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Abstract
Recent theoretical studies have demonstrated that the behaviour of molecular knots is a
sensitive indicator of polymer structure. Here, we use knots to verify the ability of two
state-of-the-art algorithms—configuration assembly and hierarchical backmapping—to
equilibrate high-molecular-weight (MW) polymer melts. Specifically, we consider melts with
MWs equivalent to several tens of entanglement lengths and various chain flexibilities,
generated with both strategies. We compare their unknotting probability, unknotting length,
knot spectra, and knot length distributions. The excellent agreement between the two
independent methods with respect to knotting properties provides an additional strong
validation of their ability to equilibrate dense high-MW polymeric liquids. By demonstrating
this consistency of knotting behaviour, our study opens the way for studying topological
properties of polymer melts beyond time and length scales accessible to brute-force molecular
dynamics simulations.

Keywords: multiscale simulations, polymer modelling, polymer melts, topological properties,
molecular knots

(Some figures may appear in colour only in the online journal)

1. Introduction

Computer simulations of concentrated polymer solutions and
melts based on microscopically-detailed models are an impor-
tant numerical tool for tackling various questions in funda-
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of the work, journal citation and DOI.

mental polymer physics [1, 2] and technological applications
[3–8]. Frequently, however, these questions can be properly
addressed only in a truly polymeric regime and require, there-
fore, simulations of high-molecular-weight (MW) polymers.
Enabling equilibration of liquids comprising high-MW poly-
mers at high concentrations, such as concentrated solutions
and melts, is among the challenges of modern computational
molecular physics.

Even though very efficient parallelized implementations are
available [9–11], the generation of uncorrelated configurations
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with brute-force molecular dynamics (MD) requires consider-
able computational efforts. The reason is the protracted poly-
mer dynamics in the entangled regime, where, for example,
the reptation time (the largest of the characteristic relaxation
times of molecular conformations) scales as τ rep ∼ N3 [2, 12],
where N stands for the polymerization degree. Even in the
case of generic microscopic bead-spring models [13], the slow
dynamics of long polymers limits the applicability of MD
simulations to chains with about a thousand beads.

To circumvent the large relaxation times of brute-force
MD, several alternative equilibration procedures have emerged
in recent years. For example, advanced connectivity altering
Monte Carlo (MC) algorithms [14, 15] can handle long poly-
mers described either by generic [16, 17] or chemistry-specific
[14, 15] models. Auhl et al [16] have proposed the so-called
configuration assembly method, where the basic idea is to
start with an ensemble of phantom chains and slowly intro-
duce excluded volume interactions. Recently, powerful hierar-
chical backmapping strategies have been developed [18–25]
enabling the equilibration of melts of unprecedented size, e.g.
thousands of chains with length equivalent to several tens of
entanglement lengths [18]. Some of these divide-and-conquer
methods are based [18–22] on the idea of successively refin-
ing a blob-based model [26]. In this approach, stepwise fine-
graining of configurations, first equilibrated at the lowest res-
olution, is employed until reaching a blob-based representa-
tion where the level of detail is sufficiently high to allow for
reinsertion of microscopic features.

Configuration assembly and hierarchical backmapping
methods yield [18] consistent results in terms of standard
quantifiers of liquid structure and polymer conformations.
Structural comparison is typically performed on the level of
intra- and intermolecular pair distribution functions, whereas
the consistency of conformations is validated comparing inter-
nal distance plots. The latter quantify the mean square distance
between intramolecular monomers in space as a function of the
difference of their ranking numbers along the chain backbone,
i.e., the chemical distance. The deviations between internal
distance plots in melts equilibrated by the two methods amount
to a few percent [18, 19], at most. For many polymer prop-
erties such deviations translate into negligibly small effects.
For example, the entanglement length Ne scales in melts of
flexible chains as Ne ∼ ρ0 p3 [27, 28], where ρ0 is the aver-
age density of monomers and p is the packing length, defined
[27, 29] as p = N/ρ0R2

e. Here R2
e stands for the mean square

distance between the ends of the polymer. Hence, deviations
on the order of 1% in the internal distance plot indicate that
the corresponding variations in estimations of Ne will be (at
most) comparable to 3%. At the same time, recent studies [30]
have demonstrated that such small deviations in internal dis-
tance plots still can result in substantial differences in topolog-
ical properties of polymers expressed through the behaviour of
molecular knots.

Knots are self-entanglements of chains which appear nat-
urally in long [31–33] or confined polymers [34], as well as
in dense polymer solutions, and biological systems [35–40].
Different knots appear with different probabilities and geomet-
rical properties depending on various features of the polymers

in which they are tied. This fact opens the possibility to use
their relative frequency -called knot spectrum- as a fingerprint
of the properties of a polymeric system, a technique which
has been experimentally and computationally used to charac-
terize the arrangement of DNA inside bacteriophage capsids
[41–44].

