), l = 1, . . . , M +1, are
the corresponding basis functions and ŵl(tn), l = 1, . . . , M + 1, are the expansion coefficients at
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time t = tn. Note that in (46) the Einstein summation convention was introduced and will be used
throughout the rest of this work.

Details on the spatial reconstruction are omitted since the methodology is rather standard and
was extensively documented in the literature. For details on the particular WENO version used in
this paper see [45, 46]. We note that in the case of one-dimensional blood flow, there will be cells
of certain stencils lying outside the physical domain. The treatment of spatial reconstruction in
such situations was addressed in [32] and will be briefly illustrated in Section 3.3.

3.1.3. Space-time implicit discontinuous Galerkin prediction
In order to obtain an accurate prediction for the control volume Ti = [xi− 1

2
, xi+ 1

2
]×[tn, tn+1], the

DET solver relies on a space-time local Discontinuous-Galerkin (DG) scheme [42, 43, 44] which will
provide a space-time polynomial Qh to be later used to solve integrals in (40). After transforming
system (10) to a reference space-time element TE = [0,1]× [0,1] with reference coordinates ξ and
τ, related to the physical domain by x = xi− 1

2
+∆xi ξ and t = tn +∆tn τ, we obtain

∂τQh +A∗∂ξQh =S∗ , (47)

with
A∗ := ∆tn

∆xi
A(Qh) , S∗ :=∆tnS(Qh) .

We multiply (47) by a space-time basis function φ=φ(ξ,τ), integrate over the reference element
TE and then use integration by parts for the time derivative term in order to obtain

[φ,Qh]1 −〈∂τφ,Qh〉TE +〈φ,A∗∂ξQh〉TE = [φ,wh]0 +〈φ,S∗〉TE , (48)

where we have introduced the following operators to simplify notation

[a,b]τ =
∫ 1

0
a(ξ,τ)b(ξ,τ)dξ , 〈a,b〉TE =

∫ 1

0

∫ 1

0
a(ξ,τ)b(ξ,τ)dξdτ . (49)

Next, by using the same space-time basis functions φ, to approximate Qh, A∗∂ξQh and S∗, we
obtain (

[φk,φl]1 −〈∂τφk,φl〉TE

)
Q̂l −〈φk,φl〉TE Ŝ∗ l = [φk,ψl]0ŵl −〈φk,φl〉TE

àA∗∂ξQl , (50)

for k = 1,2, . . . , (M+1)2.
Expansion coefficients Q̂l are obtained by a fixed point iteration procedure, see [42] for details,

in which at each iteration step, m = 0,1, . . . until convergence is achieved, we solve(
[φk,φl]1 −〈∂τφk,φl〉TE

)
Q̂m+1

l −〈φk,φl〉TE Ŝ∗m+1
l = [φk,ψl]0ŵl −〈φk,φl〉TE

àA∗∂ξQ
m
l , (51)

for k = 1,2, . . . , (M +1)2. For full details the reader is referred to [42] for a general introduction
to the DET solver and to [32, 40] for the implementation of the DET solver in the context of one-
dimensional blood flow.

3.2. Treatment of viscoelastic junctions - Riemann problem at a junction
System (10) provides all the necessary information to set up an approximate Riemann solver at

a junction. In the following we apply the methodology proposed in [32] to the system under study.
The methodology makes use of standard knowledge on the solution of the Riemann problem. The
reader is referred to [47] for background.
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If we consider NP vessels sharing a vertex, the Riemann problem at the vertex is defined as{
∂tQk +A(Qk)∂xQk = 0 , x ∈R , t > 0 ,

Qk(x,0) =Qk
1D ,

(52)

for k = 1, . . . , NP .
The self-similar solution to (52) consists of 2 NP constant states, where NP states are the ini-

tial condition states provided by the one-dimensional vessels Qk
1D , with k = 1, . . . , NP , while the

remaining states Qk∗, with k = 1, . . . , NP , are states connected to initial condition states via non-
linear waves and among themselves via the linearly degenerate stationary contact discontinuity.
Wave relations linking the above mentioned states in phase space are given by generalized Rie-
mann invariants (32), (36) and (37) and (38). Since system (10) can not be recast in conservative
form [31], we choose to implement an approximate Riemann solver that only admits the formation
of rarefactions. This kind of approximate solvers has been widely applied and demonstrated to be
robust and accurate [47]. An interesting feature of this solver is that it is exact if all non-linear
waves happen to be rarefactions.

The unknown state vectors Qk∗ ,k = 1, . . . , NP are computed by solving the following non-linear
system of 3 NP equations

NP∑
k=1

gk
P Ak

∗uk
∗ = 0 ,

p(A1
∗,θ1

∗)+ 1
2
ρ(u1

∗)2 − p(Ak
∗,θk

∗)− 1
2
ρ(uk

∗)2 = 0, k = 2, . . . , NP ,

uk
∗−uk

1D + gk
Pβ

k = 0 , k = 1, . . . , NP ,

θk
∗+

Ak∗
Tk −θk

1D − Ak
1D

Tk = 0 , k = 1, . . . , NP .