Motivated by the observations above, here we compare the
behaviour of polymer knots in melts prepared through con-
figuration assembly and hierarchical backmapping methods.
Evidence that knots are a good gauge for the overall structure
of polymers has already been provided in a number of previous
studies [40, 45]. We find that the two sets of melts show con-
sistent knotting behaviour, providing additional evidence that
the two techniques deliver equally equilibrated melts.

In contrast to single polymers [39, 40, 46–53] surprisingly
little is known about knots in multichain systems. Therefore,
quantifying knotting properties in polymer melts is of signifi-
cant interest on its own. So far, knotting probabilities in melts
of hard sphere chains have been determined [54, 55] to depict
connections between intra- and interchain entanglements. Ref-
erence [45] demonstrates that knots are much less prevalent in
melts than expected from a corresponding random walk model,
indicating that ideal chains do not capture this structural aspect
correctly. Building upon this work, a recent study showed [30]
that knots in melts are well-described by mesoscale models
with soft potentials if the length scale which characterizes
polymer stiffness, i.e. the Kuhn length, is substantially larger
than the size of typical excluded volume interactions. Vice
versa, soft models typically perform poorly for flexible chains
[30].

In our study, the analysis of knotting properties of melts
of long chains leads to several findings of fundamental inter-
est. For example, we demonstrate that the occurrence of knots
is consistent with theoretical predictions [31, 32, 56] that the
probability of observing an unknot should decrease expo-
nentially with chain length. So far, this prediction has been
validated only for single-chain systems.

2. Model

The microscopic description of homopolymer melts is
achieved on the level of a generic bead-spring model [57].
This standard model is well-suited for fundamental studies of
dynamics and rheology of polymeric liquids, because it encap-
sulates essential features such as hard excluded volume inter-
actions, strong covalent bonds, and high monomer density.
Each homopolymer is represented by a chain of N monomers
(beads) linked by finitely extensible nonlinear elastic (FENE)
springs. The stiffness (persistence length) of the chain is con-
trolled by assigning to the angle θ formed by two sequential
FENE bonds an angular potential U(θ) = κθ(1 − cos(θ)). Here
κθ is a positive constant. Non-bonded interactions between
monomers are captured through a Weeks–Chandler–Andersen
(WCA) potential, UWCA(r). The parameters of the FENE and
WCA interactions are set to their standard values [18, 57, 58].
The configurations of the melts are cubic samples with vol-
ume V . They contain n chains such that the average density of
the monomers is ρ0 � 0.85. Table 1 summarizes the number
of chains, the polymerization degree, and stiffness parameters
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Table 1. Number of chains nα, polymerization degree N, and stiffness parameter κθ for the
homopolymer melts considered in this study. For the number of chains, the subscript α = CA or
BP denotes the equilibration method, i.e. configuration assembly or backmapping, respectively.
The number of independent samples generated in each case via the two algorithms is also
indicated.

N nCA nBP κθ Configuration-assembly Backmapping

500 1000 4000 0.0 5 6
1000 1000 2000 0.0 5 3
1000 1000 2000 0.75 3 6
1000 1000 2000 1.0 4 7
2000 1000 1000 0.0 5 5

of the homopolymer melts that are analysed in this study with
respect to knot properties.

3. Equilibration algorithms

In this work, we add a new perspective to the analysis of poly-
mer conformations in homopolymer melts equilibrated with
an existing (i) configuration assembly [16, 58] and (ii) hierar-
chical backmapping [18–22] algorithm. Nevertheless, to facil-
itate the presentation of our topological analysis, it is useful to
recapitulate the main features of these algorithms.

3.1. Configuration assembly algorithm

The configuration assembly method [16, 58] is by now
an established stand-alone method for equilibrating polymer
melts with moderate chain lengths. In the framework of the
more powerful but less traditional hierarchical backmapping
strategies, configuration assembly provides reference data
for (i) parameterizing the blob-based model and (ii) validat-
ing equilibration of large samples obtained via hierarchical
backmapping.

All reference data involved in our study were obtained
[58] using a configuration assembly procedure [16] that first
generates chains with conformations drawn from a distribu-
tion expected for the studied melt. Subsequently, these chains
are treated as rigid bodies and arranged under relaxed con-
straints of excluded volume. An ensemble of randomly placed
molecules is equivalent to an ideal gas of polymer chains so
it exhibits density fluctuations that are unrealistically high for
an interacting polymer liquid. To avoid significant conforma-
tional distortions during reinsertion of excluded volume on the
monomer scale, these fluctuations are quenched through an
MC procedure. After the density fluctuations are quenched,
the configurations are subjected to a slow ‘push-off’ where the
non-bonded WCA potentials are ‘force-capped’ according to
the rule:

Ufc
WCA(r) =

⎧⎨
⎩

(r − rc(τ ))U′
WCA(rc(τ )) + UWCA(rc(τ )), r � rc(τ )

UWCA(r), otherwise
.

Here rc(τ ) is the force-capping radius at step τ of the push-
off and the original interactions are recovered when rc(τ ) → 0.
During the push-off, realized using MD, the strength of the
force capping is continuously adjusted through a feedback

loop [58] to minimize the deviation of molecular conforma-
tions from those in the equilibrium melt. Because we will con-
sider the behaviour of knots during such feedback loops, we
provide a few more details on this procedure.