(53)

Here, βk is

βk =
∫ Ak∗

Ak
1D

c̃T (ξ)
ξ

dξ (54)

and gk
P is the auxiliary function

gk
P =

{
1 , if xk

P = Lk ,

−1 , if xk
P = 0 ,

(55)

where xk
P is the local coordinate of the k-th vessel, evaluated at vertex P and Lk is the vessel

length. Note that we have allowed T to be different for each vessel. This does not alter the
eigenstructure analysis performed in Section 2 and is only relevant for junctions, since we assume
T = constant within each vessel.

3.3. Ghost cell filling for spatial reconstruction
The issue of how to deal with the spatial reconstruction at cells for which stencils lay outside

the physical domain was addressed by the authors in [32]. Here we propose an improved version
of the data extrapolation step in which the interaction between vessels sharing a vertex is taken
into account for both the leading term and the spatial derivatives of the Taylor series expansion.

At time tn, the WENO procedure requires the state variable value at M ghost cells at each side
of the one-dimensional edge. Therefore, an accurate approximation of the solution is required in

10



order to compute cell averages that will then be used to fill ghost cells. Here, the approximation
used to compute cell averages is provided by a Taylor series expansion around the internal vertex
P, shared by the k-th edge. Assuming that the origin of a local spatial coordinate ε is located at the
internal vertex P, shared by the k-th edge, the state vector outside the one-dimensional domain
for this edge has the form

Qk
g(ε, tn)=Qk

∗(tn−1 +∆tn−1)+
M∑
j=1

1
j!
∂

( j)
x Qk

∗(tn−1 +∆tn−1) ε j , (56)

where Qk∗(tn−1 +∆tn−1) is the solution of the Riemann problem at a junction (52) for initial condi-
tions given by the prediction of the DET solver, obtained in the previous time step. For the case
n = 0, the initial condition is used to assign Qk∗(tn−1 +∆tn−1) and its spatial derivatives.

In order to compute the spatial derivatives needed in (56), we apply a procedure used in the
Tiratev-Toro generalized Riemann problem solver [48, 49]. According to the Toro-Titarev solver,
spatial derivatives are computed from a linearized version of the original PDE system. The lin-
earization is performed around the solution to a classical Riemann problem. Therefore, we com-
pute ∂

( j)
x Qk∗(tn−1 +∆tn−1), by solving a Riemann problem at the junction for a linearized system{

∂t(∂
( j)
x Qk(tn−1 +∆tn−1))+ Āk∂x(∂( j)

x Qk(tn−1 +∆tn−1))= 0 , x ∈R , t > 0 ,

∂
( j)
x Qk(tn−1 +∆tn−1) = ∂( j)

x Qk
1D(tn−1 +∆tn−1) ,

(57)

for k = 1, . . . , NP . In (57), Āk is the linearized Jacobian

Āk =A(Qk
∗(tn−1 +∆tn−1)) .

Initial conditions for spatial derivatives needed in (57) are directly taken from the implict DG
prediction of the previous time step by recursively making the following ansatz

〈θk,θl〉 �
∂

( j)
ξ

Q
l
= 〈θk,∂ξθl〉á∂( j−1)

ξ
Q

l
, (58)

with j = 1, . . . , M and k, l = 1,2, . . . , (M +1)2. Note that matrix 〈θk,θl〉−1〈θk,∂ξθl〉 is computed only
once, so that the spatial derivatives are obtained by a simple matrix-vector product. It is worth
noting that the computational cost of solving the Riemann problem for the linearized system is
rather modest and amounts to solving M linear systems of 3 NP . For example, for a second order
scheme, only one linear system has to be solved.

3.4. Treatment of other boundary conditions
Additional boundary conditions have to be assigned to a network of one-dimensional vessels.

In particular, one might have to prescribe pressure or flow rate at a given location (the inflow
at the root of the aorta is perhaps the most remarkable example), or couple terminal vessels to
lumped parameter models. Usually, the prescribed quantity regards only one component of state
vector (11). In all cases the constancy of Riemann invariants across rarefaction waves is used
to determine the value of the missing state variables. Since system (10) considers the auxiliary
variable θ, no assumption on ∂xq has to be made in correspondence of any kind of boundary
condition, since wave relations (32) will naturally deliver this quantity. The treatment of boundary
conditions is not trivial since we are dealing with a non-conservative system. Therefore the reader
is referred to [32] for further details on the assignment of boundary conditions in the context of
the proposed methodology.
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3.5. Alternative method: operator splitting
In order to compare the computational results obtained by applying the proposed methodology

with results obtained using widely applied methods for one-dimensional blood flow in vessels with
viscoelastic walls, we have implemented the operator splitting technique, which is one of the al-
ternatives found in the specialized literature [26, 36]. We split the problem into a hyperbolic and
a parabolic problem by noting that one can write

ζ(x, t)= ζelas(x, t)+ζvisco(x, t) , (59)

where
ζelas(x, t)= πR0h0

Ad

[
Eeε+Ecεr ln(eχ+1)

]
(60)

and

ζvisco(x, t)=−πR0h0

Ad

[
Km

2
√

AA0
∂xq

]
. (61)

Replacing (59) in (1) and taking into account the spatial variation of mechanical and geomet-
rical properties of the vessel, as done for system (10), we obtain

∂tW+Aelas(W)∂xW=Selas(W)+Svisco(W,∂2
xW) , (62)

where
W= [A, q, A0,h0,Ee,Ec, pr]T ,

Selas(W)= [0, f ,0,0,0,0,F]

and
Svisco(W,∂2

xW)= [0,C∂2
xq,0,0,0,0,0]T ,

where C will depend on the choice for Ad in (61). The Jacobian Aelas(W) is not reported here for
the sake of brevity.

A first order operator splitting allows us to separate the advection-diffusion-reaction problem
into a convective and a diffusive subproblem. The discrete analogue of the splitting scheme results
in

PDEs : ∂tW+Aelas(W)∂xW=Selas(W) ,

IC : W(x, tn)=Wn
h ,

}
→W

n+1
h , (63)

and
PDEs : ∂tW=Svisco(W,∂2

xW) ,

IC : W(x, tn)=W
n+1
h ,

}
→Wn+1

h , (64)

where W
n+1
h is an intermediate state, given by the approximation of the solution to the hyper-

bolic subproblem and Wn+1
h is the numerical approximation of W at time tn+1. The hyperbolic

subproblem is solved with a first order version of the path-conservative scheme proposed in Sec-
tion 3.1, whereas the correction step is performed by discretizing the resulting parabolic equation
using centered finite differences and backward Euler for the spatial and time discretization, re-
spectively. For details on the operator splitting technique see [47], for example. As reported in the
literature [26, 28], at the edges of vessels we impose homogeneous Neumann boundary conditions
for the flow.

It is important to note that imposing homogeneous Neumann conditions for the flow gradient
is equivalent to neglecting the contribution of viscoelastic properties of the vessel wall to the mo-
mentum balance equation at vessel edges. As discussed in Section 1, this is exactly what is done
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by most practitioners, even if the terms derived from the viscoelastic character of vessel walls is
treated differently from what is reported here. Therefore one might expect that, if different ap-
proaches are consistent, the effect observed in the numerical results by considering one technique
or the other should be similar, as long as viscoelasticity is neglected at junctions.

4. Results

We present a set of numerical tests to validate the proposed coupling strategy. Tests regard
a convergence test, academic tests in simple vessel networks and the application of the proposed
methodology to one-dimensional blood flow in a simple and an anatomically detailed arterial net-
works.

4.1. Convergence rates
We perform a convergence study in order to verify that the expected theoretical order of accu-

racy of the proposed numerical scheme is reached. We consider a smooth function

Q̂(x, t)=
[

Â(x, t)
q̂(x, t)

]
=

 Ac +δA Ac sin
( 2π

L x
)
cos

(
2π
T0

t
)

qc −δA Ac L
T0

cos
( 2π

L x
)
sin

(
2π
T0

t
) , (65)

where quantities with superscript c are average values and terms δ are fluctuations around the
average. We then perform the convergence tests by solving a modification of (10), namely

∂tQ+A(Q)∂xQ=S(Q)+ Ŝ(x, t) , (66)

where Ŝ(x, t) contains non-zero terms resulting from replacing (65) in (1). Note that (65) is replaced
in the original system and not in the hyperbolized one, so that the only non-zero component of
Ŝ(x, t) regards the momentum balance equation.

The convergence test is performed over a network composed by two vessels connected at both
extremities, thus forming a closed loop. Reference parameters are: h = 0.5mm, R0 = 14mm,
EE = 1.2 MPa, 2/3Kmh0

p
π= 1Pasm p0 = 0Pa, µ= 0Pa s and Â = 3/4 A0. Moreover, the following

parameters are used: L = 1m, T0 = 1 s, Ac = πR2
0, δA = 0.1, qc = 100ml s−1. The output time is

taken as tend = 0.5 s and the CFL number used is CFL = 0.9. Errors for the three state variables
of interest, i.e. A, q and θ, were measured in the norms L1, L2 and L∞.

Tables 1 and 3 display the empirical convergence rates for second and third order versions
of the proposed finite volume-type numerical scheme, respectively. The relaxation time used in
both cases was T = 10−3 s. The expected convergence rate for all quantities is achieved, including
the auxiliary variable θ that stands for the gradient of flow rate. Moreover, Tables 2 and 4 show
convergence rates for the case in which T is chosen so that 4= 1. Also in this case the convergence
for area and flow rate is achieved. As expected, convergence rates for θ differ from the expected
order of accuracy, since in this particular test we are changing the mathematical model at each
refinement step (T is different for each mesh), making the computation of convergence rates for
this quantity unfeasible. However, we note that errors are always lower than or equal to the ones
obtained using a fixed relaxation time, see Tables 1 and 3.

4.2. Simple networks
In order to explore the effect of performing a proper coupling of viscoelastic vessels, we first

consider two simple vessel networks. Geometrical and mechanical properties of vessels composing
both networks are shown Table 5. Other relevant parameters are: µ = 0Pa s; ρ = 1050kg m−3,
Ec = 0 and Â = 3/4 A0. A CFL number of CFL = 0.9 and a relaxation time T that ensures that
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Var. N L1 L2 L∞ O(L1) O(L2) O(L∞) ∆