Specifically, after a few MD steps are performed with fixed
rc(τ ), the conformational distortions are quantified using the
descriptor:

I =
∫ n2

n1

[
〈R2(l)〉

l
− 〈R2

ref(l)〉
l

]
dl. (2)

Here 〈R2(l)〉 is the mean square distance between two
monomers that belong to the same chain and have a chemical
distance of l monomers. 〈R2(l)〉 is calculated in the melt config-
urations obtained with the given rc(τ ). Conversely, 〈R2

ref(l)〉 is
the reference value of mean square distance in melts of short
chains that have been equilibrated with brute-force MD, i.e.
without any conformational assembly. For bead-spring mod-
els, the integration boundaries in equation (2) are typically on
the order of [58] n1 = 20 and n2 = 50–100. After a few MD
steps, rc is increased or decreased, depending on whether I is
positive or negative.

3.2. Hierarchical backmapping algorithm

The hierarchical backmapping algorithm employs a hier-
archy of blob-based models with different resolution, as
illustrated in figure 1. The homopolymers described by the
microscopic model are coarse-grained [26] into chains com-
prising soft spheres (blobs). For this purpose, each homopoly-
mer is ‘divided’ into sub-chains consisting of Nb beads. Each
sub-chain is replaced by a sphere; the coordinates of the centre
of the sphere match the position of the centre-of-mass (COM)
of the underlying subchain. In this way, each homopolymer is
mapped on a CG chain with NCG = N/Nb blobs. The resolu-
tion of the model at each level of the hierarchy is determined
by the amount of microscopic monomers Nb underlying each
sphere.

The description of the bonded and non-bonded interactions
between the blobs has been elaborated in detail in several ear-
lier studies [18–20, 22, 26, 59]. We briefly summarize that NCG

blobs are connected into a chain by simple harmonic bond
and angular potentials, motivated by universal properties of
random walks [60]. In the first implementations of hierarchi-
cal backmapping [18–20], non-bonded interactions between
blobs were described by Gaussian potentials with fluctuating
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Figure 1. Schematic illustration of the hierarchical backmapping strategy [18]. The homopolymer melt is initially equilibrated using a
blob-based model where each blob represents a large number of Nb monomers (in this sketch Nb = 100). After equilibration, the melt is
sequentially fine-grained by reinserting the degrees of freedom of finer blob-based models (here Nb = 50 and 25). The microscopic features
are reinserted once the blobs become sufficiently small. Colours are randomly chosen in the last microscopically-resolved configuration to
improve the visibility of different chains.

variance σ̄. These fluctuations of σ̄ represent [26] fluctuations
of the instantaneous radius of gyration of microscopic sub-
chains underlying the interacting blobs. Here, we employ a
later version [22] of the blob-based model where the non-
bonded potentials are extracted from integral equation (IE)
theory [61, 62]. Compared to empirical Gaussian potentials,
non-bonded interactions defined via IE theory allow for a more
straightforward parameterization [61, 62] for each choice of
Nb.

Once the blob-based models are defined, large samples of
melts with long polymer chains are efficiently equilibrated
using the model with the crudest resolution (in figure 1 this
crude model corresponds to Nb = 100). For this initial equili-
bration, we subjected the crude model to MD runs [22] last-
ing about nine Rouse times of the blob-based chains (chain
dynamics is Rouse-like because of soft non-bonded interac-
tions). Such long runs ensure proper sampling of topological
properties of blob-based chains. After equilibration, the melt
configuration is subjected to sequential fine-graining which
descends the levels of the hierarchy by doubling the resolu-
tion at each step [18]. At each fine-graining step, each blob in
the melt is replaced by a pair of two smaller ones, so that the
COM of this ‘dumbbell’ coincides with the COM of the substi-
tuted blob. After this substitution, the local polymer conforma-
tions and the liquid structure must be re-equilibrated. However,
this procedure involves only relaxation on local scales, whose
associated times are short.

The configurations of the coarse-grained melt obtained
from the last fine-graining step in the hierarchy of blob-
based models (in figure 1 the finest blob-based model

corresponds to Nb = 25) are used to recover the microscopic
description. Initially, each soft-sphere polymer is replaced by
a microscopic chain where the molecular architecture is con-
trolled by the full set of the microscopic bonded potentials
(cf section 2). However, all non-bonded interactions, except
those between intramolecular nearest neighbours, are deacti-
vated at this stage. The conformations of the soft-sphere poly-
mer and its replacing microscopic chain must be consistent
with each other. Therefore (i) the positions of the COM of
each microscopic subchain must coincide with the COM of
the corresponding blob and (ii) the radius of gyration (squared)
of each microscopic subchain must equal the radius (squared)
of the corresponding blob. Both requirements are achieved by
‘driving’ the substituting microscopic polymer into the substi-
tuted soft-sphere chain with the help of two pseudo-potentials
[18]. This step is very fast, because the system at this stage
presents an ensemble of non-interacting chains in external
fields (the pseudo-potentials).