A [cm2] 4 2.53e-02 3.05e-02 7.35e-02 - - -
8 5.91e-03 7.36e-03 2.09e-02 2.1 2.1 1.8 1.03e-02
16 1.41e-03 1.77e-03 5.14e-03 2.1 2.1 2.0 4.10e-02
32 3.35e-04 4.29e-04 1.36e-03 2.1 2.0 1.9 1.64e-01
64 8.11e-05 1.05e-04 3.47e-04 2.0 2.0 2.0 6.56e-01

q [cm3/s] 4 2.17e+00 2.17e+00 2.24e+00 - - -
8 6.33e-01 8.51e-01 1.32e+00 1.8 1.3 0.8 1.03e-02
16 2.09e-01 2.46e-01 4.64e-01 1.6 1.8 1.5 4.10e-02
32 4.88e-02 5.33e-02 1.09e-01 2.1 2.2 2.1 1.64e-01
64 1.15e-02 1.24e-02 2.88e-02 2.1 2.1 1.9 6.56e-01

θ [cm2/s] 4 9.75e+00 9.82e+00 1.08e+01 - - -
8 3.57e+00 4.02e+00 5.41e+00 1.4 1.3 1.0 1.03e-02
16 4.85e-01 5.93e-01 1.01e+00 2.9 2.8 2.4 4.10e-02
32 1.01e-01 1.20e-01 2.25e-01 2.3 2.3 2.2 1.64e-01
64 2.14e-02 2.53e-02 5.38e-02 2.2 2.3 2.1 6.56e-01

Table 1: Empirical convergence rates obtained for a second order implementation of the numerical scheme and T = 1e−3.
N is the number of cells and 4 is defined in (8).

Var. N L1 L2 L∞ O(L1) O(L2) O(L∞) ∆

A [cm2] 4 2.53e-02 3.13e-02 7.21e-02 - - -
8 6.41e-03 7.48e-03 1.90e-02 2.0 2.1 1.9 1.00e+00
16 1.46e-03 1.82e-03 5.21e-03 2.1 2.0 1.9 1.00e+00
32 3.35e-04 4.28e-04 1.34e-03 2.1 2.1 2.0 1.00e+00
64 8.10e-05 1.05e-04 3.41e-04 2.0 2.0 2.0 1.00e+00

q [cm3/s] 4 3.31e+00 3.33e+00 3.76e+00 - - -
8 9.93e-01 1.28e+00 2.08e+00 1.7 1.4 0.9 1.00e+00
16 2.53e-01 3.32e-01 6.83e-01 2.0 2.0 1.6 1.00e+00
32 5.19e-02 5.78e-02 1.16e-01 2.3 2.5 2.6 1.00e+00
64 1.13e-02 1.18e-02 2.11e-02 2.2 2.3 2.5 1.00e+00

θ [cm2/s] 4 2.06e-01 2.06e-01 2.13e-01 - - -
8 1.70e-01 1.83e-01 2.36e-01 0.3 0.2 -0.2 1.00e+00
16 4.05e-02 4.33e-02 5.90e-02 2.1 2.1 2.0 1.00e+00
32 1.40e-02 1.75e-02 3.50e-02 1.5 1.3 0.8 1.00e+00
64 2.18e-02 2.47e-02 4.07e-02 -0.6 -0.5 -0.2 1.00e+00

Table 2: Empirical convergence rates obtained for a second order implementation of the numerical scheme and adaptive T
so that 4= 1 for each mesh. N is the number of cells and 4 is defined in (8).

4= 1 were used for all computations reported in this section. The following flow is prescribed at
the network inlet

qbc = q̂ e−10000(t−0.025)2 , (67)

where q̂ = 100ml s−1. Moreover, absorbing boundary conditions are considered for outlets of ter-
minal vessels. Mesh size for solutions obtained using the proposed methodology is ∆x = 10mm for
all tests, unless otherwise indicated. In turn, the mesh size for solutions obtained by the operator
splitting technique is ∆x = 1mm. Numerical solutions obtained using the proposed methodology
will be denoted as JVIS-Op, where p is the order of accuracy of the scheme, while numerical solu-
tions obtained with the operator splitting technique will be denoted as SPLIT. This notation will
be maintained throughout the rest of the manuscript.

4.2.1. Test 1: two vessels network
In this case the network is composed by two vessels with identical properties, namely vessels

V2 and V3 of Table 5. This is the simplest test one could think of and a reference solution is
obtained by solving the equivalent problem (same boundary conditions) for vessel V1. Any differ-
ences between the solutions obtained for vessel V1 and for the network (given by vessels V2-V3)
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Var. N L1 L2 L∞ O(L1) O(L2) O(L∞) ∆

A [cm2] 4 1.07e-02 1.22e-02 2.31e-02 - - -
8 1.41e-03 1.75e-03 3.78e-03 2.9 2.8 2.6 3.22e-02
16 1.83e-04 2.31e-04 5.79e-04 2.9 2.9 2.7 2.58e-01
32 2.34e-05 2.91e-05 7.02e-05 3.0 3.0 3.0 2.06e+00
64 3.80e-06 4.43e-06 1.00e-05 2.6 2.7 2.8 1.65e+01

q [cm3/s] 4 3.06e+00 3.19e+00 4.12e+00 - - -
8 2.88e-01 3.18e-01 4.59e-01 3.4 3.3 3.2 3.22e-02
16 2.48e-02 2.75e-02 4.02e-02 3.5 3.5 3.5 2.58e-01
32 1.99e-03 2.21e-03 3.27e-03 3.6 3.6 3.6 2.06e+00
64 6.60e-04 7.33e-04 1.04e-03 1.6 1.6 1.7 1.65e+01

θ [cm2/s] 4 1.20e+00 1.49e+00 3.07e+00 - - -
8 3.46e-01 3.87e-01 5.93e-01 1.8 1.9 2.4 3.22e-02
16 1.90e-02 2.08e-02 3.51e-02 4.2 4.2 4.1 2.58e-01
32 1.61e-03 1.77e-03 4.36e-03 3.6 3.6 3.0 2.06e+00
64 2.40e-03 2.66e-03 3.76e-03 -0.6 -0.6 0.2 1.65e+01

Table 3: Empirical convergence rates obtained for a third order implementation of the numerical scheme and T = 1e−3. N
is the number of cells and 4 is defined in (8).