Finally, the microscopically resolved configuration is sub-
jected to the push-off procedure [16, 58], already described
in the context of the configuration assembly algorithm. After
the push-off, the sample is locally re-equilibrated. The push-
off and re-equilibration require only short MD runs, pro-
vided that the number of microscopic monomers underlying
the blobs in the melt, where the microscopic details are rein-
serted, is sufficiently small. In particular, Nb must be smaller
than the microscopic entanglement length Ne, i.e. Nb < Ne.
In this case, the time scale required for re-equilibration is
comparable to the Rouse time, τ e, of a subchain with Ne

monomers [12].
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Figure 2. (a)The minimal representation of knots up to six crossings, together with their standard notation based on the minimal number of
crossings. Note that removing a single crossing from all these knots, except 51, is enough to unknot them. (b) Minimal representation of two
composite knots, 31#31 and 31#41.

In the first implementations [18, 19] of hierarchical
backmapping, the various stages were realized through a mix-
ture of MC [59] and MD algorithms. Currently, the entire
procedure of hierarchical backmapping is available [22] on
the efficient ESPResSo++ platform [11] and is realized using
only MD.

4. Knot analysis

Mathematically, knots are topological objects defined on
closed, non-intersecting curves. Two closed curves contain the
same knot if one of them can be transformed into the other
without cutting it temporarily open. When no such transfor-
mation is possible, the two curves contain different knots.
Conventionally, knots are pictured projected onto a plane, and
tabulated according to the minimum crossing number, nc, with
which they can be represented, see e.g. reference [2]. Thus, the
unknotted curve is called 01 as it can be pictured as circle; the
simplest knot, the trefoil, is called 31 as it can not be projected
with less than three crossings. The subscript in this notation
is just a label to distinguish prime knots which have the same
nc, as e.g. 51 and 52 in figure 2. Prime knots can be joined
together to form composite knots. For example, the knot with
the label 31#31 in figure 2 is obtained by ‘gluing’ together two
31 knots. One can think of composite knots as being obtained
by tying several prime knots onto a string, before joining its
ends to circularize it.

Projections of a knot having nc crossings are called mini-
mal projections. The minimum crossing number nc is the sim-
plest example of topological invariant: a function of the curve
whose value depends only on the type of knot tied on it, and

not on its particular geometrical conformation. nc is a weak
topological invariant, as there are several knots for which it
has the same value.

Knot theory provides us with powerful invariants to distin-
guish different knots. These are often based on polynomials
built by assigning different mathematical forms to different
crossings in the projection of a knot. In this study, we adopt
two invariants. The first is the Alexander determinant; a fast
polynomial-based invariant which is able to distinguish knots
with up to seven crossings [33]. The second is given by the
Dowker–Thistlethwaite code: tabulated sequences of integers
which can be computed from minimal knot projections and
identify prime knots up to 16 crossings [63, 64]. We refer the
interested reader to the introductory book by Adams [64] and
to more technical reviews written for physicists [33, 34] and
biophysicists [36].

While mathematically knots are defined only on closed
curves, physical knots appear most frequently on open chains.
Furthermore, their tightness or looseness affects both the
knot’s and the polymer’s mechanical and rheological prop-
erties. For example, tight knots have been shown to reduce
polymers’ tensile strength [65]; knotted DNA filaments are
more compact than their unknotted counterparts, and take
a long time to unravel [66]. Understanding knots’ emer-
gence and behaviour is particularly relevant for emerging
technologies such as DNA sequencing. Both experimental
and computational studies have shown that knots’ behaviour,
including their average size, diffusion constant and untying
time, depend both on the polymer and on the knot proper-
ties, see e.g. references [67–71]. Furthermore, when more
than one prime knot are present on a polymer, they tend to
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Figure 3. (a) Monomer–monomer pair distribution function g(r) in melts equilibrated using configuration assembly (blue line) and
hierarchical backmapping (red symbols). The length of the chains and the strength of angular potential are N = 1000 and κθ = 1,
respectively. (b) Intermolecular monomer–monomer pair distribution function ginter(r) for the same systems as in panel (a).

interact, and have a high probability of becoming intertwined
[52, 72, 73].

To characterize physical knots’ properties, one has to locate
and classify them on open chains. Those are notoriously chal-
lenging tasks, since all the tools provided by knot theory are
defined only for closed curves. To apply them to physical knots
it is thus necessary to first circularize the open chains. In our
analyses, we adopted the minimally interfering closure [74]
to join the ends of open chains, and specifically its imple-
mentation in Kymoknot (www.kymoknot.sissa.it, source avail-
able from https://github.com/luca-tubiana/KymoKnot), a web-
server and software package to localize knots on linear or cir-
cular chains [75]. The minimally interfering closure works by
computing the convex hull of the (portion of) chain to be circu-
larized, the distance between the two ends of the chain, and the
distance between each of those and the surface of the convex
hull. If the two ends are closer to the surface of the convex hull
than they are to one another, each of them is connected to its
closer point on the hull and the chain is circularized outside the
convex hull. Otherwise, the ends are simply bridged [74]. This
effectively minimizes the length of the fictitious circularizing
curve within the convex hull.