Var. N L1 L2 L∞ O(L1) O(L2) O(L∞) ∆

A [cm2] 4 1.12e-02 1.25e-02 2.09e-02 - - -
8 1.60e-03 1.93e-03 4.00e-03 2.8 2.7 2.4 1.00e+00
16 1.87e-04 2.33e-04 5.20e-04 3.1 3.1 2.9 1.00e+00
32 2.30e-05 2.90e-05 7.90e-05 3.0 3.0 2.7 1.00e+00
64 2.90e-06 3.70e-06 1.30e-05 3.0 3.0 2.6 1.00e+00

q [cm3/s] 4 1.03e+00 1.09e+00 1.46e+00 - - -
8 1.70e-01 1.90e-01 2.73e-01 2.6 2.5 2.4 1.00e+00
16 1.60e-02 1.78e-02 2.65e-02 3.4 3.4 3.4 1.00e+00
32 2.57e-03 2.84e-03 4.18e-03 2.6 2.6 2.7 1.00e+00
64 3.58e-04 3.99e-04 6.18e-04 2.8 2.8 2.8 1.00e+00

θ [cm2/s] 4 1.99e-01 2.08e-01 2.66e-01 - - -
8 5.10e-02 5.70e-02 8.14e-02 2.0 1.9 1.7 1.00e+00
16 1.99e-03 2.34e-03 5.36e-03 4.7 4.6 3.9 1.00e+00
32 1.02e-03 2.23e-03 9.59e-03 1.0 0.1 -0.8 1.00e+00
64 1.38e-04 5.14e-04 3.29e-03 2.9 2.1 1.5 1.00e+00

Table 4: Empirical convergence rates obtained for a third order implementation of the numerical scheme and adaptive T
so that 4= 1 for each mesh. N is the number of cells and 4 is defined in (8).

would be caused by an inconsistent coupling strategy.
Figure 1 shows computational results for pressure along the vessel network obtained with

both, a second order implementation of the proposed methodology and the operator splitting tech-
nique at three time instants. The solution obtained with the coupling presented in this work is in
perfect agreement with the solution obtained solving the same problem in the single vessel. On
the other hand, the solution obtained using the operator splitting technique does not match the
single vessel solution, also obtained using the operator splitting technique. The L∞-norm of the
difference between solutions obtained using one vessel or the two-vessel network are shown in
Table 6. As expected, differences for the operator splitting technique are higher than those for the
proposed methodology. In the latter case, differences for flow rate are of the order of magnitude
of the L∞ convergence test error for similar mesh sizes, see row for N = 64 in Table 1, so that
differences can be attributed to the fact that at junctions we use a different reconstruction proce-
dure and numerical flux, preserving however the order of accuracy. Clearly, errors differences for
the operator splitting technique are above the ones obtained for the convergence test. Results not
shown here, in which we use the hyperbolic reformulated system (10) and couple vessels setting
Km = 0 only in the resolution of the Riemann problem at the junction, i.e. neglecting the viscoelas-
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Vessel name L [cm] R0 [cm] Ee [Pa] h0 [cm] 2/3Kmh0
p
π [Pasm]

V1 40 1 1.2e+06 0.05 1.0

V2 20 1 1.2e+06 0.05 1.0

V3 20 1 1.2e+06 0.05 1.0

V4 20 0.1 1.2e+06 0.005 3.0

Table 5: Parameters for vessel network used in Section 4.2.

ticity only at the junctions, are similar to the ones obtained with the operator splitting technique.
This observation is valid for all tests presented in this work. Moreover, it is worth noting that
even if differences are small, and an inflow of short wave length was used, in the next sections we
will show that these junction effects will have an impact on solutions obtained for relevant applica-
tions. Figure 2 shows computational results of pressure along the vessel network for a third order
implementation of the proposed methodology. The improvement of the agreement of this solution
and the reference solution is easily observable.

In order to exaggerate the effect of neglecting viscoelasticity at junctions, we perform the same
test but now we increase the viscosity of the vessel wall by a factor of 5 in the entire network.
Results for this test are shown in Figure 3. As expected, now the mismatch between the single
vessel solution and the one including the junction is more evident. Moreover, we note that the
solution obtained using the operator splitting technique presents junction effects also at the inlet
of the network, whereas in the case of the proposed methodology the boundary conditions can
be applied in a fully consistent manner, as explained in Section 3.4. We can also note that the
mismatch between the results obtained using the proposed methodology and the reference solution
is bigger than in the case where vessels were less viscoelastic (see Figure 1). This is due to the
discretization error of the computational results. In fact, as shown in Figure 4, using a third
order implementation of the proposed methodology, the numerical results approach the reference
solution.

t = 0.036 s t = 0.052 s t = 0.068 s
Value Units JVIS-O2 SPLIT JVIS-O2 SPLIT JVIS-O2 SPLIT

‖δp‖L∞ [Pa] 0.10 7.10 0.70 8.40 0.20 14.00
‖δq‖L∞ [ml/s] 0.01 0.58 0.02 0.35 0.01 0.65

Table 6: L∞ norms for pressure and flow differences between one- and two-vessel numerical solutions at different times,
referring to spatial plots of numerical results shown in Figure 1. JVIS-O2: second order implementation of the proposed
methodology. SPLIT: operator splitting.