Our knot analysis pipeline proceeds as follows. First, we
circularize each chain in the melt independently of the oth-
ers, and evaluate its topological status (knot) using both the
Alexander determinants implemented in Kymoknot, and the
Dowker codes implemented in KNOTFIND [63]. This first
step allows us to construct the knot spectra of melts by con-
structing the histograms of the knot frequencies across differ-
ent configurations of the same melt (see table 1).

Having identified the knotted chains, we proceed to localize
their knotted portion using the stand-alone version of Kymo-
knot. Specifically, for each chain we perform a ‘bottom-up’
search which identifies the smallest region of the chain hav-
ing the same Alexander determinants in t = −1 and t = −2
as the whole chain (see e.g. references [33, 75] for details).
This means that in the case of a composite knot, the algorithm
returns the shortest portion of the chain containing all the
prime components of the knot. To speed up this step, we per-
form a mild smoothing of the chains by removing subsequent

beads whose removal does not result in a crossing of the chain
with itself. To maintain a good precision on the identified
knotted region, we do not remove more than five consecu-
tive beads. This smoothing procedure is described in detail in
reference [75].

To avoid spurious differences in the analysis performed on
samples obtained from the configuration assembly algorithm
and those obtained from the backmapping algorithm, the
whole pipeline (chain circularization, KNOTFIND-based knot
identification, Kymoknot-based knot localization, data pool-
ing) is completely scripted and executed automatically in the
same way for both sets of melt configurations.

5. Results

In this section we present and discuss results obtained from our
analysis. We start by describing some characteristic structural
and conformational features of polymer chains in melts pre-
pared with the two different algorithms and perform a compar-
ison of the two; subsequently, we focus on topological prop-
erties, which constitute a particularly stringent fingerprint of
melt equilibration.

5.1. Comparison of structural and conformational properties

Previous studies [18–22] have demonstrated that melts equili-
brated with configuration assembly and hierarchical backmap-
ping are consistent with each other in terms of standard
conformational and structural properties. As an illustration,
in the remainder of this subsection, we consider a represen-
tative system: a melt of chains with length N = 1000 beads
and strength of the angular potential κθ = 1. Focussing on
this particular case serves a twofold purpose: on the one hand,
we illustrate the agreement between configuration assembly
and backmapping; on the other hand, we introduce the typical
quantitative descriptors employed to perform the comparison
and showcase their usage.

We start by verifying the agreement of the liquid
structure in the two approaches through a comparison of
the monomer–monomer pair-distribution functions g(r). In
figure 3(a) we report data obtained from melts generated with
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Figure 4. (a) Internal distance plots 〈R2(l)〉/l calculated for melts equilibrated using configuration assembly (blue squares) and hierarchical
backmapping (red circles). The length of the chains and the strength of the angular potential are N = 1000 and κθ = 1, respectively. Error
bars, when not visible, are smaller than the symbols. (b) Relative deviations δ(l) of internal distance plots reported in panel (a) (cf
equation (3)). The error bars of δ(l) are represented by the shaded area. Both in panel (a) and (b) error bars correspond to 1.96σ, i.e. a 95%
confidence interval.

configuration assembly (blue line) and hierarchical backmap-
ping (red symbols): the curves are practically indistinguish-
able from each other, as the data points overlap well within
the point size. An even stronger evidence on the consistency
of the liquid structure in the two approaches is provided in
figure 3(b), which presents the intermolecular part of the pair-
distribution function, ginter(r). The almost perfect agreement
of the plots confirms that the packing of the liquid on larger
scales, that is the correlation hole between polymer chains, is
also reproduced.

Subsequently, we turn to larger-scale intra-chain properties,
that is, the internal distance plot. This quantity corresponds
to the ratio C(l) ≡ 〈R2(l)〉/l (the definitions of 〈R2(l)〉 and l
are the same as in section 3.1). Figure 4(a) presents the inter-
nal distance plots obtained with the two methods. We quantify
their consistency by computing the relative deviation between
the two datasets defined as:

δ(l) =
C(l) − C0(l)

C0(l)
, (3)

where C(l) and C0(l) indicate the internal distance plot calcu-
lated in backmapped and assembled melts, respectively. The
data on δ(l) are presented in figure 4(b) and demonstrate that
the relative deviation of the internal distance plots between the
two methods does not exceed 1.5%.

5.2. Comparison of knotting behaviour

We now turn our attention to the comparison of topologi-
cal properties of melts generated using configuration assem-
bly and hierarchical backmapping, cf table 1. An example
conformation of the simplest knot, the 31 is reported in
figure 5. Our analysis considers the main topological charac-
teristics that are commonly investigated in single-chain stud-
ies, namely the unknotting probability, i.e. the probability
that a chain contains no knots, Pun, the knotting probabili-
ties of the most common knots (knot spectra), and the lin-
ear size of the knotted portion, the knot length lknot. The
investigation is carried out for melts of flexible chains of

length N = 500, 1000, and 2000; for the case N = 1000 three
different values of bending stiffness are explored, that is,
κθ = 0.0, 0.75, 1.0.

Before presenting our results on knotting properties, we dis-
cuss some details related to the statistical analysis of related
data. Although both the melt equilibration and the knot anal-
ysis strategies are state-of-the-art, a proper quantification of
some properties, e.g. the knot length distribution, requires
large amounts of knotted chains, which are not always avail-
able to us. In fact, while our samples contain thousands of
chains, only a fraction of them are knotted; in table 2 we report
the total number of knotted chains nknotted that have been con-
sidered for each system. In the following, if not otherwise
stated, error bars are set to 95% confidence intervals. These
correspond to 1.96σ, with σ the standard deviation of the mean
of the observable. For the unknotting probabilities, the stan-
dard deviation has been computed based on the binomial statis-
tics for Bernoulli trials: σ =

√
Pun(1 − Pun)/n, where Pun is

the unknotting probability and n the total number of chains
considered. For all studied melts Pun and n are listed in table 2.
The same strategy has been used to evaluate the confidence
level of the probabilities of specific knots. For the average knot
lengths, σ has been calculated directly as the standard devia-
tion of the sample of average values obtained from each melt
realization, cfr. table 1.

Figure 6(a) shows the unknotting probability in a melt as a
function of chain length N. These data confirm, in the case of
polymer melts, a hypothesis formulated in the early 1960s, the
so-called Frisch–Wassermann–Delbrück [76,77] conjecture,
which essentially states that the equilibrium conformation of
any sufficiently long polymer chain will contain one or more
knots. Indeed, this conjecture was shown to hold for many dif-
ferent polymer models in simulations (e.g. in [56]) and was
even proven mathematically in 1988 for self-avoiding poly-
gons on a simple cubic lattice [31,32]. In the latter work, it
was also shown that, for long enough chains, the unknotting
probability must decay exponentially:

Pun ∝ exp(−N/N0), (4)
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Figure 5. A tight trefoil knot located far from the ends of the chain; the knot contour is highlighted in red. This snapshot corresponds to a
configuration generated with the hierarchical backmapping strategy; similar tight knots have been observed in chains generated with the
configuration assembly method.

Table 2. Knot statistics for the various melts considered in this study. For each
pair of parameters N and κθ we report, for both equilibration strategies, the total
number of chains considered, n, the total number of knotted chains nknotted, the
unknotting probability, Pun, and the average knot length 〈lknot〉. Errors represent
95% confidence intervals.

Melt properties

N κθ Method n nknotted Pun 〈lknot〉

500 0.00 Backmapping 24 000 929 0.961 ± 0.002 160 ± 7
Conf. assembly 5000 208 0.958 ± 0.006 172 ± 14

1000 0.00 Backmapping 6000 698 0.884 ± 0.008 247 ± 15
Conf. assembly 5000 553 0.890 ± 0.009 257 ± 17

1000 0.75 Backmapping 12 000 1998 0.834 ± 0.007 233 ± 9
Conf. assembly 3000 492 0.836 ± 0.013 245 ± 17

1000 1.00 Backmapping 14 000 2558 0.817 ± 0.006 213 ± 7
Conf. assembly 4000 777 0.806 ± 0.012 231 ± 14

2000 0.00 Backmapping 5000 1251 0.750 ± 0.012 378 ± 21
Conf. assembly 5000 1274 0.746 ± 0.012 403 ± 21

with a characteristic size N0 depending on the physical prop-
erties of the polymer, on its degree of confinement, and on the
density of the solution or melt [33, 34, 78, 79]. As demon-
strated in figure 6(a) and in table 2, equation (4) describes
the unknotting probability of flexible open polymers in a
melt equilibrated with the backmapping and the configuration
assembly methods equally well, and the results obtained in
the two cases are in excellent agreement with each other. The
unknotting lengths are compatible within the standard error of
the fit: N0 = 6030 ± 48 for backmapping and N0 = 6060 ±
300 for configuration assembly. Furthermore, the probabilities
of the two most common knots, 31 and 41, agree throughout the
investigated range of chain lengths within a 95% confidence
interval, see figure 6(b).