4.2.2. Test 2: three vessels
In this test we intend to resemble a physiologically relevant situation in which a small vessel

(featuring high viscoelasticity) leaves a large vessel (with low viscoelasticity). This case is particu-
larly relevant for perforator arteries that leave larger arteries as one moves distally (with respect
to the heart). The network is now composed by vessels V2 (parent), V3 (daughter) and V4 (daugh-
ter). Vessel V4 is thrice as viscoelastic as the parent vessel and has radius and wall thickness ten
times smaller.

Figures 5 and 6 show pressure along vessels V2-V3 and V2-V4, respectively. While the solution
obtained using the operator splitting technique shows perturbations in correspondence to the junc-
tion which are not in agreement with the physics of the model, the pressure profile obtained with
a second order version of the proposed methodology shows a smooth passage of the pressure wave

16



0 5 10 15 20 25 30 35 40
x [cm]

11.0

11.5

12.0

p
[k
P
a
]

Two/JVIS-O2
Single/JVIS-O2
Single/JVIS-O2-REF

20
10.7

11.0

0 5 10 15 20 25 30 35 40
x [cm]

11.0

11.5

12.0

p
[k
P
a
]

Two/SPLIT
Single/SPLIT
Single/JVIS-O2-REF

20
10.7

11.0

0 5 10 15 20 25 30 35 40
x [cm]

11.0

11.5

12.0

p
[k
P
a
]

Two/JVIS-O2
Single/JVIS-O2
Single/JVIS-O2-REF

20
11.8

12.0

0 5 10 15 20 25 30 35 40
x [cm]

11.0

11.5

12.0

p
[k
P
a
]

Two/SPLIT
Single/SPLIT
Single/JVIS-O2-REF

20
11.8

12.0

0 5 10 15 20 25 30 35 40
x [cm]

11.0

11.5

12.0

p
[k
P
a
]

Two/JVIS-O2
Single/JVIS-O2
Single/JVIS-O2-REF

20
10.8

11.0

0 5 10 15 20 25 30 35 40
x [cm]

11.0

11.5

12.0

p
[k
P
a
]

Two/SPLIT
Single/SPLIT
Single/JVIS-O2-REF

20
10.8

11.0

Figure 1: Test 1: pressure along vessels V2 and V3 for a second order implementation of the proposed strategy (left) and
the operator splitting technique (right). Two: solution for vessel network; Single: solution for equivalent vessel; JVIS-O2:
solution obtained with a second order implementation of the proposed methodology; SPLIT: solution obtained with the
operator splitting technique; JVIS-O2-REF: solution obtained using the proposed methodology and ∆xRef = 1mm for the
single vessel. Solution taken at t = 0.036 s (top row), t = 0.052 s (middle row) and t = 0.068 s (bottom row). Insets display
the solution at the junction, whose location is depicted by the vertical dashed line.
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Figure 2: Test 1: pressure along vessels V2 and V3 for a third order implementation of the proposed strategy. Two: solution
for vessel network; Single: solution for equivalent vessel; JVIS-O3: solution obtained with a third order implementation
of the proposed methodology; JVIS-O2-REF: solution obtained using the proposed methodology and ∆xRef = 1mm for the
single vessel. Solution taken at t = 0.036 s (top row), t = 0.052 s (middle row) and t = 0.068 s (bottom row). Insets display
the solution at the junction, whose location is depicted by the vertical dashed line.
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Figure 3: Test 1 (modified): Pressure along vessels V2 and V3 with K∗
m = 5Km for a second order implementation of the

proposed strategy (left) and the operator splitting technique (right). Two: solution for vessel network; Single: solution
for single vessel; JVIS-O2: solution obtained with a second order implementation of the proposed methodology; SPLIT:
solution obtained with the operator splitting technique; JVIS-O2-REF: solution obtained using the proposed methodology
and ∆xRef = 1mm for the single vessel. Solution taken at t = 0.036 s (top row), t = 0.052 s (middle row) and t = 0.068 s
(bottom row). Insets display the solution at the junction, whose location is depicted by the vertical dashed line.
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Figure 4: Test 1 (modified): Pressure along vessels V2 and V3 with K∗
m = 5Km for a third order implementation of

the proposed strategy. Two: solution for vessel network; Single: solution for single vessel; JVIS-O3: solution obtained
with a third order implementation of the proposed methodology; JVIS-O2-REF: solution obtained using the proposed
methodology and ∆xRef = 1mm for the single vessel. Solution taken at t = 0.036 s (top row), t = 0.052 s (middle row) and
t = 0.068 s (bottom row). Insets display the solution at the junction, whose location is depicted by the vertical dashed line.
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across the junction. Computational results for a third order version of the proposed methodology
are shown in Figures 8 and 7.