The consistency between the two methods remains excel-
lent when we fix the chain length, N = 1000 and consider
different values of bending stiffness, as can be seen from
the results reported in figure 7. We notice here that the

unknotting probability decreases with increasing chain rigid-
ity, that is, stiffer chains display stronger propensity to form
knots, as shown by the histograms in panel (b). This result,
while counter-intuitive at first sight, is in line with what has
been observed in computer simulations of flexible and semi-
flexible single chains, both for lattice and off-lattice polymers
[80–84]. These works have highlighted the competing role of
energy and entropy in knot formation: while a knot restricts
the accessible conformational space of a chain, its presence
straightens it locally, thus relaxing the average bending energy.
The competition of these two effects leads to a non-monotonic
behaviour of the knotting probability as a function of the chain
stiffness: for very small values of the persistence length the
knot formation is entropically unfavourable; a large rigidity
disfavours knots as it pushes the system towards extended, ide-
ally circular conformations; in between there is an ‘optimum’
stiffness for which the two effects coherently favour the for-
mation of self-entanglement, thereby increasing the knotting
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Figure 6. (a) Unknotting probability Pun as a function of polymer contour length N (logarithmic scale) for melts obtained from
configuration assembly (blue) and hierarchical backmapping (red). (b) Probabilities of observing the two most common knots, 31 and 41.
Error bars represent 95% confidence intervals.

Figure 7. (a) Unknotting probability as a function of chain stiffness κθ computed for chains in melts equilibrated with configuration
assembly (blue squares) and backmapping (red circles) methods. (b) Knotting probability for 31 and 41 knots as a function of polymer
stiffness for melts of chains with length N = 1000. Errors have been computed as in figure 6.

probability. Most remarkably, although our chains are still
too flexible to observe the non-monotonic behaviour, our
results suggest that this effect persists also in dense polymer
melts.

Finally, we turn our attention to the geometrical properties
of the knots themselves, namely the number of beads of the
polymer that actually constitute the knotted portion, the so-
called ‘knot length’, lknot. We notice here that this quantity is
well-defined for prime knots, while our sample can include
composite knots as well. Nonetheless, in all our melts the
latter appear with a frequency lower than 0.4% and thus do
not affect the results. The agreement between configuration
assembly and hierarchical backmapping can be appreciated by
comparing the distributions of knot lengths obtained by the
two strategies. These are reported using boxplots in figure 8.
Specifically, figure 8(a) shows the lknot distributions for flexible
chains of different length, while figure 8(b) those for different
values of κθ. Boxplots effectively capture the basic proper-
ties of a distribution: the boxes correspond to the first quartiles
below, Q1, and above, Q3, the median of the distribution, and
thus capture 50% of the observations. The median value is
shown with a line and the mean value with a square. Finally,
the whiskers report the outliers. In our case, they extend from

the median to the lowest and highest outlier within 1.5IQR,
with IQR = Q3 − Q1. As lknot distributions are fat-tailed, the
upper whiskers in figure 8 correspond effectively to the median
of lknot plus 1.5IQR; further outliers are ignored for clarity.

In figure 8(a) the boxes are almost completely overlapping,
while the difference in the whiskers’ lengths can be ascribed
to limited statistics, as observed in table 2. This is true, in fact,
for most systems. A similar level of agreement is observed
for the knot lengths obtained by fixing the degree of polymer-
ization to N = 1000 and varying the stiffness of the chains,
κθ, see figure 8(b). The agreement between the two methods
is particularly evident for the system for which we have the
largest amount of knotted configurations (in both cases), i.e.
N = 1000, κθ = 1.0, reported in figure 9(a).

The behaviour of the average knot length, 〈lknot〉, has been
studied extensively in the case of single chains in solution:
one of the main results of these investigations is that knots
are weakly localized [50, 85]; quantitatively, this means that
their average length grows as a power law of the chain
length, lknot ∝ Nα, with 0 < α < 1, for both flexible and semi-
flexible polymers. The average knot lengths for all systems
are reported in table 2 and show good agreement between
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Figure 8. Box plots for knot length distributions as a function of chain length (a) and chain stiffness (b). As can be verified from table 2, the
discrepancies between the boxes and whiskers for the two methods at κθ = 0.75 and κθ = 1.0 correlate with lower numbers of samples
obtained from configuration assembly.

Figure 9. (a) Knot length histograms obtained for the melt N = 1000, κθ = 1.0 equilibrated using configuration assembly (blue line) and
backmapping (red line). For this system we have 777 and 2558 knotted chains in melts generated with configuration assembly and
hierarchical backmapping, respectively. (b) Knot length histograms for melt of flexible polymers of different lengths obtained through the
backmapping equilibration strategy.

configuration assembly and hierarchical backmapping. Inter-
estingly, a decrease of 〈lknot(κθ)〉 is observed for chains of
increasing stiffness, compatibly with computational studies of
semiflexible polymers in solution [81]. Furthermore, it is clear
from the values of 〈lknot〉 reported in table 2 that the knots are
weakly localized in our melts, as observed by [86], as 〈lknot〉/N
decreases with N. Lastly, we notice that, although the differ-
ences between 〈lknot〉 in melts prepared with the two meth-
ods are within the 1.96σ error bars, the trends in table 2 and
figure 8 suggest that 〈lknot〉 in backmapped melts is slightly
smaller than in those prepared using configuration assem-
bly. Observing slightly more compact knots in backmapped
melts is consistent with the comparison of internal distance
plots in figure 4. There, on intermediate scales, 10 � l � 100,
chains in backmapped melts are effectively ‘stiffer’ than their
counterparts in assembled melts. Such marginal differences
might stem from technical details during the implementa-
tion of different algorithms, such as the speed with which
excluded volume increases during the push-off stage. Explor-
ing the effect of such technical details warrants a separate
study.