4.3. In vitro arterial network model
In order to assess the performance of the proposed methodology on a network of viscoelastic

vessels, we consider the in vitro model of the human arterial system presented in [33] and further
studied in [25]. The model includes 37 major arteries, an inflow curve at the root of the aorta and
terminal resistances. A schematic representation of the network is shown in Figure 9. For full
details on the model see [33] and [25]. The characteristic mesh size for solutions reported here
is ∆x = 20mm for the proposed methodology and ∆x = 1mm for the operator splitting technique,
whereas the reference solution was obtained using ∆xRef = 5mm and the proposed methodology.
For the operator splitting approach, a minimum of three computational cells per vessel was used,
whereas in the case of the proposed methodology the minimum number of cells per vessel was set
to one. A CFL = 0.9 was used. The relaxation time was allowed to be different in each vessel, in
order to guarantee that 4= 1 everywhere in the network. Results for the proposed methodology
regard a second order implementation for which the average time step during the simulation was
∆t ≈ 300µs. Note that the time step is computed adaptively at each time iteration.

Figure 10 shows computational results for pressure and flow rate over a cardiac cycle at the
midpoint of selected vessels. Differences between solutions obtained by the operator splitting
method and the proposed methodology seem to be rather small. However, when looking at the
spatial plots for pressure along the aorta and lower limb, reported in Figure 11, the effect of
neglecting viscoelasticity at junctions becomes more evident than in the case of the time-pressure
plots shown in Figure 10. In fact, it can be easily appreciated how the proposed methodology shows
rather smooth transitions in pressure between different vessels, whereas the solution obtained
by the operator splitting technique shows non-physical jumps across junctions. Of course small
jumps are expected (see solution at x = 80 cm), and indeed shown by the solutions obtained with
the proposed methodology, but these have to be small since in this network p >> 1

2ρu2. In other
words, when not treating viscoelasticity properly in the formulation, the numerical results can
display physical inconsistency at junctions. In turn, these inconsistencies will have an impact on
the solution in the entire spatial domain.

4.4. Anatomically detailed upper limb vasculature
We consider the anatomically detailed arterial network of the arm presented in [34]. This net-

work is part of the Anatomically Detailed Arterial Network (ADAN) model [12, 13]. The upper
limb network comprises 201 arterial segments, spanning large, medium, small and even perfo-
rator arteries (see Figure 12). For a detailed description of the network topology, as well as its
geometrical and mechanical parameters, refer to [12]. Of particular importance for the present
study is the wide range of radii present in the network (0.0235 cm ≤ R0 ≤ 0.2077 cm). As a re-
sult of the model parametrization strategy adopted for the ADAN model, this variability in radii
implies that at certain junctions vessels with low viscoelastic properties (large radii) will connect
to vessels with high viscoelastic properties (small radii). This is specially relevant in the case of
small perforator arteries that are located along larger arteries in order to gradually feed vascular
territories with the appropriate amount of blood. Briefly, vessel viscoelasticity in the ADAN model
is defined as Km =Wm KM , where KM = 3000Pa s and

Wm =


0.001, R0 > 0.18 cm ,

0.05, 0.07 cm ≤ R0 ≤ 0.18 cm ,

0.55, R0 < 0.07 cm .
(68)
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Figure 5: Test 2: pressure along vessels V2 and V3. JVIS-O2: solution obtained with a second order implementation of the
proposed methodology; SPLIT: solution obtained with the operator splitting technique; JVIS-O2-REF: solution obtained
using the proposed methodology and ∆x = 1mm. Dashed line shows the location of the junction.
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Figure 6: Test 2: pressure along vessels V2 and V4. JVIS-O2: solution obtained with a second order implementation of the
proposed methodology; SPLIT: solution obtained with the operator splitting technique; JVIS-O2-REF: solution obtained
using the proposed methodology and ∆x = 1mm. Dashed line shows the location of the junction.
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Figure 7: Test 2: pressure along vessels V2 and V3. JVIS-O3: solution obtained with a third order implementation of
the proposed methodology; JVIS-O2-REF: solution obtained using the proposed methodology and ∆x = 1mm. Dashed line
shows the location of the junction.
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Figure 8: Test 2: pressure along vessels V2 and V4. JVIS-O3: solution obtained with a third order implementation of
the proposed methodology; JVIS-O2-REF: solution obtained using the proposed methodology and ∆x = 1mm. Dashed line
shows the location of the junction.
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Figure 9: Schematic representation of the in vitro model of the arterial system presented in [33]. The purple circle indicates
the root of the aorta, where an inflow boundary condition is prescribed. Terminal edges of vessels are linked to purely
resistive elements. Vessels at which the solution is sampled are evidenced by black arrows.
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Figure 10: Pressure (left) and flow (right) for selected vessels of the in vitro arterial network model. JVIS-O2: solution
obtained with a second order implementation of the proposed methodology; SPLIT: solution obtained with the operator
splitting technique; JVIS-O2-REF: solution obtained using the proposed methodology and ∆x = 5mm.
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Figure 11: Pressure along the aorta and lower limb of the in vitro arterial network model at selected time instants. JVIS-
O2: solution obtained with a second order implementation of the proposed methodology; SPLIT: solution obtained with the
operator splitting technique; JVIS-O2-REF: solution obtained using the proposed methodology and ∆x = 5mm. Dashed
lines show the location of junctions.
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Computational results shown in this section regard a spatial discretization of ∆x = 20mm for
the proposed methodology and of ∆x = 1mm for the operator splitting technique. A reference solu-
tion was obtained by using a mesh with ∆x = 5mm and the proposed methodology. A second order
implementation of the proposed methodology was used. As for the previous section, a minimal
number of three and one computational cells per vessel was imposed for the operator splitting
technique and for the proposed methodology, respectively. A CFL = 0.9 was used and the relax-
ation time T was allowed to be different for each vessel in order to ensure that 4 = 1 over the
entire network.