The large number of knotted chains available for the melts
equilibrated with backmapping, cfr. table 2, allows us to
observe that the distribution of lknot changes with increasing
chain length (figure 9). As observed in previous computational
studies on single knotted polymer chains, the most probable
knot length is independent of the chain length N, while the
average knot length grows with N due to the fact that the
distributions are fat-tailed [72, 87] with their tails growing
with the size of the polymer. This behaviour reflects the fact
that the maximum knot length corresponds to the polymeriza-
tion degree of the polymer, and that the number of ways in
which a knot of size lknot can be placed on a chain of size N is
given by a combinatorial function, which decreases when lknot

increases.
Our consideration of knotting properties raises one impor-

tant question. Blob-based models describe polymer conforma-
tions only down to length scales as small as the blob size. The
reinsertion of microscopic beads bridges the gap between the
resolution of the last blob-based model of the hierarchy and
the microscopic description. In the beginning of the reinser-
tion, subchains with lengths comparable to Nb underlying the
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Figure 10. The unknotting probability, Pun as a function of push-off
time τLJ, measured in Lennard–Jones (LJ) units of time, is reported
in red and on the left axis. The parameter controlling the excluded
volume, rc(τLJ) is reported in grey and on the right axis. The full
strength of excluded volume, i.e. rc = 0, is recovered at τLJ = 650.

last blob-based model (in figure 1 this length is Nb = 25) are
essentially ideal chains (cf section 3.2) and have [45] signifi-
cantly more knots than non-ideal subchains in melts. Because
the MD-based push-off realizes local dynamics, these spu-
rious knots could, in principle, become ‘locked’ during the
growth of excluded volume and lead to melts with unrelaxed
topology.

Therefore, in figure 10 we present the evolution of Pun dur-
ing the push off for a melt with κθ = 1 and N = 2000 (red
line). The evolution of rc controlling the excluded volume is
reported on the same plot (grey line, with values on the right
y-axis). The data for Pun confirm our expectations: the push-off
starts from an ensemble of chains with significant number of
knots. However, the number of knots decreases rapidly before
the excluded volume recovers full strength. In other words,
the insertion of the bead–bead potential only slowly intro-
duces topological constraints on conformational rearrange-
ments. Similar behaviour of knots during push-off has been
observed in an earlier study [45]. Whereas the stage of push-
off is present in both configuration assembly and hierarchical
backmapping methodologies (cf sections 3.1 and 3.2), it starts
in these two cases from qualitatively different initial configu-
rations. Hence, the convergence of configuration assembly and
hierarchical backmapping to melts with consistent knotting
properties supports that the topology of chains is equilibrated
in both cases.

6. Conclusions

Our work considered two state-of-the-art schemes that are cur-
rently available for the equilibration of large samples of high-
MW polymer melts: the configuration assembly [16, 58] and
the hierarchical backmapping method [18–22]. These meth-
ods have been validated in earlier studies through an exten-
sive comparison of standard quantifiers of liquid structure and

polymer conformations. Here, we added a new perspective by
comparing intramolecular topological properties—polymer
knots—in melts with the same architectural and volumet-
ric properties prepared using the two methods independently.
A broad range of knotting properties was quantified, includ-
ing the probability of the unknotted state, the probability of
observing the two most common knots (31 and 41), and geo-
metrical features of knots. For all topological properties we
observed very good agreement. This consistency across sam-
ples prepared with two different methods provides additional
evidence that both of them indeed converge to equilibrated
melts.

The mutual agreement of all investigated topological prop-
erties in melts prepared with the two strategies is a remarkable
fact, because knots capture both local (geometric) and global
(topological) properties of polymers. Furthermore, knots are
fine indicators: changing a single crossing is enough to change
their topological signature. As a consequence, it would not
be possible to conjecture our results only by observing that
both configuration assembly and hierarchical backmapping
produce melts with comparable internal distances and struc-
tural correlation functions. Our result is particularly important
for the relatively new, and less explored, hierarchical backmap-
ping method which has opened the way for equilibrating melt
samples of unprecedented size and length [18–22]. Our analy-
sis gives additional trust to recent extensions of these methods
to interfacial polymer systems, such as homopolymer films
[88].

Apart from providing an additional validation of the hier-
archical backmapping method, our study delivered results that
are interesting for the general theory of molecular knots. The
large polymerization degrees considered enabled us to demon-
strate, for the first time, that the probability of obtaining an
unknotted state in polymer melts decreases exponentially with
chain length. This observation is consistent with earlier mathe-
matical predictions [31, 32] and simulations of single polygons
[33, 56].

By confirming that hierarchical backmapping procedures
can equilibrate polymer melts even on the level of self-
entanglements, our study opens new opportunities for explor-
ing topological properties of multi-chain systems, inaccessible
to earlier equilibration techniques.
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