Figure 13 shows pressure and flow over the cardiac cycle at the midpoint of selected vessels.
According to the diameter of each artery and to the parametrization criteria (68), the brachial and
ulnar arteries have a very low viscoleasticity (Km = 30Pas), whereas the posterior interosseous
and the deep brachial arteries are highly viscoelastic (Km = 16500Pas). In fact, the effect of
viscoelasticity is more pronounced in the two latter vessels, where the attenuation of the flow
waveform can be clearly observed for the case of the proposed methodology. Flow waveforms for
the operator splitting technique tend to have a similar shape to the one obtained neglecting vis-
coelasticity everywhere in the network, denoted by ELAS in Figure 13. Moreover, the effect of
viscoelasticity can be seen in pressure waveforms obtained for large (elastic) and small (viscoelas-
tic) vessels. Small vessels will be stiffer during the loading phase, and they will in turn influence
the flow in the larger artery. This is confirmed by results depicted in Figure 14. Here we show
how cross-sectional area in viscoelastic vessels is lower if compared to the elastic case (even for
larger pressure values), i.e. the vessel is stiffer in the loading phase, whereas in vessels with low
viscoelasticity there is a higher distension, due to the influence of small arteries along its course.

As for the case of the in vitro network, it is useful to consider the spatial plot of pressure along
the network at certain instants of the cardiac cycle, as shown in Figure 15. As in the previous
case, it is evident that the proposed methodology achieves a nearly mesh-independent solution
with a relative coarse mesh (∆x = 20mm), whereas the solution obtained by the operator splitting
technique will suffer from physical inconsistency due to neglecting viscoleasticity at junctions. Of
course border effects will be more evident in small vessels, as for the case presented in Section
4.2. However, perhaps the most relevant aspect here is that, for networks with highly viscoelastic
vessels, an incorrect treatment of junctions can have an appreciable impact not only on small
arteries, but also on waveforms of large arteries.

5. Final remarks

We have proposed a coupling strategy for one-dimensional blood flow in viscoelastic vessels
based on a hyperbolic reformulation of the original convection-diffusion-reaction system and on
the interpretation of junctions/bifurcations as Riemann problems for which an approximate/exact
solver can be devised. The accuracy of the methodology was assessed by empirical convergence
tests and by solving the simplest possible problem for which an equivalent solution exists, the pas-
sage of a pressure wave across a junction of two vessels with identical mechanical and geometrical
properties. Moreover, we assessed the impact of neglecting viscoleasticity at junctions for simple
and anatomically detailed arterial networks, showing that the proposed methodology preserves
the consistency and accuracy of the numerical methodology used to solve the partial differential
equations within the one-dimensional domain. Comparisons where made versus results obtained
using the operator splitting technique. From the results presented in this work, it is evident that
neglecting viscoelasticity at junctions can have a significant impact on the physical consistency
and numerical accuracy of the solution delivered by the numerical scheme. In relation to this last
point, we would like to notice that, to the best of our knowledge, a comprehensive study on the
impact of viscoelasticity in one-dimensional blood flow models for small and large vessel networks
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Ulnar artery (p.)

Deep brachial artery

Post. interosseous a.

Figure 12: Anatomically detailed network of the upper limb presented in [34]. Names of arteries regard vessels for which
time-pressure/flow plots are latter displayed.

would be of great interest for practitioners in this field. We believe that such study, on the light
of the conclusions from this work, is even more mandatory in view of the strong impact that an
inconsistent treatment of the viscoelasticity can have on the solution, with misleading conclusions
about its true effect. This subject is the matter of current investigation and will be addressed in
future communications.
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Figure 13: Pressure (left) and flow (right) for selected vessels of the ADAN arm network. ELAS-O2: solution obtained with
a second order implementation of the proposed methodology and Km = 0; JVIS-O2: solution obtained with the proposed
methodology; SPLIT: solution obtained with the operator splitting technique.
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Figure 14: Cross-sectional area over the cardiac cycle for selected vessels of the ADAN arm network. ELAS-O2: solution
obtained with a second order implementation of the proposed methodology and Km = 0; JVIS-O2: solution obtained with
the proposed methodology; SPLIT: solution obtained with the operator splitting technique.
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Figure 15: Pressure (left) and flow (right) along the brachial and ulnar arteries of the ADAN arm network. ELAS-O2: so-
lution obtained with a second order implementation of the proposed methodology and Km = 0; JVIS-O2: solution obtained
with the proposed methodology; SPLIT: solution obtained with the operator splitting technique. JVIS-O2-REF: solution
obtained using the proposed methodology and ∆x = 5mm. Dashed lines show the location of junctions.
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